1
|
Panjideh H, Niesler N, Weng A, Fuchs H. Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861. Toxins (Basel) 2022; 14:toxins14070478. [PMID: 35878216 PMCID: PMC9318199 DOI: 10.3390/toxins14070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/28/2022] Open
Abstract
Immunotoxins do not only bind to cancer-specific receptors to mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. The plant glycoside SO1861 was previously reported to enhance the endolysosomal escape of antibody-toxin conjugates in non-hematopoietic cells, thus increasing their cytotoxicity manifold. Here we tested this technology for the first time in a lymphoma in vivo model. First, the therapeutic CD20 antibody obinutuzumab was chemically conjugated to the ribosome-inactivating protein dianthin. The cytotoxicity of obinutuzumab-dianthin (ObiDi) was evaluated on human B-lymphocyte Burkitt’s lymphoma Raji cells and compared to human T-cell leukemia off-target Jurkat cells. When tested in combination with SO1861, the cytotoxicity for target cells was 131-fold greater than for off-target cells. In vivo imaging in a xenograft model of B-cell lymphoma in mice revealed that ObiDi/SO1861 efficiently prevents tumor growth (51.4% response rate) compared to the monotherapy with ObiDi (25.9%) and non-conjugated obinutuzumab (20.7%). The reduction of tumor volume and overall survival was also improved. Taken together, our results substantially contribute to the development of a combination therapy with SO1861 as a platform technology to enhance the efficacy of therapeutic antibody-toxin conjugates in lymphoma and leukemia.
Collapse
Affiliation(s)
- Hossein Panjideh
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Nicole Niesler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany;
| | - Hendrik Fuchs
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
- Correspondence:
| |
Collapse
|
2
|
Ahmadi S, Sukprasert P, Vegesna R, Sinha S, Schischlik F, Artzi N, Khuller S, Schäffer AA, Ruppin E. The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective. Nat Commun 2022; 13:1613. [PMID: 35338126 PMCID: PMC8956718 DOI: 10.1038/s41467-022-29154-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/22/2022] [Indexed: 02/08/2023] Open
Abstract
Mining a large cohort of single-cell transcriptomics data, here we employ combinatorial optimization techniques to chart the landscape of optimal combination therapies in cancer. We assume that each individual therapy can target any one of 1269 genes encoding cell surface receptors, which may be targets of CAR-T, conjugated antibodies or coated nanoparticle therapies. We find that in most cancer types, personalized combinations composed of at most four targets are then sufficient for killing at least 80% of tumor cells while sparing at least 90% of nontumor cells in the tumor microenvironment. However, as more stringent and selective killing is required, the number of targets needed rises rapidly. Emerging individual targets include PTPRZ1 for brain and head and neck cancers and EGFR in multiple tumor types. In sum, this study provides a computational estimate of the identity and number of targets needed in combination to target cancers selectively and precisely.
Collapse
Affiliation(s)
- Saba Ahmadi
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Department of Computer Science, Northwestern University, Evanston, IL, 60208, USA
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Pattara Sukprasert
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Department of Computer Science, Northwestern University, Evanston, IL, 60208, USA
| | - Rahulsimham Vegesna
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Natalie Artzi
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, 02139, USA
| | - Samir Khuller
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Department of Computer Science, Northwestern University, Evanston, IL, 60208, USA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Vasantha Ramachandran R, Bhat R, Kumar Saini D, Ghosh A. Theragnostic nanomotors: Successes and upcoming challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1736. [PMID: 34173342 DOI: 10.1002/wnan.1736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
The idea of "fantastic voyagers" carrying out medical tasks within the human body has existed as part of popular culture for many decades. The concept revolved around a miniaturized robot that can travel inside the human body and perform complicated functions such as surgery, navigation of otherwise inaccessible biological environments, and delivery of therapeutics. Since the last decade, significant developments have occurred in this arena that are yet to enter mainstream biomedical practises. Here, we define the challenges to make this fiction into reality. We begin by chalking the journey from pills, nanoparticles, and then to micro-nanomotors. The review describes the principles, physicochemical contexts, and advantages that micro-nanomotors provide. The article then describes micro-nanomotors' obstacles such as maneuverability, in vivo imaging, toxicity, and biodistribution. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.,Department of Physics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
4
|
Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021; 170:238-260. [PMID: 33484737 PMCID: PMC8274479 DOI: 10.1016/j.addr.2021.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
A grand challenge in drug delivery is providing the right dose, at the right anatomic location, for the right duration of time to maximize therapeutic efficacy while minimizing off-target toxicity and other deleterious side-effects. Two general modalities are receiving broad attention for localized drug delivery. In the first, referred to as "targeted accumulation", drugs or drug carriers are engineered to have targeting moieties that promote their accumulation at a specific tissue site from circulation. In the second, referred to as "local anchoring", drugs or drug carriers are inserted directly into the tissue site of interest where they persist for a specified duration of time. This review surveys recent advances in harnessing molecular recognition between proteins, peptides, nucleic acids, lipids, and carbohydrates to mediate targeted accumulation and local anchoring of drugs and drug carriers.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
5
|
Design and evaluation of surface functionalized superparamagneto-plasmonic nanoparticles for cancer therapeutics. Int J Pharm 2017; 524:16-29. [DOI: 10.1016/j.ijpharm.2017.03.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/18/2017] [Accepted: 03/26/2017] [Indexed: 01/19/2023]
|
6
|
Gilabert-Oriol R, Weng A, Trautner A, Weise C, Schmid D, Bhargava C, Niesler N, Wookey PJ, Fuchs H, Thakur M. Combinatorial approach to increase efficacy of Cetuximab, Panitumumab and Trastuzumab by dianthin conjugation and co-application of SO1861. Biochem Pharmacol 2015; 97:247-55. [PMID: 26253687 DOI: 10.1016/j.bcp.2015.07.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
Abstract
The therapeutic relevance of immunotoxins is based on the conjugation of monoclonal antibodies to toxins. In cancer therapies, the conjugated antibodies not only direct the binding of immunotoxins to cancer-specific receptors and mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. In the present study, the therapeutic antibodies Cetuximab (anti-EGFR, Erbitux(®)), Panitumumab (anti-EGFR, Vectibix(®)) and Trastuzumab (anti-HER2, Herceptin(®)) were chemically conjugated to the toxin dianthin. In the first instance, recombinant dianthin was characterized by mass spectrometry and its stability was analyzed by circular dichroism. Dianthin showed increased cytotoxicity on MCF-7 cells when tested in combination with a glycosylated triterpenoid (SO1861) in a real-time impedance-based cytotoxicity assay. In data obtained by live cell imaging, SO1861 specifically mediated the endo/lysosomal escape of dianthin without disrupting the plasma membrane. The purity of immunotoxins was confirmed by SDS-PAGE and Western blot. Their cytotoxicity was evaluated in the presence of SO1861 and dianthin-Cetuximab presented a GI50 (50% growth inhibition) of 5.3pM, dianthin-Panitumumab of 1.5pM, and dianthin-Trastuzumab of 23pM. Finally, the specificity of these immunotoxins was validated in a fluorescence-based real-time assay, where their binding to target cells was prevented by preincubation with an excess of label-free unconjugated antibody. Based on these data, we propose the use of dianthin and SO1861 as a new platform technology to enhance the efficacy of therapeutic antibodies.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany; Department of Medicine, University of Melbourne, Austin Health, Studley Road, VIC 3084 Heidelberg, Australia
| | - Alexander Weng
- Institut für Pharmazie-Pharmazeutische Biologie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany
| | - Alexandra Trautner
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Christoph Weise
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Daniel Schmid
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Cheenu Bhargava
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Nicole Niesler
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peter J Wookey
- Department of Medicine, University of Melbourne, Austin Health, Studley Road, VIC 3084 Heidelberg, Australia
| | - Hendrik Fuchs
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Mayank Thakur
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
7
|
Cong X, Poyton MF, Baxter AJ, Pullanchery S, Cremer PS. Unquenchable Surface Potential Dramatically Enhances Cu(2+) Binding to Phosphatidylserine Lipids. J Am Chem Soc 2015; 137:7785-92. [PMID: 26065920 DOI: 10.1021/jacs.5b03313] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, the apparent equilibrium dissociation constant, K(Dapp), between Cu(2+) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), a negatively charged phospholipid, was measured as a function of PS concentrations in supported lipid bilayers (SLBs). The results indicated that K(Dapp) for Cu(2+) binding to PS-containing SLBs was enhanced by a factor of 17,000 from 110 nM to 6.4 pM as the PS density in the membrane was increased from 1.0 to 20 mol %. Although Cu(2+) bound bivalently to POPS at higher PS concentrations, this was not the dominant factor in increasing the binding affinity. Rather, the higher concentration of Cu(2+) within the double layer above the membrane was largely responsible for the tightening. Unlike the binding of other divalent metal ions such as Ca(2+) and Mg(2+) to PS, Cu(2+) binding does not alter the net negative charge on the membrane as the Cu(PS)2 complex forms. As such, the Cu(2+) concentration within the double layer region was greatly amplified relative to its concentration in bulk solution as the PS density was increased. This created a far larger enhancement to the apparent binding affinity than is observed by standard multivalent effects. These findings should help provide an understanding on the extent of Cu(2+)-PS binding in cell membranes, which may be relevant to biological processes such as amyloid-β peptide toxicity and lipid oxidation.
Collapse
|
8
|
Vedani A, Dobler M, Hu Z, Smieško M. OpenVirtualToxLab--a platform for generating and exchanging in silico toxicity data. Toxicol Lett 2014; 232:519-32. [PMID: 25240273 DOI: 10.1016/j.toxlet.2014.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/03/2014] [Indexed: 11/30/2022]
Abstract
The VirtualToxLab is an in silico technology for estimating the toxic potential--endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity--of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of currently 16 proteins, known or suspected to trigger adverse effects: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The toxic potential of a compound--its ability to trigger adverse effects--is derived from its computed binding affinities toward these very proteins: the computationally demanding simulations are executed in client-server model on a Linux cluster of the University of Basel. The graphical-user interface supports all computer platforms, allows building and uploading molecular structures, inspecting and downloading the results and, most important, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. Access to the VirtualToxLab is available free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations.
Collapse
Affiliation(s)
- Angelo Vedani
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; Foundation Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Max Dobler
- Foundation Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Zhenquan Hu
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Martin Smieško
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
9
|
He S, Zhou Z, Li L, Yang Q, Yang Y, Guan S, Zhang J, Zhu X, Jin Y, Huang Y. Comparison of active and passive targeting of doxorubicin for somatostatin receptor 2 positive tumor models by octreotide-modified HPMA copolymer-doxorubicin conjugates. Drug Deliv 2014; 23:285-96. [PMID: 24865288 DOI: 10.3109/10717544.2014.911991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Somatostatin receptor 2 (SSTR2), specifically over-expressed on many tumor cells, is a potential receipt for active targeting in cancer therapy. In the present study, octreotide (Oct), which had high affinity to SSTR2, was attached to N-(2-hydroxypropyl) methacrylamide (HPMA) polymeric system to enhance the antitumor efficiency of the anticancer drug doxorubicin (DOX). Two kinds of cell lines (HepG2 and A549), which overexpress SSTR2, were chosen as cell models. Compared with non-modified conjugates, Oct-modified conjugates exhibited superior cytotoxicity and intracellular uptake on both HepG2 and A549 cell lines. This might be due to the mechanism of receptor-mediated endocytosis. Subsequently, the in vivo biodistribution and antitumor activity evaluations showed that Oct modification significantly improved the tumor accumulation and antitumor efficacy of HPMA copolymer conjugates in SSTR2 over-expressed Kunming mice bearing H22 tumor xenografts. In summary, Oct-modified HPMA polymer-DOX conjugates might be a promising system for the treatment of SSTR2 over-expressed cancers.
Collapse
Affiliation(s)
- Shuang He
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Zhou Zhou
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Lian Li
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Qingqing Yang
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Yang Yang
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Shan Guan
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Jian Zhang
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Xi Zhu
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Yun Jin
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Yuan Huang
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| |
Collapse
|
10
|
Iyer AK, Duan Z, Amiji MM. Nanodelivery Systems for Nucleic Acid Therapeutics in Drug Resistant Tumors. Mol Pharm 2014; 11:2511-26. [DOI: 10.1021/mp500024p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arun K. Iyer
- Department
of Pharmaceutical Sciences, School of Pharmacy, Bouvé College
of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhenfeng Duan
- Department
of Orthopedic Surgery, Harvard Medical School, Boston Massachusetts 02114, United States
| | - Mansoor M. Amiji
- Department
of Pharmaceutical Sciences, School of Pharmacy, Bouvé College
of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Jain S, Doshi AS, Iyer AK, Amiji MM. Multifunctional nanoparticles for targeting cancer and inflammatory diseases. J Drug Target 2013; 21:888-903. [DOI: 10.3109/1061186x.2013.832769] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Biotechnol Adv 2013; 32:789-803. [PMID: 23933109 DOI: 10.1016/j.biotechadv.2013.08.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/01/2013] [Indexed: 01/17/2023]
Abstract
pH-responsive nanoparticles (NPs) are currently under intense development as drug delivery systems for cancer therapy. Among various pH-responsiveness, NPs that are designed to target slightly acidic extracellular pH environment (pHe) of solid tumors provide a new paradigm of tumor targeted drug delivery. Compared to conventional specific surface targeting approaches, the pHe-targeting strategy is considered to be more general due to the common occurrence of acidic microenvironment in solid tumors. This review mainly focuses on the design and applications of pHe-activated NPs, with special emphasis on pHe-activated surface charge reversal NPs, for drug and siRNA delivery to tumors. The novel development of NPs described here offers great potential for achieving better therapeutic effects in cancer treatment.
Collapse
|
13
|
Polyak D, Eldar-Boock A, Baabur-Cohen H, Satchi-Fainaro R. Polymer conjugates for focal and targeted delivery of drugs. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dina Polyak
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Hemda Baabur-Cohen
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
14
|
Yan L, Chen W, Zhu X, Huang L, Wang Z, Zhu G, Roy VAL, Yu KN, Chen X. Folic acid conjugated self-assembled layered double hydroxide nanoparticles for high-efficacy-targeted drug delivery. Chem Commun (Camb) 2013; 49:10938-40. [DOI: 10.1039/c3cc45714a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Sun Q, Radosz M, Shen Y. Challenges in design of translational nanocarriers. J Control Release 2012; 164:156-69. [DOI: 10.1016/j.jconrel.2012.05.042] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 01/21/2023]
|
16
|
|
17
|
Petkau-Milroy K, Sonntag MH, van Onzen AHAM, Brunsveld L. Supramolecular Polymers as Dynamic Multicomponent Cellular Uptake Carriers. J Am Chem Soc 2012; 134:8086-9. [DOI: 10.1021/ja3029075] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katja Petkau-Milroy
- Laboratory
of Chemical Biology, Department of Biomedical
Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Michael H. Sonntag
- Laboratory
of Chemical Biology, Department of Biomedical
Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Arthur H. A. M. van Onzen
- Laboratory
of Chemical Biology, Department of Biomedical
Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical
Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
18
|
Zhang H, Cai Z, Sun Y, Yu F, Chen Y, Sun B. Folate-conjugated β-cyclodextrin from click chemistry strategy and for tumor-targeted drug delivery. J Biomed Mater Res A 2012; 100:2441-9. [PMID: 22566147 DOI: 10.1002/jbm.a.34169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 12/14/2022]
Abstract
To enhance site-specific intracellular delivery against the folate receptor, a drug carrier was designed and synthesized by bioconjugation of folic acid (FA) to β-cyclodextrins (β-CD) through a poly(ethylene glycol) (PEG) spacer from "click chemistry" strategy. The resulted conjugates were confirmed by (1)H NMR and IR spectroscopy. Host-guest interactions between hydrophobic drug and β-CD are capable of entrapping a hydrophobic drug, like 5-Fluorouracil, to form drug-β-CD-PEG-FA nanoparticles (NPs) in aqueous solution. The morphology and size of β-CD-PEG-FA NPs were measured by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The targeting ability of the β-CD-PEG-FA NPs was investigated against two kinds of cell lines (HeLa and A549), which have different amounts of folate receptors on their surface. Confocal image analysis revealed that β-CD-PEG-FA conjugate-assembled nanoparticles exhibited a greater extent of cellular uptake against HeLa cells than A549 cells. This suggests folate-receptor-mediated endocytosis can affect the cellular uptake efficiency of drug-loaded β-CD-PEG-FA NPs. The β-CD-PEG-FA conjugates that are presented may be promising active tumor-targeting carrier candidates via folate mediation.
Collapse
Affiliation(s)
- Huaihong Zhang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng 224051, China
| | | | | | | | | | | |
Collapse
|
19
|
Vedani A, Dobler M, Smieško M. VirtualToxLab - a platform for estimating the toxic potential of drugs, chemicals and natural products. Toxicol Appl Pharmacol 2012; 261:142-53. [PMID: 22521603 DOI: 10.1016/j.taap.2012.03.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on http://www.virtualtoxlab.org. The free platform - the OpenVirtualToxLab - is accessible (in client-server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations.
Collapse
Affiliation(s)
- Angelo Vedani
- Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
20
|
Yang Y, Zhou Z, He S, Fan T, Jin Y, Zhu X, Chen C, Zhang ZR, Huang Y. Treatment of prostate carcinoma with (Galectin-3)-targeted HPMA copolymer-(G3-C12)-5-Fluorouracil conjugates. Biomaterials 2012; 33:2260-71. [DOI: 10.1016/j.biomaterials.2011.12.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
|
21
|
Iyer A, He J, Amiji M. Image-guided nanosystems for targeted delivery in cancer therapy. Curr Med Chem 2012; 19:3230-40. [PMID: 22612697 PMCID: PMC5724376 DOI: 10.2174/092986712800784685] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/31/2011] [Accepted: 01/19/2012] [Indexed: 12/24/2022]
Abstract
Current challenges in early detection, limitations of conventional treatment options, and the constant evolution of cancer cells with metastatic and multi-drug resistant phenotypes require novel strategies to effectively combat this deadly disease. Nanomedical technologies are evolving at a rapid pace and are poised to play a vital role in diagnostic and therapeutic interventions - the so-called "theranostics" - with potential to advance personalized medicine. In this regard, nanoparticulate delivery systems can be designed with tumor seeking characteristics by utilizing the inherent abnormalities and leaky vasculature of solid tumors or custom engineered with targeting ligands for more specific tumor drug targeting. In this review we discuss some of the recent advances made in the development of multifunctional polymeric nanosystems with an emphasis on image-guided drug and gene delivery. Multifunctional nanosystems incorporate variety of payloads (anticancer drugs and genes), imaging agents (optical probes, radio-ligands, and contrast agents), and targeting ligands (antibodies and peptides) for multi-pronged cancer intervention with potential to report therapeutic outcomes. Through advances in combinatorial polymer synthesis and high-throughput testing methods, rapid progress in novel optical/radiolabeling strategies, and the technological breakthroughs in instrumentation, such as hybrid molecular and functional imaging systems, there is tremendous future potential in clinical utility of theranostic nanosystems.
Collapse
Affiliation(s)
- A.K. Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - J. He
- Center for Molecular and Functional Imaging, Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| | - M.M. Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
22
|
Zheng Y, Cai Z, Song X, Chen Q, Bi Y, Li Y, Hou S. Preparation and characterization of folate conjugated N-trimethyl chitosan nanoparticles as protein carrier targeting folate receptor: in vitro studies. J Drug Target 2010; 17:294-303. [PMID: 19255895 DOI: 10.1080/10611860902737920] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Folate conjugated N-trimethyl chitosan (folate-TMC) was synthesized and characterized using Fourier transform infrared (FTIR) and (1)H spectroscopy. The fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) loaded TMC-nanoparticle (FB-TMC-NP) and FITC-BSA loaded folate-TMC-nanoparticle (FB-f-TMC-NP) were prepared by ionic cross-linking of TMC or folate-TMC with sodium alginate. Single factor analysis method was used to optimize the formulation of nanoparticles. The encapsulating efficiencies of FB-TMC-NP and FB-f-TMC-NP produced by optimal formulation were 98.3 +/- 1.9% and 98.7 +/- 2.7% (n=3), respectively. In addition, the mean diameters of FB-TMC-NP and FB-f-TMC-NP were 184.3 +/- 8.3 nm and 176.1 +/- 5.0 nm (n = 3), respectively. Transmission electron microscope (TEM) showed that the nanoparticles were of spherical shapes. The intracellular uptake of FB-f-TMC-NP by SKOV3 cells (folate receptor overexpressing cells) was 3.7-fold more than that of FB-TMC-NP and could be inhibited by the presence of 1 mM folate in the culture medium, although there was no significant difference between the intracellular uptake of FB-f-TMC-NP in A549 cells (folate receptor-deficient cells) and that of FB-TMC-NP in the same cells. In conclusion, the enhancement of cellular uptake of FB-f-TMC-NP by SKOV3 cells in a specific way was attributed to the folate receptor-mediated endocytosis. FB-TMC-NP was a promising carrier for protein.
Collapse
Affiliation(s)
- Yu Zheng
- West China Pharmacy School, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Prakash J, Beljaars L, Harapanahalli AK, Zeinstra-Smith M, de Jager-Krikken A, Hessing M, Steen H, Poelstra K. Tumor-targeted intracellular delivery of anticancer drugs through the mannose-6-phosphate/insulin-like growth factor II receptor. Int J Cancer 2010; 126:1966-1981. [PMID: 19795464 DOI: 10.1002/ijc.24914] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tumor-targeting of anticancer drugs is an interesting approach for the treatment of cancer since chemotherapies possess several adverse effects. In the present study, we propose a novel strategy to deliver anticancer drugs to the tumor cells through the mannose-6-phosphate/insulin-like growth factor receptor (M6P/IGF-IIR) which are abundantly expressed in several human tumors. We developed a drug carrier against M6P/IGF-II receptor by modifying human serum albumin (HSA) with M6P moieties. M6P-HSA specifically bound and internalized into M6P/IGF-IIR-expressing B16 melanoma cells as demonstrated with radioactive studies and anti-HSA immunostaining. In vivo, M6P-HSA rapidly accumulated in subcutaneous tumors in tumor and stromal components after an intravenous injection. To demonstrate the application of M6P-HSA as a drug carrier, we coupled doxorubicin to it. Dox-HSA-M6P conjugate could release doxorubicin at lysosomal pH and showed M6P-specific binding and uptake in tumor cells. In vitro, a short exposure with Dox-HSA-M6P induced killing of tumor cells, which could be blocked by excess M6P-HSA. In vivo, Dox-HSA-M6P distributed to tumors and some other organs while free doxorubicin distributed to all organs but slightly to tumors. In B16 tumor-bearing mice, Dox-HSA-M6P significantly inhibited the tumor growth whereas an equimolar dose of free doxorubicin did not show any anti-tumor effect. In addition, targeted doxorubicin did not show any side-effects on liver and kidney function tests, body weight and blood cell counts. In conclusion, M6P-HSA is a suitable carrier for delivery of anticancer drugs to tumors through M6P/IGF-IIR. Improved antitumor effects of the targeted doxorubicin by M6P-HSA suggest that this novel approach may be applied to improve the therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Jai Prakash
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands.,BiOrion Technologies BV, Groningen, The Netherlands
| | - Leonie Beljaars
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands
| | - Akshay K Harapanahalli
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands
| | - Mieke Zeinstra-Smith
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands.,BiOrion Technologies BV, Groningen, The Netherlands
| | - Alie de Jager-Krikken
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands
| | | | - Herman Steen
- BiOrion Technologies BV, Groningen, The Netherlands
| | - Klaas Poelstra
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands.,BiOrion Technologies BV, Groningen, The Netherlands
| |
Collapse
|
24
|
Zheng Y, Song X, Darby M, Liang Y, He L, Cai Z, Chen Q, Bi Y, Yang X, Xu J, Li Y, Sun Y, Lee RJ, Hou S. Preparation and characterization of folate-poly(ethylene glycol)-grafted-trimethylchitosan for intracellular transport of protein through folate receptor-mediated endocytosis. J Biotechnol 2010; 145:47-53. [DOI: 10.1016/j.jbiotec.2009.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 08/30/2009] [Accepted: 09/05/2009] [Indexed: 10/20/2022]
|
25
|
Segal E, Satchi-Fainaro R. Design and development of polymer conjugates as anti-angiogenic agents. Adv Drug Deliv Rev 2009; 61:1159-76. [PMID: 19699248 DOI: 10.1016/j.addr.2009.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 06/12/2009] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is one of the central key steps in tumor progression and metastasis. Consequently, it became an important target in cancer therapy, making novel angiogenesis inhibitors a new modality of anticancer agents. Although relative to conventional chemotherapy, anti-angiogenic agents display a safer toxicity profile, the vast majority of these agents are low-molecular-weight compounds exhibiting poor pharmacokinetic profile with short half-life in the bloodstream and high overall clearance rate. The "Polymer Therapeutics" field has significantly improved the therapeutic potential of low-molecular-weight drugs and proteins for cancer treatment. Drugs can be conjugated to polymeric carriers that can be either directly conjugated to targeting proteins or peptides or derivatized with adapters conjugated to a targeting moiety. This approach holds a significant promise for the development of new targeted anti-angiogenic therapies as well as for the optimization of existing anti-angiogenic drugs or polypeptides. Here we overview the innovative approach of targeting tumor angiogenesis using polymer therapeutics.
Collapse
|
26
|
Vedani A, Smiesko M. In Silico Toxicology in Drug Discovery — Concepts Based on Three-dimensional Models. Altern Lab Anim 2009; 37:477-96. [DOI: 10.1177/026119290903700506] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Animal testing is still compulsory worldwide, for the approval of drugs and chemicals produced in large quantities. Computer-assisted ( in silico) technologies are considered to be efficient alternatives to in vivo experiments, and are therefore endorsed by many regulatory agencies, e.g. for use in the European REACH initiative. Advantages of in silico methods include: the possible study of hypothetical compounds; their low cost; and the fact that such virtual experiments are typically based on human data, thus making the question of interspecies transferability obsolete. Since the mid-1990s, computer-based technologies have become an indispensable tool in drug discovery — used primarily to identify small molecules displaying a stereospecific and selective binding to a regulatory macromolecule. Since toxic effects are still responsible for some 20% of the late-stage failures, there is a continuing need for in silico concepts which can be used to estimate a compound's ADMET ( adsorption, distribution, metabolism, elimination, toxicity) properties — in particular, toxicity. The aim of this paper is to provide an insight into computational technologies that allow for the prediction of toxic effects triggered by pharmaceuticals. As most adverse and toxic effects are mediated by unwanted interactions with macromolecules involved in biological regulatory systems, we have focused on methodologies that are based on three-dimensional models of small molecules binding to such entities, and discuss the results at the molecular level.
Collapse
Affiliation(s)
- Angelo Vedani
- Biographics Laboratory 3R, Basel, Switzerland and Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Martin Smiesko
- Biographics Laboratory 3R, Basel, Switzerland and Department of Pharmaceutical Sciences, University of Basel, Switzerland
| |
Collapse
|
27
|
Shamay Y, Paulin D, Ashkenasy G, David A. E-selectin binding peptide–polymer–drug conjugates and their selective cytotoxicity against vascular endothelial cells. Biomaterials 2009; 30:6460-8. [DOI: 10.1016/j.biomaterials.2009.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/06/2009] [Indexed: 01/12/2023]
|
28
|
Lam JKW, Armes SP, Lewis AL, Stolnik S. Folate conjugated phosphorylcholine-based polycations for specific targeting in nucleic acids delivery. J Drug Target 2009; 17:512-23. [PMID: 19534582 DOI: 10.1080/10611860903023312] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Folic acid has been investigated as a targeting ligand for imaging and therapeutic agent for over a decade; however, studies on its use in targeting of nonviral gene or nucleic acids delivery systems are sparse. This study assesses potential application of a new folic acid conjugate with aminomethacrylate-phosphoryl-choline based copolymer (DMAEMA-MPC-FA) as a targeting gene delivery vector. The folate-conjugated polymers produce colloidally stable polyplexes with a particle size <200 nm and demonstrate the ability to protect DNA from enzymatic degradation to a certain extent. In cells that overexpress folate receptors (MCF-7 and KB cultures), the conjugated systems show a folate-specific association and achieved significantly enhanced transfection efficiency, compared to the nonconjugated control, with a dramatically reduced nonspecific cellular association. The transfection enhancement is achieved without a corresponding increase in cellular association, suggesting that an internal cellular trafficking of folate-conjugated system may be altered, resulting in an increased transfection efficacy. In summary, a new folate-conjugated aminomethacrylate-phosphorylcholine copolymer is capable of forming colloidal complexes with DNA, modulating their specific cell uptake and improving the level of cell transfection in folate expressing cells.
Collapse
Affiliation(s)
- J K W Lam
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
29
|
Leucine-Aspartic Acid-Valine Sequence as Targeting Ligand and Drug Carrier for Doxorubicin Delivery to Melanoma Cells: In Vitro Cellular Uptake and Cytotoxicity Studies. Pharm Res 2009; 26:2578-87. [DOI: 10.1007/s11095-009-9971-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 09/14/2009] [Indexed: 01/14/2023]
|
30
|
Affiliation(s)
- Rakesh Kumar Tekade
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar-470 003, India
| | | | | |
Collapse
|
31
|
Dreher MR, Chilkoti A. Toward a systems engineering approach to cancer drug delivery. J Natl Cancer Inst 2007; 99:983-5. [PMID: 17596569 DOI: 10.1093/jnci/djm042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
32
|
|
33
|
Abstract
Poor pharmacokinetics, side effects and compound toxicity are frequent causes of late-stage failures in drug development. A safe in silico identification of adverse effects triggered by drugs and chemicals would be highly desirable as it not only bears economical potential but also spawns a variety of ecological benefits: sustainable resource management, reduction of animal models and possibly less risky clinical trials. In computer-aided drug discovery, both existing and hypothetical compounds may be studied; the methods are fast, reproducible, and typically based on human bioregulators, making the question of transferability obsolete. In the recent past, our laboratory contributed towards the development of in silico concepts (--> multi-dimensional QSAR) and validated a series of "virtual test kits" based on the oestrogen, androgen, thyroid, and aryl hydrocarbon receptor (endocrine disruption, receptor-mediated toxicity) as well as on the enzyme cytochrome P450 3A4 (metabolic transformations, drug-drug interactions). The test kits are based on the three-dimensional structure of their target protein (i.e. ER(alphabeta), AR, TR(alphabeta), CYP450) or a surrogate thereof (AhR) and were trained using a representative selection of 362 substances. Subsequent evaluation of 107 compounds different therefrom showed that binding affinities are predicted close to experimental uncertainty. These results suggest that our approach is suited for the in silico identification of adverse effects triggered by drugs and chemicals and encouraged us to compile an Internet Database for the virtual screening of drugs and chemicals for toxic effects.
Collapse
Affiliation(s)
- Angelo Vedani
- Biographics Laboratory 3R, Friedensgasse 35, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
34
|
Brookes S, Biessels P, Ng NFL, Woods C, Bell DN, Adamson G. Synthesis and characterization of a hemoglobin-ribavirin conjugate for targeted drug delivery. Bioconjug Chem 2006; 17:530-7. [PMID: 16536487 DOI: 10.1021/bc0503317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
A novel conjugate of human hemoglobin (Hb) and the nucleoside analogue ribavirin (RBV) was synthesized to demonstrate the utility of Hb as a biocompatible drug carrier for improved drug delivery in the treatment of liver disease. RBV is used in combination with interferon for the treatment of hepatitis C, but its side effects can result in dose limitation or discontinuation of treatment. Targeted delivery of RBV may help to prevent or minimize its toxicity. The hemoglobin-ribavirin conjugate (Hb-RBV) was designed to release bioactive drug upon endocytosis by cells and tissues involved in extracellular Hb catabolism and clearance. Ribavirin-5'-monophosphate (RBV-P) was prepared from RBV and activated as the 5'-monophosphorimidazolide (RBV-P-Im) for reaction with carbonmonoxyhemoglobin to yield Hb-RBV consisting of multiple RBV drugs covalently attached as physiologically labile phosphoramidates via their 5'-hydroxyl groups. A molar drug ratio of six to eight RBV molecules per Hb tetramer was obtained with near complete haptoglobin (Hp) binding of the drug modified Hb maintained. The conjugate complex (Hp-Hb-RBV) was selectively taken up in vitro by cells that express the hemoglobin-haptoglobin receptor, CD163. Recovered ribavirin enzymatically cleaved from Hb-RBV showed equipotent antiproliferative activity compared to control unconjugated RBV against human HepG2 and mouse AML12 liver cell lines. Based upon the reported high level of Hb uptake in the liver, Hb-RBV may be useful in the treatment of certain liver diseases, as well as inflammatory disorders associated with CD163-positive macrophages.
Collapse
Affiliation(s)
- Steve Brookes
- Hemosol Corporation, 2585 Meadowpine Boulevard, Mississauga, Ontario, Canada L5N 8H9
| | | | | | | | | | | |
Collapse
|
35
|
Laptev R, Nisnevitch M, Siboni G, Malik Z, Firer MA. Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells. Br J Cancer 2006; 95:189-96. [PMID: 16819545 PMCID: PMC2360622 DOI: 10.1038/sj.bjc.6603241] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Photodynamic therapy (PDT) involves a two-stage process. A light-absorbing photosensitiser (Ps) is endocytosed and then stimulated by light, inducing transfer of energy to a cytoplasmic acceptor molecule and the generation of reactive oxygen species that initiate damage to cellular membrane components and cytolysis. The expanded use of PDT in the clinic is hindered by the lack of Ps target-cell specificity and the limited tissue penetration by external light radiation. This study demonstrates that bioconjugates composed of transferrin and haematoporphyrin (Tf–Hp), significantly improve the specificity and efficiency of PDT for erythroleukemic cells by a factor of almost seven-fold. Fluorescence microscopy showed that the conjugates accumulate in intracellular vesicles whereas free Hp was mostly membrane bound. Experiments with cells deliberately exposed to Tf–Hp at <LD100 doses showed that surviving cells did not develop resistance to subsequent treatments with the conjugate. Furthermore, we show that the compound luminol induces intracellular chemiluminescence. This strategy was then used to obviate the use of external radiation for Ps activation by incubating the cells with luminol either before or together with Tf–Hp. This novel chemical means of PDT activation induced cytotoxicity in 95% of cells. These combined approaches provide an opportunity to develop broader and more effective applications of PDT.
Collapse
Affiliation(s)
- R Laptev
- Department of Chemical Engineering and Biotechnology, College of Judea and Samaria, Ariel 44837, Israel
| | - M Nisnevitch
- Department of Chemical Engineering and Biotechnology, College of Judea and Samaria, Ariel 44837, Israel
| | - G Siboni
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Z Malik
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M A Firer
- Department of Chemical Engineering and Biotechnology, College of Judea and Samaria, Ariel 44837, Israel
- E-mail:
| |
Collapse
|
36
|
|
37
|
Jaracz S, Chen J, Kuznetsova LV, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 2005; 13:5043-54. [PMID: 15955702 DOI: 10.1016/j.bmc.2005.04.084] [Citation(s) in RCA: 345] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
Traditional cancer chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be a killed by cytotoxic agent. In reality, however, cytotoxic agents have very little or no specificity, which leads to systemic toxicity, causing severe undesirable side effects. Therefore, various drug delivery protocols and systems have been explored in the last three decades. Tumor cells overexpress many receptors and biomarkers, which can be used as targets to deliver cytotoxic agents into tumors. In general, a tumor-targeting drug delivery system consists of a tumor recognition moiety and a cytotoxic warhead connected directly or through a suitable linker to form a conjugate. The conjugate, which can be regarded as 'prodrug', should be systemically non-toxic. This means that the linker must be stable in circulation. Upon internalization into the cancer cell the conjugate should be readily cleaved to regenerate the active cytotoxic agent. Tumor-targeting conjugates bearing cytotoxic agents can be classified into several groups based on the type of cancer recognition moieties. This review describes recent advances in tumor-targeting drug conjugates including monoclonal antibodies, polyunsaturated fatty acids, folic acid, hyaluronic acid, and oligopeptides as tumor-targeting moieties.
Collapse
Affiliation(s)
- Stanislav Jaracz
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | | | |
Collapse
|
38
|
Fleming C, Maldjian A, Da Costa D, Rullay AK, Haddleton DM, St John J, Penny P, Noble RC, Cameron NR, Davis BG. A carbohydrate-antioxidant hybrid polymer reduces oxidative damage in spermatozoa and enhances fertility. Nat Chem Biol 2005; 1:270-4. [PMID: 16408056 DOI: 10.1038/nchembio730] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 08/16/2005] [Indexed: 11/09/2022]
Abstract
Gamete-gamete interactions are critically modulated by carbohydrate-protein interactions that rely on the carbohydrate-selective recognition of polyvalent carbohydrate structures. A galactose-binding protein has been identified in mammalian spermatozoa that has similarity to the well-characterized hepatic asialoglycoprotein receptor. With the aim of exploiting the ability of this class of proteins to bind and internalize macromolecules displaying galactose, we designed hybrid carbohydrate-antioxidant polymers to deliver antioxidant vitamin E (alpha-tocopherol) to porcine spermatozoa. Treatment of sperm cells with one hybrid polymer in particular produced large increases in intracellular sperm levels of alpha-tocopherol and greatly reduced endogenous fatty acid degradation under oxidative stress. The polymer-treated spermatozoa had enhanced physiological properties and longer half-lives, which resulted in enhanced fertilization rates. Our results indicate that hybrid polymer delivery systems can prolong the functional viability of mammalian spermatozoa and improve fertility rates, and that our functionally guided optimization strategy can be applied to the discovery of active glycoconjugate ligands.
Collapse
Affiliation(s)
- Craig Fleming
- Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE To investigate if the cross-linking of transferrin receptor (TfR) induced by Tf-oligomers alters the endocytosis of receptor-ligand complexes in cultured tumor cells and hence increases intracellular drug release. METHODS An average of 3.5 Tf molecules per aggregate were cross-linked either by using homobifunctional linker (1, 11-bis-maleimidotetraethyleneglycol) [Tf(3.5-BM(PEO)4)] or heterobifunction linker [succinimidyl 4-(-p-maleimidophenyl)-butyrate] (Tf(3.5-SMPB)). Cell surface binding and competition experiments with 125I-Tf for TfR binding were studied to demonstrate that Tf-oligomers maintain specificity of the TfR-binding. To determine the degradation of Tf-oligomers in TfR-mediated endocytosis, cultured tumor cells were pulsed for 15 min with 125I-Tf-oligomers and chased for 2 h at 37 degrees C in the presence of excess unlabeled Tf. The chase medium was subjected to TCA precipitation to separate the intact and degraded Tf. To investigate if the alteration of TfR-trafficking facilitates the intracellular release of the drug from the Tf-conjugated form, methotrexate (MTX) was conjugated to Tf-oligomer (Agg-Tf-MTX) and its antiproliferative activity was compared with monomeric-Tf-MTX (Mono-Tf-MTX) in human colon carcinoma (Caco-2) cells, human breast adenocarcinoma (MCF-7) cells, wild-type Chinese hamster ovary (CHO) cells, and MTX-resistant CHO (CHO-MTX-RII) cells. RESULTS TfR-mediated degradation of Tf-oligomers was higher than that of monomeric Tf in both Caco-2 and MCF-7 cells. The IC50 of Agg-Tf-MTX was lower than that of Mono-Tf-MTX in both tumor cell lines. The IC50 of MTX and Mono-Tf-MTX in CHO-MTX-RII cells was higher than that in wild-type CHO cells, whereas the Agg-Tf-MTX was almost identical in both the resistant and wild-type cells. CONCLUSIONS Cross-linking of TfR induced by oligomeric Tf binding alters the intracellular trafficking of Tf-TfR complexes, redirects them out of the recycling pathway, and targets them to intracellular degradation in cultured tumor cells. The alteration of TfR-trafficking facilitates the intracellular release of the drug from the Tf-conjugated form. Consequently, Agg-Tf-MTX is more effective than Mono-Tf-MTX as a TfR-mediated antiproliferative agent in tumor cells, as well as in MTX-resistant transport deficient cells. Therefore, Tf-oligomers are potentially effective TfR-targeting carriers for intracellular delivery of anticancer drugs.
Collapse
Affiliation(s)
- Ching-Jou Lim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angles, California 90089, USA
| | | |
Collapse
|
40
|
Hwa Kim S, Hoon Jeong J, Chul Cho K, Wan Kim S, Gwan Park T. Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). J Control Release 2005; 104:223-32. [PMID: 15866348 DOI: 10.1016/j.jconrel.2005.02.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 02/02/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
A target-specific delivery system of green fluorescent protein (GFP) small interfering RNA (siRNA) plasmid DNA was developed by using folate-modified cationic polyethylenimine (PEI). A GFP siRNA plasmid vector (pSUPER-siGFP), which inhibits the synthesis of GFP, was constructed and used for suppressing GFP expression in folate receptor over-expressing cells (KB cells) in a target-specific manner. A PEI-poly(ethylene glycol)-folate (PEI-PEG-FOL) conjugate was synthesized as a pSUPER-siGFP plasmid gene carrier. KB cells expressing GFP were treated with various formulations of pSUPER-siGFP/PEI-PEG-FOL complexes to inhibit expression of GFP. The formulated complexes were characterized under various conditions. Their GFP gene inhibition and cellular uptake behaviors were explored by confocal microscopy and flow cytometry analysis. pSUPER-siGFP/PEI-PEG-FOL complexes inhibited GFP expression of KB cells more effectively than pSUPER-siGFP/PEI complexes with no folate moieties and showed far reduced extent of inhibition for folate receptor deficient cells (A549 cells). The results indicated that folate receptor-mediated endocytosis was a major pathway in the process of cellular uptake, suggesting that targeted delivery of siRNA vector could be achieved to a specific cell.
Collapse
Affiliation(s)
- Sun Hwa Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | | | | | | | |
Collapse
|
41
|
Hwa Kim S, Hoon Jeong J, Joe CO, Gwan Park T. Folate receptor mediated intracellular protein delivery using PLL–PEG–FOL conjugate. J Control Release 2005; 103:625-34. [PMID: 15820409 DOI: 10.1016/j.jconrel.2005.01.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 12/15/2004] [Accepted: 01/17/2005] [Indexed: 11/25/2022]
Abstract
To develop a receptor-mediated intracellular delivery system that can transport therapeutic proteins or other bioactive macromolecules into a specific cell, a di-block copolymer conjugate, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL), was synthesized. The PLL-PEG-FOL conjugate was physically complexed with fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) in an aqueous phase by ionic interactions. Cellular uptake of PLL-PEG-FOL/FITC-BSA complexes was greatly enhanced against a folate receptor over-expressing cell line (KB cells) compared to a folate receptor deficient cell line (A549 cells). The presence of an excess amount of free folate (1 mM) in the medium inhibited the intracellular delivery of PLL-PEG-FOL/FITC-BSA complexes. This suggests that the enhanced cellular uptake of FITC-BSA by KB cells in a specific manner was attributed to folate receptor-mediated endocytosis of the complexes having folate moieties on the surface. The PLL-PEG-FOL di-block copolymer could be potentially applied for intracellular delivery of a wide range of other biological active agents that have negative charges on the surface.
Collapse
Affiliation(s)
- Sun Hwa Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | | | | | |
Collapse
|
42
|
Tanaka T, Fujishima Y, Hamano S, Kaneo Y. Cellular disposition of arabinogalactan in primary cultured rat hepatocytes. Eur J Pharm Sci 2005; 22:435-44. [PMID: 15265513 DOI: 10.1016/j.ejps.2004.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 03/11/2004] [Accepted: 04/27/2004] [Indexed: 11/20/2022]
Abstract
To characterize a targeting property of arabinogalactan (AG) as a carrier to the liver, we examined cellular disposition, such as binding and internalization in primary cultured rat hepatocytes, comparing them to those of asialofetuin (AF). A tyramine derivative of AG was synthesized to allow labeling with 125I. Binding of AG to the cells was concentration-dependent and saturable. The number of binding sites (n) of AG on the cell surface was 4.0 x 10(5) +/- 0.1 x 10(5) sites per cell which was about similar to that of AF. The value of Ka of AG was 2.2 x 10(8) +/- 0.1 x 10(8) M-1 being seven-fold higher than that of AF. The binding of AG was competitively inhibited by AF and was decreased by calcium depletion. These results indicate that AG can bind strongly to hepatocytes probably through the recognition by the asialoglycoprotein receptor (ASGP-R). Both 125I-labeled AG and fluorescein-labeled AG were internalized into the cells. The rate of internalization of AG was faster than that of AF, indicating that AG is effectively endocytosed. Microscopic observations showed that FITC labeled AG accumulated in granules within the primary cultured rat hepatocytes. Subcellular fractionation indicated that the internalized AG was mainly associated with the lysosomal fraction. However, the internalized AG seemed to remain intact in the hepatocytes. In conclusion, we found that AG is effectively internalized in primary cultured rat hepatocytes. Although AG seems a good candidate for targeting to the liver due to its high affinity binding and rapid internalization, it remains to be established whether the apparent lack of biodegradation will result in cytotoxic effects at chronic administration in vivo.
Collapse
Affiliation(s)
- Tetsuro Tanaka
- Department of Biopharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Sanzo, Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan.
| | | | | | | |
Collapse
|
43
|
Benito JM, Gómez-García M, Ortiz Mellet C, Baussanne I, Defaye J, García Fernández JM. Optimizing Saccharide-Directed Molecular Delivery to Biological Receptors: Design, Synthesis, and Biological Evaluation of Glycodendrimer−Cyclodextrin Conjugates. J Am Chem Soc 2004; 126:10355-63. [PMID: 15315450 DOI: 10.1021/ja047864v] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dendritic beta-cyclodextrin (betaCD) derivatives bearing multivalent mannosyl ligands have been prepared and assessed for their binding efficiency toward the tetrameric plant lectin concanavalin A (Con A) and a mammalian mannose/fucose specific cell surface receptor from macrophages. The synthetic strategy exploits the reactivity between isothiocyanate and amine functionalities for the high-yielding assembly via thioureido links of the various building blocks, including host, spacer, branching, and carbohydrate ligand elements. The methodology has been applied to the preparation of a series of betaCD-polymannoside scaffolds differing in the ligand valency and geometry. This series allowed us to explore: (i) The effects of the glycodendritic architecture on the binding efficiency; (ii) the mutual influence between the cyclodextrin core and the glycodendritic moieties on the molecular inclusion and lectin-binding properties; and (iii) the consequence of inclusion complex formation, using the anticancer drug docetaxel (Taxotère) as a target guest, on biological recognition. Our results confirm the high drug solubilization capability of this new type of betaCD-dendrimer construct and indicate that subtle changes in the architecture of the conjugate may have important consequences on receptor affinity. Interestingly, the host-guest interaction can be monitored to build up supramolecular dynamic glycoclusters with increased lectin affinity. Alternatively, the information obtained from the structure-lectin-binding avidity-inclusion capability studies has been put forward in the design of very efficient molecular transporters for docetaxel based on glycodendritic CD dimers.
Collapse
Affiliation(s)
- Juan M Benito
- Contribution from the Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, Isla de la Cartuja, E-41092 Seville, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Jelínková M, Strohalm J, Etrych T, Ulbrich K, Ríhová B. Starlike vs. classic macromolecular prodrugs: two different antibody-targeted HPMA copolymers of doxorubicin studied in vitro and in vivo as potential anticancer drugs. Pharm Res 2004; 20:1558-64. [PMID: 14620507 DOI: 10.1023/a:1026170830782] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Two different monoclonal antibody-targeted HPMA copolymer-doxorubicin conjugates, classic and starlike, were synthesized to be used for site-specific cancer therapy. The anti-mouse Thy-1.2 (IgG3) and two anti-human CD71/A (IgG1) and CD71/B (IgG2a) monoclonal antibodies were used as targeting structures. METHODS Their binding and cytotoxic activity in vitro, body distribution, and anticancer activity in vivo were evaluated. RESULTS The results of flow cytometric analysis showed comparable binding of classic and starlike conjugates to the target cells. The in vitro cytotoxic effect was 10-fold higher if cancer cells were exposed to the starlike conjugate compared to the classic one. Biodistribution studies showed that the starlike conjugate remained in a relatively high concentration in blood, whereas the classic conjugate was found in a 6.5-times lower amount. In contrast to the low antitumor activity of free doxorubicin and nontargeted HPMA copolymer-doxorubicin conjugate, both anti-Thy-1.2 targeted conjugates (classic and starlike) cured all mice bearing T-cell lymphoma EL4. On the other hand, starlike conjugates containing anti-CD71/A or anti-CD71/B monoclonals as targeting structures were more effective against human colorectal cancer SW 620 than the classic one. CONCLUSIONS We have shown that the starlike conjugates are more effective systems for targeted drug delivery and cancer treatment than classic conjugates.
Collapse
Affiliation(s)
- Markéta Jelínková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
45
|
Rosenkranz AA, Lunin VG, Gulak PV, Sergienko OV, Shumiantseva MA, Voronina OL, Gilyazova DG, John AP, Kofner AA, Mironov AF, Jans DA, Sobolev AS. Recombinant modular transporters for cell-specific nuclear delivery of locally acting drugs enhance photosensitizer activity. FASEB J 2003; 17:1121-3. [PMID: 12692081 DOI: 10.1096/fj.02-0888fje] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The search for new pharmaceuticals that are specific for diseased rather than normal cells in the case of cancer and viral disease has raised interest in locally acting drugs that act over short distances within the cell and for which different cell compartments have distinct sensitivities. Thus, photosensitizers (PSs) used in anti-cancer therapy should ideally be transported to the most sensitive subcellular compartments in order for their action to be most pronounced. Here we describe the design, production, and characterization of the effects of bacterially expressed modular recombinant transporters for PSs comprising 1) alpha-melanocyte-stimulating hormone as an internalizable, cell-specific ligand; 2) an optimized nuclear localization sequence of the SV40 large T-antigen; 3) an Escherichia coli hemoglobin-like protein as a carrier; and 4) an endosomolytic amphipathic polypeptide, the translocation domain of diphtheria toxin. These modular transporters delivered PSs into the nuclei, the most vulnerable sites for the action of PSs, of murine melanoma cells, but not non-MSH receptor-overexpressing cells, to result in cytotoxic effects several orders of magnitude greater than those of nonmodified PSs. The modular fusion proteins described here for the first time, capable of cell-specific targeting to particular subcellular compartments to increase drug efficacy, represent new pharmaceuticals with general application.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Firer MA, Laptev R, Kasatkin I, Trombka D. Specific destruction of hybridoma cells by antigen-toxin conjugates demonstrate an efficient strategy for targeted drug therapy in leukemias of the B cell lineage. Leuk Lymphoma 2003; 44:681-9. [PMID: 12769346 DOI: 10.1080/1042819031000063381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many types of leukemia including multiple myeloma remain essentially incurable despite recent developments in immuno- and chemotherapy. The effectiveness of these therapies might be greatly enhanced by targeting cell surface proteins unique to the malignant clone, which for leukemias of the B cell lineage means clonotypic surface immunoglobulin (sIg). As this immunoglobulin (Ig) is necessarily epitope specific, we are developing ligand-toxin conjugates (LTCs) as a strategy for delivering toxins and other drugs to clonotypic tumor cells. Here we report in vitro studies that illustrate the effectiveness of this approach. LTC comprising the DNP hapten conjugated to ricin A toxin (DNP-RTA) were shown to specifically and effectively kill anti-DNP secreting murine hybridoma (U7.6) cells but not other hybridoma cells (1B12), a murine erythroleukemia cell line (Friend's Leukemia or) normal mouse spleen cells. In addition to direct toxicity, LTC treatment negatively affected the growth characteristics of the few surviving cells as reflected in decreased growth index and an increase in growth inhibition over 72 h post treatment. Interestingly, U7.6 cells that survived one or two LD90 dose(s) of LTC showed no alteration in their dose response to a subsequent attack of LTC indicating that this treatment strategy may not induce drug resistance. These data suggest that LTC therapy may be a new and effective strategy for specific destruction of tumor cells such as myeloma plasma cells and could be extended to other tumors where clonotypic receptors can be identified.
Collapse
Affiliation(s)
- Michael A Firer
- Immunology Laboratory, Dept. Chemical Engineering and Biotechnology, College Judea and Samaria, P.O. Box 3, Ariel 44837 Israel.
| | | | | | | |
Collapse
|
47
|
Chilkoti A, Dreher MR, Meyer DE. Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv Drug Deliv Rev 2002; 54:1093-111. [PMID: 12384309 DOI: 10.1016/s0169-409x(02)00060-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this article, we review recombinant DNA methods for the design and synthesis of amino acid-based biopolymers, and briefly summarize an approach, recursive directional ligation (RDL), that we have employed to synthesize oligomeric genes for such biopolymers. We then describe our ongoing research in the use of RDL to synthesize recombinant polypeptide carriers for the targeted delivery of radionuclides, chemotherapeutics and biomolecular therapeutics to tumors. The targeted delivery system uses a thermally responsive, elastin-like polypeptide (ELP) as the drug carrier to enhance the localization of ELP-drug conjugates within a solid tumor that is heated by regional hyperthermia. In the context of this drug delivery application, we discuss the design of ELPs and their recombinant synthesis, which enables the molecular weight and the thermal properties of the polypeptide to be precisely controlled. Finally, our results pertaining to the in vivo targeting of tumors with ELPs are briefly summarized.
Collapse
Affiliation(s)
- Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA.
| | | | | |
Collapse
|
48
|
Abstract
The receptor for folic acid constitutes a useful target for tumor-specific drug delivery, primarily because: (1) it is upregulated in many human cancers, including malignancies of the ovary, brain, kidney, breast, myeloid cells and lung, (2) access to the folate receptor in those normal tissues that express it can be severely limited due to its location on the apical (externally-facing) membrane of polarized epithelia, and (3) folate receptor density appears to increase as the stage/grade of the cancer worsens. Thus, cancers that are most difficult to treat by classical methods may be most easily targeted with folate-linked therapeutics. To exploit these peculiarities of folate receptor expression, folic acid has been linked to both low molecular weight drugs and macromolecular complexes as a means of targeting the attached molecules to malignant cells. Conjugation of folic acid to macromolecules has been shown to enhance their delivery to folate receptor-expressing cancer cells in vitro in almost all situations tested. Folate-mediated macromolecular targeting in vivo has, however, yielded only mixed results, largely because of problems with macromolecule penetration of solid tumors. Nevertheless, prominent examples do exist where folate targeting has significantly improved the outcome of a macromolecule-based therapy, leading to complete cures of established tumors in many cases. This review presents a brief mechanistic background of folate-targeted macromolecular therapeutics and then summarizes the successes and failures observed with each major application of the technology.
Collapse
Affiliation(s)
- Yingjuan Lu
- Department of Chemistry, 1393 Brown Building, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
49
|
Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther 2001; 8:341-8. [PMID: 11313809 DOI: 10.1038/sj.gt.3301389] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2000] [Accepted: 11/22/2000] [Indexed: 11/09/2022]
Abstract
Adenovirus is a widely used vector for cancer gene therapy because of its high infection efficiency and capacity for transgene expression in both dividing and nondividing cells. However, neutralisation of adenovirus by pre-existing antibodies can lead to inefficient delivery, and the wide tissue distribution of the coxsackie and adenovirus receptor (CAR, the primary receptor for adenovirus type 5) precludes target selectivity. These limitations have largely restricted therapeutic use of adenovirus to local or direct administration. A successful viral gene therapy vector would be protected from neutralising antibodies and exhibit a preferential tropism for target cells. We report here the development of a covalent coating and retargeting strategy using a multivalent hydrophilic polymer based on poly-[N-(2-hydroxypropyl)methacrylamide] (pHPMA). Incorporation of targeting ligands such as basic fibroblast growth factor and vascular endothelial growth factor on to the polymer-coated virus produces ligand-mediated, CAR-independent binding and uptake into cells bearing appropriate receptors. Retargeted virus is resistant to antibody neutralisation and can infect receptor-positive target cells selectively in mixed culture, and also in xenografts in vivo. Multivalent polymeric modification of adenovirus is an effective way of changing its tropism and interaction with the immune system. As a non-genetic one-step process, the technology is simple, versatile and should yield vectors with an improved safety profile.
Collapse
Affiliation(s)
- K D Fisher
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
50
|
Vyas SP, Sihorkar V. Endogenous carriers and ligands in non-immunogenic site-specific drug delivery. Adv Drug Deliv Rev 2000; 43:101-64. [PMID: 10967224 DOI: 10.1016/s0169-409x(00)00067-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Targeted drug delivery has gained recognition in modern therapeutics and attempts are being made to explore the potentials and possibilities of cell biology related bioevents in the development of specific, programmed and target oriented systems. The components which have been recognized to be tools include receptors and ligands, where the receptors act as molecular targets or portals, and ligands, with receptor specificity and selectivity, are trafficked en route to the target site. Although ligands of exogenous or synthetic origin contribute to the selectivity component of carrier constructs, they may impose immunological manifestations of different magnitudes. The latter may entail a continual quest for bio-compatible, non-immunogenic and target orientated delivery. Endogenous serum, cellular and extracellular bio-ligands interact with the colloidal carrier constructs and influence their bio-fate. However, these endogenous bio-ligands can themselves serve as targeting modules either in their native form or engineered as carrier cargo. Bio-regulatory, nutrient and immune ligands are sensitive, specific and effective site directing handles which add to targeted drug delivery. The present review provides an exhaustive account of the identified bio-ligands, which are not only non-immunogenic in nature but also site-specific. The cell-related bioevents which are instrumental in negotiating the uptake of bio-ligands are discussed. Further, a brief account of ligand-receptor interactions and the set of biological events which ensures ligand-driven trafficking of the ligand-receptor complex to the cellular interior is also presented. Since ligand-receptor interaction is a critical pre-requisite for negotiating cellular uptake of endogenous ligands and anchored carrier cargo, an attempt has been made to identify differential expression of receptors and bio-ligands under normal and etiological conditions. Studies which judiciously utilized bio-ligands or their analogs in negotiating site-specific drug delivery have been reviewed and presented. Targeted delivery of bioactives using endogenous bio-ligands offers enormous options and opportunities through carrier construct engineering and could become a future reality in clinical practice.
Collapse
Affiliation(s)
- S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H.S. Gour Vishwavidyalaya, M.P. 470003, Sagar, India.
| | | |
Collapse
|