1
|
Wang LT, Idris AH, Kisalu NK, Crompton PD, Seder RA. Monoclonal antibodies to the circumsporozoite proteins as an emerging tool for malaria prevention. Nat Immunol 2024; 25:1530-1545. [PMID: 39198635 DOI: 10.1038/s41590-024-01938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Despite various public health strategies, malaria caused by Plasmodium falciparum parasites remains a major global health challenge that requires development of new interventions. Extended half-life human monoclonal antibodies targeting the P. falciparum circumsporozoite protein on sporozoites, the infective form of malaria parasites, prevent malaria in rodents and humans and have been advanced into clinical development. The protective epitopes on the circumsporozoite protein targeted by monoclonal antibodies have been defined. Cryogenic electron and multiphoton microscopy have enabled mechanistic structural and functional investigations of how antibodies bind to the circumsporozoite protein and neutralize sporozoites. Moreover, innovations in bioinformatics and antibody engineering have facilitated enhancement of antibody potency and durability. Here, we summarize the latest scientific advances in understanding how monoclonal antibodies to the circumsporozoite protein prevent malaria and highlight existing clinical data and future plans for how this emerging intervention can be used alone or alongside existing antimalarial interventions to control malaria across at-risk populations.
Collapse
Affiliation(s)
- Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Neville K Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- PATH's Center for Vaccine Innovation and Access, Washington, DC, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Pak D, Kamiya T, Greischar MA. Proliferation in malaria parasites: How resource limitation can prevent evolution of greater virulence. Evolution 2024; 78:1287-1301. [PMID: 38581661 DOI: 10.1093/evolut/qpae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
For parasites, robust proliferation within hosts is crucial for establishing the infection and creating opportunities for onward transmission. While faster proliferation enhances transmission rates, it is often assumed to curtail transmission duration by killing the host (virulence), a trade-off constraining parasite evolution. Yet in many diseases, including malaria, the preponderance of infections with mild or absent symptoms suggests that host mortality is not a sufficient constraint, raising the question of what restrains evolution toward faster proliferation. In malaria infections, the maximum rate of proliferation is determined by the burst size, the number of daughter parasites produced per infected red blood cell. Larger burst sizes should expand the pool of infected red blood cells that can be used to produce the specialized transmission forms needed to infect mosquitoes. We use a within-host model parameterized for rodent malaria parasites (Plasmodium chabaudi) to project the transmission consequences of burst size, focusing on initial acute infection where resource limitation and risk of host mortality are greatest. We find that resource limitation restricts evolution toward higher burst sizes below the level predicted by host mortality alone. Our results suggest resource limitation could represent a more general constraint than virulence-transmission trade-offs, preventing evolution towards faster proliferation.
Collapse
Affiliation(s)
- Damie Pak
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, United States
| | - Tsukushi Kamiya
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
- HRB Clinical Research Facility, University of Galway, Ireland
| | - Megan A Greischar
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, United States
| |
Collapse
|
3
|
Al-Ghafli H, Barribeau SM. Double trouble: trypanosomatids with two hosts have lower infection prevalence than single host trypanosomatids. Evol Med Public Health 2023; 11:202-218. [PMID: 37404250 PMCID: PMC10317189 DOI: 10.1093/emph/eoad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/21/2023] [Indexed: 07/06/2023] Open
Abstract
Trypanosomatids are a diverse family of protozoan parasites, some of which cause devastating human and livestock diseases. There are two distinct infection life cycles in trypanosomatids; some species complete their entire life cycle in a single host (monoxenous) while others infect two hosts (dixenous). Dixenous trypanosomatids are mostly vectored by insects, and the human trypanosomatid diseases are caused mainly by vectored parasites. While infection prevalence has been described for subsets of hosts and trypanosomatids, little is known about whether monoxenous and dixenous trypanosomatids differ in infection prevalence. Here, we use meta-analyses to synthesise all published evidence of trypanosomatid infection prevalence for the last two decades, encompassing 931 unique host-trypansomatid systems. In examining 584 studies that describe infection prevalence, we find, strikingly, that monoxenous species are two-fold more prevalent than dixenous species across all hosts. We also find that dixenous trypanosomatids have significantly lower infection prevalence in insects than their non-insect hosts. To our knowledge, these results reveal for the first time, a fundamental difference in infection prevalence according to host specificity where vectored species might have lower infection prevalence as a result of a potential 'jack of all trades, master of none' style trade-off between the vector and subsequent hosts.
Collapse
Affiliation(s)
- Hawra Al-Ghafli
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Seth M Barribeau
- Corresponding author. Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, UK. E-mail:
| |
Collapse
|
4
|
Dash M, Sachdeva S, Bansal A, Sinha A. Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots. Front Cell Infect Microbiol 2022; 12:877907. [PMID: 35782151 PMCID: PMC9241518 DOI: 10.3389/fcimb.2022.877907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the coming decades, eliminating malaria is the foremost goal of many tropical countries. Transmission control, along with an accurate and timely diagnosis of malaria, effective treatment and prevention are the different aspects that need to be met synchronously to accomplish the goal. The current review is focused on one of these aspects i.e., transmission control, by looking deeper into the event called gametogenesis. In the Plasmodium life cycle, gametocytes are the first life forms of the sexual phase. The transmission of the parasite and the disease is critically dependent on the number, viability and sex ratio of mature gametocytes and their further development inside mosquito vectors. Gametogenesis, the process of conversion of gametocytes into viable gametes, takes place inside the mosquito midgut, and is a tightly regulated event with fast and multiple rounds of DNA replication and diverse cellular changes going on within a short period. Interrupting the gametocyte-gamete transition is ought to restrict the successful transmission and progression of the disease and hence an area worth exploring for designing transmission-blocking strategies. This review summarizes an in-depth and up-to-date understanding of the biochemical and physiological mechanism of gametogenesis in Plasmodium, which could be targeted to control parasite and malaria transmission. This review also raises certain key questions regarding gametogenesis biology in Plasmodium and brings out gaps that still accompany in understanding the spectacular process of gametogenesis.
Collapse
Affiliation(s)
- Manoswini Dash
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- Central Molecular Laboratory, Govind Ballabh (GB) Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Sherry Sachdeva
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Sinha
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- *Correspondence: Abhinav Sinha,
| |
Collapse
|
5
|
Thommen BT, Passecker A, Buser T, Hitz E, Voss TS, Brancucci NMB. Revisiting the Effect of Pharmaceuticals on Transmission Stage Formation in the Malaria Parasite Plasmodium falciparum. Front Cell Infect Microbiol 2022; 12:802341. [PMID: 35223540 PMCID: PMC8873190 DOI: 10.3389/fcimb.2022.802341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 12/27/2022] Open
Abstract
Malaria parasites rely on specialized stages, called gametocytes, to ensure human-to-human transmission. The formation of these sexual precursor cells is initiated by commitment of blood stage parasites to the sexual differentiation pathway. Plasmodium falciparum, the most virulent of six parasite species infecting humans, employs nutrient sensing to control the rate at which sexual commitment is initiated, and the presence of stress-inducing factors, including antimalarial drugs, has been linked to increased gametocyte production in vitro and in vivo. These observations suggest that therapeutic interventions may promote gametocytogenesis and malaria transmission. Here, we engineered a P. falciparum reporter line to quantify sexual commitment rates after exposure to antimalarials and other pharmaceuticals commonly prescribed in malaria-endemic regions. Our data reveal that some of the tested drugs indeed have the capacity to elevate sexual commitment rates in vitro. Importantly, however, these effects are only observed at drug concentrations that inhibit parasite survival and only rarely result in a net increase of gametocyte production. Using a drug-resistant parasite reporter line, we further show that the gametocytogenesis-promoting effect of drugs is linked to general stress responses rather than to compound-specific activities. Altogether, we did not observe evidence for mechanistic links between the regulation of sexual commitment and the activity of commonly used pharmaceuticals in vitro. Our data hence does not support scenarios in which currently applied therapeutic interventions would promote the spread of drug-resistant parasites or malaria transmission in general.
Collapse
Affiliation(s)
- Basil T. Thommen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Armin Passecker
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Tamara Buser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Eva Hitz
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- *Correspondence: Till S. Voss, ; Nicolas M. B. Brancucci,
| | - Nicolas M. B. Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- *Correspondence: Till S. Voss, ; Nicolas M. B. Brancucci,
| |
Collapse
|
6
|
Omondi BR, Muthui MK, Muasya WI, Orindi B, Mwakubambanya RS, Bousema T, Drakeley C, Marsh K, Bejon P, Kapulu MC. Antibody Responses to Crude Gametocyte Extract Predict Plasmodium falciparum Gametocyte Carriage in Kenya. Front Immunol 2021; 11:609474. [PMID: 33633729 PMCID: PMC7902058 DOI: 10.3389/fimmu.2020.609474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/17/2020] [Indexed: 11/18/2022] Open
Abstract
Background Malaria caused by Plasmodium falciparum remains a serious global public health challenge especially in Africa. Interventions that aim to reduce malaria transmission by targeting the gametocyte reservoir are key to malaria elimination and/or eradication. However, factors that are associated with gametocyte carriage have not been fully explored. Consequently, identifying predictors of the infectious reservoir is fundamental in the elimination campaign. Methods We cultured P. falciparum NF54 gametocytes (to stage V) and prepared crude gametocyte extract. Samples from a total of 687 participants (aged 6 months to 67 years) representing two cross-sectional study cohorts in Kilifi, Kenya were used to assess IgG antibody responses by ELISA. We also analyzed IgG antibody responses to the blood-stage antigen AMA1 as a marker of asexual parasite exposure. Gametocytemia and asexual parasitemia data quantified by microscopy and molecular detection (QT-NASBA) were used to determine the relationship with antibody responses, season, age, and transmission setting. Multivariable logistic regression models were used to study the association between antibody responses and gametocyte carriage. The predictive power of the models was tested using the receiver operating characteristic (ROC) curve. Results Multivariable logistic regression analysis showed that IgG antibody response to crude gametocyte extract predicted both microscopic (OR=1.81 95% CI: 1.06-3.07, p=0.028) and molecular (OR=1.91, 95% CI: 1.11-3.29, p=0.019) P. falciparum gametocyte carriage. Antibody responses to AMA1 were also associated with both microscopic (OR=1.61 95% CI: 1.08-2.42, p=0.020) and molecular (OR=3.73 95% CI: 2.03-6.74, p<0.001) gametocytemia. ROC analysis showed that molecular (AUC=0.897, 95% CI: 0.868-0.926) and microscopic (AUC=0.812, 95% CI: 0.758-0.865) multivariable models adjusted for gametocyte extract showed very high predictive power. Molecular (AUC=0.917, 95% CI: 0.891-0.943) and microscopic (AUC=0.806, 95% CI: 0.755-0.858) multivariable models adjusted for AMA1 were equally highly predictive. Conclusion In our study, it appears that IgG responses to crude gametocyte extract are not an independent predictor of gametocyte carriage after adjusting for AMA1 responses but may predict gametocyte carriage as a proxy marker of exposure to parasites. Serological responses to AMA1 or to gametocyte extract may facilitate identification of individuals within populations who contribute to malaria transmission and support implementation of transmission-blocking interventions.
Collapse
Affiliation(s)
- Brian R. Omondi
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya
| | - Michelle K. Muthui
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - William I. Muasya
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Benedict Orindi
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kevin Marsh
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip Bejon
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Melissa C. Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Sondo P, Bihoun B, Tahita MC, Derra K, Rouamba T, Nakanabo Diallo S, Kazienga A, Ilboudo H, Valea I, Tarnagda Z, Sorgho H, Lefèvre T, Tinto H. Plasmodium falciparum gametocyte carriage in symptomatic patients shows significant association with genetically diverse infections, anaemia, and asexual stage density. Malar J 2021; 20:31. [PMID: 33413393 PMCID: PMC7791700 DOI: 10.1186/s12936-020-03559-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
Background Multi-genotype malaria infections are frequent in endemic area, and people commonly harbour several genetically distinct Plasmodium falciparum variants. The influence of genetic multiplicity and whether some specific genetic variants are more or less likely to invest into gametocyte production is not clearly understood. This study explored host and parasite-related risk factors for gametocyte carriage, and the extent to which some specific P. falciparum genetic variants are associated with gametocyte carriage. Methods Gametocytes and asexual forms were detected by light microscopy on thick smears collected between 2010 and 2012 in Nanoro, Burkina Faso. Merozoite surface protein 1 and 2 were genotyped by nested PCR on clinical samples. Associations between gametocyte carriage and factors, including multiplicity of infection, parasite density, patient age, gender, haemoglobin (Hb) level, and body temperature were assessed. The relationship between the presence of a particular msp1 and msp2 genetic variants and gametocyte carriage was also explored. Results Of the 724 samples positive to P. falciparum and successfully genotyped, gametocytes were found in 48 samples (6.63%). There was no effect of patient gender, age and body temperature on gametocyte carriage. However, the probability of gametocyte carriage significantly increased with increasing values of multiplicity of infection (MOI). Furthermore, there was a negative association between parasite density and gametocyte carriage. MOI decreased with parasite density in gametocyte-negative patients, but increased in gametocyte carriers. The probability of gametocyte carriage decreased with Hb level. Finally, the genetic composition of the infection influenced gametocyte carriage. In particular, the presence of RO33 increased the odds of developing gametocytes by 2 while the other allelic families K1, MAD20, FC27, and 3D7 had no significant impact on the occurrence of gametocytes in infected patients. Conclusion This study provides insight into potential factors influencing gametocyte production in symptomatic patients. The findings contribute to enhance understanding of risk factors associated with gametocyte carriage in humans. Trial registration NCT01232530.
Collapse
Affiliation(s)
- Paul Sondo
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso.
| | - Biebo Bihoun
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Marc Christian Tahita
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Karim Derra
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Seydou Nakanabo Diallo
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso.,Institut National de Santé Publique/Centre Muraz de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
| | - Adama Kazienga
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Hamidou Ilboudo
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Innocent Valea
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso.,Institut National de Santé Publique/Centre Muraz de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
| | - Zekiba Tarnagda
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Hermann Sorgho
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Thierry Lefèvre
- Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.,Centre de Recherche en Écologie Et Évolution de La Santé (CREES), Montpellier, France
| | - Halidou Tinto
- Institut de Recherche en Sciences de La Santé/ Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| |
Collapse
|
8
|
Chipoya MN, Shimaponda-Mataa NM. Prevalence, characteristics and risk factors of imported and local malaria cases in North-Western Province, Zambia: a cross-sectional study. Malar J 2020; 19:430. [PMID: 33228684 PMCID: PMC7686676 DOI: 10.1186/s12936-020-03504-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Imported malaria is a major challenge for countries that are in malaria elimination stage such as Zambia. Legitimate cross-border activities add to the risk of transmission, necessitating determination of prevalence, characteristics and risk factors of imported and local malaria. METHODS This cross-sectional study was conducted in 103 consented child and adult patients with clinical malaria symptoms, from selected health facilities in north-western Zambia. Patient demographic data and blood samples for malaria microscopy and full blood count were obtained. Chi-square and penalized logistic regression were performed to describe the characteristics and assess the risk factors of imported and local malaria in North-Western Province. RESULTS Overall, malaria prevalence was 78.6% with 93.8% Plasmodium falciparum and 6.2% other species. The local cases were 72 (88.9%) while the imported were 9 (11.1%) out of the 81 positive participants. About 98.6% of the local cases were P. falciparum compared to 55.6% (χ2 = 52.4; p < 0.01) P. falciparum among the imported cases. Among the imported cases, 44% were species other than P. falciparum (χ2 = 48; p < 0.01) while among the local cases only 1.4% were. Gametocytes were present in 44% of the imported malaria cases and only in 2.8% of the local cases (χ2 = 48; p < 0.01). About 48.6% of local participants had severe anaemia compared to 33.3% of participants from the two neighbouring countries who had (χ2 = 4.9; p = 0.03). In the final model, only country of residence related positively to presence of species other than P. falciparum (OR = 39.0, CI [5.9, 445.9]; p < 0.01) and presence of gametocytes (OR = 23.1, CI [4.2, 161.6]; p < 0.01). CONCLUSION Malaria prevalence in North-Western Province is high, with P. falciparum as the predominant species although importation of Plasmodium ovale and Plasmodium malariae is happening as well. Country of residence of patients is a major risk factor for malaria species and gametocyte presence. The need for enhanced malaria control with specific focus on border controls to detect and treat, for specific diagnosis and treatment according to species obtaining, for further research in the role of species and gametocytaemia in imported malaria, cannot be overemphasized.
Collapse
Affiliation(s)
- Maureen N Chipoya
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Ridgeway Campus, Lusaka, Zambia
| | - Nzooma M Shimaponda-Mataa
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Ridgeway Campus, Lusaka, Zambia.
| |
Collapse
|
9
|
Portugaliza HP, Miyazaki S, Geurten FJ, Pell C, Rosanas-Urgell A, Janse CJ, Cortés A. Artemisinin exposure at the ring or trophozoite stage impacts Plasmodium falciparum sexual conversion differently. eLife 2020; 9:60058. [PMID: 33084568 PMCID: PMC7577739 DOI: 10.7554/elife.60058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Malaria transmission is dependent on the formation of gametocytes in the human blood. The sexual conversion rate, the proportion of asexual parasites that convert into gametocytes at each multiplication cycle, is variable and reflects the relative parasite investment between transmission and maintaining the infection. The impact of environmental factors such as drugs on sexual conversion rates is not well understood. We developed a robust assay using gametocyte-reporter parasite lines to accurately measure the impact of drugs on sexual conversion rates, independently from their gametocytocidal activity. We found that exposure to subcurative doses of the frontline antimalarial drug dihydroartemisinin (DHA) at the trophozoite stage resulted in a ~ fourfold increase in sexual conversion. In contrast, no increase was observed when ring stages were exposed or in cultures in which sexual conversion was stimulated by choline depletion. Our results reveal a complex relationship between antimalarial drugs and sexual conversion, with potential public health implications.
Collapse
Affiliation(s)
- Harvie P Portugaliza
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain.,Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Global Health, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Fiona Ja Geurten
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Christopher Pell
- Department of Global Health, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, Netherlands
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Alfred Cortés
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
10
|
Emami SN, Hajkazemian M, Mozūraitis R. Can Plasmodium's tricks for enhancing its transmission be turned against the parasite? New hopes for vector control. Pathog Glob Health 2020; 113:325-335. [PMID: 31910740 PMCID: PMC7008238 DOI: 10.1080/20477724.2019.1703398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Approximately 120 years ago the link between mosquito and the malaria transmission was discovered. However, even today it remains an open question whether the parasite is able to direct the blood-seeking and feeding behavior of its mosquito vector to maximize the probability of transmission. If the parasite has this ability, could it occur only through the alteration of the vertebrate host's volatile organic compounds (VOCs) and/or the parasite alteration of the behavior of the infected vector in a manner that favors its transmission? Although some recent empirical evidence supports the hypothesis regarding the parasite ability in alteration of the vertebrate host's VOCs, the role of parasite alteration and behavioral differences between infected and uninfected female mosquitoes toward infected and uninfected hosts has not yet been considered in the implementation of control measures. This review will discuss the current evidence, which shows 1. Plasmodium can direct uninfected mosquito blood-seeking and feeding behavior via alteration of vertebrate-host odor profiles and production of phagostimulants and 2. Plasmodium also manipulates its vector during the sporogony cycle to increase transmission. Briefly, we also consider the next generation of methods for moving the empirical laboratory evidence to potential application in future integrated malaria control programs.
Collapse
Affiliation(s)
- S Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melika Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Raimondas Mozūraitis
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| |
Collapse
|
11
|
de Jong RM, Tebeje SK, Meerstein‐Kessel L, Tadesse FG, Jore MM, Stone W, Bousema T. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites. Immunol Rev 2020; 293:190-215. [PMID: 31840844 PMCID: PMC6973022 DOI: 10.1111/imr.12828] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
The efficient spread of malaria from infected humans to mosquitoes is a major challenge for malaria elimination initiatives. Gametocytes are the only Plasmodium life stage infectious to mosquitoes. Here, we summarize evidence for naturally acquired anti-gametocyte immunity and the current state of transmission blocking vaccines (TBV). Although gametocytes are intra-erythrocytic when present in infected humans, developing Plasmodium falciparum gametocytes may express proteins on the surface of red blood cells that elicit immune responses in naturally exposed individuals. This immune response may reduce the burden of circulating gametocytes. For both P. falciparum and Plasmodium vivax, there is a solid evidence that antibodies against antigens present on the gametocyte surface, when co-ingested with gametocytes, can influence transmission to mosquitoes. Transmission reducing immunity, reducing the burden of infection in mosquitoes, is a well-acknowledged but poorly quantified phenomenon that forms the basis for the development of TBV. Transmission enhancing immunity, increasing the likelihood or intensity of transmission to mosquitoes, is more speculative in nature but is convincingly demonstrated for P. vivax. With the increased interest in malaria elimination, TBV and monoclonal antibodies have moved to the center stage of malaria vaccine development. Methodologies to prioritize and evaluate products are urgently needed.
Collapse
MESH Headings
- Antibodies, Blocking/immunology
- Antibodies, Protozoan/immunology
- Host-Parasite Interactions/immunology
- Humans
- Immunity
- Immunomodulation
- Life Cycle Stages
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Plasmodium vivax/growth & development
- Plasmodium vivax/immunology
Collapse
Affiliation(s)
- Roos M. de Jong
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Lisette Meerstein‐Kessel
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Fitsum G. Tadesse
- Armauer Hansen Research InstituteAddis AbabaEthiopia
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthijs M. Jore
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Will Stone
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Teun Bousema
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
12
|
Reporter lines based on the gexp02 promoter enable early quantification of sexual conversion rates in the malaria parasite Plasmodium falciparum. Sci Rep 2019; 9:14595. [PMID: 31601834 PMCID: PMC6787211 DOI: 10.1038/s41598-019-50768-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
Transmission of malaria parasites from humans to mosquito vectors requires that some asexual parasites differentiate into sexual forms termed gametocytes. The balance between proliferation in the same host and conversion into transmission forms can be altered by the conditions of the environment. The ability to accurately measure the rate of sexual conversion under different conditions is essential for research addressing the mechanisms underlying sexual conversion, and to assess the impact of environmental factors. Here we describe new Plasmodium falciparum transgenic lines with genome-integrated constructs in which a fluorescent reporter is expressed under the control of the promoter of the gexp02 gene. Using these parasite lines, we developed a sexual conversion assay that shortens considerably the time needed for an accurate determination of sexual conversion rates, and dispenses the need to add chemicals to inhibit parasite replication. Furthermore, we demonstrate that gexp02 is expressed specifically in sexual parasites, with expression starting as early as the sexual ring stage, which makes it a candidate marker for circulating sexual rings in epidemiological studies.
Collapse
|
13
|
Garcia V, Graterol J, López A, Ortiz S, Solari A. Influence of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) Infection on Mortality of the Sylvatic Triatomine Vector, Mepraia spinolai (Heteroptera: Reuviidae), Under Fasting. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1384-1388. [PMID: 31322659 DOI: 10.1093/jme/tjz124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 06/10/2023]
Abstract
The etiologic agent of Chagas disease, Trypanosoma cruzi, is transmitted by hematophagous insect vectors that subsist on repeated blood meals over their lives separated by periods of fasting. Using naturally infected Mepraia spinolai, we measured the influence of parasite infection on this host vector's mortality during regular feeding and after fasting. After their capture, the insects were fed twice with uninfected mice to evaluate parasitic infection in their fecal samples by microscopic observation and PCR. Then the insects were subjected to a fasting period, followed by a third (final) feeding. After each feeding, a fecal sample was obtained to evaluate T. cruzi infection. To determine its progress through ontogeny, mortality and ecdysis of the infected and uninfected nymphs and adults were recorded on three occasions, over 140 d, and analyzed. Detections of infection by T. cruzi between the two first feedings increased, but this detection level was generally reduced after final feeding unless reinfected. For nymphs (stages III-V), their mortality was highest when infected after the fasting period, whereas adults were equally resistant to death after fasting when infected with T. cruzi. Metacyclic trypomastigotes were principally excreted in the fecal samples. Our results confirm that T. cruzi is pathogenic to its invertebrate hosts under nutritional stress conditions, when nymphs' mortality is higher while infected than uninfected when they were hungry. These results are epidemiologically important because T. cruzi harms the fasting vector M. spinolai, reducing its lifespan and competence as a disease vector, and thereby its rates of parasite transmission.
Collapse
Affiliation(s)
- Vanessa Garcia
- Cellular and Molecular Biology Program, ICBM, Faculty of Medicine, University of Chile, Casilla, Santiago, Chile
| | - Johsmar Graterol
- Cellular and Molecular Biology Program, ICBM, Faculty of Medicine, University of Chile, Casilla, Santiago, Chile
| | - Angélica López
- Cellular and Molecular Biology Program, ICBM, Faculty of Medicine, University of Chile, Casilla, Santiago, Chile
| | - Sylvia Ortiz
- Cellular and Molecular Biology Program, ICBM, Faculty of Medicine, University of Chile, Casilla, Santiago, Chile
| | | |
Collapse
|
14
|
Tadesse FG, Meerstein-Kessel L, Gonçalves BP, Drakeley C, Ranford-Cartwright L, Bousema T. Gametocyte Sex Ratio: The Key to Understanding Plasmodium falciparum Transmission? Trends Parasitol 2018; 35:226-238. [PMID: 30594415 PMCID: PMC6396025 DOI: 10.1016/j.pt.2018.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 11/25/2022]
Abstract
A mosquito needs to ingest at least one male and one female gametocyte to become infected with malaria. The sex of Plasmodium falciparum gametocytes can be determined microscopically but recent transcriptomics studies paved the way for the development of molecular methods that allow sex-ratio assessments at much lower gametocyte densities. These sex-specific gametocyte diagnostics were recently used to examine gametocyte dynamics in controlled and natural infections as well as the impact of different antimalarial drugs. It is currently unclear to what extent sex-specific gametocyte diagnostics obviate the need for mosquito feeding assays to formally assess transmission potential. Here, we review recent and historic assessments of gametocyte sex ratio in relation to host and parasite characteristics, treatment, and transmission potential. Recent RNA sequencing studies have uncovered a number of P. falciparum gametocyte sex-specific targets and provided new insights in gametocyte biology. After decades when gametocyte sex-ratio research was restricted to nonhuman malarias or in vitro experiments, molecular tools for assessing gametocyte sex ratio are now increasingly available for use in natural P. falciparum infections. Evidence that gametocyte sex ratio is influenced by total gametocyte density and antimalarial treatment, and improves predictions of transmission potential, highlight the relevance of understanding the gametocyte sex ratio during natural infections. The finding that the most widely used P. falciparum gametocyte marker Pfs25 is expressed predominantly by female gametocytes and has non-negligible levels of background expression in asexual parasites necessitates a re-evaluation of existing gametocyte data.
Collapse
Affiliation(s)
- Fitsum G Tadesse
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia; Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia; These authors contributed equally
| | - Lisette Meerstein-Kessel
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; These authors contributed equally
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Lisa Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
15
|
Adaptive plasticity in the gametocyte conversion rate of malaria parasites. PLoS Pathog 2018; 14:e1007371. [PMID: 30427935 PMCID: PMC6261640 DOI: 10.1371/journal.ppat.1007371] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/28/2018] [Accepted: 10/02/2018] [Indexed: 11/30/2022] Open
Abstract
Sexually reproducing parasites, such as malaria parasites, experience a trade-off between the allocation of resources to asexual replication and the production of sexual forms. Allocation by malaria parasites to sexual forms (the conversion rate) is variable but the evolutionary drivers of this plasticity are poorly understood. We use evolutionary theory for life histories to combine a mathematical model and experiments to reveal that parasites adjust conversion rate according to the dynamics of asexual densities in the blood of the host. Our model predicts the direction of change in conversion rates that returns the greatest fitness after perturbation of asexual densities by different doses of antimalarial drugs. The loss of a high proportion of asexuals is predicted to elicit increased conversion (terminal investment), while smaller losses are managed by reducing conversion (reproductive restraint) to facilitate within-host survival and future transmission. This non-linear pattern of allocation is consistent with adaptive reproductive strategies observed in multicellular organisms. We then empirically estimate conversion rates of the rodent malaria parasite Plasmodium chabaudi in response to the killing of asexual stages by different doses of antimalarial drugs and forecast the short-term fitness consequences of these responses. Our data reveal the predicted non-linear pattern, and this is further supported by analyses of previous experiments that perturb asexual stage densities using drugs or within-host competition, across multiple parasite genotypes. Whilst conversion rates, across all datasets, are most strongly influenced by changes in asexual density, parasites also modulate conversion according to the availability of red blood cell resources. In summary, increasing conversion maximises short-term transmission and reducing conversion facilitates in-host survival and thus, future transmission. Understanding patterns of parasite allocation to reproduction matters because within-host replication is responsible for disease symptoms and between-host transmission determines disease spread. Malaria parasites in the host replicate asexually and, during each replication cycle, some asexuals transform into sexual stages that enable between-host transmission. It is not understood why the rate of conversion to sexual stages varies during infections despite its importance for the severity and spread of the disease. We combined a mathematical model and experiments to show that parasites adjust conversion rates depending on changes in their in-host population size. When population sizes plummet, between-host transmission is prioritised. However, smaller losses in number elicit reproductive restraint, which facilitates in-host survival and future transmission. We show that increased and decreased conversion in response to a range of in-host environments are actually part of one continuum: a sophisticated reproductive strategy similar to that of multicellular organisms.
Collapse
|
16
|
Nkhoma SC, Banda RL, Khoswe S, Dzoole-Mwale TJ, Ward SA. Intra-host dynamics of co-infecting parasite genotypes in asymptomatic malaria patients. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 65:414-424. [PMID: 30145390 PMCID: PMC6219893 DOI: 10.1016/j.meegid.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
Malaria-infected individuals often harbor mixtures of genetically distinct parasite genotypes. We studied intra-host dynamics of parasite genotypes co-infecting asymptomatic adults in an area of intense malaria transmission in Chikhwawa, Malawi. Serial blood samples (5 ml) were collected over seven consecutive days from 25 adults with asymptomatic Plasmodium falciparum malaria and analyzed to determine whether a single peripheral blood sample accurately captures within-host parasite diversity. Blood samples from three of the participants were also analyzed by limiting dilution cloning and SNP genotyping of the parasite clones isolated to examine both the number and relatedness of co-infecting parasite haplotypes. We observed rapid turnover of co-infecting parasite genotypes in 88% of the individuals sampled (n = 22) such that the genetic composition of parasites infecting these individuals changed dramatically over the course of seven days of follow up. Nineteen of the 25 individuals sampled (76%) carried multiple parasite genotypes at baseline. Analysis of serial blood samples from three of the individuals revealed that they harbored 6, 12 and 17 distinct parasite haplotypes respectively. Approximately 70% of parasite haplotypes recovered from the three extensively sampled individuals were unrelated (proportion of shared alleles <83.3%) and were deemed to have primarily arisen from superinfection (inoculation of unrelated parasite haplotypes through multiple mosquito bites). The rest were related at the half-sib level or greater and were deemed to have been inoculated into individual human hosts via parasite co-transmission from single mosquito bites. These findings add further to the growing weight of evidence indicating that a single blood sample poorly captures within-host parasite diversity and underscore the importance of repeated blood sampling to accurately capture within-host parasite ecology. Our data also demonstrate a more pronounced role for parasite co-transmission in generating within-host parasite diversity in high transmission settings than previously assumed. Taken together, these findings have important implications for understanding the evolution of drug resistance, malaria transmission, parasite virulence, allocation of gametocyte sex ratios and acquisition of malaria immunity.
Collapse
Affiliation(s)
- Standwell C Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Wellcome Trust-Liverpool-Glasgow Centre for Global Health Research, 70 Pembroke Place, Liverpool L69 3GF, UK.
| | - Rachel L Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Stanley Khoswe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Tamika J Dzoole-Mwale
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Stephen A Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
17
|
Grignard L, Gonçalves BP, Early AM, Daniels RF, Tiono AB, Guelbéogo WM, Ouédraogo A, van Veen EM, Lanke K, Diarra A, Nebie I, Sirima SB, Targett GA, Volkman SK, Neafsey DE, Wirth DF, Bousema T, Drakeley C. Transmission of molecularly undetectable circulating parasite clones leads to high infection complexity in mosquitoes post feeding. Int J Parasitol 2018; 48:671-677. [PMID: 29738740 PMCID: PMC6018601 DOI: 10.1016/j.ijpara.2018.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/04/2018] [Accepted: 02/26/2018] [Indexed: 11/24/2022]
Abstract
Additional parasite alleles were consistently identified in mosquitoes compared with the human blood sample they had fed on. Assessments of Plasmodium falciparum complexity relying on single time-point collections miss transmissible clones. Low-density gametocyte – producing clones are capable of successfully establishing infections in mosquitoes.
Plasmodium falciparum malaria infections often comprise multiple distinct parasite clones. Few datasets have directly assessed infection complexity in humans and mosquitoes they infect. Examining parasites using molecular tools may provide insights into the selective transmissibility of isolates. Using capillary electrophoresis genotyping and next generation amplicon sequencing, we analysed complexity of parasite infections in human blood and in the midguts of mosquitoes that became infected in membrane feeding experiments using the same blood material in two West African settings. Median numbers of clones in humans and mosquitoes were higher in samples from Burkina Faso (4.5, interquartile range 2–8 for humans; and 2, interquartile range 1–3 for mosquitoes) than in The Gambia (2, interquartile range 1–3 and 1, interquartile range 1–3, for humans and mosquitoes, respectively). Whilst the median number of clones was commonly higher in human blood samples, not all transmitted alleles were detectable in the human peripheral blood. In both study sample sets, additional parasite alleles were identified in mosquitoes compared with the matched human samples (10–88.9% of all clones/feeding assay, n = 73 feeding assays). The results are likely due to preferential amplification of the most abundant clones in peripheral blood but confirm the presence of low density clones that produce transmissible sexual stage parasites.
Collapse
Affiliation(s)
- Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK.
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Rachel F Daniels
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alfred B Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Wamdaogo M Guelbéogo
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alphonse Ouédraogo
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Elke M van Veen
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amidou Diarra
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nebie
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Sodiomon B Sirima
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Geoff A Targett
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Sarah K Volkman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA; School of Nursing and Health Sciences, Simmons College, Boston, MA, USA
| | | | - Dyann F Wirth
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
18
|
Birget PLG, Greischar MA, Reece SE, Mideo N. Altered life history strategies protect malaria parasites against drugs. Evol Appl 2018; 11:442-455. [PMID: 29636798 PMCID: PMC5891063 DOI: 10.1111/eva.12516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022] Open
Abstract
Drug resistance has been reported against all antimalarial drugs, and while parasites can evolve classical resistance mechanisms (e.g., efflux pumps), it is also possible that changes in life history traits could help parasites evade the effects of treatment. The life history of malaria parasites is governed by an intrinsic resource allocation problem: specialized stages are required for transmission, but producing these stages comes at the cost of producing fewer of the forms required for within-host survival. Drug treatment, by design, alters the probability of within-host survival, and so should alter the costs and benefits of investing in transmission. Here, we use a within-host model of malaria infection to predict optimal patterns of investment in transmission in the face of different drug treatment regimes and determine the extent to which alternative patterns of investment can buffer the fitness loss due to drugs. We show that over a range of drug doses, parasites are predicted to adopt "reproductive restraint" (investing more in asexual replication and less in transmission) to maximize fitness. By doing so, parasites recoup some of the fitness loss imposed by drugs, though as may be expected, increasing dose reduces the extent to which altered patterns of transmission investment can benefit parasites. We show that adaptation to drug-treated infections could result in more virulent infections in untreated hosts. This work emphasizes that in addition to classical resistance mechanisms, drug treatment generates selection for altered parasite life history. Understanding how any shifts in life history will alter the efficacy of drugs, as well as any limitations on such shifts, is important for evaluating and predicting the consequences of drug treatment.
Collapse
Affiliation(s)
- Philip L. G. Birget
- Institutes of Evolutionary Biology, Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
| | - Megan A. Greischar
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Sarah E. Reece
- Institutes of Evolutionary Biology, Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
| | - Nicole Mideo
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
19
|
Rono MK, Nyonda MA, Simam JJ, Ngoi JM, Mok S, Kortok MM, Abdullah AS, Elfaki MM, Waitumbi JN, El-Hassan IM, Marsh K, Bozdech Z, Mackinnon MJ. Adaptation of Plasmodium falciparum to its transmission environment. Nat Ecol Evol 2017; 2:377-387. [PMID: 29255304 DOI: 10.1038/s41559-017-0419-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022]
Abstract
Success in eliminating malaria will depend on whether parasite evolution outpaces control efforts. Here, we show that Plasmodium falciparum parasites (the deadliest of the species causing human malaria) found in low-transmission-intensity areas have evolved to invest more in transmission to new hosts (reproduction) and less in within-host replication (growth) than parasites found in high-transmission areas. At the cellular level, this adaptation manifests as increased production of reproductive forms (gametocytes) early in the infection at the expense of processes associated with multiplication inside red blood cells, especially membrane transport and protein trafficking. At the molecular level, this manifests as changes in the expression levels of genes encoding epigenetic and translational machinery. Specifically, expression levels of the gene encoding AP2-G-the transcription factor that initiates reproduction-increase as transmission intensity decreases. This is accompanied by downregulation and upregulation of genes encoding HDAC1 and HDA1-two histone deacetylases that epigenetically regulate the parasite's replicative and reproductive life-stage programmes, respectively. Parasites in reproductive mode show increased reliance on the prokaryotic translation machinery found inside the plastid-derived organelles. Thus, our dissection of the parasite's adaptive regulatory architecture has identified new potential molecular targets for malaria control.
Collapse
Affiliation(s)
- Martin K Rono
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mary A Nyonda
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | | | - Joyce M Ngoi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sachel Mok
- Columbia University Medical Center, New York, NY, USA
| | - Moses M Kortok
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Mohammed M Elfaki
- Department of Microbiology and Parasitology, Faculty of Medicine, Jazan University, Gizan, Jazan, Saudi Arabia
| | - John N Waitumbi
- Walter Reed Army Institute of Research/Kenya Medical Research Institute, Kisumu, Kenya
| | - Ibrahim M El-Hassan
- Faculty of Public Health and Tropical Medicine, Jazan University, Gizan, Jazan, Saudi Arabia
| | - Kevin Marsh
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|
20
|
Bousema T, Drakeley C. Determinants of Malaria Transmission at the Population Level. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025510. [PMID: 28242786 DOI: 10.1101/cshperspect.a025510] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transmission of malaria from man to mosquito defines the human infectious reservoir of malaria. At the population level this is influenced by a variety of human, parasite, and mosquito vector factors some or all of which may vary depending on the epidemiological setting. Here, we review our current state of knowledge related to human infectiousness to mosquitoes and how current malaria control strategies might be adapted to focus on reducing this. While much progress has been made in malaria control, we argue that an improved understanding of human infectivity will allow more effective use of current control tools and make elimination a more feasible goal.
Collapse
Affiliation(s)
- Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.,Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Chris Drakeley
- Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| |
Collapse
|
21
|
Modulation of transmission success of Plasmodium falciparum gametocytes (sexual stages) in various species of Anopheles by erythrocytic asexual stage parasites. Acta Trop 2017; 176:263-269. [PMID: 28859956 DOI: 10.1016/j.actatropica.2017.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022]
Abstract
During malaria infection, a small proportion of erythrocytic asexual stages undergo sexual differentiation. Male and female gametocytes ingested in the blood meal initiate the sexual development of malaria parasites in the mosquito midgut. During blood feeding on a host, a mosquito ingests, in addition to mature gametocytes, host immune factors present in the blood, as well as large excess of erythrocytic asexual stages. In the current study we addressed the impact of the presence of large excess of asexual stages, hitherto not known or even suspected to influence, on the infectivity of gametocytes in the mosquito. Asexual stages resulted in a dose-dependent inhibition of infectiousness of gametocytes, and some of this could be explained by the presumed effect of hemozoin and other unknown asexual-stage components on the mosquito immune system, affecting survival and maturation of parasites in the mosquito midgut. Interactions between asexual and sexual stages, maturity and ratio of male and female gametocytes, host immune factors and mosquito innate immune factors are some of the variables that determine the infectiousness of gametocytes in the mosquitoes and ultimately malaria transmission success. Understanding of determinants affecting malaria transmission will be critical to approaches directly targeting the transmission process for malaria elimination.
Collapse
|
22
|
Birget PLG, Repton C, O'Donnell AJ, Schneider P, Reece SE. Phenotypic plasticity in reproductive effort: malaria parasites respond to resource availability. Proc Biol Sci 2017; 284:20171229. [PMID: 28768894 PMCID: PMC5563815 DOI: 10.1098/rspb.2017.1229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
The trade-off between survival and reproduction is fundamental in the life history of all sexually reproducing organisms. This includes malaria parasites, which rely on asexually replicating stages for within-host survival and on sexually reproducing stages (gametocytes) for between-host transmission. The proportion of asexual stages that form gametocytes (reproductive effort) varies during infections-i.e. is phenotypically plastic-in response to changes in a number of within-host factors, including anaemia. However, how the density and age structure of red blood cell (RBC) resources shape plasticity in reproductive effort and impacts upon parasite fitness is controversial. Here, we examine how and why the rodent malaria parasite Plasmodium chabaudi alters its reproductive effort in response to experimental perturbations of the density and age structure of RBCs. We show that all four of the genotypes studied increase reproductive effort when the proportion of RBCs that are immature is elevated during host anaemia, and that the responses of the genotypes differ. We propose that anaemia (counterintuitively) generates a resource-rich environment in which parasites can afford to allocate more energy to reproduction (i.e. transmission) and that anaemia also exposes genetic variation to selection. From an applied perspective, adaptive plasticity in parasite reproductive effort could explain the maintenance of genetic variation for virulence and why anaemia is often observed as a risk factor for transmission in human infections.
Collapse
Affiliation(s)
- Philip L G Birget
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Charlotte Repton
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Aidan J O'Donnell
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Petra Schneider
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sarah E Reece
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
23
|
Effects of liver-stage clearance by Primaquine on gametocyte carriage of Plasmodium vivax and P. falciparum. PLoS Negl Trop Dis 2017; 11:e0005753. [PMID: 28732068 PMCID: PMC5540608 DOI: 10.1371/journal.pntd.0005753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/02/2017] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Background Primaquine (PQ) is the only currently licensed antimalarial that prevents Plasmodium vivax (Pv) relapses. It also clears mature P. falciparum (Pf) gametocytes, thereby reducing post-treatment transmission. Randomized PQ treatment in a treatment-to-reinfection cohort in Papua New Guinean children permitted the study of Pv and Pf gametocyte carriage after radical cure and to investigate the contribution of Pv relapses. Methods Children received radical cure with Chloroquine, Artemether-Lumefantrine plus either PQ or placebo. Blood samples were subsequently collected in 2-to 4-weekly intervals over 8 months. Gametocytes were detected by quantitative reverse transcription-PCR targeting pvs25 and pfs25. Results PQ treatment reduced the incidence of Pv gametocytes by 73%, which was comparable to the effect of PQ on incidence of blood-stage infections. 92% of Pv and 79% of Pf gametocyte-positive infections were asymptomatic. Pv and to a lesser extent Pf gametocyte positivity and density were associated with high blood-stage parasite densities. Multivariate analysis revealed that the odds of gametocytes were significantly reduced in mixed-species infections compared to single-species infections for both species (ORPv = 0.39 [95% CI 0.25–0.62], ORPf = 0.33 [95% CI 0.18–0.60], p<0.001). No difference between the PQ and placebo treatment arms was observed in density of Pv gametocytes or in the proportion of Pv infections that carried gametocytes. First infections after blood-stage and placebo treatment, likely caused by a relapsing hypnozoite, were equally likely to carry gametocytes than first infections after PQ treatment, likely caused by an infective mosquito bite. Conclusion Pv relapses and new infections are associated with similar levels of gametocytaemia. Relapses thus contribute considerably to the Pv reservoir highlighting the importance of effective anti-hypnozoite treatment for efficient control of Pv. Trial registration ClinicalTrials.gov NCT02143934 Plasmodium vivax (Pv) mainly affects Asia, Central and South America as well as Ethiopia. In Papua New Guinea (PNG) Pv prevalence is among the highest worldwide. The biggest challenge for the control of Pv infections is the formation of dormant liver stages, which have the ability to relapse and cause disease even after successful clearance of asexual stages in the blood circulation. Primaquine is the only licensed drug that is able to prevent Pv relapses. A randomized treatment-to-reinfection cohort in Papua New Guinean children permitted permitted the study of Pv and P. falciparum gametocyte carriage after radical cure with Primaquine and to investigate the contribution of Pv relapses to transmission. We found that most gametocyte carriers in this study were detected in asymptomatic infections and that relapses and new infections are associated with similar Pv gametocyte production. These are strong arguments emphasizing the importance of sensitive detection and early treatment of asymptomatic and submicroscopic Plasmodium spp. infections and of anti-hypnozoite treatment for an effective control of Pv.
Collapse
|
24
|
Taylor LH, Mackinnon MJ, Read AF. VIRULENCE OF MIXED-CLONE AND SINGLE-CLONE INFECTIONS OF THE RODENT MALARIA PLASMODIUM CHABAUDI. Evolution 2017; 52:583-591. [PMID: 28568339 DOI: 10.1111/j.1558-5646.1998.tb01656.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1997] [Accepted: 01/28/1998] [Indexed: 11/28/2022]
Abstract
Most evolutionary models treat virulence as an unavoidable consequence of microparasite replication and have predicted that in mixed-genotype infections, natural selection should favor higher levels of virulence than is optimal in genetically uniform infections. Increased virulence may evolve as a genetically fixed strategy, appropriate for the frequency of mixed infections in the population, or may occur as a conditional response to mixed infection, that is, a facultative strategy. Here we test whether facultative alterations in replication rates in the presence of competing genotypes occur and generate greater virulence. An important alternative, not currently incorporated in models of the evolution of virulence, is that host responses mounted against genetically diverse parasites may be more costly or less effective than those against genetically uniform parasites. If so, mixed clone infections will be more virulent for a given parasite replication rate. Two groups of mice were infected with one of two clones of Plasmodium chabaudi parasites, and three groups of mice were infected with 1:9, 5:5, or 9:1 mixtures of the same two clones. Virulence was assessed by monitoring mouse body weight and red blood cell density. Transmission stage densities were significantly higher in mixed- than in single-clone infections. Within treatment groups, transmission stage production increased with the virulence of the infection, a phenotypic correlation consistent with the genetic correlation assumed by much of the theoretical work on the evolution of virulence. Consistent with theoretical predictions of facultative alterations in virulence, we found that mice infected with both parasite clones lost more weight and had on average lower blood counts than those infected with single-clone infections. However, there was no consistent evidence of the mechanism invoked by evolutionary models that predict this effect. Replication rates and parasite densities were not always higher in ∗∗∗mixed-clone infections, and for a given replication rate or parasite density, mixed-clone infections were still more virulent. Instead, prolonged anemia and increased transmission may have occured because genetically diverse infections are less rapidly cleared by hosts. Differences in maximum weight loss occured even when there were comparable parasite densities in mixed- and single-clone infections. We suggest that mounting an immune response against more that one parasite genotype is more costly for hosts, which therefore suffer higher virulence.
Collapse
Affiliation(s)
- Louise H Taylor
- Institute of Cell, Animal and Population Biology, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, Scotland
| | - Margaret J Mackinnon
- Institute of Cell, Animal and Population Biology, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, Scotland
| | - Andrew F Read
- Institute of Cell, Animal and Population Biology, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, Scotland
| |
Collapse
|
25
|
Mackinnon MJ, Read AF. GENETIC RELATIONSHIPS BETWEEN PARASITE VIRULENCE AND TRANSMISSION IN THE RODENT MALARIA PLASMODIUM CHABAUDI. Evolution 2017; 53:689-703. [PMID: 28565637 DOI: 10.1111/j.1558-5646.1999.tb05364.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/1998] [Accepted: 01/08/1999] [Indexed: 01/22/2023]
Abstract
Many parasites evolve to become virulent rather than benign mutualists. One of the major theoretical models of parasite virulence postulates that this is because rapid within-host replication rates are necessary for successful transmission (parasite fitness) and that virulence (damage to the host) is an unavoidable consequence of this rapid replication. Two fundamental assumptions underlying this so-called evolutionary trade-off model have rarely been tested empirically: (1) that higher replication rates lead to higher levels of virulence; and (2) that higher replication rates lead to higher transmission. Both of these relationships must have a genetic basis for this evolutionary hypothesis to be relevant. These assumptions were tested in the rodent malaria parasite, Plasmodium chabaudi, by examining genetic relationships between virulence and transmission traits across a population of eight parasite clones isolated from the wild. Each clone was injected into groups of inbred mice in a controlled laboratory environment, and replication rate (measured by maximum asexual parasitemia), virulence (measured by live-weight loss and degree of anemia in the mouse), and transmission (measured by density of sexual forms, gametocytes, in the blood and proportion of mosquitoes infected after taking a blood-meal from the mouse) were assessed. It was found that clones differed widely in these traits and these clone differences were repeatable over successive blood passages. Virulence traits were strongly phenotypically and genetically (i.e., across clones) correlated to maximum parasitemia thus supporting the first assumption that rapid replication causes higher virulence. Transmission traits were also positively phenotypically and genetically correlated to parasitemia, which supports the second assumption that rapid replication leads to higher transmission. Thus, two assumptions of the parasite-centered trade-off model of the evolution of virulence were shown to be justified in malaria parasites.
Collapse
Affiliation(s)
- Margaret J Mackinnon
- Institute of Cell, Animal and Population Biology, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, United Kingdom
| | - Andrew F Read
- Institute of Cell, Animal and Population Biology, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, United Kingdom
| |
Collapse
|
26
|
Bioluminescence Method for In Vitro Screening of Plasmodium Transmission-Blocking Compounds. Antimicrob Agents Chemother 2017; 61:AAC.02699-16. [PMID: 28348156 PMCID: PMC5444155 DOI: 10.1128/aac.02699-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
The sporogonic stage of the life cycle of Plasmodium spp., the causative agents of malaria, occurs inside the parasite's mosquito vector, where a process of fertilization, meiosis, and mitotic divisions culminates in the generation of large numbers of mammalian-infective sporozoites. Efforts to cultivate Plasmodium mosquito stages in vitro have proved challenging and yielded only moderate success. Here, we describe a methodology that simplifies the in vitro screening of much-needed transmission-blocking (TB) compounds employing a bioluminescence-based method to monitor the in vitro development of sporogonic stages of the rodent malaria parasite Plasmodium berghei. Our proof-of-principle assessment of the in vitro TB activity of several commonly used antimalarial compounds identified cycloheximide, thiostrepton, and atovaquone as the most active compounds against the parasite's sporogonic stages. The TB activity of these compounds was further confirmed by in vivo studies that validated our newly developed in vitro approach to TB compound screening.
Collapse
|
27
|
Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: Target product profiles. PLoS Negl Trop Dis 2017; 11:e0005516. [PMID: 28369085 PMCID: PMC5391123 DOI: 10.1371/journal.pntd.0005516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/13/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
The global prevalence of malaria has decreased over the past fifteen years, but similar gains have not been realized against Plasmodium vivax because this species is less responsive to conventional malaria control interventions aimed principally at P. falciparum. Approximately half of all malaria cases outside of Africa are caused by P. vivax. This species places dormant forms in human liver that cause repeated clinical attacks without involving another mosquito bite. The diagnosis of acute patent P. vivax malaria relies primarily on light microscopy. Specific rapid diagnostic tests exist but typically perform relatively poorly compared to those for P. falciparum. Better diagnostic tests are needed for P. vivax. To guide their development, FIND, in collaboration with P. vivax experts, identified the specific diagnostic needs associated with this species and defined a series of three distinct target product profiles, each aimed at a particular diagnostic application: (i) point-of-care of acutely ill patients for clinical care purposes; (ii) point-of-care asymptomatic and otherwise sub-patent residents for public health purposes, e.g., mass screen and treat campaigns; and (iii) ultra-sensitive not point-of-care diagnosis for epidemiological research/surveillance purposes. This report presents and discusses the rationale for these P. vivax-specific diagnostic target product profiles. These contribute to the rational development of fit-for-purpose diagnostic tests suitable for the clinical management, control and elimination of P. vivax malaria. Plasmodium vivax is the second most prevalent Plasmodium species amongst the five that can infect humans and cause malaria. The control and elimination of P. vivax is complicated by its specific biology, such as hard-to-detect low densities of blood-circulating parasites in infected individuals, the existence of persistent liver forms causing relapse, or the early appearance of sexual stages of the parasite during the course of an infection, which facilitates its transmission. These difficulties are reinforced by the fact that most antimalarial tools have been developed primarily for P. falciparum, the most prevalent malaria species, and are not always as effective for P. vivax. Current tools for the diagnosis of P. vivax are of limited effectiveness. Rapid diagnostic tests exist but show, in average, lower performance than similar test for P. falciparum. P. vivax diagnosis often relies on light microscopy which is challenging to maintain at a high quality and not sensitive enough to detect a large fraction of all infections. Recognizing that better diagnostic tools for P. vivax are needed, we report in this study the development of new target product profiles to define the specific characteristics of such tests. The establishment of these consensus-based documents is an important first step to guide research and development efforts toward better diagnostic solutions for P. vivax malaria and to accelerate the elimination of this species alongside P. falciparum.
Collapse
|
28
|
Greischar MA, Mideo N, Read AF, Bjørnstad ON. Predicting optimal transmission investment in malaria parasites. Evolution 2016; 70:1542-58. [DOI: 10.1111/evo.12969] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 05/07/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Megan A. Greischar
- Center For Infectious Disease Dynamics, Departments of Entomology and Biology, The Pennsylvania State University; University Park; Pennsylvania 16802
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON M5S 3B2 Canada
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON M5S 3B2 Canada
| | - Andrew F. Read
- Center For Infectious Disease Dynamics, Departments of Entomology and Biology, The Pennsylvania State University; University Park; Pennsylvania 16802
- Fogarty International Center; National Institutes of Health; Bethesda Maryland 20892
| | - Ottar N. Bjørnstad
- Center For Infectious Disease Dynamics, Departments of Entomology and Biology, The Pennsylvania State University; University Park; Pennsylvania 16802
- Fogarty International Center; National Institutes of Health; Bethesda Maryland 20892
| |
Collapse
|
29
|
Quantifying Transmission Investment in Malaria Parasites. PLoS Comput Biol 2016; 12:e1004718. [PMID: 26890485 PMCID: PMC4759450 DOI: 10.1371/journal.pcbi.1004718] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/17/2015] [Indexed: 01/27/2023] Open
Abstract
Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment. Malaria parasites are carried from host to host by blood-feeding insects, a process that requires some portion of the parasite population to develop into transmission forms that cannot replicate within the current host. The fraction of parasites specialized for transmission instead of replication (transmission investment) could change with each cycle of replication in response to changing conditions within the host. Measuring how transmission investment changes through time could help us understand how malaria spreads so efficiently through populations of human and other animals. However, transmission investment is usually impossible to measure directly and instead has to be estimated by comparing the number of transmission forms with total parasite numbers in blood samples. Here we use a model to simulate data from an infection—so that the true level of transmission investment is known—and test published methods for estimation. We find that existing methods do not accurately estimate transmission investment from simulated data, and we propose a new statistical method that works substantially better. When applied to rodent malaria data, our method suggests that transmission investment can vary substantially over the course of infection, with notably different patterns of allocation across hosts.
Collapse
|
30
|
Molecular Approaches for Diagnosis of Malaria and the Characterization of Genetic Markers for Drug Resistance. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Smith RC, Vega-Rodríguez J, Jacobs-Lorena M. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector. Mem Inst Oswaldo Cruz 2015. [PMID: 25185005 PMCID: PMC4156458 DOI: 10.1590/0074-0276130597] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Joel Vega-Rodríguez
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| |
Collapse
|
32
|
Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol 2015; 13:573-87. [DOI: 10.1038/nrmicro3519] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Abstract
Malaria remains one of the leading causes of death worldwide, despite decades of public health efforts. The recent commitment by many endemic countries to eliminate malaria marks a shift away from programs aimed at controlling disease burden towards one that emphasizes reducing transmission of the most virulent human malaria parasite, Plasmodium falciparum. Gametocytes, the only developmental stage of malaria parasites able to infect mosquitoes, have remained understudied, as they occur in low numbers, do not cause disease, and are difficult to detect in vivo by conventional methods. Here, we review the transmission biology of P. falciparum gametocytes, featuring important recent discoveries of genes affecting parasite commitment to gametocyte formation, microvesicles enabling parasites to communicate with each other, and the anatomical site where immature gametocytes develop. We propose potential parasite targets for future intervention and highlight remaining knowledge gaps.
Collapse
Affiliation(s)
- Sandra K. Nilsson
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lauren M. Childs
- Centre for Communicable Disease Dynamics and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Caroline Buckee
- Centre for Communicable Disease Dynamics and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail: (CB); (MM)
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail: (CB); (MM)
| |
Collapse
|
34
|
Long GH, Graham AL. Consequences of immunopathology for pathogen virulence evolution and public health: malaria as a case study. Evol Appl 2015; 4:278-91. [PMID: 25567973 PMCID: PMC3352548 DOI: 10.1111/j.1752-4571.2010.00178.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 12/01/2010] [Indexed: 12/25/2022] Open
Abstract
Evolutionary theories explaining virulence—the fitness damage incurred by infected hosts—often focus on parasite strategies for within-host exploitation. However, much virulence can be caused by the host's own immune response: for example, pro-inflammatory cytokines, although essential for killing malaria parasites, also damage host tissue. Here we argue that immune-mediated virulence, or ‘immunopathology,’ may affect malaria virulence evolution and should be considered in the design of medical interventions. Our argument is based on the ability of immunopathology to disrupt positive virulence-transmission relationships assumed under the trade-off theory of virulence evolution. During rodent malaria infections, experimental reduction of inflammation using reagents approved for field use decreases virulence but increases parasite transmission potential. Importantly, rodent malaria parasites exhibit genetic diversity in the propensity to induce inflammation and invest in transmission-stage parasites in the presence of pro-inflammatory cytokines. If immunopathology positively correlates with malaria parasite density, theory suggests it could select for relatively low malaria virulence. Medical interventions which decrease immunopathology may therefore inadvertently select for increased malaria virulence. The fitness consequences to parasites of variations in immunopathology must be better understood in order to predict trajectories of parasite virulence evolution in heterogeneous host populations and in response to medical interventions.
Collapse
Affiliation(s)
- Gráinne H Long
- Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine London, UK
| | - Andrea L Graham
- Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, University of Edinburgh Edinburgh, UK ; Department of Ecology and Evolutionary Biology, Princeton University Princeton, NJ, USA
| |
Collapse
|
35
|
Da DF, Churcher TS, Yerbanga RS, Yaméogo B, Sangaré I, Ouedraogo JB, Sinden RE, Blagborough AM, Cohuet A. Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions. Exp Parasitol 2014; 149:74-83. [PMID: 25541384 DOI: 10.1016/j.exppara.2014.12.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 11/29/2022]
Abstract
The evaluation of transmission reducing interventions (TRI) to control malaria widely uses membrane feeding assays. In such assays, the intensity of Plasmodium infection in the vector might affect the measured efficacy of the candidates to block transmission. Gametocyte density in the host blood is a determinant of the infection success in the mosquito, however, uncertain estimates of parasite densities and intrinsic characteristics of the infected blood can induce variability. To reduce this variation, a feasible method is to dilute infectious blood samples. We describe the effect of diluting samples of Plasmodium-containing blood samples to allow accurate relative measures of gametocyte densities and their impact on mosquito infectivity and TRI efficacy. Natural Plasmodium falciparum samples were diluted to generate a wide range of parasite densities, and fed to Anopheles coluzzii mosquitoes. This was compared with parallel dilutions conducted on Plasmodium berghei infections. We examined how blood dilution influences the observed blocking activity of anti-Pbs28 monoclonal antibody using the P. berghei/Anopheles stephensi system. In the natural species combination P. falciparum/An. coluzzii, blood dilution using heat-inactivated, infected blood as diluents, revealed positive near linear relationships, between gametocyte densities and oocyst loads in the range tested. A similar relationship was observed in the P. berghei/An. stephensi system when using a similar dilution method. In contrast, diluting infected mice blood with fresh uninfected blood dramatically increases the infectiousness. This suggests that highly infected mice blood contains inhibitory factors or reduced blood moieties, which impede infection and may in turn, lead to misinterpretation when comparing individual TRI evaluation assays. In the lab system, the transmission blocking activity of an antibody specific for Pbs28 was confirmed to be density-dependent. This highlights the need to carefully interpret evaluations of TRI candidates, regarding gametocyte densities in the P. berghei/An. stephensi system.
Collapse
Affiliation(s)
- Dari F Da
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, Montpellier Cedex 5 34394, France
| | - Thomas S Churcher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Rakiswendé S Yerbanga
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso
| | - Bienvenue Yaméogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso
| | - Ibrahim Sangaré
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, Montpellier Cedex 5 34394, France
| | - Jean Bosco Ouedraogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso
| | - Robert E Sinden
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom; The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Andrew M Blagborough
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Anna Cohuet
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, Montpellier Cedex 5 34394, France.
| |
Collapse
|
36
|
Coleman BI, Skillman KM, Jiang RHY, Childs LM, Altenhofen LM, Ganter M, Leung Y, Goldowitz I, Kafsack BF, Marti M, Llinás M, Buckee CO, Duraisingh MT. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 2014; 16:177-186. [PMID: 25121747 PMCID: PMC4188636 DOI: 10.1016/j.chom.2014.06.014] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/06/2014] [Accepted: 06/06/2014] [Indexed: 01/20/2023]
Abstract
The asexual forms of the malaria parasite Plasmodium falciparum are adapted for chronic persistence in human red blood cells, continuously evading host immunity using epigenetically regulated antigenic variation of virulence-associated genes. Parasite survival on a population level also requires differentiation into sexual forms, an obligatory step for further human transmission. We reveal that the essential nuclear gene, P. falciparum histone deacetylase 2 (PfHda2), is a global silencer of virulence gene expression and controls the frequency of switching from the asexual cycle to sexual development. PfHda2 depletion leads to dysregulated expression of both virulence-associated var genes and PfAP2-g, a transcription factor controlling sexual conversion, and is accompanied by increases in gametocytogenesis. Mathematical modeling further indicates that PfHda2 has likely evolved to optimize the parasite's infectious period by achieving low frequencies of virulence gene expression switching and sexual conversion. This common regulation of cellular transcriptional programs mechanistically links parasite transmissibility and virulence.
Collapse
Affiliation(s)
- Bradley I. Coleman
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Kristen M. Skillman
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Rays H. Y. Jiang
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Lauren M. Childs
- Department of Epidemiology and Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston MA 02115 USA
| | - Lindsey M. Altenhofen
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544 USA
| | - Markus Ganter
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Yvette Leung
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Ilana Goldowitz
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Björn F.C. Kafsack
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544 USA
| | - Matthias Marti
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| | - Manuel Llinás
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544 USA
| | - Caroline O. Buckee
- Department of Epidemiology and Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston MA 02115 USA
| | - Manoj T. Duraisingh
- Department of Immunology & Infectious Diseases Harvard School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
37
|
Lin JT, Saunders DL, Meshnick SR. The role of submicroscopic parasitemia in malaria transmission: what is the evidence? Trends Parasitol 2014; 30:183-90. [PMID: 24642035 DOI: 10.1016/j.pt.2014.02.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
Achieving malaria elimination requires targeting the human reservoir of infection, including those with asymptomatic infection. Smear-positive asymptomatic infections detectable by microscopy are an important reservoir because they often persist for months and harbor gametocytes, the parasite stage infectious to mosquitoes. However, many asymptomatic infections are submicroscopic and can only be detected by molecular methods. Although there is some evidence that individuals with submicroscopic malaria can infect mosquitoes, transmission is much less likely to occur at submicroscopic gametocyte levels. As malaria elimination programs pursue mass screening and treatment of asymptomatic individuals, further research should strive to define the degree to which submicroscopic malaria contributes to the infectious reservoir and, in turn, what diagnostic detection threshold is needed to effectively interrupt transmission.
Collapse
Affiliation(s)
- Jessica T Lin
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - David L Saunders
- Department of Immunology and Medicine, USAMC Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Abdul-Ghani R, Farag HF, Allam AF, Azazy AA. Measuring resistant-genotype transmission of malaria parasites: challenges and prospects. Parasitol Res 2014; 113:1481-7. [PMID: 24562760 DOI: 10.1007/s00436-014-3789-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023]
Abstract
Increased gametocytemia in infections with resistant strains of Plasmodium species and their enhanced transmissibility are a matter of concern in planning and evaluating the impact of malaria control strategies. Various studies have determined weekly gametocyte carriage in response to antimalarial drugs in clinical trials. The advent of molecular biology techniques makes it easy to detect and quantify gametocytes, the stages responsible for transmission, and to detect resistant genotypes of the parasite. With the validation of molecular markers of resistance to certain antimalarial drugs, there is a need to devise a simpler formula that could be used with these epidemiological antimalarial resistance tools. Theoretical models for transmission of resistant malaria parasites are difficult to deploy in epidemiological studies. Therefore, devising a simple formula that determines the potential resistant-genotype transmission of malaria parasites should provide further insights into understanding the spread of drug resistance. The present perspective discusses gametocytogenesis in the context of antimalarial treatment and drug resistance. It also highlights the difficulties in applying the available theoretical models of drug resistance transmission and suggests Rashad's devised formula that could perhaps be used in determining potentially transmissible resistant genotypes as well as in mapping areas with high potential risk for the transmission of drug-resistant malaria. The suggested formula makes use of the data on gametocytes and resistant genotypes of malaria parasites, detected by molecular techniques in a certain geographical area within a particular point in time, to calculate the potential risk of resistant genotype transmission.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen,
| | | | | | | |
Collapse
|
39
|
Neal AT, Schall JJ. TESTING SEX RATIO THEORY WITH THE MALARIA PARASITEPLASMODIUM MEXICANUMIN NATURAL AND EXPERIMENTAL INFECTIONS. Evolution 2014; 68:1071-81. [DOI: 10.1111/evo.12334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Allison T. Neal
- Department of Biology; University of Vermont; Burlington Vermont 05405
| | - Jos. J. Schall
- Department of Biology; University of Vermont; Burlington Vermont 05405
| |
Collapse
|
40
|
Klein EY. The impact of heterogeneous transmission on the establishment and spread of antimalarial drug resistance. J Theor Biol 2014; 340:177-85. [PMID: 24076451 PMCID: PMC3864917 DOI: 10.1016/j.jtbi.2013.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/01/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
Despite the important insights gained by extending the classical models of malaria, other factors, such as immunity, heterogeneous biting, and differential patterns of drug use have not been fully explored due to the complexity of modeling multiple simultaneous malaria infections competing within a host. Understanding these factors is important for understanding how to control the spread of drug resistance to artemisinin which is just emerging in Southeast Asia. The emergence of resistance plays out at the population level, but is the result of competition within individuals for transmission events. Most studies of drug resistance evolution have focused on transmission between hosts and ignored the role of within-host competition due to the inherent complexity of modeling at multiple scales. To embed within-host competition in the model, we used an agent-based framework that was developed to understand how deviations from the classical assumptions of the Ross-MacDonald type models, which have been well-described and analyzed, impact the dynamics of disease. While structured to be a stochastic analog to classical Ross-Macdonald type models, the model is nonetheless based on individuals, and thus aspects of within-host competition can be explored. We use this framework to explore the role of heterogeneous biting and transmission on the establishment and spread of resistance in a population. We find that heterogeneous transmission slows the establishment of resistance in a population, but once resistance is established, it speeds the spread of resistance through the population. These results are due to the skewed distribution of biting which makes onward transmission a low probability and suggests that targeting the "core" group of individuals that provide the vast majority of bites could significantly slow the spread of resistance.
Collapse
Affiliation(s)
- Eili Y Klein
- Center for Advanced Modeling, Department of Emergency Medicine, Johns Hopkins University, 5801 Smith Avenue, Davis Suite 3220, Baltimore, MD 21209, United States; Center for Disease Dynamics, Economics & Policy, Washington, DC, United States.
| |
Collapse
|
41
|
Greischar MA, Read AF, Bjørnstad ON. Synchrony in malaria infections: how intensifying within-host competition can be adaptive. Am Nat 2013; 183:E36-49. [PMID: 24464205 DOI: 10.1086/674357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Malaria parasites exhibit great diversity in the coordination of their asexual life cycle within the host, ranging from asynchronous growth to tightly synchronized cycles of invasion and emergence from red blood cells. Synchronized reproduction should come at a high cost--intensifying competition among offspring--so why would some Plasmodium species engage in such behavior and others not? We use a delayed differential equation model to show that synchronized infections can be favored when (1) there is limited interference among parasites competing for red blood cells, (2) transmission success is an accelerating function of sexual parasite abundance, (3) the target of saturating immunity is short-lived, and (4) coinfections with asynchronous parasites are rare. As a consequence, synchrony may be beneficial or costly, in line with the diverse patterns of synchronization observed in natural and lab infections. By allowing us to characterize diverse temporal dynamics, the model framework provides a basis for making predictions about disease severity and for projecting evolutionary responses to interventions.
Collapse
Affiliation(s)
- Megan A Greischar
- Center for Infectious Disease Dynamics, Departments of Entomology and Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | | | | |
Collapse
|
42
|
McQueen PG, Williamson KC, McKenzie FE. Host immune constraints on malaria transmission: insights from population biology of within-host parasites. Malar J 2013; 12:206. [PMID: 23767770 PMCID: PMC3691866 DOI: 10.1186/1475-2875-12-206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/30/2013] [Indexed: 02/07/2023] Open
Abstract
Background Plasmodium infections trigger complex immune reactions from their hosts against several life stages of the parasite, including gametocytes. These immune responses are highly variable, depending on age, genetics, and exposure history of the host as well as species and strain of parasite. Although the effects of host antibodies that act against gamete stages in the mosquito (due to uptake in the blood meal) are well documented, the effects of host immunity upon within-host gametocytes are not as well understood. This report consists of a theoretical population biology-based analysis to determine constraints that host immunity impose upon gametocyte population growth. The details of the mathematical models used for the analysis were guided by published reports of clinical and animal studies, incorporated plausible modalities of immune reactions to parasites, and were tailored to the life cycl es of the two most widespread human malaria pathogens, Plasmodium falciparum and Plasmodium vivax. Results For the same ability to bind and clear a target, the model simulations suggest that an antibody attacking immature gametocytes would tend to lower the overall density of transmissible mature gametocytes more than an antibody attacking the mature forms directly. Transmission of P. falciparum would be especially vulnerable to complete blocking by antibodies to its immature forms since its gametocytes take much longer to reach maturity than those of P. vivax. On the other hand, antibodies attacking the mature gametocytes directly would reduce the time the mature forms can linger in the host. Simulation results also suggest that varying the standard deviation in the time necessary for individual asexual parasites to develop and produce schizonts can affect the efficiency of production of transmissible gametocytes. Conclusions If mature gametocyte density determines the probability of transmission, both Plasmodium species, but especially P. falciparum, could bolster this probability through evasion or suppression of host immune responses against the immature gametocytes. However, if the long term lingering of mature gametocytes at low density in the host is also important to ensure transmission, then evasion or suppression of antibodies against the mature stages would bolster probability of transmission as well.
Collapse
Affiliation(s)
- Philip G McQueen
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
43
|
Carter LM, Kafsack BF, Llinás M, Mideo N, Pollitt LC, Reece SE. Stress and sex in malaria parasites. EVOLUTION MEDICINE AND PUBLIC HEALTH 2013; 2013:135-47. [PMID: 24481194 PMCID: PMC3854026 DOI: 10.1093/emph/eot011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial. We propose that evolutionary theory developed to explain variation in reproductive effort in multicellular organisms, provides a framework to understand gametocyte investment strategies. We examine why parasites adjust investment in gametocytes according to the impact of changing conditions on their in-host survival. We then outline experiments required to determine whether plasticity in gametocyte investment enables parasites to maintain fitness in a variable environment. Gametocytes are a target for anti-malarial transmission-blocking interventions so understanding plasticity in investment is central to maximizing the success of control measures in the face of parasite evolution.
Collapse
Affiliation(s)
- Lucy M. Carter
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
- *Corresponding author. Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK. Tel: +44 131 650 7706; Fax: +44 131 650 6564; E-mail:
| | - Björn F.C. Kafsack
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Manuel Llinás
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Nicole Mideo
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Laura C. Pollitt
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Sarah E. Reece
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
|
45
|
Shah NK, Poole C, MacDonald PDM, Srivastava B, Schapira A, Juliano JJ, Anvikar A, Meshnick SR, Valecha N, Mishra N. Epidemiology of Plasmodium falciparum gametocytemia in India: prevalence, age structure, risk factors and the role of a predictive score for detection. Trop Med Int Health 2013; 18:800-9. [PMID: 23627694 DOI: 10.1111/tmi.12119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To characterise the epidemiology of Plasmodium falciparum gametocytemia and determine the prevalence, age structure and the viability of a predictive model for detection. METHODS We collected data from 21 therapeutic efficacy trials conducted in India during 2009-2010 and estimated the contribution of each age group to the reservoir of transmission. We built a predictive model for gametocytemia and calculated the diagnostic utility of different score cut-offs from our risk score. RESULTS Gametocytemia was present in 18% (248/1 335) of patients and decreased with age. Adults constituted 43%, school-age children 45% and under fives 12% of the reservoir for potential transmission. Our model retained age, sex, region and previous antimalarial drug intake as predictors of gametocytemia. The area under the receiver operator characteristic curve was 0.76 (95%CI:0.73,0.78), and a cut-off of 14 or more on a risk score ranging from 0 to 46 provided 91% (95%CI:88,95) sensitivity and 33% (95%CI:31,36) specificity for detecting gametocytemia. CONCLUSIONS Gametocytemia was common in India and varied by region. Notably, adults contributed substantially to the reservoir for potential transmission. Predictive modelling to generate a clinical algorithm for detecting gametocytemia did not provide sufficient discrimination for targeting interventions.
Collapse
Affiliation(s)
- Naman K Shah
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cameron A, Reece SE, Drew DR, Haydon DT, Yates AJ. Plasticity in transmission strategies of the malaria parasite,
P
lasmodium chabaudi
: environmental and genetic effects. Evol Appl 2012; 6:365-76. [PMID: 23467678 PMCID: PMC3586624 DOI: 10.1111/eva.12005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/30/2012] [Indexed: 12/31/2022] Open
Abstract
Parasites may alter their behaviour to cope with changes in the within-host environment. In particular, investment in transmission may alter in response to the availability of parasite resources or host immune responses. However, experimental and theoretical studies have drawn conflicting conclusions regarding parasites' optimal (adaptive) responses to deterioration in habitat quality. We analyse data from acute infections with six genotypes of the rodent malaria species Plasmodium chabaudi to quantify how investment in transmission (gametocytes) is influenced by the within-host environment. Using a minimum of modelling assumptions, we find that proportional investment in gametocytogenesis increases sharply with host anaemia and also increases at low parasite densities. Further, stronger dependence of investment on parasite density is associated with greater virulence of the parasite genotype. Our study provides a robust quantitative framework for studying parasites' responses to the host environment and whether these responses are adaptive, which is crucial for predicting the short-term and evolutionary impact of transmission-blocking treatments for parasitic diseases.
Collapse
Affiliation(s)
- Angus Cameron
- Boyd Orr Centre for Population and Ecosystem Health Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow Glasgow UK
- Department of Systems and Computational Biology Albert Einstein College of Medicine Bronx NY USA
| | - Sarah E. Reece
- Centre for Immunity, Infection & Evolution Institutes of Evolution, Immunology and Infection Research School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Damien R. Drew
- Centre for Immunity, Infection & Evolution Institutes of Evolution, Immunology and Infection Research School of Biological Sciences University of Edinburgh Edinburgh UK
- Burnet Institute Melbourne Vic. Australia
| | - Daniel T. Haydon
- Boyd Orr Centre for Population and Ecosystem Health Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow Glasgow UK
| | - Andrew J. Yates
- Department of Systems and Computational Biology Albert Einstein College of Medicine Bronx NY USA
- Department of Microbiology and Immunology Albert Einstein College of Medicine Bronx NY USA
| |
Collapse
|
47
|
Metcalf CJE, Long GH, Mideo N, Forester JD, Bjørnstad ON, Graham AL. Revealing mechanisms underlying variation in malaria virulence: effective propagation and host control of uninfected red blood cell supply. J R Soc Interface 2012; 9:2804-13. [PMID: 22718989 PMCID: PMC3479917 DOI: 10.1098/rsif.2012.0340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Malaria parasite clones with the highest transmission rates to mosquitoes also tend to induce the most severe fitness consequences (or virulence) in mammals. This is in accord with expectations from the virulence–transmission trade-off hypothesis. However, the mechanisms underlying how different clones cause virulence are not well understood. Here, using data from eight murine malaria clones, we apply recently developed statistical methods to infer differences in clone characteristics, including induction of differing host-mediated changes in red blood cell (RBC) supply. Our results indicate that the within-host mechanisms underlying similar levels of virulence are variable and that killing of uninfected RBCs by immune effectors and/or retention of RBCs in the spleen may ultimately reduce virulence. Furthermore, the correlation between clone virulence and the degree of host-induced mortality of uninfected RBCs indicates that hosts increasingly restrict their RBC supply with increasing intrinsic virulence of the clone with which they are infected. Our results demonstrate a role for self-harm in self-defence for hosts and highlight the diversity and modes of virulence of malaria.
Collapse
Affiliation(s)
- C J E Metcalf
- Department of Zoology, Oxford University, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Kuamsab N, Putaporntip C, Pattanawong U, Jongwutiwes S. Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR. Malar J 2012; 11:190. [PMID: 22682065 PMCID: PMC3464145 DOI: 10.1186/1475-2875-11-190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. Methods A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. Results The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. Conclusions The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa.
Collapse
Affiliation(s)
- Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
49
|
Mideo N, Acosta-Serrano A, Aebischer T, Brown MJF, Fenton A, Friman VP, Restif O, Reece SE, Webster JP, Brown SP. Life in cells, hosts, and vectors: parasite evolution across scales. INFECTION GENETICS AND EVOLUTION 2012; 13:344-7. [PMID: 22465537 DOI: 10.1016/j.meegid.2012.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/14/2012] [Accepted: 03/17/2012] [Indexed: 12/13/2022]
Abstract
Parasite evolution is increasingly being recognized as one of the most important issues in applied evolutionary biology. Understanding how parasites maximize fitness whilst facing the diverse challenges of living in cells, hosts, and vectors, is central to disease control and offers a novel testing ground for evolutionary theory. The Centre for Immunity, Infection, and Evolution at the University of Edinburgh recently held a symposium to address the question "How do parasites maximise fitness across a range of biological scales?" The symposium brought together researchers whose work looks across scales and environments to understand why and how parasites 'do what they do', tying together mechanism, evolutionary explanations, and public health implications. With a broad range of speakers, our aim was to define and encourage more holistic approaches to studying parasite evolution. Here, we present a synthesis of the current state of affairs in parasite evolution, the research presented at the symposium, and insights gained through our discussions. We demonstrate that such interdisciplinary approaches are possible and identify key areas for future progress.
Collapse
Affiliation(s)
- Nicole Mideo
- Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The protozoan parasites belonging to the genus Plasmodium have a complex life cycle in which the asexual multiplication of parasites in the vertebrate host alternates with an obligate sexual reproduction in the mosquito. Gametocytes (male and female) produced in the vertebrate host are responsible for transmitting parasites to mosquitoes. Although our understanding of the biology and genetics of sexual differentiation in Plasmodium is expanding, the most basic questions concerning molecular mechanisms of sexual differentiation and sex determination still remain unanswered. Recently, insight into the control of this complex process in P. falciparum and P. berghei has come from studying parasite mutants with aberrant capacities for gametocyte production. Here, Cheryl-Ann Lobo and Nirbhay Kumar review these analyses in P. falciparum.
Collapse
|