1
|
Mekasha YT, Wondie Mekonen A, Nigussie S, Usure RE, Feleke MG. Modeling and comparison of dissolution profiles for different brands of albendazole boluses. BMC Pharmacol Toxicol 2024; 25:48. [PMID: 39123260 PMCID: PMC11316307 DOI: 10.1186/s40360-024-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Addressing critical veterinary drugs, especially drugs with solubility problems like albendazole, and their implications for therapeutic efficacy, in-vitro dissolution studies can indeed provide valuable insights into how different brands of albendazole boluses perform under standardized conditions, helping to assess their dissolution profiles and potential bioavailability. METHODS Six brands of albendazole 300 mg boluses were collected from December 2020 to May 2021 G.C. The laboratory work was conducted from December 2020 to May 2021 in the National Animal Products and Veterinary Drugs and Feed Quality Assessment Centre (APVD-FQAC) laboratories. The collected brands from government veterinary clinics and private veterinary shops were subjected to model independent and dependent parameters. The dissolution test was conducted according to the USP monograph. RESULTS The study found that none of the six brands met the requirements of the dissolution test, as their API release was less than 80% within the specified 60-minute timeframe according to USP standards. Model independence indicated that only one brand (Alb002 = 3.72) achieved a difference factor of ≤ 15%. The remaining four brands (4/6) did not meet this criterion. However, the similarity factor (f2) revealed that all five brands (5/6) were comparable to the comparator products, with f2 values of [Formula: see text]50%. The mean dissolution time results confirmed that three brands (3/6) had the highest dissolution rate and the fastest onset of action. The model-dependent kinetics indicated that the Weibull and Korsemeyer-Peppas models were the best fit for the release of drug substances. CONCLUSION The study highlights issues with albendazole boluses' quality, highlighting the need for national in-vitro dissolution studies. These recommendations could improve quality control, streamline regulatory frameworks, and offer practical, cost-effective methods for evaluating drug efficacy and safety, ensuring veterinary pharmaceuticals meet safety and efficacy standards.
Collapse
Affiliation(s)
- Yesuneh Tefera Mekasha
- Pharmaceutical Sciences, Pharmaceutical Quality Assurance, and Regulatory Affairs, University of Gondar, P.O.BOX:196, Gondar, Ethiopia.
| | - Abibo Wondie Mekonen
- Department of Veterinary Pharmacy, Pharmaceutical supply chain management, University of Gondar, Gondar, Ethiopia
| | - Sete Nigussie
- Department of Veterinary Pharmacy, College of Veterinary medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Rashed Edris Usure
- School of Pharmacy, Department of Pharmaceutical Chemistry, Hawassa University, Hawassa, Ethiopia
| | - Melaku Getahun Feleke
- Department of Veterinary Pharmacy, Pharmaceutical Analysis and Quality Assurance, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Arav Y. Advances in Modeling Approaches for Oral Drug Delivery: Artificial Intelligence, Physiologically-Based Pharmacokinetics, and First-Principles Models. Pharmaceutics 2024; 16:978. [PMID: 39204323 PMCID: PMC11359797 DOI: 10.3390/pharmaceutics16080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Oral drug absorption is the primary route for drug administration. However, this process hinges on multiple factors, including the drug's physicochemical properties, formulation characteristics, and gastrointestinal physiology. Given its intricacy and the exorbitant costs associated with experimentation, the trial-and-error method proves prohibitively expensive. Theoretical models have emerged as a cost-effective alternative by assimilating data from diverse experiments and theoretical considerations. These models fall into three categories: (i) data-driven models, encompassing classical pharmacokinetics, quantitative-structure models (QSAR), and machine/deep learning; (ii) mechanism-based models, which include quasi-equilibrium, steady-state, and physiologically-based pharmacokinetics models; and (iii) first principles models, including molecular dynamics and continuum models. This review provides an overview of recent modeling endeavors across these categories while evaluating their respective advantages and limitations. Additionally, a primer on partial differential equations and their numerical solutions is included in the appendix, recognizing their utility in modeling physiological systems despite their mathematical complexity limiting widespread application in this field.
Collapse
Affiliation(s)
- Yehuda Arav
- Department of Applied Mathematics, Israeli Institute for Biological Research, P.O. Box 19, Ness-Ziona 7410001, Israel
| |
Collapse
|
3
|
Golhar A, Pillai M, Dhakne P, Rajput N, Jadav T, Sengupta P. Progressive tools and critical strategies for development of best fit PBPK model aiming better in vitro-in vivo correlation. Int J Pharm 2023; 643:123267. [PMID: 37488057 DOI: 10.1016/j.ijpharm.2023.123267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Nowadays, conducting discriminative dissolution experiments employing physiologically based pharmacokinetic modeling (PBPK) or physiologically based biopharmaceutical modeling (PBBM) is gaining significant importance in quantitatively predicting oral absorption of drugs. Mechanistic understanding of each process involved in drug absorption and its impact on the performance greatly facilitates designing a formulation with high confidence. Unfortunately, the biggest challenge scientists are facing in current days is the lack of standardized protocol for integrating dissolution experiment data during PBPK modeling. However, in vitro-in vivo drug release interrelation can be improved with the consideration and development of appropriate biorelevant dissolution media that closely mimic physiological conditions. Multiple reported dissolution models have described nature and functionality of different regions of the gastrointestinal tract (GI) to more accurately design discriminative dissolution media. Dissolution experiment data can be integrated either mechanistically or without a mechanism depending primarily on the formulation type, biopharmaceutics classification system (BCS) class and particle size of the drug substance. All such parameters are required to be considered for selecting the appropriate functions during PBPK modeling to produce a best fit model. The primary focus of this review is to critically discuss various progressive dissolution models and tools, existing challenges and approaches for establishing best fit PBPK model aiming better in vitro-in vivo correlation (IVIVC). Strategies for proper selection of dissolution models as an input function in PBPK/PBBM modeling have also been critically discussed. Logical and scientific pathway for selection of different type of functions and integration events in the commercially available in silico software has been described through case studies.
Collapse
Affiliation(s)
- Arnav Golhar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Megha Pillai
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pooja Dhakne
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Niraj Rajput
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
4
|
Jung F, Thurn M, Krollik K, Li D, Dressman J, Alig E, Fink L, Schmidt MU, Wacker MG. Sustained-release hot melt extrudates of the weak acid TMP-001: A case study using PBB modelling. Eur J Pharm Biopharm 2021; 160:23-34. [PMID: 33484866 DOI: 10.1016/j.ejpb.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/27/2022]
Abstract
Over the last 30 years, hot melt extrusion has become a leading technology in the manufacture of amorphous drug delivery systems. Mostly applied as an 'enabling formulation' for poorly soluble compounds, application in the design of sustained-release formulations increasingly attracts the attention of the pharmaceutical industry. The drug candidate TMP-001 is currently under evaluation for the early treatment of Multiple Sclerosis. Although this weak acid falls into class II of the Biopharmaceutics Classification System, the compound exhibits high solubility in the upper intestine resulting in high peroral bioavailability. In the present studies, four different formulation prototypes varying in their sustained-release behavior were developed, using L-arginine as a pore-forming agent in concentrations ranging between 0 and 20%. Initially, biorelevant release testing was applied to assess the dissolution behavior of the prototypes. For these formulations, a total drug release of 44.7%, 64.6%, 75%, and 90.5% was achieved in FaSSIF-v2 after 24 h. Two candidates were selected for further characterization considering the crystal structure and the physical stability of the amorphous state of TMP-001 in the formulations together with the release behavior in Level II biorelevant media. Our findings indicate L-arginine as a valuable excipient in the formulation of hot melt extrudates, as its presence led to a considerable stabilization of the amorphous state and favorably impacted the milling process and release behavior of TMP-001. To properly evaluate the proposed formulations and the importance of colonic dissolution and absorption on the overall bioavailability, a physiologically-based biopharmaceutics model was used.
Collapse
Affiliation(s)
- Fabian Jung
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, D-60438 Frankfurt/Main, Germany
| | - Manuela Thurn
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Katharina Krollik
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, D-60438 Frankfurt/Main, Germany
| | - David Li
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, D-60438 Frankfurt/Main, Germany
| | - Edith Alig
- Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Straße 7, D-60438 Frankfurt/Main, Germany
| | - Lothar Fink
- Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Straße 7, D-60438 Frankfurt/Main, Germany
| | - Martin U Schmidt
- Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Straße 7, D-60438 Frankfurt/Main, Germany
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore.
| |
Collapse
|
5
|
Cheng L, Wong H. Food Effects on Oral Drug Absorption: Application of Physiologically-Based Pharmacokinetic Modeling as a Predictive Tool. Pharmaceutics 2020; 12:pharmaceutics12070672. [PMID: 32708881 PMCID: PMC7408216 DOI: 10.3390/pharmaceutics12070672] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
The bioavailability of an orally administered small molecule is often dictated by drug-specific physicochemical characteristics and is influenced by many biological processes. For example, in fed or fasted conditions, the transit time within the gastrointestinal tract can vary, confounding the ability to predict the oral absorption. As such, the effects of food on the pharmacokinetics of compounds in the various biopharmaceutics classification system (BCS) classes need to be assessed. The consumption of food leads to physiological changes, including fluctuations in the gastric and intestinal pH, a delay in gastric emptying, an increased bile secretion, and an increased splanchnic and hepatic blood flow. Despite the significant impact of a drug's absorption and dissolution, food effects have not been fully studied and are often overlooked. Physiologically-based pharmacokinetic (PBPK) models can be used to mechanistically simulate a compound's pharmacokinetics under fed or fasted conditions, while integrating drug properties such as solubility and permeability. This review discusses the PBPK models published in the literature predicting the food effects, the models' strengths and shortcomings, as well as future steps to mitigate the current knowledge gap. We observed gaps in knowledge which limits the ability of PBPK models to predict the negative food effects and food effects in the pediatric population. Overall, the further development of PBPK models to predict food effects will provide a mechanistic basis to understand a drug's behavior in fed and fasted conditions, and will help enable the drug development process.
Collapse
|
6
|
Wei L, Zhao J, Meng Y, Guo Y, Luo C. Antibacterial activity, safety and preservative effect of aminoethyl-phloretin on the quality parameters of salmon fillets. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Hu Y, Smith DE. In Silico Prediction of the Absorption and Disposition of Cefadroxil in Humans using an Intestinal Permeability Method Scaled from Humanized PepT1 Mice. Drug Metab Dispos 2019; 47:173-183. [PMID: 30593545 PMCID: PMC6367690 DOI: 10.1124/dmd.118.084236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
It is difficult to predict the pharmacokinetics and plasma concentration-time profiles of new chemical entities in humans based on animal data. Some pharmacokinetic parameters, such as clearance and volume of distribution, can be scaled allometrically from rodents, mammals, and nonhuman primates with good success. However, it is far more challenging to predict the oral pharmacokinetics of experimental drug candidates. In the present study, we used in situ estimates of intestinal permeability, obtained in silico and from rat, wild-type (WT), and humanized PepT1 (huPepT1) mice, to predict the systemic exposure of cefadroxil, an orally administered model compound, under a variety of conditions. Using the GastroPlus simulation software program (Simulations Plus, Lancaster, CA), we found that the C max and area under the plasma concentration-time curve from time zero to the last measurable concentration of cefadroxil were better predicted using intestinal permeability estimates (both segmental and jejunal) from huPepT1 than from WT mice, and that intestinal permeabilities based on in silico and rat estimates gave worse predictions. We also observed that accurate predictions were possible for cefadroxil during oral dose escalation (i.e., 5, 15, and 30 mg/kg cefadroxil), a drug-drug interaction study (i.e., 5 mg/kg oral cefadroxil plus 45 mg/kg oral cephalexin), and an oral multiple dose study [i.e., 500 mg (6.7 mg/kg) cefadroxil every 6 hours]. Finally, the greatest amount of cefadroxil was absorbed in duodenal and jejunal segments of the small intestine after a 5 mg/kg oral dose. Thus, by combining a humanized mouse model and in silico software, the present study offers a novel strategy for better translating preclinical pharmacokinetic data to oral drug exposure during first-in-human studies.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
8
|
Wang C, Tanataweethum N, Karnik S, Bhushan A. Novel Microfluidic Colon with an Extracellular Matrix Membrane. ACS Biomater Sci Eng 2018; 4:1377-1385. [DOI: 10.1021/acsbiomaterials.7b00883] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chengyao Wang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Nida Tanataweethum
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Sonali Karnik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
9
|
Yang B, Smith DE. In Silico Absorption Analysis of Valacyclovir in Wildtype and Pept1 Knockout Mice Following Oral Dose Escalation. Pharm Res 2017; 34:2349-2361. [PMID: 28770489 DOI: 10.1007/s11095-017-2242-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/26/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE We developed simulation and modeling methods to predict the in vivo pharmacokinetic profiles of acyclovir, following escalating oral doses of valacyclovir, in wildtype and Pept1 knockout mice. We also quantitated the contribution of specific intestinal segments in the absorption of valacyclovir in these mice. METHODS Simulations were conducted using a mechanistic advanced compartmental absorption and transit (ACAT) model implemented in GastroPlus™. Simulations were performed for 3 h post-dose in wildtype and Pept1 knockout mice following single oral doses of 10, 25, 50 and 100 nmol/g valacyclovir, and compared to experimentally observed plasma concentration-time profiles of acyclovir. RESULTS Good fits were obtained in wildtype and Pept1 knockout mice. Valacyclovir was primarily absorbed from duodenum (42%) and jejunum (24%) of wildtype mice, with reduced uptake from ileum (3%) and caecum/colon (1%), for a total of 70% absorption. In contrast, the absorption of valacyclovir in Pept1 knockout mice was slow and sustained throughout the entire intestinal tract in which duodenum (4%), jejunum (14%), ileum (10%) and caecum/colon (12%) accounted for a total of 40% absorption. CONCLUSION The ACAT model bridged the gap between in situ and in vivo experimental findings, and facilitated our understanding of the complicated intestinal absorption processes of valacyclovir.
Collapse
Affiliation(s)
- Bei Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109-1065, USA
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109-1065, USA.
| |
Collapse
|
10
|
Abuhelwa AY, Williams DB, Upton RN, Foster DJ. Food, gastrointestinal pH, and models of oral drug absorption. Eur J Pharm Biopharm 2017; 112:234-248. [DOI: 10.1016/j.ejpb.2016.11.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022]
|
11
|
Lamberti G, Cascone S, Marra F, Titomanlio G, d’Amore M, Barba AA. Gastrointestinal behavior and ADME phenomena: II. In silico simulation. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Roth WL, Young JF. Use of Pharmacokinetic Data Under the FDA's Redbook II Guidelines for Direct Food Additives. Int J Toxicol 2016. [DOI: 10.1080/109158198226620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Experience with food additive petitions submited after publication of the Food and Drug Administration's Redbook I (U. S. FDA, 1982) guide lines indicated a number of areas in which improvements were needed, and advances in toxicol-ogy testing during the last decade required additional rev is ions. In March 1993, the FDA's Center for Food Safety and Applied Nutrition (CFSAN) distributed copies of a draft of Redbook II for public comment. Since that time, revisions have been made based on comments received on the initial draft. This article describes the rationale for Redbook II guidance on the design of pharm acoki-netic studies and discusses some common problems the FDA has encountered in reviewing pharmacokine tic data submitted as part of food additive petitions. Points emphasized are that (1) pharmaco kinetic information is needed for the interpretation of toxicity studies and is most use ful when conducted before major toxicity studies, (2) the use of whole-body autoradiography is encouraged as a means to select tissues of interest, and as a substitute for dissection and tis-sue sampling, (3) kinetic and mechanistic studies conducted with blood compo-nents, tissue slices, hepatocytes, and othercell types in vitro ofien provide more useful information on the fate of chemicals in specific tissues than information extracted from whole-animal studies. The intention of th e new guide lines for pharmaco kinetic studies is to increase the information content of data gathered and to encourage the use of pharmaco kinetic models and results in the selection of doses for subchronic, chronic, and developmental toxicity studies.
Collapse
Affiliation(s)
- William L. Roth
- U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition, Laurel, Maryland, USA
| | - John F. Young
- National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
13
|
Advances and challenges in PBPK modeling – Analysis of factors contributing to the oral absorption of atazanavir, a poorly soluble weak base. Eur J Pharm Biopharm 2015; 93:267-80. [DOI: 10.1016/j.ejpb.2015.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 11/21/2022]
|
14
|
Serra CHDR, Chang KH, Dezani TM, Porta V, Storpirtis S. Dissolution efficiency and bioequivalence study using urine data from healthy volunteers: a comparison between two tablet formulations of cephalexin. BRAZ J PHARM SCI 2015. [DOI: 10.1590/s1984-82502015000200016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
<p>The aim of the present study was to assess the bioequivalence of two cephalexin tablet formulations available in the Brazilian market (product A as reference formulation and product B as test formulation). Dissolution efficiency (DE%) was calculated for both formulations to evaluate their <italic>in vitro</italic>biopharmaceutical features. The oral bioequivalence study was performed in twenty-four healthy volunteers in a crossover design. Single oral dose (tablet containing 500 mg of cephalexin) of each product was administered with two weeks of washout period. Urinary concentrations of cephalexin were measured by high-performance liquid chromatography (HPLC) method and pharmacokinetics parameters were estimated by urinary excretion data. The bioequivalence was determined by the following parameters: the cumulative amount of cephalexin excreted in the urine, the total amount of cephalexin excreted in the urine and the maximum urinary excretion rate of cephalexin. DE values of immediate-release cephalexin tablets (500 mg) were 68.69±4.18% for product A and 71.03±6.63% for product B. Regarding the dissolution test of the two brands (A and B) analysed, both were in compliance with the official pharmacopeial specifications, since the dissolution of both formulations was superior to 80% of the amount declared in the label after 45 minutes of test (A=92.09%±1.84; B=92.84%±1.08). The results obtained indicated that the products A and B are pharmaceutical equivalents. Confidence intervals for the pharmacokinetic parameters were in compliance with the international standards, indicating that products A and B can be considered bioequivalents and, therefore, interchangeable.</p>
Collapse
|
15
|
Chakraborty S, Yadav L, Aggarwal D. Prediction ofin vivodrug performance usingin vitrodissolution coupled with STELLA: a study with selected drug products. Drug Dev Ind Pharm 2014; 41:1667-73. [DOI: 10.3109/03639045.2014.991399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Berlin M, Przyklenk KH, Richtberg A, Baumann W, Dressman JB. Prediction of oral absorption of cinnarizine – A highly supersaturating poorly soluble weak base with borderline permeability. Eur J Pharm Biopharm 2014; 88:795-806. [DOI: 10.1016/j.ejpb.2014.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/14/2014] [Accepted: 08/20/2014] [Indexed: 11/29/2022]
|
17
|
|
18
|
|
19
|
Determination of lamivudine and zidovudine permeability using a different ex vivo method in Franz cells. J Pharmacol Toxicol Methods 2013; 67:194-202. [DOI: 10.1016/j.vascn.2013.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/19/2012] [Accepted: 01/08/2013] [Indexed: 01/06/2023]
|
20
|
Macheras P, Karalis V, Valsami G. Keeping a critical eye on the science and the regulation of oral drug absorption: a review. J Pharm Sci 2013; 102:3018-36. [PMID: 23568812 DOI: 10.1002/jps.23534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/01/2013] [Accepted: 03/15/2013] [Indexed: 11/08/2022]
Abstract
This review starts with an introduction on the theoretical aspects of biopharmaceutics and developments in this field from mid-1950s to late 1970s. It critically addresses issues related to fundamental processes in oral drug absorption such as the complex interplay between drugs and the gastrointestinal system. Special emphasis is placed on drug dissolution and permeability phenomena as well as on the mathematical modeling of oral drug absorption. The review ends with regulatory aspects of oral drug absorption focusing on bioequivalence studies and the US Food and Drug Administration and European Medicines Agency guidelines dealing with Biopharmaceutics Classification System and Biopharmaceutic Drug Disposition Classification System.
Collapse
Affiliation(s)
- Panos Macheras
- Laboratory of Biopharmaceutics-Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens 15771, Greece.
| | | | | |
Collapse
|
21
|
Otsuka K, Shono Y, Dressman J. Coupling biorelevant dissolution methods with physiologically based pharmacokinetic modelling to forecast in-vivo performance of solid oral dosage forms. J Pharm Pharmacol 2013; 65:937-52. [DOI: 10.1111/jphp.12059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/11/2013] [Indexed: 01/04/2023]
Abstract
Abstract
Objectives
To summarize the basis for and progress with the development of in-vitro–in-silico–in-vivo (IV-IS-IV) relationships for oral dosage forms using physiologically based pharmacokinetic (PBPK) modelling, with the focus on predicting the performance of solid oral dosage forms in humans.
Key findings
Various approaches to forecasting oral absorption have been reported to date. These range from simple dissolution tests, through biorelevant dissolution testing and laboratory simulations of the gastrointestinal (GI) tract, to the use of PBPK modelling to predict oral drug absorption based on the physicochemical parameters of the drug substance. Although each of these approaches can be useful for qualitative predictions, forecasting oral absorption on a quantitative basis with an individual approach is only possible for selected drug/dosage form combinations. By integrating biorelevant dissolution test results with the PBPK models, it has become possible to achieve quantitatively accurate as well as qualitative predictions of plasma profiles after oral dosing for both immediate and modified release formulations.
Summary
With further refinement of both the biorelevant dissolution testing methods and the PBPK models, it should be possible to expedite the development and regulatory approval of optimized dosage forms and dosing conditions.
Collapse
Affiliation(s)
- Keiichi Otsuka
- Goethe University, Frankfurt am Main, Germany
- Takeda Pharmaceutical Company Limited, Osaka, Japan
| | | | | |
Collapse
|
22
|
Fei Y, Kostewicz ES, Sheu MT, Dressman JB. Analysis of the enhanced oral bioavailability of fenofibrate lipid formulations in fasted humans using an in vitro-in silico-in vivo approach. Eur J Pharm Biopharm 2013; 85:1274-84. [PMID: 23500116 DOI: 10.1016/j.ejpb.2013.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/14/2013] [Accepted: 03/02/2013] [Indexed: 12/21/2022]
Abstract
Lipid-based formulations have established a significant role in the formulation of poorly soluble drugs for oral administration. In order to better understand their potential advantages over solid oral dosage forms, we studied the solubility and dissolution/precipitation characteristics of three self-microemulsifying drug delivery system (SMEDDS) formulations and one suspension of micronized fenofibrate in lipid excipients, for which pharmacokinetic studies had already been reported in the open literature. The in vitro dispersion/dissolution studies were carried out in biorelevant media using USP II apparatus. These were followed up by in silico simulations using STELLA® software, in which not only dispersion/dissolution, but also the precipitation and re-dissolution of fenofibrate was taken into account. While unformulated drug exhibited poor solubility (0.22 μg/mL in FaSSGF and 4.31 μg/mL in FaSSIF-V2(PO4)) and dissolved less than 2% in dissolution tests, the solubility of fenofibrate in the presence of the lipid excipients increased dramatically (e.g., to 65.44 μg/mL in the presence of the Myritol 318/TPGS/Tween 80 SMEDDS) and there was an attendant increase in the dissolution (over 80% from capsules containing the Myritol 318/TPGS/Tween 80 SMEDDS and about 20% from the dispersion of fenofibrate in lipid excipients). For the four lipid-based fenofibrate formulations studied, combining in vitro data in biorelevant media with in silico simulation resulted in accurate prediction of the in vivo human plasma profiles. The point estimates of C(max) and AUC ratio calculated from the in silico and in vivo plasma profiles fell within the 0.8-1.25 range for the SMEDDS solution and capsule formulations, suggesting an accurate simulation of the in vivo profiles. This similarity was confirmed by calculation of the respective f2 factors. Sensitivity analysis of the simulation profiles revealed that the SMEDDS formulations had virtually removed any dependency of absorption on the dissolution rate in the small intestine, whereas for the dispersion in lipid excipients, this barrier remained. Such results pave the way to optimizing the performance of oral lipid-based formulations via an in vitro-in silico-in vivo approach.
Collapse
Affiliation(s)
- Yang Fei
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
23
|
Paixão P, Gouveia LF, Morais JA. Prediction of the human oral bioavailability by using in vitro and in silico drug related parameters in a physiologically based absorption model. Int J Pharm 2012; 429:84-98. [DOI: 10.1016/j.ijpharm.2012.03.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 12/13/2022]
|
24
|
Wagner C, Jantratid E, Kesisoglou F, Vertzoni M, Reppas C, B Dressman J. Predicting the oral absorption of a poorly soluble, poorly permeable weak base using biorelevant dissolution and transfer model tests coupled with a physiologically based pharmacokinetic model. Eur J Pharm Biopharm 2012; 82:127-38. [PMID: 22652546 DOI: 10.1016/j.ejpb.2012.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 01/10/2023]
Abstract
For predicting food effects and simulating plasma profiles of poorly soluble drugs, physiologically based pharmacokinetic models have become a widely accepted tool in academia and the pharmaceutical industry. Up till now, however, simulations appearing in the open literature have mainly focused on BCS class II compounds, and many of these simulations tend to have more of a "retrospective" than a prognostic, predictive character. In this work, investigations on the absorption of a weakly basic BCS class IV drug, "Compound A", were performed. The objective was to predict the plasma profiles of an immediate release (IR) formulation of Compound A in the fasted and fed state. For this purpose, in vitro biorelevant dissolution tests and transfer model experiments were conducted. Dissolution and precipitation kinetics were then combined with in vivo post-absorptive disposition parameters using STELLA® software. As Compound A not only exhibits poor solubility but also poor permeability, a previously developed STELLA® model was revised to accommodate the less than optimal permeability characteristics as well as precipitation of the drug in the fasted state small intestine. Permeability restrictions were introduced into the model using an absorption rate constant calculated from the Caco-2 permeability value of Compound A, the effective intestinal surface area and appropriate intestinal fluid volumes. The results show that biorelevant dissolution tests are a helpful tool to predict food effects of Compound A qualitatively. However, the plasma profiles of Compound A could only be predicted quantitatively when the results of biorelevant dissolution test were coupled with the newly developed PBPK model.
Collapse
Affiliation(s)
- Christian Wagner
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, Part 1: Oral solutions. J Pharm Sci 2011; 100:5324-45. [DOI: 10.1002/jps.22726] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 07/14/2011] [Indexed: 11/07/2022]
|
26
|
Cascone S, De Santis F, Lamberti G, Titomanlio G. The influence of dissolution conditions on the drug ADME phenomena. Eur J Pharm Biopharm 2011; 79:382-91. [DOI: 10.1016/j.ejpb.2011.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/16/2011] [Accepted: 04/08/2011] [Indexed: 11/29/2022]
|
27
|
Jiang W, Kim S, Zhang X, Lionberger RA, Davit BM, Conner DP, Yu LX. The role of predictive biopharmaceutical modeling and simulation in drug development and regulatory evaluation. Int J Pharm 2011; 418:151-60. [DOI: 10.1016/j.ijpharm.2011.07.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 01/26/2023]
|
28
|
Dressman JB, Thelen K, Willmann S. An update on computational oral absorption simulation. Expert Opin Drug Metab Toxicol 2011; 7:1345-64. [DOI: 10.1517/17425255.2011.617743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Woitiski CB, Sarmento B, Carvalho RA, Neufeld RJ, Veiga F. Facilitated nanoscale delivery of insulin across intestinal membrane models. Int J Pharm 2011; 412:123-31. [PMID: 21501675 DOI: 10.1016/j.ijpharm.2011.04.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/17/2022]
Abstract
The effect of nanoparticulate delivery system on enhancing insulin permeation through intestinal membrane was evaluated in different intestinal epithelial models using cell cultures and excised intestinal tissues. Multilayered nanoparticles were formulated by encapsulating insulin within a core consisting of alginate and dextran sulfate nucleating around calcium and binding to poloxamer, stabilized by chitosan, and subsequently coated with albumin. Insulin permeation through Caco-2 cell monolayer was enhanced 2.1-fold, facilitated by the nanoparticles compared with insulin alone, 3.7-fold through a mucus-secreting Caco-2/HT29 co-culture, and 3.9-fold through excised intestinal mucosa of Wistar rats. Correlation of Caco-2/HT29 co-culture cells with the animal-model intestinal membrane demonstrates that the mucus layer plays a significant role in determining the effectiveness of oral nanoformulations in delivering poorly absorbed drugs. Albumin was applied to the nanoparticles as outermost coat to protect insulin through shielding from proteolytic degradation. The effect of the albumin layering on insulin permeation was compared with albumin-free nanoparticles that mimic the result of albumin being enzymatically removed during gastric and intestinal transport. Results showed that albumin layering is important toward improving insulin transport across the intestinal membrane, possibly by stabilizing insulin in the intestinal conditions. Transcellular permeation was evidenced by internalization of independently labeled insulin and nanoparticles into enterocytes, in which insulin appeared to remain associated with the nanoparticles. Transcellular transport of insulin through rat intestinal mucosa may represent the predominant mechanism by which nanoparticles facilitate insulin permeation. Nanoformulations demonstrated biocompatibility with rat intestinal mucosa through determination of cell viability via monitoring of mitochondrial dehydrogenases. Insulin permeation facilitated by the biocompatible nanoparticles suggests a potential carrier system in delivering protein-based drugs by the oral route.
Collapse
Affiliation(s)
- Camile B Woitiski
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
30
|
Zhang X, Lionberger RA, Davit BM, Yu LX. Utility of physiologically based absorption modeling in implementing Quality by Design in drug development. AAPS JOURNAL 2011; 13:59-71. [PMID: 21207216 DOI: 10.1208/s12248-010-9250-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/14/2010] [Indexed: 12/29/2022]
Abstract
To implement Quality by Design (QbD) in drug development, scientists need tools that link drug products properties to in vivo performance. Physiologically based absorption models are potentially useful tools; yet, their utility of QbD implementation has not been discussed or explored much in the literature. We simulated pharmacokinetics (PK) of carbamazepine (CBZ) after administration of four oral formulations, immediate-release (IR) suspension, IR tablet, extended-release (XR) tablet and capsule, under fasted and fed conditions and presented a general diagram of a modeling and simulation strategy integrated with pharmaceutical development. We obtained PK parameters and absorption scale factors (ASFs) by deconvolution of the PK data for IR suspension under fasted condition. The model was validated for other PK profiles of IR formulations and used to predict PK for XR formulations. We explored three key areas where a modeling and simulation approach impacts QbD. First, the model was used to help identify optimal in vitro dissolution conditions for XR formulations. Second, identification of critical formulations variables was illustrated by a parameter sensitivity analysis of mean particle radius for the IR tablet that showed a PK shift with decreased particle radius, C (max) was increased and T (max) was decreased. Finally, virtual trial simulations allowed incorporation of inter-subject variability in the model. Virtual bioequivalence studies performed for two test formulations suggested that an in vitro dissolution test may be a more sensitive discriminative method than in vivo PK studies. In summary, a well-validated predictive model is a potentially useful tool for QbD implementation in drug development.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Office of Generic Drugs, Food and Drug Administration, Rockville, Maryland, USA
| | | | | | | |
Collapse
|
31
|
Zema L, Sangalli ME, Maroni A, Foppoli A, Bettero A, Gazzaniga A. Active packaging for topical cosmetic/drug products: a hot-melt extruded preservative delivery device. Eur J Pharm Biopharm 2010; 75:291-6. [PMID: 20304050 DOI: 10.1016/j.ejpb.2010.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/02/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
A delivery device intended for the prolonged release of antimicrobial agents, able to enhance the stability profile of liquid/semi-solid cosmetic/pharmaceutical products for topical application, was proposed in the present study. With the aid of a simulation program based on compartment models, the relevant kinetic and formulation parameters were defined using dehydroacetic acid sodium salt (DHA.Na, Prevan) as the model preservative. Indeed, the overall DHA.Na degradation rate is increased in the presence of formaldehyde releasers that are often employed as co-preservatives. Inert matrices (3 g weight and 18 mm diameter) based on high-density polyethylene (HDPE), possibly consistent with the design of an active packaging meant for preservative delivery, were prepared by hot-melt extrusion. Units with satisfactory physical-technological properties could be obtained up to 50%w/w loads of antimicrobial agent. In an attempt to modify the relevant Fickian release profiles by varying the area exposed to the medium, matrix systems coated with an impermeable film except for one base (CMs) or for the inner surface of a central drilled hole (PCMs) were investigated. On the basis of the n exponent of power equation and the outcome of linear fitting, PCMs were proven able to yield the zero-order release behaviour needed to ensure constant DHA.Na levels over a predetermined time period, as indicated by the simulation process.
Collapse
Affiliation(s)
- L Zema
- Dipartimento di Scienze Farmaceutiche P. Pratesi, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Kartal A, Marvola J, Matheka J, Peltoniemi M, Sivén M. Computational prediction of local drug effect on carcinogenic acetaldehyde in the mouth based on in vitro/in vivo results of freely solublel-cysteine. Drug Dev Ind Pharm 2010; 36:715-23. [DOI: 10.3109/03639040903456519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Bolger MB, Fraczkiewicz R, Lukacova V. Simulations of Absorption, Metabolism, and Bioavailability. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/9783527623860.ch17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
35
|
Huang W, Lee SL, Yu LX. Mechanistic approaches to predicting oral drug absorption. AAPS JOURNAL 2009; 11:217-24. [PMID: 19381841 DOI: 10.1208/s12248-009-9098-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 02/27/2009] [Indexed: 12/19/2022]
Abstract
Modeling and simulation of oral drug absorption have been widely used in drug discovery, development, and regulation. Predictive absorption models are used to determine the rate and extent of oral drug absorption, facilitate lead drug candidate selection, establish formulation development strategy, and support the development of regulatory policies. This review highlights the development of recent drug absorption models including dispersion and compartmental models. The compartmental models include the compartmental absorption and transit model; Grass model; gastrointestinal transit absorption model; advanced compartmental absorption and transit model; and advanced dissolution, absorption, and metabolism model. Compared to the early absorption models, the above models developed or extended since the mid-1990s have demonstrated greatly improved predictive performance by accounting for multiple factors such as drug degradation, gastric emptying, intestinal transit, first-pass metabolism, and intestinal transport. For future model development, more heterogeneous features of the gastrointestinal tract (villous blood flow, metabolizing enzymes, and transporters), food effects, and drug-drug interactions should be fully characterized and taken into consideration. Moreover, predicting population inter- and intravariability in oral drug absorption can be useful and important for the evaluation of clinical safety and efficacy of drugs. Establishing databases and libraries that contain accurate pharmaceutical and pharmacokinetic information for commercialized and uncommercialized drugs may also be helpful for model development and validation.
Collapse
Affiliation(s)
- Weili Huang
- Office of Generic Drugs, Food and Drug Administration, 7519 Standish Place, Rockville, Maryland 20855, USA
| | | | | |
Collapse
|
36
|
Jamei M, Dickinson GL, Rostami-Hodjegan A. A Framework for Assessing Inter-individual Variability in Pharmacokinetics Using Virtual Human Populations and Integrating General Knowledge of Physical Chemistry, Biology, Anatomy, Physiology and Genetics: A Tale of ‘Bottom-Up’ vs ‘Top-Down’ Recognition of Covariates. Drug Metab Pharmacokinet 2009; 24:53-75. [DOI: 10.2133/dmpk.24.53] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Dokoumetzidis A, Valsami G, Macheras P. Modelling and simulation in drug absorption processes. Xenobiotica 2008; 37:1052-65. [DOI: 10.1080/00498250701502114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Sirianni RW, Kremer J, Guler I, Chen YL, Keeley FW, Saltzman WM. Effect of Extracellular Matrix Elements on the Transport of Paclitaxel through an Arterial Wall Tissue Mimic. Biomacromolecules 2008; 9:2792-8. [DOI: 10.1021/bm800571s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachael W. Sirianni
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, Boston Scientific Corporation, Inc., Maple Grove, Minnesota 55311, and Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - John Kremer
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, Boston Scientific Corporation, Inc., Maple Grove, Minnesota 55311, and Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Ismail Guler
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, Boston Scientific Corporation, Inc., Maple Grove, Minnesota 55311, and Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Yen-Lane Chen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, Boston Scientific Corporation, Inc., Maple Grove, Minnesota 55311, and Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Fred W. Keeley
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, Boston Scientific Corporation, Inc., Maple Grove, Minnesota 55311, and Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, Boston Scientific Corporation, Inc., Maple Grove, Minnesota 55311, and Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| |
Collapse
|
39
|
Kuentz M. Drug absorption modeling as a tool to define the strategy in clinical formulation development. AAPS JOURNAL 2008; 10:473-9. [PMID: 18751901 DOI: 10.1208/s12248-008-9054-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/30/2008] [Indexed: 01/17/2023]
Abstract
The purpose of this mini review is to discuss the use of physiologically-based drug absorption modeling to guide the formulation development. Following an introduction to drug absorption modeling, this article focuses on the preclinical formulation development. Case studies are presented, where the emphasis is not only the prediction of absolute exposure values, but also their change with altered input values. Sensitivity analysis of technologically relevant parameters, like the drug's particle size, dose and solubility, is presented as the basis to define the clinical formulation strategy. Taking the concept even one step further, the article shows how the entire design space for drug absorption can be constructed. This most accurate prediction level is mainly foreseen once clinical data is available and an example is provided using mefenamic acid as a model drug. Physiologically-based modeling is expected to be more often used by formulators in the future. It has the potential to become an indispensable tool to guide the formulation development of challenging drugs, which will help minimize both risks and costs of formulation development.
Collapse
Affiliation(s)
- Martin Kuentz
- University of Applied Sciences Northwestern Switzerland, Institute of Pharma Technology, Gründenstr., 4132 Muttenz, Switzerland.
| |
Collapse
|
40
|
Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm 2008; 5:760-75. [PMID: 18547054 DOI: 10.1021/mp8000155] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This article describes the use of physiologically based models of intestinal drug absorption to guide the research and development of new drugs. Applications range from lead optimization in the drug discovery phase through clinical candidate selection and extrapolation to human to phase 2 formulation development. Early simulations in preclinical species integrate multiple screening data and add value by transforming these individual properties into a prediction of in vivo absorption. Comparison of simulations to plasma levels measured after oral dosing in animals highlights unexpected behavior, and parameter sensitivity analysis can explore the impact of uncertainties in key properties, point toward factors which are limiting absorption and contribute to assessment of compound developability. Physiological models provide reliable prediction of human absorption and with refinement based on phase 1 data are useful guides to further market formulation development. Improvements in the accuracy of simulations are expected as better in vitro methods generate more in vivo relevant solubility and permeability data, and modeling will play a central role in the development of more predictive methods for transporter-related effects on drug absorption.
Collapse
Affiliation(s)
- Neil Parrott
- F. Hoffmann-La Roche Ltd. Pharmaceuticals Division, Pharma Research Non-Clinical Development, Non-Clinical Drug Safety, Basel, Switzerland.
| | | |
Collapse
|
41
|
Dressman JB, Thelen K, Jantratid E. Towards Quantitative Prediction of Oral Drug Absorption. Clin Pharmacokinet 2008; 47:655-67. [DOI: 10.2165/00003088-200847100-00003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
42
|
Dokoumetzidis A, Kalantzi L, Fotaki N. Predictive models for oral drug absorption: from in silico methods to integrated dynamical models. Expert Opin Drug Metab Toxicol 2007. [DOI: 10.1517/17425255.3.4.491] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Liu Y, Hunt CA. Mechanistic study of the cellular interplay of transport and metabolism using the synthetic modeling method. Pharm Res 2006; 23:493-505. [PMID: 16435171 DOI: 10.1007/s11095-006-9505-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 11/14/2005] [Indexed: 11/25/2022]
Abstract
PURPOSE The aims of this study were 1) to demonstrate a new modeling strategy that uses experimental computational models built by the synthetic method and 2) to study the consequences of spatial alignment, or lack thereof, of P-glycoprotein (Pgp) and CYP3A4 on the transport and metabolism of drug-like compounds and the influence of competitive inhibition by metabolites on the transport and metabolism of those compounds. METHODS The synthetic method of modeling and simulation was used to construct discrete-event, discrete-space models. Within a framework designed for experimentation, object-oriented software components were assembled into devices representing the efflux transport and metabolism mechanisms within cell monolayers in Caco-2 transwell systems. RESULTS Conditions for transport and metabolism synergism (and lack thereof) were identified. Simulations showed how spatial alignment altered the coordinated influences of Pgp and CYP3A4 on absorption of a series of drug-like compounds. Within those experiments, when the metabolites were also substrates of Pgp, the metabolite levels produced were insufficient to give evidence of a competitive inhibitory effect on either transport or metabolism. CONCLUSIONS The results provide evidence of the potential value of using this class of models to improve our understanding of how complex cellular processes influence the transport and absorption of compounds, and the consequences of interventions.
Collapse
Affiliation(s)
- Yu Liu
- The UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California, USA
| | | |
Collapse
|
44
|
Fotaki N, Symillides M, Reppas C. Canine versus in vitro data for predicting input profiles of L-sulpiride after oral administration. Eur J Pharm Sci 2005; 26:324-33. [PMID: 16139490 DOI: 10.1016/j.ejps.2005.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/31/2005] [Accepted: 07/08/2005] [Indexed: 02/02/2023]
Abstract
The objective of this study was to assess the relative usefulness of canine versus in vitro data sets in the prediction of absorption of L-sulpiride (a low permeability compound) from an immediate and an extended release formulation. To reduce species differences on upper gastrointestinal residence times, human and canine data were collected in the fed state. In vitro permeability data (that were additionally confirmed by rat perfusion data) were obtained from the literature. In vitro release data were obtained in media simulating the gastric composition (without and with simultaneous protein digestion) and intestinal composition in the fed state. The results showed that, regardless of the formulation, canine input profiles were vastly different from human profiles at times longer than 2h after administration and led to 2.7 times higher total amount absorbed in dogs. In contrast, reliable in vitro permeability data in combination with in vitro release data collected in biorelevant media led to successful prediction of the human input profile; regardless of the dosage form, simulated and actual mean input profiles differed by less than 20%.
Collapse
Affiliation(s)
- Nikoletta Fotaki
- School of Pharmacy, Laboratory of Biopharmaceutics and Pharmacokinetics, University of Athens, Panepistimiopolis, 157 71 Zografou, Athens, Greece
| | | | | |
Collapse
|
45
|
Liu Y, Hunt CA. Studies of intestinal drug transport using an in silico epithelio-mimetic device. Biosystems 2005; 82:154-67. [PMID: 16135397 DOI: 10.1016/j.biosystems.2005.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 06/22/2005] [Accepted: 06/22/2005] [Indexed: 11/23/2022]
Abstract
We report the development and use of a synthetic, discrete event, discrete space model that functions as an epithelio-mimetic device (EMD). It is intended to facilitate the study of intestinal transport of drug-like compounds. We represent passive paracellular and transcellular transport, carrier-mediated transport and active efflux using stand-alone components. Systematic verification of the EMD over a wide physiologically realistic range is essential before we can use it to address questions regarding the details of the interacting mechanisms that are believed to influence absorption. We report details of key verification experiments. We demonstrate that this device can generate behaviors similar to those observed in the in vitro Caco-2 transwell system. To do that we used a series of hypothetical drugs and we simulated behaviors for two clinically used drugs, alfentanil and digoxin. The results support the feasibility and practicability of the EMD as a tool to expand the experimental options for better understanding the biological processes involved in intestinal transport and absorption of compounds of interest.
Collapse
Affiliation(s)
- Yu Liu
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, CA, USA
| | | |
Collapse
|
46
|
Dokoumetzidis A, Kosmidis K, Argyrakis P, Macheras P. Modeling and Monte Carlo simulations in oral drug absorption. Basic Clin Pharmacol Toxicol 2005; 96:200-5. [PMID: 15733215 DOI: 10.1111/j.1742-7843.2005.pto960309.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Drug dissolution, release and uptake are the principal components of oral drug absorption. All these processes take place in the complex milieu of the gastrointestinal tract and they are influenced by physiological (e.g. intestinal pH, transit time) and physicochemical factors (e.g. dose, particle size, solubility, permeability). Due to the enormous complexity issues involved, the models developed for drug dissolution and release attempt to capture their heterogeneous features. Hence, Monte Carlo simulations and population methods have been utilized since both dissolution and release processes are considered as time evolution of a population of drug molecules moving irreversibly from the solid state to the solution. Additionally, mathematical models have been proposed to determine the effect of the physicochemical properties, solubility/dose ratio and permeability on the extent of absorption for regulatory purposes, e.g. biopharmaceutics classification. The regulatory oriented approaches are based on the tube model of the intestinal lumen and apart from the drug's physicochemical properties, take into account the formulation parameters the dose and the particle size.
Collapse
Affiliation(s)
- Aristides Dokoumetzidis
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester M13 9PL, U.K
| | | | | | | |
Collapse
|
47
|
Jónsdóttir SO, Jørgensen FS, Brunak S. Prediction methods and databases within chemoinformatics: emphasis on drugs and drug candidates. Bioinformatics 2005; 21:2145-60. [PMID: 15713739 DOI: 10.1093/bioinformatics/bti314] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION To gather information about available databases and chemoinformatics methods for prediction of properties relevant to the drug discovery and optimization process. RESULTS We present an overview of the most important databases with 2-dimensional and 3-dimensional structural information about drugs and drug candidates, and of databases with relevant properties. Access to experimental data and numerical methods for selecting and utilizing these data is crucial for developing accurate predictive in silico models. Many interesting predictive methods for classifying the suitability of chemical compounds as potential drugs, as well as for predicting their physico-chemical and ADMET properties have been proposed in recent years. These methods are discussed, and some possible future directions in this rapidly developing field are described.
Collapse
Affiliation(s)
- Svava Osk Jónsdóttir
- Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | | | | |
Collapse
|
48
|
Willmann S, Schmitt W, Keldenich J, Lippert J, Dressman JB. A physiological model for the estimation of the fraction dose absorbed in humans. J Med Chem 2004; 47:4022-31. [PMID: 15267240 DOI: 10.1021/jm030999b] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A physiologically based model for gastrointestinal transit and absorption in humans is presented. The model can be used to study the dependency of the fraction dose absorbed (F(abs)) of both neutral and ionizable compounds on the two main physicochemical input parameters (the intestinal permeability coefficient (P(int)) and the solubility in the intestinal fluids (S(int))) as well as physiological parameters such as the gastric emptying time and the intestinal transit time. For permeability-limited compounds, the model produces the established sigmoidal dependence between F(abs) and P(int). In case of solubility-limited absorption, the model enables calculation of the critical mass-solubility ratio, which defines the onset of nonlinearity in the response of fraction absorbed to dose. In addition, an analytical equation to calculate the intestinal permeability coefficient based on the compound's membrane affinity and molecular weight was used successfully in combination with the physiologically based pharmacokinetic (PB-PK) model to predict the human fraction dose absorbed of compounds with permeability-limited absorption. Cross-validation demonstrated a root-mean-square prediction error of 7% for passively absorbed compounds.
Collapse
Affiliation(s)
- Stefan Willmann
- Bayer Technology Services GmbH, Biophysics, 51368 Leverkusen, Germany.
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Boobis A, Gundert-Remy U, Kremers P, Macheras P, Pelkonen O. In silico prediction of ADME and pharmacokinetics. Report of an expert meeting organised by COST B15. Eur J Pharm Sci 2002; 17:183-93. [PMID: 12453607 DOI: 10.1016/s0928-0987(02)00185-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The computational approach is one of the newest and fastest developing techniques in pharmacokinetics, ADME (absorption, distribution, metabolism, excretion) evaluation, drug discovery and toxicity. However, to date, the software packages devoted to ADME prediction, especially of metabolism, have not yet been adequately validated and still require improvements to be effective. Most are 'open' systems, under constant evolution and able to incorporate rapidly, and often easily, new information from user or developer databases. Quantitative in silico predictions are now possible for several pharmacokinetic (PK) parameters, particularly absorption and distribution. The emerging consensus is that the predictions are no worse than those made using in vitro tests, with the decisive advantage that much less investment in technology, resources and time is needed. In addition, and of critical importance, it is possible to screen virtual compounds. Some packages are able to handle thousands of molecules in a few hours. However, common experience shows that, in part at least for essentially irrational reasons, there is currently a lack of confidence in these approaches. An effort should be made by the software producers towards more transparency, in order to improve the confidence of their consumers. It seems highly probable that in silico approaches will evolve rapidly, as did in vitro methods during the last decade. Past experience with the latter should be helpful in avoiding repetition of similar errors and in taking the necessary steps to ensure effective implementation. A general concern is the lack of access to the large amounts of data on compounds no longer in development, but still kept secret by the pharmaceutical industry. Controlled access to these data could be particularly helpful in validating new in silico approaches.
Collapse
Affiliation(s)
- Alan Boobis
- Section on Clinical Pharmacology, Imperial College, London, UK
| | | | | | | | | |
Collapse
|