1
|
Yilmaz IC, Dunuroglu E, Ayanoglu IC, Ipekoglu EM, Yildirim M, Girginkardesler N, Ozbel Y, Toz S, Ozbilgin A, Aykut G, Gursel I, Gursel M. Leishmania kinetoplast DNA contributes to parasite burden in infected macrophages: Critical role of the cGAS-STING-TBK1 signaling pathway in macrophage parasitemia. Front Immunol 2022; 13:1007070. [PMID: 36405710 PMCID: PMC9667060 DOI: 10.3389/fimmu.2022.1007070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Leishmania parasites harbor a unique network of circular DNA known as kinetoplast DNA (kDNA). The role of kDNA in leishmania infections is poorly understood. Herein, we show that kDNA delivery to the cytosol of Leishmania major infected THP-1 macrophages provoked increased parasite loads when compared to untreated cells, hinting at the involvement of cytosolic DNA sensors in facilitating parasite evasion from the immune system. Parasite proliferation was significantly hindered in cGAS- STING- and TBK-1 knockout THP-1 macrophages when compared to wild type cells. Nanostring nCounter gene expression analysis on L. major infected wild type versus knockout cells revealed that some of the most upregulated genes including, Granulysin (GNLY), Chitotriosidase-1 (CHIT1), Sialomucin core protein 24 (CD164), SLAM Family Member 7 (SLAMF7), insulin-like growth factor receptor 2 (IGF2R) and apolipoprotein E (APOE) were identical in infected cGAS and TBK1 knockout cells, implying their involvement in parasite control. Amlexanox treatment (a TBK1 inhibitor) of L. major infected wild type cells inhibited both the percentage and the parasite load of infected THP-1 cells and delayed footpad swelling in parasite infected mice. Collectively, these results suggest that leishmania parasites might hijack the cGAS-STING-TBK1 signaling pathway to their own advantage and the TBK1 inhibitor amlexanox could be of interest as a candidate drug in treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Ismail Cem Yilmaz
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Emre Dunuroglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ihsan Cihan Ayanoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Emre Mert Ipekoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Muzaffer Yildirim
- Molecular Biology and Genetics Department, Bilkent University, Ankara, Turkey
| | - Nogay Girginkardesler
- Department of Parasitology, School of Medicine, Celal Bayar University, Manisa, Turkey
| | - Yusuf Ozbel
- Department of Parasitology, Ege University, Izmir, Turkey
| | - Seray Toz
- Department of Parasitology, Ege University, Izmir, Turkey
| | - Ahmet Ozbilgin
- Department of Parasitology, School of Medicine, Celal Bayar University, Manisa, Turkey
| | - Gamze Aykut
- Molecular Biology and Genetics Department, Bilkent University, Ankara, Turkey
| | - Ihsan Gursel
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
- Molecular Biology and Genetics Department, Bilkent University, Ankara, Turkey
| | - Mayda Gursel
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- *Correspondence: Mayda Gursel,
| |
Collapse
|
2
|
Nardi Gemme C, Silva TQAC, Martins LC, da Silva LM, Paim LR, Sposito A, Nadruz W, Fernandes F, San Juan Dertkigil S, da Silva Wanderley J, de Almeida EA, Metze K, Neilan TG, Jerosch-Herold M, Coelho-Filho OR. Diffuse Myocardial Fibrosis and Cardiomyocyte Diameter Are Associated With Heart Failure Symptoms in Chagas Cardiomyopathy. Front Cardiovasc Med 2022; 9:880151. [PMID: 35783835 PMCID: PMC9247201 DOI: 10.3389/fcvm.2022.880151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background Chronic Chagas cardiomyopathy (CCC) constitutes the most life-threatening consequence of the Trypanosoma cruzi infection. Our goal was to test in CCC the associations of the myocardial tissue phenotype with cardiac dysfunction, and heart failure (HF) severity, using cardiac magnetic resonance (CMR). Methods We performed a prospective observational cohort of patients with consecutive CCC with a CMR protocol, including ventricular function, myocardial T1, and late gadolinium enhancement (LGE). Extracellular volume (ECV), and intracellular water lifetime, τic, a measure of cardiomyocyte diameter, were compared to CCC disease progression, including Rassi score and New York Heart Association (NYHA) class. An exploratory prognostic analysis was performed to investigate the association of both ECV and τic with CV death. Results A total of 37 patients with intermediate-to-high-risk CCC were enrolled (Chagas Rassi score ≥7, mean left ventricle (LV) ejection fraction (EF) 32 ± 16%). Myocardial ECV (0.40 ± 0.07) was correlated with Rassi score (r = 0.43; P = 0.009), higher NYHA class, and LV EF (r = -0.51; P = 0.0015). τic decreased linearly with NYHA class (P = 0.007 for non-parametric test of linear trend) and showed a positive association with LV EF (r = 0.47; P = 0.004). Over a median follow-up of 734 days (range: 6-2,943 days), CV death or cardiac transplantation occurred in 10 patients. The Rassi score (heart rate [HR] = 1.3; 95% CI = [1.0, 1.8]; P = 0.028) and ECV (HR = 3.4 for 0.1 change, 95% CI = [1.1, 11.0], P = 0.039) were simultaneously associated with CV death. Conclusion In patients with intermediate-to-high-risk CCC, an expanded ECV and regression of cardiomyocyte diameter were associated with worsening systolic function and HF severity, respectively. The exploratory analysis indicates that ECV may have a prognostic value to identify patients with CCC at a higher risk for cardiovascular events.
Collapse
Affiliation(s)
| | - Thiago Quinaglia A. C. Silva
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
- Division of Cardiology, Department of Radiology, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Luiz C. Martins
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Luis Miguel da Silva
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Layde Rosane Paim
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Andrei Sposito
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Wilson Nadruz
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Fabio Fernandes
- Cardiomyopathy Unit, Heart Institute, University of São Paulo, São Paulo, Brazil
| | | | | | - Eros A. de Almeida
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Konradin Metze
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Tomas G. Neilan
- Division of Cardiology, Department of Radiology, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael Jerosch-Herold
- Non-invasive Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
3
|
Vellasco L, Svensjö E, Bulant CA, Blanco PJ, Nogueira F, Domont G, de Almeida NP, Nascimento CR, Silva-dos-Santos D, Carvalho-Pinto CE, Medei EH, Almeida IC, Scharfstein J. Sheltered in Stromal Tissue Cells, Trypanosoma cruzi Orchestrates Inflammatory Neovascularization via Activation of the Mast Cell Chymase Pathway. Pathogens 2022; 11:pathogens11020187. [PMID: 35215131 PMCID: PMC8878313 DOI: 10.3390/pathogens11020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Microangiopathy may worsen the clinical outcome of Chagas disease. Given the obstacles to investigating the dynamics of inflammation and angiogenesis in heart tissues parasitized by Trypanosoma cruzi, here we used intravital microscopy (IVM) to investigate microcirculatory alterations in the hamster cheek pouch (HCP) infected by green fluorescent protein-expressing T. cruzi (GFP-T. cruzi). IVM performed 3 days post-infection (3 dpi) consistently showed increased baseline levels of plasma extravasation. Illustrating the reciprocal benefits that microvascular leakage brings to the host-parasite relationship, these findings suggest that intracellular amastigotes, acting from inside out, stimulate angiogenesis while enhancing the delivery of plasma-borne nutrients and prosurvival factors to the infection foci. Using a computer-based analysis of images (3 dpi), we found that proangiogenic indexes were positively correlated with transcriptional levels of proinflammatory cytokines (pro-IL1β and IFN-γ). Intracellular GFP-parasites were targeted by delaying for 24 h the oral administration of the trypanocidal drug benznidazole. A classification algorithm showed that benznidazole (>24 h) blunted angiogenesis (7 dpi) in the HCP. Unbiased proteomics (3 dpi) combined to pharmacological targeting of chymase with two inhibitors (chymostatin and TY-51469) linked T. cruzi-induced neovascularization (7 dpi) to the proangiogenic activity of chymase, a serine protease stored in secretory granules from mast cells.
Collapse
Affiliation(s)
- Lucas Vellasco
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Erik Svensjö
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Carlos Alberto Bulant
- Department of Mathematical and Computational Methods, National Laboratory for Scientific Computing, Petrópolis 25651-075, Brazil; (C.A.B.); (P.J.B.)
| | - Pablo Javier Blanco
- Department of Mathematical and Computational Methods, National Laboratory for Scientific Computing, Petrópolis 25651-075, Brazil; (C.A.B.); (P.J.B.)
| | - Fábio Nogueira
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (F.N.); (G.D.); (N.P.d.A.)
| | - Gilberto Domont
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (F.N.); (G.D.); (N.P.d.A.)
| | - Natália Pinto de Almeida
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (F.N.); (G.D.); (N.P.d.A.)
| | - Clarissa Rodrigues Nascimento
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Danielle Silva-dos-Santos
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | | | - Emiliano Horácio Medei
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Julio Scharfstein
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
- Correspondence:
| |
Collapse
|
4
|
Briggs EM, Warren FSL, Matthews KR, McCulloch R, Otto TD. Application of single-cell transcriptomics to kinetoplastid research. Parasitology 2021; 148:1223-1236. [PMID: 33678213 PMCID: PMC8311972 DOI: 10.1017/s003118202100041x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Kinetoplastid parasites are responsible for both human and animal diseases across the globe where they have a great impact on health and economic well-being. Many species and life cycle stages are difficult to study due to limitations in isolation and culture, as well as to their existence as heterogeneous populations in hosts and vectors. Single-cell transcriptomics (scRNA-seq) has the capacity to overcome many of these difficulties, and can be leveraged to disentangle heterogeneous populations, highlight genes crucial for propagation through the life cycle, and enable detailed analysis of host–parasite interactions. Here, we provide a review of studies that have applied scRNA-seq to protozoan parasites so far. In addition, we provide an overview of sample preparation and technology choice considerations when planning scRNA-seq experiments, as well as challenges faced when analysing the large amounts of data generated. Finally, we highlight areas of kinetoplastid research that could benefit from scRNA-seq technologies.
Collapse
Affiliation(s)
- Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Felix S. L. Warren
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Keith R. Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Richard McCulloch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Thomas D. Otto
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Left ventricular longitudinal strain and strain rate measurements in paediatric patients in long-term treatment for Chagas disease. Cardiol Young 2021; 31:1451-1457. [PMID: 33650485 DOI: 10.1017/s1047951121000408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Previous echocardiographic studies failed to show residual alterations of heart function in paediatric patients that have received treatment for Chagas disease. While the echocardiogram is the fundamental front-line tool for evaluating heart function, the appearance of new techniques allows a more detailed analysis. We aimed to evaluate systolic and diastolic function with new techniques in a paediatric population with Chagas disease several years after treatment completion. MATERIAL AND METHODS Echocardiograms were obtained from 84 Chagas disease patients (48 female) and 27 healthy controls. All patients had received treatment concluding on average 10 years prior to the study. The prospective analysis considered cardiac dimensions and cardiac function using two-dimensional, M-mode, Doppler and tissue Doppler imaging with emphasis on measuring longitudinal strain in the left ventricle by speckle tracking. Ejection fraction was measured with three-dimensional echocardiography. RESULTS Patients had an age of 14.2 ± 5.7 years (6-33) at the time of evaluation. Global and segmental motility of the left ventricle was normal in all patients. Ejection fraction was 59.2 ± 6.5 and 57.4 ± 6.5% (p = 0.31) in patients and controls respectively. Left ventricular global longitudinal systolic strain was -19 ± 2.4% in patients and -19 ± 3.6% (p = 0.91) in controls. No significant differences were found in remaining systolic and diastolic function measurements. CONCLUSIONS Paediatric patients that have received treatment for Chagas disease, evaluated with either conventional techniques or new tools, do not show significant long-term alterations of ventricular function.
Collapse
|
6
|
Teston APM, Fernandes NDS, Abegg CP, de Abreu AP, Sarto MPM, Gomes ML, Toledo MJDO. Therapeutic effects of benznidazole in Swiss mice that are orally inoculated with Trypanosoma cruzi IV strains from the Western Brazilian Amazon. Exp Parasitol 2021; 228:108136. [PMID: 34280400 DOI: 10.1016/j.exppara.2021.108136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022]
Abstract
Strains of Trypanosoma cruzi, etiological agent of Chagas disease, are classified into different discrete typing units that may present distinct dynamics of infection and susceptibility to benznidazole (BZ) treatment. Mice that were orally inoculated with T. cruzi IV strains exhibited a more intense course of infection compared with intraperitoneally inoculated mice, reflected by higher parasite loads. We evaluated the efficacy of BZ treatment in Swiss mice that were inoculated with T. cruzi IV strains from the Western Brazilian Amazon. The mice were orally (OR) or intraperitoneally (IP) inoculated with 2 × 106 culture-derived metacyclic trypomastigotes of the AM14, AM16, AM64, and AM69 strains of T. cruzi that were obtained from two outbreaks of orally acquired acute Chagas disease in the state of Amazonas, Brazil. The animals were treated with BZ (100 mg/kg/day for 20 days). Fresh blood examination, hemoculture, conventional and quantitative real-time polymerase chain reaction were performed to monitor the therapeutic effects of BZ. Significant reductions in five of 24 parameters of parasitemia and parasite load were found in different tissues in the OR group, indicating worse response to BZ treatment compared with the IP group, in which significant reductions in nine of those 24 parameters were observed. The cure rates in the OR groups ranged from 18.2% (1/11) to 75.0% (9/12) and in the IP groups from 58.3% (7/12) to 91.7% (11/12), for the AM14 and AM69 strains, respectively. These findings indicate that treatment with BZ had fewer beneficial effects with regard to reducing parasitemia and parasite load in different tissues of mice that were OR inoculated with four TcIV strains compared with IP inoculation. Therefore, the route of infection with T. cruzi should be considered when evaluating the therapeutic efficacy of BZ in patients with Chagas disease.
Collapse
Affiliation(s)
- Ana Paula Margioto Teston
- Postgraduate Program in Health Sciences, Health Sciences Center, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil; Departament of Pharmacy, Uningá University Center Ingá, Rodovia PR317, Maringá, Paraná, 87035-510, Brazil.
| | - Nilma de Souza Fernandes
- Postgraduate Program in Biological Sciences, Biological Sciences Center, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil.
| | - Camila Piva Abegg
- Postgraduate Program in Health Sciences, Health Sciences Center, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil.
| | - Ana Paula de Abreu
- Postgraduate Program in Health Sciences, Health Sciences Center, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil.
| | - Marcella Paula Mansano Sarto
- Postgraduate Program in Health Sciences, Health Sciences Center, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil.
| | - Mônica Lúcia Gomes
- Postgraduate Program in Health Sciences, Health Sciences Center, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil; Department of Basic Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil.
| | - Max Jean de Ornelas Toledo
- Postgraduate Program in Health Sciences, Health Sciences Center, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil; Postgraduate Program in Biological Sciences, Biological Sciences Center, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil; Department of Basic Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil.
| |
Collapse
|
7
|
Mazzeti AL, Capelari-Oliveira P, Bahia MT, Mosqueira VCF. Review on Experimental Treatment Strategies Against Trypanosoma cruzi. J Exp Pharmacol 2021; 13:409-432. [PMID: 33833592 PMCID: PMC8020333 DOI: 10.2147/jep.s267378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Currently, only nitroheterocyclic nifurtimox (NFX) and benznidazole (BNZ) are available for the treatment of Chagas disease, with limitations such as variable efficacy, long treatment regimens and toxicity. Different strategies have been used to discover new active molecules for the treatment of Chagas disease. Target-based and phenotypic screening led to thousands of compounds with anti-T. cruzi activity, notably the nitroheterocyclic compounds, fexinidazole and its metabolites. In addition, drug repurposing, drug combinations, re-dosing regimens and the development of new formulations have been evaluated. The CYP51 antifungal azoles, as posaconazole, ravuconazole and its prodrug fosravuconazole presented promising results in experimental Chagas disease. Drug combinations of nitroheterocyclic and azoles were able to induce cure in murine infection. New treatment schemes using BNZ showed efficacy in the experimental chronic stage, including against dormant forms of T. cruzi. And finally, sesquiterpene lactone formulated in nanocarriers displayed outstanding efficacy against different strains of T. cruzi, susceptible or resistant to BNZ, the reference drug. These pre-clinical results are encouraging and provide interesting evidence to improve the treatment of patients with Chagas disease.
Collapse
Affiliation(s)
- Ana Lia Mazzeti
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.,Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Patricia Capelari-Oliveira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maria Terezinha Bahia
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
8
|
Meyers AC, Edwards EE, Sanders JP, Saunders AB, Hamer SA. Fatal Chagas myocarditis in government working dogs in the southern United States: Cross-reactivity and differential diagnoses in five cases across six months. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2021; 24:100545. [PMID: 34024363 DOI: 10.1016/j.vprsr.2021.100545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
We describe the diagnostics surrounding the deaths of five working dogs over six-months to provide an enhanced clinical and diagnostic understanding of canine Chagas disease. Cases were five dogs with antibodies to Trypanosoma cruzi. Medical records were reviewed for diagnostic history. Testing was performed from samples collected before or immediately after death, including measurement of cardiac troponin I, histology, PCR and serology for Leishmania spp. and T. cruzi. Four dogs had a 2 to 7-year history of T. cruzi antibodies, while one positive dog had an unknown duration of exposure. Age at death ranged from 2 to 11 years and four dogs were actively working. The cardiac troponin I was elevated in all four dogs for which it was measured, although postmortem reference ranges are not established. Histopathologic diagnoses included mild to severe, chronic, lymphoplasmacytic to histiocytic myocarditis with variable fibrosis. Notably, only one dog had T. cruzi amastigotes observed in the heart histologically. T. cruzi DNA was detected in three other hearts. Although all five dogs tested antibody-positive for T. cruzi using three independent tests, all were also indirect fluorescent antibody-positive for Leishmania spp., interpreted as cross-reaction. Chagas disease in dogs is a diagnostic challenge owing to cross-reactions and variable clinical, histologic and molecular presentations. The use and interpretation of multiple diagnostic strategies is useful in diagnosis. This study demonstrates techniques used to diagnose and characterize Chagas disease in an at-risk dog population.
Collapse
Affiliation(s)
- Alyssa C Meyers
- Department of Veterinary Integrative Bioscience, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Erin E Edwards
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX 77843, USA
| | - John P Sanders
- Office of Workforce Health and Safety, Department of Homeland Security, Office of the Chief Human Capital Officer, Washington, District of Columbia, USA
| | - Ashley B Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Bioscience, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Hasslocher-Moreno AM, Saraiva RM, Sangenis LH, Xavier SS, de Sousa AS, Costa AR, de Holanda MT, Veloso HH, Mendes FS, Costa FA, Boia MN, Brasil PE, Carneiro FM, da Silva GM, Mediano MF. Benznidazole decreases the risk of chronic Chagas disease progression and cardiovascular events: A long-term follow up study. EClinicalMedicine 2021; 31:100694. [PMID: 33554085 PMCID: PMC7846661 DOI: 10.1016/j.eclinm.2020.100694] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chagas disease (CD) remains an important endemic disease in Latin America. However, CD became globalized in recent decades. The majority of the chronically infected individuals did not receive etiologic treatment for several reasons, among them the most conspicuous is the lack of access to diagnosis. The impact of trypanocidal treatment on CD chronic phase, without cardiac involvement (indeterminate form ICF), is yet to be determined. We aimed to evaluate the effect of trypanocidal treatment with benznidazole (BZN) on the rate of progression to Chagas heart disease in patients with ICF. METHODS This is a retrospective cohort observational study including patients with ICF treated with BZN and compared to a group of non-treated patients matched for age, sex, region of origin, and the year of cohort entry. We reviewed the medical charts of all patients followed from May 1987 to June 2020 at the outpatient center of the Evandro Chagas National Institute of Infectious Diseases (INI) of the Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil. Patients' follow-up included at least one annual medical visit and one annual electrocardiogram (ECG). Echocardiographic exams were performed at baseline and during the follow-up. Disease progression from ICF to cardiac form was defined by changes in baseline ECG. Cumulative incidence and the incidence rate were described in the incidence analysis. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals for the association between BZN and CD progression, cardiovascular events or death. FINDINGS One hundred and fourteen treated patients met the study inclusion criteria. A comparison group of 114 non-treated patients matched for age, sex, region of origin, and the year of cohort entry was also included, totalizing 228 patients. Most patients included in the study were male (70.2%), and their mean age was 31.3 (+7.4) years. Over a median follow-up of 15.1 years (ranging from 1.0 to 32.4), the cumulative CD progression incidence in treated patients was 7.9% vs. 21.1% in the non-treated group (p = 0.04) and the CD progression rate was 0.49 per 1.000 patients/year in treated patients vs. 1.10 per 1.000 patients/year for non-treated patients (p = 0.02). BZN treatment was associated with a decreased risk of CD progression in both unadjusted (HR 0.46; 95%CI 0.21 to 0.98) and adjusted (HR 0.43; 95%CI 0.19 to 0.96) models and with a decreased risk of occurrence of the composite of cardiovascular events only in the adjusted (HR 0.15; 95%CI 0.03 to 0.80) model. No association was observed between BZN treatment and mortality. INTERPRETATION In a long-term follow-up, BZN treatment was associated with a decreased incidence of CD progression from ICF to the cardiac form and also with a decreased risk of cardiovascular events. Therefore, our results indicate that BZN treatment for CD patients with ICF should be implemented into clinical practice.
Collapse
Affiliation(s)
- Alejandro M. Hasslocher-Moreno
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Corresponding author.
| | - Roberto M. Saraiva
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Luiz H.C. Sangenis
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sergio S. Xavier
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Andrea S. de Sousa
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andrea R. Costa
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Marcelo T. de Holanda
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Henrique H. Veloso
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Fernanda S.N.S. Mendes
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Filipe A.C. Costa
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Marcio N. Boia
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pedro E.A.A. Brasil
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Fernanda M. Carneiro
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | | | - Mauro F.F. Mediano
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Buss LF, Campos de Oliveira- da Silva L, Moreira CHV, Manuli ER, Sales FC, Morales I, Di Germanio C, de Almeida-Neto C, Bakkour S, Constable P, Pinto-Filho MM, Ribeiro AL, Busch M, Sabino EC. Declining antibody levels to Trypanosoma cruzi correlate with polymerase chain reaction positivity and electrocardiographic changes in a retrospective cohort of untreated Brazilian blood donors. PLoS Negl Trop Dis 2020; 14:e0008787. [PMID: 33108390 PMCID: PMC7647114 DOI: 10.1371/journal.pntd.0008787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/06/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Although infection with Trypanosoma cruzi is thought to be lifelong, less than half of those infected develop cardiomyopathy, suggesting greater parasite control or even clearance. Antibody levels appear to correlate with T. cruzi (antigen) load. We test the association between a downwards antibody trajectory, PCR positivity and ECG alterations in untreated individuals with Chagas disease. Methodology/Principal findings This is a retrospective cohort of T. cruzi seropositive blood donors. Paired blood samples (index donation and follow-up) were tested using the VITROS Immunodiagnostic Products Anti-T.cruzi (Chagas) assay (Ortho Clinical Diagnostics, Raritan NJ) and PCR performed on the follow-up sample. A 12-lead resting ECG was performed. Significant antibody decline was defined as a reduction of > 1 signal-to-cutoff (S/CO) unit on the VITROS assay. Follow-up S/CO of < 4 was defined as borderline/low. 276 untreated seropositive blood donors were included. The median (IQR) follow-up was 12.7 years (8.5–16.9). 56 (22.1%) subjects had a significant antibody decline and 35 (12.7%) had a low/borderline follow-up result. PCR positivity was lower in the falling (26.8% vs 52.8%, p = 0.001) and low/borderline (17.1% vs 51.9%, p < 0.001) antibody groups, as was the rate of ECG abnormalities. Falling and low/borderline antibody groups were predominantly composed of individuals with negative PCR and normal ECG findings: 64% and 71%, respectively. Conclusions/Significance Low and falling antibody levels define a phenotype of possible spontaneous parasite clearance. Infection with the single-celled parasite Trypanosoma cruzi (Chagas disease) is thought to be lifelong. However, only a third of infected people develop Chagas cardiomyopathy–the main disease manifestation. This may reflect the different extent to which individuals control the parasite, with some potentially clearing it entirely. In chronically infected immunocompetent patients, a marker of parasite burden is the quantity of antibody against T. cruzi in the blood: more parasite, more immune stimulation, more antibody. In this study we show how antibody levels change over many years in a cohort of untreated patients with Chagas disease. We find that among individuals with falling or low/borderline antibody levels there was a lower rate of parasite detection in the blood and a lower rate of cardiomyopathy. 60% of subjects with falling antibody levels had no evidence of active disease, twice as many as among patients with other antibody trajectories (stable or rising). Our findings support an account of the natural history of Chagas disease in which a proportion of those infected achieve a greater control of the parasite, with some individuals potentially clearing it completely.
Collapse
Affiliation(s)
- Lewis F. Buss
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
| | | | - Carlos H. V. Moreira
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
| | - Erika R. Manuli
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
| | - Flavia C. Sales
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
| | - Ingra Morales
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
| | - Clara Di Germanio
- Vitalant Research Institute, San Francisco, CA, United States of America
| | | | - Sonia Bakkour
- Vitalant Research Institute, San Francisco, CA, United States of America
| | - Paul Constable
- Ortho Clinical Diagnostics, Rochester, NY, United States of America
| | - Marcelo M. Pinto-Filho
- Telehealth Center, Hospital das Clínicas, and Internal Medicine Department, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antonio L. Ribeiro
- Telehealth Center, Hospital das Clínicas, and Internal Medicine Department, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michael Busch
- Vitalant Research Institute, San Francisco, CA, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Ester C. Sabino
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
11
|
Pérez AR, de Meis J, Rodriguez-Galan MC, Savino W. The Thymus in Chagas Disease: Molecular Interactions Involved in Abnormal T-Cell Migration and Differentiation. Front Immunol 2020; 11:1838. [PMID: 32983098 PMCID: PMC7492291 DOI: 10.3389/fimmu.2020.01838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Chagas disease, caused by the protozoan parasite T. cruzi, is a prevalent parasitic disease in Latin America. Presently, it is spreading around the world by human migration, thus representing a new global health issue. Chronically infected individuals reveal a dissimilar disease progression: while nearly 60% remain without apparent disease for life, 30% develop life-threatening pathologies, such as chronic chagasic cardiomyopathy (CCC) or megaviscerae. Inflammation driven by parasite persistence seems to be involved in the pathophysiology of the disease. However, there is also evidence of the occurrence of autoimmune events, mainly caused by molecular mimicry and bystander activation. In experimental models of disease, is well-established that T. cruzi infects the thymus and causes locally profound structural and functional alterations. The hallmark is a massive loss of CD4+CD8+ double positive (DP) thymocytes, mainly triggered by increased levels of glucocorticoids, although other mechanisms seem to act simultaneously. Thymic epithelial cells (TEC) exhibited an increase in extracellular matrix deposition, which are related to thymocyte migratory alterations. Moreover, medullary TEC showed a decreased expression of AIRE and altered expression of microRNAs, which might be linked to a disrupted negative selection of the T-cell repertoire. Also, almost all stages of thymocyte development are altered, including an abnormal output of CD4−CD8− double negative (DN) and DP immature and mature cells, many of them carrying prohibited TCR-Vβ segments. Evidence has shown that DN and DP cells with an activated phenotype can be tracked in the blood of humans with chronic Chagas disease and also in the secondary lymphoid organs and heart of infected mice, raising new questions about the relevance of these populations in the pathogenesis of Chagas disease and their possible link with thymic alterations and an immunoendocrine imbalance. Here, we discuss diverse molecular mechanisms underlying thymic abnormalities occurring during T. cruzi infection and their link with CCC, which may contribute to the design of innovative strategies to control Chagas disease pathology.
Collapse
Affiliation(s)
- Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario, CONICET-Universidad Nacional de Rosario, Rosario, Argentina.,Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Mayta H, Romero YK, Pando A, Verastegui M, Tinajeros F, Bozo R, Henderson-Frost J, Colanzi R, Flores J, Lerner R, Bern C, Gilman RH. Improved DNA extraction technique from clot for the diagnosis of Chagas disease. PLoS Negl Trop Dis 2019; 13:e0007024. [PMID: 30633743 PMCID: PMC6329489 DOI: 10.1371/journal.pntd.0007024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022] Open
Abstract
Background The detection of Trypanosoma cruzi genetic material in clinical samples is considered an important diagnostic tool for Chagas disease. We have previously demonstrated that PCR using clot samples yields greater sensitivity than either buffy coat or whole blood samples. However, phenol-chloroform DNA extraction from clot samples is difficult and toxic. The objective of the present study was to improve and develop a more sensitive method to recover parasite DNA from clot samples for the diagnosis of Chagas disease. Methodology/Principal findings A total of 265 match pair samples of whole blood–guanidine (GEB) and clot samples were analyzed; 150 were from Chagas seropositive subjects. DNA was extracted from both whole blood-guanidine samples, using a previously standardized methodology, and from clot samples, using a newly developed methodology based on a combination of the FastPrep technique and the standard method for GEB extraction. A qPCR targeting the nuclear satellite sequences was used to compare the sample source and the extraction method. Of the 150 samples from Chagas positive individuals by serology, 47 samples tested positive by qPCR with DNA extracted by both GEB and clot, but an additional 13 samples tested positive only in DNA extracted from clot. No serology-negative samples resulted positive when tested by qPCR. Conclusions The new methodology for DNA extraction from clot samples improves the molecular diagnosis of Chagas disease. Detection of nucleic acid has become an important tool for the diagnosis of Chagas disease. Whole blood samples are usually the source of DNA and qPCR the preferred technique to demonstrate the presence of T. cruzi DNA. Although DNA extracted from clot samples has shown higher sensitivity than from whole blood, DNA extraction is performed using phenol-chloroform, which has biohazard issues. We theorize that a clot traps parasites, making it a better source of DNA for Chagas diagnosis using PCR. The present study describes a new DNA extraction methodology from clot samples which avoids the use of phenol-chloroform. The new methodology was compared to the internationally standardized diagnostic method, which is based on extraction of DNA from whole blood preserved with guanidine EDTA and a commercial kit.
Collapse
Affiliation(s)
- Holger Mayta
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America.,A.B Prisma, Lima, Perú
| | - Yomara K Romero
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandra Pando
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manuela Verastegui
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ricardo Bozo
- Hospital Municipal Camiri, Camiri, Plurinational State of Bolivia
| | | | - Rony Colanzi
- Hospital Universitario Japones, Santa Cruz de la Sierra, Plurinational State of Bolivia
| | - Jorge Flores
- Hospital San Juan de Dios, Santa Cruz de la Sierra, Plurinational State of Bolivia
| | - Richard Lerner
- Pan American Zoonotic Research and Prevention, Framingham, Massachusetts, United States of America
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, California, United States of America
| | - Robert H Gilman
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America.,A.B Prisma, Lima, Perú
| | | |
Collapse
|
13
|
Ledoux T, Aridgides D, Salvador R, Ngwenyama N, Panagiotidou S, Alcaide P, Blanton RM, Perrin MA. Trypanosoma cruzi Neurotrophic Factor Facilitates Cardiac Repair in a Mouse Model of Chronic Chagas Disease. J Pharmacol Exp Ther 2018; 368:11-20. [PMID: 30348750 DOI: 10.1124/jpet.118.251900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Most patients acutely infected with Trypanosoma cruzi undergo short-term structural and functional cardiac alterations that heal without sequelae. By contrast, in patients whose disease progresses to chronic infection, irreversible degenerative chronic Chagas cardiomyopathy (CCC) may develop. To account for the contrast between cardiac regeneration in high-parasitism acute infection and progressive cardiomyopathy in low-parasitism CCC, we hypothesized that T. cruzi expresses repair factors that directly facilitate cardiac regeneration. We investigated, as one such repair factor, the T. cruzi parasite-derived neurotrophic factor (PDNF), known to trigger survival of cardiac myocytes and fibroblasts and upregulate chemokine chemokine C-C motif ligand 2, which promotes migration of regenerative cardiac progenitor cells (CPCs). Using in vivo and in vitro models of Chagas disease, we tested whether T. cruzi PDNF promotes cardiac repair. Quantitative PCR and flow cytometry of heart tissue revealed that stem-cell antigen-1 (Sca-1+) CPCs expand in acute infection in parallel to parasitism. Recombinant PDNF induced survival and expansion of ex vivo CPCs, and intravenous administration of PDNF into naïve mice upregulated mRNA of cardiac stem-cell marker Sca-1. Furthermore, in CCC mice, a 3-week intravenous administration of PDNF protocol induced CPC expansion and reversed left ventricular T-cell accumulation and cardiac remodeling including fibrosis. Compared with CCC vehicle-treated mice, which developed severe atrioventricular block, PDNF-treated mice exhibited reduced frequency and severity of conduction abnormalities. Our findings are in support of the novel concept that T. cruzi uses PDNF to promote mutually beneficial cardiac repair in Chagas disease. This could indicate a possible path to prevention or treatment of CCC.
Collapse
Affiliation(s)
- Tamar Ledoux
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Daniel Aridgides
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Ryan Salvador
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Njabulo Ngwenyama
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Smaro Panagiotidou
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Pilar Alcaide
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Robert M Blanton
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Mercio A Perrin
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
14
|
Nunes MCP, Beaton A, Acquatella H, Bern C, Bolger AF, Echeverría LE, Dutra WO, Gascon J, Morillo CA, Oliveira-Filho J, Ribeiro ALP, Marin-Neto JA. Chagas Cardiomyopathy: An Update of Current Clinical Knowledge and Management: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e169-e209. [DOI: 10.1161/cir.0000000000000599] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background:
Chagas disease, resulting from the protozoan
Trypanosoma cruzi
, is an important cause of heart failure, stroke, arrhythmia, and sudden death. Traditionally regarded as a tropical disease found only in Central America and South America, Chagas disease now affects at least 300 000 residents of the United States and is growing in prevalence in other traditionally nonendemic areas. Healthcare providers and health systems outside of Latin America need to be equipped to recognize, diagnose, and treat Chagas disease and to prevent further disease transmission.
Methods and Results:
The American Heart Association and the Inter-American Society of Cardiology commissioned this statement to increase global awareness among providers who may encounter patients with Chagas disease outside of traditionally endemic environments. In this document, we summarize the most updated information on diagnosis, screening, and treatment of
T cruzi
infection, focusing primarily on its cardiovascular aspects. This document also provides quick reference tables, highlighting salient considerations for a patient with suspected or confirmed Chagas disease.
Conclusions:
This statement provides a broad summary of current knowledge and practice in the diagnosis and management of Chagas cardiomyopathy. It is our intent that this document will serve to increase the recognition of Chagas cardiomyopathy in low-prevalence areas and to improve care for patients with Chagas heart disease around the world.
Collapse
|
15
|
A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy. Parasitology 2018; 146:269-283. [PMID: 30210012 DOI: 10.1017/s0031182018001506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.
Collapse
|
16
|
De Bona E, Lidani KCF, Bavia L, Omidian Z, Gremski LH, Sandri TL, de Messias Reason IJ. Autoimmunity in Chronic Chagas Disease: A Road of Multiple Pathways to Cardiomyopathy? Front Immunol 2018; 9:1842. [PMID: 30127792 PMCID: PMC6088212 DOI: 10.3389/fimmu.2018.01842] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
Chagas disease (CD), a neglected tropical disease caused by the protozoan Trypanosoma cruzi, affects around six million individuals in Latin America. Currently, CD occurs worldwide, becoming a significant public health concern due to its silent aspect and high morbimortality rate. T. cruzi presents different escape strategies which allow its evasion from the host immune system, enabling its persistence and the establishment of chronic infection which leads to the development of chronic Chagas cardiomyopathy (CCC). The potent immune stimuli generated by T. cruzi persistence may result in tissue damage and inflammatory response. In addition, molecular mimicry between parasites molecules and host proteins may result in cross-reaction with self-molecules and consequently in autoimmune features including autoantibodies and autoreactive cells. Although controversial, there is evidence demonstrating a role for autoimmunity in the clinical progression of CCC. Nevertheless, the exact mechanism underlying the generation of an autoimmune response in human CD progression is unknown. In this review, we summarize the recent findings and hypotheses related to the autoimmune mechanisms involved in the development and progression of CCC.
Collapse
Affiliation(s)
- Elidiana De Bona
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Zahra Omidian
- Department of Pathology, Division of Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | | | - Thaisa Lucas Sandri
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Iara J de Messias Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
17
|
Bivona AE, Sánchez Alberti A, Matos MN, Cerny N, Cardoso AC, Morales C, González G, Cazorla SI, Malchiodi EL. Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80) as a novel immunogen for Chagas disease vaccine. PLoS Negl Trop Dis 2018; 12:e0006384. [PMID: 29601585 PMCID: PMC5895069 DOI: 10.1371/journal.pntd.0006384] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/11/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chagas disease, also known as American Trypanosomiasis, is a chronic parasitic disease caused by the flagellated protozoan Trypanosoma cruzi that affects about 8 million people around the world where more than 25 million are at risk of contracting the infection. Despite of being endemic on 21 Latin-American countries, Chagas disease has become a global concern due to migratory movements. Unfortunately, available drugs for the treatment have several limitations and they are generally administered during the chronic phase of the infection, when its efficacy is considered controversial. Thus, prophylactic and/or therapeutic vaccines are emerging as interesting control alternatives. In this work, we proposed Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80) as a new antigen for vaccine development against Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS In a murine model, we analyzed the immune response triggered by different immunization protocols based on Tc80 and evaluated their ability to confer protection against a challenge with the parasite. Immunized mice developed Tc80-specific antibodies which were able to carry out different functions such as: enzymatic inhibition, neutralization of parasite infection and complement-mediated lysis of trypomastigotes. Furthermore, vaccinated mice elicited strong cell-mediated immunity. Spleen cells from immunized mice proliferated and secreted Th1 cytokines (IL-2, IFN-γ and TNF-α) upon re-stimulation with rTc80. Moreover, we found Tc80-specific polyfunctional CD4 T cells, and cytotoxic T lymphocyte activity against one Tc80 MHC-I peptide. Immunization protocols conferred protection against a T. cruzi lethal challenge. Immunized groups showed a decreased parasitemia and higher survival rate compared with non-immunized control mice. Moreover, during the chronic phase of the infection, immunized mice presented: lower levels of myopathy-linked enzymes, parasite burden, electrocardiographic disorders and inflammatory cells. CONCLUSIONS/SIGNIFICANCE Considering that an early control of parasite burden and tissue damage might contribute to avoid the progression towards symptomatic forms of chronic Chagas disease, the efficacy of Tc80-based vaccines make this molecule a promising immunogen for a mono or multicomponent vaccine against T. cruzi infection.
Collapse
Affiliation(s)
- Augusto E. Bivona
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Andrés Sánchez Alberti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Marina N. Matos
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Natacha Cerny
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Alejandro C. Cardoso
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Celina Morales
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Instituto de Fisiopatología Cardiovascular, Buenos Aires, Argentina
| | - Germán González
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Instituto de Fisiopatología Cardiovascular, Buenos Aires, Argentina
| | - Silvia I. Cazorla
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET). Tucumán, Argentina
| | - Emilio L. Malchiodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
18
|
Acquatella H, Asch FM, Barbosa MM, Barros M, Bern C, Cavalcante JL, Echeverria Correa LE, Lima J, Marcus R, Marin-Neto JA, Migliore R, Milei J, Morillo CA, Nunes MCP, Campos Vieira ML, Viotti R. Recommendations for Multimodality Cardiac Imaging in Patients with Chagas Disease: A Report from the American Society of Echocardiography in Collaboration With the InterAmerican Association of Echocardiography (ECOSIAC) and the Cardiovascular Imaging Department of the Brazilian Society of Cardiology (DIC-SBC). J Am Soc Echocardiogr 2018; 31:3-25. [DOI: 10.1016/j.echo.2017.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Dworak ES, Araújo SMD, Gomes ML, Massago M, Ferreira ÉC, Toledo MJDO. Sympatry influence in the interaction of Trypanosoma cruzi with triatomine. Rev Soc Bras Med Trop 2017; 50:629-637. [PMID: 29160509 DOI: 10.1590/0037-8682-0219-2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/24/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Trypanosoma cruzi, the etiologic agent of Chagas disease, is widely distributed in nature, circulating between triatomine bugs and sylvatic mammals, and has large genetic diversity. Both the vector species and the genetic lineages of T. cruzi present a varied geographical distribution. This study aimed to verify the influence of sympatry in the interaction of T. cruzi with triatomines. Methods: The behavior of the strains PR2256 (T. cruzi II) and AM14 (T. cruzi IV) was studied in Triatoma sordida (TS) and Rhodnius robustus (RR). Eleven fifth-stage nymphs were fed by artificial xenodiagnosis with 5.6 × 103 blood trypomastigotes/0.1mL of each T. cruzi strain. Every 20 days, their excreta were examined for up to 100 days, and every 30 days, the intestinal content was examined for up to 120 days, by parasitological (fresh examination and differential count with Giemsa-stained smears) and molecular (PCR) methods. Rates of infectivity, metacyclogenesis and mortality, and mean number of parasites per insect and of excreted parasites were determined. RESULTS Sympatric groups RR+AM14 and TS+PR2256 showed higher values of the four parameters, except for mortality rate, which was higher (27.3%) in the TS+AM14 group. General infectivity was 72.7%, which was mainly proven by PCR, showing the following decreasing order: RR+AM14 (100%), TS+PR2256 (81.8%), RR+PR2256 (72.7%) and TS+AM14 (36.4%). CONCLUSIONS Our working hypothesis was confirmed once higher infectivity and vector capacity (flagellate production and elimination of infective metacyclic forms) were recorded in the groups that contained sympatric T. cruzi lineages and triatomine species.
Collapse
Affiliation(s)
- Elaine Schultz Dworak
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Silvana Marques de Araújo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Mônica Lúcia Gomes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Miyoko Massago
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Érika Cristina Ferreira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Departamento de Estatística, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Max Jean de Ornelas Toledo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
20
|
Ripoll JG, Giraldo NA, Bolaños NI, Roa N, Rosas F, Cuéllar A, Puerta CJ, González JM. T cells responding to Trypanosoma cruzi detected by membrane TNF-α and CD154 in chagasic patients. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:47-57. [PMID: 28967229 PMCID: PMC5818450 DOI: 10.1002/iid3.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/21/2023]
Abstract
Introduction Chagas disease is a parasitic infection whose pathogenesis is related to parasite persistence and a dysfunctional cellular immune response. Variability in cytokine secretion among chronic Trypanosoma cruzi‐infected patients might preclude the identification of the pool of antigen specific T cells. The goal of this study was to determine the fraction of T cells responding to T. cruzi antigen measured by the expression of membrane TNF‐α and CD154. Methods A total of 21 chagasic patients, 11 healthy and 5 non‐chagasic cardiomyopathy controls were analyzed. PBMCs were short‐term cultured in the presence of anti‐CD28, anti‐CD49d, anti‐TNF‐α, and TACE (TNF‐α converting enzyme) inhibitor either under T. cruzi‐lysate or polyclonal stimuli. Cells were stained with anti‐CD3, anti‐CD4, anti‐CD8, and anti‐CD154, and analyzed with flow cytometry. Results CD4+ and CD8+ T cells in chagasic patients displayed higher percentages of membrane‐bound TNF‐α+ and CD154+ compared with controls after T. cruzi‐antigen stimulation. Both markers displayed a positive correlation in the T cell subpopulations analyzed. Symptomatic chagasic patients were differentiated from asymptomatic patients based on the expression of CD154 and membrane TNF‐α in TCD4+ and TCD8+ compartments, respectively. Conclusions These results show that both markers could be useful for assessing the pool of antigen‐specific T cells in chronic chagasic patients.
Collapse
Affiliation(s)
- Juan G Ripoll
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Nicolás A Giraldo
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Natalia I Bolaños
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Nubia Roa
- Facultad de Medicina, Pontificia Universidad Javeriana and Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Adriana Cuéllar
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Concepción J Puerta
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John M González
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
21
|
Rassi A, Marin JA, Rassi A. Chronic Chagas cardiomyopathy: a review of the main pathogenic mechanisms and the efficacy of aetiological treatment following the BENznidazole Evaluation for Interrupting Trypanosomiasis (BENEFIT) trial. Mem Inst Oswaldo Cruz 2017; 112:224-235. [PMID: 28225900 PMCID: PMC5319366 DOI: 10.1590/0074-02760160334] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/22/2016] [Indexed: 11/21/2022] Open
Abstract
Chagas cardiomyopathy is the most frequent and most severe manifestation of chronic Chagas disease, and is one of the leading causes of morbidity and death in Latin America. Although the pathogenesis of Chagas cardiomyopathy is incompletely understood, it may involve several mechanisms, including parasite-dependent myocardial damage, immune-mediated myocardial injury (induced by the parasite itself and by self-antigens), and microvascular and neurogenic disturbances. In the past three decades, a consensus has emerged that parasite persistence is crucial to the development and progression of Chagas cardiomyopathy. In this context, antiparasitic treatment in the chronic phase of Chagas disease could prevent complications related to the disease. However, according to the results of the BENEFIT trial, benznidazole seems to have no benefit for arresting disease progression in patients with chronic Chagas cardiomyopathy. In this review, we give an update on the main pathogenic mechanisms of Chagas disease, and re-examine and discuss the results of the BENEFIT trial, together with its limitations and implications.
Collapse
Affiliation(s)
- Anis Rassi
- Hospital do Coração Anis Rassi, Goiânia, GO, Brasil
| | - José Antonio Marin
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Divisão de Cardiologia, Ribeirão Preto, SP, Brasil
| | - Anis Rassi
- Hospital do Coração Anis Rassi, Goiânia, GO, Brasil
| |
Collapse
|
22
|
Leon Rodriguez DA, González CI, Martin J. Analysis of association of FOXO3 gene with Trypanosoma cruzi infection and chronic Chagasic cardiomyopathy. HLA 2016; 87:449-52. [PMID: 27125259 DOI: 10.1111/tan.12808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Abstract
FOXO3, a member of the Forkhead family of proteins, plays a role in controlling immune response. FOXO3 gene variant rs12212067 has been associated to differential severity of infectious diseases like malaria. In this study, we assessed whether this FOXO3 gene polymorphism is related to susceptibility to infection by Trypanosoma cruzi and/or chronic Chagasic cardiomyopathy. A total of 1171 individuals from a Colombian region endemic for Chagas disease, classified as seronegative (n = 595), seropositive asymptomatic (n = 175) and chronic Chagasic cardiomyopathy (n = 401) were genotyped for the FOXO3 rs12212067 using TaqMan allelic discrimination. Our results showed no statistically significantly differences between allelic and genotypic frequencies of rs12212067 in seronegative individuals compared with seropositive individuals. Similarly, we observed no evidence of association when asymptomatic individuals were compared with chronic Chagasic cardiomyopathy patients. Our data suggest that the FOXO3 genetic variant rs12212067 do not play an important role in Chagas disease.
Collapse
Affiliation(s)
- D A Leon Rodriguez
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Granada, Spain
| | - C I González
- Grupo de Inmunología y Epidemiología Molecular, GIEM, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - J Martin
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Granada, Spain
| |
Collapse
|
23
|
Drug Susceptibility of Genetically Engineered Trypanosoma cruzi Strains and Sterile Cure in Animal Models as a Criterion for Potential Clinical Efficacy of Anti-T. cruzi Drugs. Antimicrob Agents Chemother 2016; 59:7923-4. [PMID: 26578701 DOI: 10.1128/aac.01714-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Morilla MJ, Romero EL. Nanomedicines against Chagas disease: an update on therapeutics, prophylaxis and diagnosis. Nanomedicine (Lond) 2015; 10:465-81. [PMID: 25707979 DOI: 10.2217/nnm.14.185] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chagas disease is a neglected parasitic infection caused by the protozoan Trypanosoma cruzi. After a mostly clinically silent acute phase, the disease becomes a lifelong chronic condition that can lead to chronic heart failure and thromboembolic phenomena followed by sudden death. Antichagasic treatment is only effective in the acute phase but fails to eradicate the intracellular form of parasites and causes severe toxicity in adults. Although conventional oral benznidazol is not a safe and efficient drug to cure chronic adult patients, current preclinical data is insufficient to envisage if conventional antichagasic treatment could be realistically improved by a nanomedical approach. This review will discuss how nanomedicines could help to improve the performance of therapeutics, vaccines and diagnosis of Chagas disease.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | | |
Collapse
|
25
|
Benatar AF, García GA, Bua J, Cerliani JP, Postan M, Tasso LM, Scaglione J, Stupirski JC, Toscano MA, Rabinovich GA, Gómez KA. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells. PLoS Negl Trop Dis 2015; 9:e0004148. [PMID: 26451839 PMCID: PMC4599936 DOI: 10.1371/journal.pntd.0004148] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection. METHODOLOGY AND PRINCIPAL FINDINGS Here we investigated the contribution of galectin-1 (Gal-1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL-1 cardiac cells to Gal-1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal-1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL-1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal-1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal-1 to the cell surface. Consistent with these data, Gal-1 deficient (Lgals1-/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain. CONCLUSION/SIGNIFICANCE Our results indicate that Gal-1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions.
Collapse
Affiliation(s)
- Alejandro F. Benatar
- Laboratorio de Biología Molecular de la Enfermedad de Chagas (LabMECh), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Gabriela A. García
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Jacqeline Bua
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Juan P. Cerliani
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Laura M. Tasso
- Laboratorio de Biología Molecular de la Enfermedad de Chagas (LabMECh), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Jorge Scaglione
- Hospital Pedro de Elizalde, Servicio de Cardiología, Sección Electrofisiología, Buenos Aires, Argentina
| | - Juan C. Stupirski
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Marta A. Toscano
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina A. Gómez
- Laboratorio de Biología Molecular de la Enfermedad de Chagas (LabMECh), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
26
|
Antitrypanosomal Treatment with Benznidazole Is Superior to Posaconazole Regimens in Mouse Models of Chagas Disease. Antimicrob Agents Chemother 2015; 59:6385-94. [PMID: 26239982 DOI: 10.1128/aac.00689-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/19/2015] [Indexed: 11/20/2022] Open
Abstract
Two CYP51 inhibitors, posaconazole and the ravuconazole prodrug E1224, were recently tested in clinical trials for efficacy in indeterminate Chagas disease. The results from these studies show that both drugs cleared parasites from the blood of infected patients at the end of the treatment but that parasitemia rebounded over the following months. In the current study, we sought to identify a dosing regimen of posaconazole that could permanently clear Trypanosoma cruzi from mice with experimental Chagas disease. Infected mice were treated with posaconazole or benznidazole, an established Chagas disease drug, and parasitological cure was defined as an absence of parasitemia recrudescence after immunosuppression. Twenty-day therapy with benznidazole (10 to 100 mg/kg of body weight/day) resulted in a dose-dependent increase in antiparasitic activity, and the 100-mg/kg regimen effected parasitological cure in all treated mice. In contrast, all mice remained infected after a 25-day treatment with posaconazole at all tested doses (10 to 100 mg/kg/day). Further extension of posaconazole therapy to 40 days resulted in only a marginal improvement of treatment outcome. We also observed similar differences in antiparasitic activity between benznidazole and posaconazole in acute T. cruzi heart infections. While benznidazole induced rapid, dose-dependent reductions in heart parasite burdens, the antiparasitic activity of posaconazole plateaued at low doses (3 to 10 mg/kg/day) despite increasing drug exposure in plasma. These observations are in good agreement with the outcomes of recent phase 2 trials with posaconazole and suggest that the efficacy models combined with the pharmacokinetic analysis employed here will be useful in predicting clinical outcomes of new drug candidates.
Collapse
|
27
|
Trypanothione reductase inhibitors: Overview of the action of thioridazine in different stages of Chagas disease. Acta Trop 2015; 145:79-87. [PMID: 25733492 DOI: 10.1016/j.actatropica.2015.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
Thioridazine (TDZ) is a phenothiazine that has been shown to be one of the most potent phenothiazines to inhibit trypanothione reductase irreversibly. Trypanothione reductase is an essential enzyme for the survival of Trypanosoma cruzi in the host. Here, we reviewed the use of this drug for the treatment of T. cruzi experimental infection. In our laboratory, we have studied the effect of TDZ for the treatment of mice infected with different strains of T. cruzi and treated in the acute or in the chronic phases of the experimental infection, using two different schedules: TDZ at a dose of 80 mg/kg/day, for 3 days starting 1h after infection (acute phase), or TDZ 80 mg/kg/day for 12 days starting 180 days post infection (d.p.i.) (chronic phase). In our experience, the treatment of infected mice, in the acute or in the chronic phases of the infection, with TDZ led to a large reduction in the mortality rates and in the cardiac histological and electrocardiographical abnormalities, and modified the natural evolution of the experimental infection. These analyses reinforce the importance of treatment in the chronic phase to decrease, retard or stop the evolution to chagasic myocardiopathy. Other evidence leading to the use of this drug as a potential chemotherapeutic agent for Chagas disease treatment is also revised.
Collapse
|
28
|
Sánchez-Valdéz FJ, Pérez Brandán C, Ferreira A, Basombrío MÁ. Gene-deleted live-attenuated Trypanosoma cruzi parasites as vaccines to protect against Chagas disease. Expert Rev Vaccines 2014; 14:681-97. [PMID: 25496192 DOI: 10.1586/14760584.2015.989989] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. This illness is now becoming global, mainly due to congenital transmission, and so far, there are no prophylactic or therapeutic vaccines available to either prevent or treat Chagas disease. Therefore, different approaches aimed at identifying new protective immunogens are urgently needed. Live vaccines are likely to be more efficient in inducing protection, but safety issues linked with their use have been raised. The development of improved protozoan genetic manipulation tools and genomic and biological information has helped to increase the safety of live vaccines. These advances have generated a renewed interest in the use of genetically attenuated parasites as vaccines against Chagas disease. This review discusses the protective capacity of genetically attenuated parasite vaccines and the challenges and perspectives for the development of an effective whole-parasite Chagas disease vaccine.
Collapse
|
29
|
Caldas S, Caldas IS, Cecílio AB, Diniz LDEF, Talvani A, Ribeiro I, Bahia MT. Therapeutic responses to different anti-Trypanosoma cruzi drugs in experimental infection by benznidazole-resistant parasite stock. Parasitology 2014; 141:1-10. [PMID: 25045804 DOI: 10.1017/s0031182014000882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARY This study describes the role of parasite clearance time induced by benznidazole, fexinidazole and posaconazole treatments upon mice infection with a benznidazole-resistant Trypanosoma cruzi strain in the pathological outcomes. Trypanosoma cruzi-infected mice were treated with different drugs and parasite clearance time was detected by blood and tissue qPCR, to determine the dynamic relationship between the efficacy of the treatments and the intensity of heart lesion/serum inflammatory mediators. Our results indicate that anti-T. cruzi treatments were able to reduce parasite replication and consequently induce immunomodulatory effects, where the degree of the immunopathology prevention was related to the time of parasite clearance induced by different treatments. Nevertheless, in benznidazole and posaconazole treatments, parasite rebounding was detected with parasitism reaching levels similar to infected and non-treated mice; the time for parasitic rebound being earlier among benznidazole-treated mice. In parallel, an increase of cardiac lesions and plasma chemokine levels was also detected and was more accentuated in benznidazole-treated animals. Interestingly, in the presence of parasitological cure (fexinidazole treatment), basal levels of these inflammatory mediators were evidenced as well as an absence of cardiac inflammation or fibrosis. Overall, our data indicate that all treatments have positive effects on the clinical evolution of T. cruzi infection, with success in preventing cardiac alterations being drug-dependent.
Collapse
Affiliation(s)
- Sérgio Caldas
- Laboratório de Doença de Chagas, Departamento de Ciências Biológicas and Núcleo de Pesquisas em Ciências Biológicas,Universidade Federal de Ouro Preto, Campus Universitário,Morro do Cruzeiro, Ouro Preto, MG, 35400-000,Brazil
| | - Ivo Santana Caldas
- Laboratório de Doença de Chagas, Departamento de Ciências Biológicas and Núcleo de Pesquisas em Ciências Biológicas,Universidade Federal de Ouro Preto, Campus Universitário,Morro do Cruzeiro, Ouro Preto, MG, 35400-000,Brazil
| | - Alzira Batista Cecílio
- Fundação Ezequiel Dias,Rua Conde Pereira Carneiro,80, Gameleira, Belo Horizonte, Minas Gerais,Brazil
| | - Lívia DE Figueiredo Diniz
- Laboratório de Doença de Chagas, Departamento de Ciências Biológicas and Núcleo de Pesquisas em Ciências Biológicas,Universidade Federal de Ouro Preto, Campus Universitário,Morro do Cruzeiro, Ouro Preto, MG, 35400-000,Brazil
| | - André Talvani
- Laboratório de Doença de Chagas, Departamento de Ciências Biológicas and Núcleo de Pesquisas em Ciências Biológicas,Universidade Federal de Ouro Preto, Campus Universitário,Morro do Cruzeiro, Ouro Preto, MG, 35400-000,Brazil
| | - Isabela Ribeiro
- Drugs for Neglected Disease initiative (DNDi),1202 Geneva,Switzerland
| | - Maria Terezinha Bahia
- Laboratório de Doença de Chagas, Departamento de Ciências Biológicas and Núcleo de Pesquisas em Ciências Biológicas,Universidade Federal de Ouro Preto, Campus Universitário,Morro do Cruzeiro, Ouro Preto, MG, 35400-000,Brazil
| |
Collapse
|
30
|
Nihei J, Cardillo F, Dos Santos WLC, Pontes-de-Carvalho L, Mengel J. Administration of a nondepleting anti-CD25 monoclonal antibody reduces disease severity in mice infected with Trypanosoma cruzi. Eur J Microbiol Immunol (Bp) 2014; 4:128-37. [PMID: 24883199 DOI: 10.1556/eujmi.4.2014.2.6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
The role of CD25+ regulatory T cells during the course of Trypanosoma cruzi infection has been previously analyzed, and the bulk of results have shown a limited role for this T cell subpopulation. In this study, we have used an IgM, nondepleting monoclonal antibody (mAb) aiming at blocking interleukin (IL)-2 activity on CD25+ T cells. The administration of this antibody 10 days before infection increased the resistance of outbred Swiss mice to the Colombian strain of T. cruzi. Anti-CD25-treated mice had lower parasitemia and augmented numbers of effector memory T cells. In addition, these animals showed higher numbers of splenic T cells secreting IFN-γ and TNF-α, both cytokines described to be involved in the resistance to T. cruzi infection. The same treatment also increased the numbers of splenic T cells that produced homeostatic and regulatory cytokines, such as IL-2 and IL-10, and CD4+CD25+ T cells. The administration of nondepleting anti-CD25 mAb at the beginning of the chronic phase, when parasites were cleared from the blood, halted the inflammatory process in the heart, without any signs of infection reactivation. These results indicate that nondepleting anti-CD25 monoclonal antibodies may be useful to treat chronic Chagas' disease.
Collapse
|
31
|
Camargo R, Faria LO, Kloss A, Favali CBF, Kuckelkorn U, Kloetzel PM, de Sá CM, Lima BD. Trypanosoma cruzi infection down-modulates the immunoproteasome biosynthesis and the MHC class I cell surface expression in HeLa cells. PLoS One 2014; 9:e95977. [PMID: 24752321 PMCID: PMC3994161 DOI: 10.1371/journal.pone.0095977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Generally, Trypanosoma cruzi infection in human is persistent and tends to chronicity, suggesting that the parasite evade the immune surveillance by down regulating the intracellular antigen processing routes. Within the MHC class I pathway, the majority of antigenic peptides are generated by the proteasome. However, upon IFN-γ stimulation, the catalytic constitutive subunits of the proteasome are replaced by the subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 to form the immunoproteasome. In this scenario, we analyzed whether the expression and activity of the constitutive and the immunoproteasome as well as the expression of other components of the MHC class I pathway are altered during the infection of HeLa cells with T. cruzi. By RT-PCR and two-dimensional gel electrophoresis analysis, we showed that the expression and composition of the constitutive proteasome is not affected by the parasite. In contrast, the biosynthesis of the β1i, β2i, β5i immunosubunits, PA28β, TAP1 and the MHC class I molecule as well as the proteasomal proteolytic activities were down-regulated in infected-IFN-γ-treated cell cultures. Taken together, our results provide evidence that the protozoan T. cruzi specifically modulates its infection through an unknown posttranscriptional mechanism that inhibits the expression of the MHC class I pathway components.
Collapse
Affiliation(s)
- Ricardo Camargo
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Liliam O. Faria
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Alexander Kloss
- Institute für Biochimie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cecília B. F. Favali
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Ulrike Kuckelkorn
- Institute für Biochimie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Cezar Martins de Sá
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Beatriz D. Lima
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
32
|
Nunes MP, Fortes B, Silva-Filho JL, Terra-Granado E, Santos L, Conde L, de Araújo Oliveira I, Freire-de-Lima L, Martins MV, Pinheiro AAS, Takyia CM, Freire-de-Lima CG, Todeschini AR, DosReis GA, Morrot A. Inhibitory effects of Trypanosoma cruzi sialoglycoproteins on CD4+ T cells are associated with increased susceptibility to infection. PLoS One 2013; 8:e77568. [PMID: 24204874 PMCID: PMC3810146 DOI: 10.1371/journal.pone.0077568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/03/2013] [Indexed: 01/16/2023] Open
Abstract
Background The Trypanosoma cruzi infection is associated with severe T cell unresponsiveness to antigens and mitogens characterized by decreased IL-2 synthesis. Trypanosoma cruzi mucin (Tc Muc) has been implicated in this phenomenom. These molecules contain a unique type of glycosylation consisting of several sialylated O-glycans linked to the protein backbone via N-acetylglucosamine residues. Methodology/Principal Findings In this study, we evaluated the ability of Tc Muc to modulate the activation of CD4+ T cells. Our data show that cross-linking of CD3 on naïve CD4+ T cells in the presence of Tc Muc resulted in the inhibition of both cytokine secretion and proliferation. We further show that the sialylated O-Linked Glycan residues from tc mucin potentiate the suppression of T cell response by inducing G1-phase cell cycle arrest associated with upregulation of mitogen inhibitor p27kip1. These inhibitory effects cannot be reversed by the addition of exogenous IL-2, rendering CD4+ T cells anergic when activated by TCR triggering. Additionally, in vivo administration of Tc Muc during T. cruzi infection enhanced parasitemia and aggravated heart damage. Analysis of recall responses during infection showed lower frequencies of IFN-γ producing CD4+ T cells in the spleen of Tc Muc treated mice, compared to untreated controls. Conclusions/Significance Our results indicate that Tc Muc mediates inhibitory efects on CD4+ T expansion and cytokine production, by blocking cell cycle progression in the G1 phase. We propose that the sialyl motif of Tc Muc is able to interact with sialic acid-binding Ig-like lectins (Siglecs) on CD4+ T cells, which may allow the parasite to modulate the immune system.
Collapse
Affiliation(s)
| | - Bárbara Fortes
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Silva-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Isadora de Araújo Oliveira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Acacia Sá Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takyia
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriane Regina Todeschini
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - George Alexandre DosReis
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (MPN); (AM)
| |
Collapse
|
33
|
Rumi MM, Pérez Brandán C, Gil J, D’Amato AA, Ragone P, Lauthier J, Tomasini N, Cimino R, Orellana V, Lacunza C, Nasser J, Basombrío M, Diosque P. Benznidazole treatment in chronic children infected with Trypanosoma cruzi: serological and molecular follow-up of patients and identification of Discrete Typing Units. Acta Trop 2013; 128:130-6. [PMID: 23880286 DOI: 10.1016/j.actatropica.2013.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 12/27/2022]
Abstract
A total of 221 children from two rural settlements in Northeast Argentina were examined for T. cruzi infection. Blood samples were taken for serology tests and PCR assays. In addition, T. cruzi Discrete Typing Units (DTUs) were determined by hybridization with specific DNA probes of the minicircle hypervariable regions (mHVR). Serological results indicated that 26% (57/215) were reactive against T. cruzi antigens. PCR analyses were performed on seropositive samples showing presence of parasite DNA in 31 out of 53 samples (58.5%). All seropositive children underwent specific chemotherapy with Benznidazole (5mg/kg/day) for a period of two months and were monitored two and five years after treatment. Overall the treatment was well tolerated and low side effects were observed. Serological conversion was observed at two years post -treatment in one child form Pampa Ávila and at five years in two children from Tres Estacas. However, at the end of the follow-up period, T. cruzi DNA could not be detected by PCR in samples from treated children, except in two cases. In addition, the results of hybridizations with specific DNA probes showed that DTU TcV was detected in 68% (21/31), TcVI in 7% (2/31) and TcV/VI in 3% (1/31) of the samples. Altogether, results of the follow-up of treated children showed a low rate of seroconversion; however trend toward seroconversion was evident at five years post-treatment. On the other hand, detection of T. cruzi DNA by PCR significantly decreased after Benznidazole treatment. The existence of data regarding serological and molecular follow-ups from controlled studies in the Chaco Region will be important for future treatment efforts against T. cruzi infection in this region. The results obtained in the present study represent a contribution in this regard.
Collapse
|
34
|
Trypomastigotes and amastigotes of Trypanosoma cruzi induce apoptosis and STAT3 activation in cardiomyocytes in vitro. Apoptosis 2013; 18:653-63. [DOI: 10.1007/s10495-013-0822-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Machado-de-Assis GF, Silva AR, Do Bem VAL, Bahia MT, Martins-Filho OA, Dias JCP, Albajar-Viñas P, Torres RM, Lana M. Posttherapeutic cure criteria in Chagas' disease: conventional serology followed by supplementary serological, parasitological, and molecular tests. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1283-91. [PMID: 22739694 PMCID: PMC3416099 DOI: 10.1128/cvi.00274-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
Abstract
We performed a critical study of conventional serology, followed by supplementary serological, parasitological, and molecular tests, to assess the response to etiologic treatment of Chagas' disease. A group of 94 Chagas' disease patients treated with benznidazole at least 10 years earlier were evaluated from the laboratory and clinical points of view. When conventional serology (enzyme-linked immunosorbent assay [ELISA], indirect immunofluorescence [IIF], and indirect hemagglutination [IHA]) and classic criteria (consistent results with any two of the three tests) or more rigorous criteria (consistent results from the three tests) were used, 10.6% and 8.5% of patients were considered treated and cured (TC) by classic and rigorous criteria, respectively. Patients were then evaluated using supplementary (recombinant ELISA and Trypanosoma cruzi excreted-secreted antigen blotting [TESA-blot]), parasitological (hemoculture), and molecular (PCR) tests. The results of recombinant ELISA were similar to those with the rigorous criterion (three consistent test results). The TESA-blot group showed a higher percentage (21.3%) of negative results than the groups defined by either cure criterion. Hemoculture and PCR gave negative results for all treated and cured (TC) patients, regardless of the criterion used. Recombinant ELISA and TESA-blot tests showed negative results for 70% and 87.5% of the patients categorized as TC by the classic and three-test criteria, respectively. For patients with discordant conventional serology, the supplementary serological and molecular tests were the decisive factor in determining therapeutic failure. Clinical evaluation showed that 62.5% of TC patients presented with the indeterminate form of the disease. Additionally, treated patients with negative TESA-blot results should be reevaluated later with all methodologies used here to verify whether TESA-blot is a reliable way to determine early parasitological cure of Chagas' disease.
Collapse
Affiliation(s)
- G F Machado-de-Assis
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fernandes MC, Andrews NW. Host cell invasion by Trypanosoma cruzi: a unique strategy that promotes persistence. FEMS Microbiol Rev 2012; 36:734-47. [PMID: 22339763 DOI: 10.1111/j.1574-6976.2012.00333.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/14/2011] [Accepted: 02/09/2012] [Indexed: 12/31/2022] Open
Abstract
The intracellular protozoan parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a serious disorder that affects millions of people in Latin America. Despite the development of lifelong immunity following infections, the immune system fails to completely clear the parasites, which persist for decades within host tissues. Cardiomyopathy is one of the most serious clinical manifestations of the disease, and a major cause of sudden death in endemic areas. Despite decades of study, there is still debate about the apparent preferential tropism of the parasites for cardiac muscle, and its role in the pathology of the disease. In this review, we discuss these issues in light of recent observations, which indicate that T. cruzi invades host cells by subverting a highly conserved cellular pathway for the repair of plasma membrane lesions. Plasma membrane injury and repair is particularly prevalent in muscle cells, suggesting that the mechanism used by the parasites for cell invasion may be a primary determinant of tissue tropism, intracellular persistence, and Chagas' disease pathology.
Collapse
Affiliation(s)
- Maria Cecilia Fernandes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| | | |
Collapse
|
37
|
Quijano-Hernandez I, Dumonteil E. Advances and challenges towards a vaccine against Chagas disease. HUMAN VACCINES 2011; 7:1184-91. [PMID: 22048121 DOI: 10.4161/hv.7.11.17016] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chagas disease is major public health problem, affecting nearly 10 million people, characterized by cardiac alterations leading to congestive heart failure and death of 20-40% of the patients infected with Trypanosoma cruzi, the protozoan parasite responsible for the disease. A vaccine would be key to improve disease control and we review here the recent advances and challenges of a T. cruzi vaccine. There is a growing consensus that a protective immune response requires the activation of a Th1 immune profile, with the stimulation of CD8 (+) T cells. Several vacines types, including recombinant proteins, DNA and viral vectors, as well as heterologous prime-boost combinations, have been found immunogenic and protective in mouse models, providing proof-of-concept data on the feasibility of a preventive or therapeutic vaccine to control a T. cruzi infection. However, several challenges such as better end-points, safety issues and trial design need to be addressed for further vaccine development to proceed.
Collapse
Affiliation(s)
- Israel Quijano-Hernandez
- Laboratorio de Parasitología, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán, Merida, Mexico
| | | |
Collapse
|
38
|
Arce-Fonseca M, Ramos-Ligonio A, López-Monteón A, Salgado-Jiménez B, Talamás-Rohana P, Rosales-Encina JL. A DNA vaccine encoding for TcSSP4 induces protection against acute and chronic infection in experimental Chagas disease. Int J Biol Sci 2011; 7:1230-8. [PMID: 22110377 PMCID: PMC3221361 DOI: 10.7150/ijbs.7.1230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/12/2022] Open
Abstract
Immunization of mice with plasmids containing genes of Trypanosoma cruzi induces protective immunity in the murine model of Chagas disease. A cDNA clone that codes for an amastigote-specific surface protein (TcSSP4) was used as a candidate to develop a DNA vaccine. Mice were immunized with the recombinant protein rTcSSP4 and with cDNA for TcSSP4, and challenged with bloodstream trypomastigotes. Immunization with rTcSSP4 protein makes mice more susceptible to trypomastigote infection, with high mortality rates, whereas mice immunized with a eukaryotic expression plasmid containing the TcSSP4 cDNA were able to control the acute phase of infection. Heart tissue of gene-vaccinated animals did not show myocarditis and tissue damage at 365 days following infection, as compared with control animals. INF-γ was detected in sera of DNA vaccinated mice shortly after immunization, suggesting the development of a Th1 response. The TcSSP4 gene is a promising candidate for the development of an anti-T. cruzi DNA vaccine.
Collapse
Affiliation(s)
- Minerva Arce-Fonseca
- Departamento de Infectómica y Patogenesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F. 07360, México
| | | | | | | | | | | |
Collapse
|
39
|
Teixeira ARL, Hecht MM, Guimaro MC, Sousa AO, Nitz N. Pathogenesis of chagas' disease: parasite persistence and autoimmunity. Clin Microbiol Rev 2011; 24:592-630. [PMID: 21734249 PMCID: PMC3131057 DOI: 10.1128/cmr.00063-10] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute Trypanosoma cruzi infections can be asymptomatic, but chronically infected individuals can die of Chagas' disease. The transfer of the parasite mitochondrial kinetoplast DNA (kDNA) minicircle to the genome of chagasic patients can explain the pathogenesis of the disease; in cases of Chagas' disease with evident cardiomyopathy, the kDNA minicircles integrate mainly into retrotransposons at several chromosomes, but the minicircles are also detected in coding regions of genes that regulate cell growth, differentiation, and immune responses. An accurate evaluation of the role played by the genotype alterations in the autoimmune rejection of self-tissues in Chagas' disease is achieved with the cross-kingdom chicken model system, which is refractory to T. cruzi infections. The inoculation of T. cruzi into embryonated eggs prior to incubation generates parasite-free chicks, which retain the kDNA minicircle sequence mainly in the macrochromosome coding genes. Crossbreeding transfers the kDNA mutations to the chicken progeny. The kDNA-mutated chickens develop severe cardiomyopathy in adult life and die of heart failure. The phenotyping of the lesions revealed that cytotoxic CD45, CD8(+) γδ, and CD8α(+) T lymphocytes carry out the rejection of the chicken heart. These results suggest that the inflammatory cardiomyopathy of Chagas' disease is a genetically driven autoimmune disease.
Collapse
Affiliation(s)
- Antonio R L Teixeira
- Chagas Disease Multidisciplinary Research Laboratory, University of Brasilia, Federal District, Brazil.
| | | | | | | | | |
Collapse
|
40
|
Añez N, Crisante G, Caraballo F, Delgado W, Parada H. Trypanosoma cruzi persistence at oral inflammatory foci in chronic chagasic patients. Acta Trop 2011; 117:207-11. [PMID: 21215250 DOI: 10.1016/j.actatropica.2010.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 11/04/2010] [Accepted: 12/20/2010] [Indexed: 11/30/2022]
Abstract
The persistence of Trypanosoma cruzi in seropositive individuals, previously diagnosed as chronic chagasic patients (CCP), was detected for the first time in biopsies taken from gingival inflammatory foci processed by polymerase chain reaction (PCR). Seven out of 31 (22.5%) gum samples from selected unquestionably CCP showing different degrees of gingival inflammation revealed T. cruzi-DNA using 3 specific PCR assays. All the included CCP had been diagnosed in previous studies carried out over the last 19 years. Samples of inflamed gums were recently taken from the indicated patients at: an outpatient hospital cardiac unit; a village where Chagas disease is endemic; and a specialized diagnostic research center, showing molecular evidence of parasite persistence in 17.6%, 42.8% and 14.3% of them, respectively. The relatively frequent parasite persistence, demonstrated here in oral inflammatory processes of treated and/or untreated patients bearing long term T. cruzi-infection, suggests the establishment of secondary small foci for the maintenance of hidden or inapparent chagasic infection. The easy and low-risk, non-invasive method to get the sample may add the use of gingival biopsy as a potential alternative diagnostic tool to confirm T. cruzi-infection in CCP. The significance of T. cruzi persistence as a primary cause of chronic Chagas disease and the proposal of this mechanism to explain the pathogenesis in CCP are considered.
Collapse
Affiliation(s)
- Néstor Añez
- Investigaciones Parasitológicas J.F.Torrealba, Universidad de Los Andes, Facultad de Ciencias, Departamento de Biología, Mérida, Venezuela.
| | | | | | | | | |
Collapse
|
41
|
Heart rate variability in chronic Chagas patients before and after treatment with benznidazole. Auton Neurosci 2010; 158:118-22. [DOI: 10.1016/j.autneu.2010.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/29/2010] [Accepted: 05/14/2010] [Indexed: 11/19/2022]
|
42
|
Lasso P, Mesa D, Cuéllar A, Guzmán F, Bolaños N, Rosas F, Velasco V, Thomas MDC, Lopez MC, Gonzalez JM, Puerta CJ. Frequency of specific CD8+ T cells for a promiscuous epitope derived from Trypanosoma cruzi KMP-11 protein in chagasic patients. Parasite Immunol 2010; 32:494-502. [PMID: 20591120 DOI: 10.1111/j.1365-3024.2010.01206.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The K1 peptide is a CD8(+)T cell HLA-A*0201-restricted epitope derived from the Trypanosoma cruzi KMP-11 protein. We have previously shown that this peptide induces IFN-gamma secretion by CD8(+)T cells. The aim of this study was to characterize the frequency of K1-specific CD8(+)T cells in chagasic patients. Nineteen HLA-A2(+)individuals were selected from 50 T. cruzi infected patients using flow cytometry and SSP-PCR assays. Twelve HLA-A*0201(+)noninfected donors were included as controls. Peripheral blood mononuclear cells were stained with HLA-A2-K1 tetramer, showing that 15 of 19 infected patients have K1-specific CD8(+)T cells (0.09-0.34% frequency) without differences in disease stages or severity. Of note, five of these responders were A*0205, A*0222, A*0226, A*0259 and A*0287 after molecular typing. Thus, a phenotypic and functional comparison of K1-specific CD8(+)T cells from non-HLA-A*0201 and HLA-A*0201(+)infected patients was performed. The results showed that both non-HLA-A*0201 and HLA-A*0201(+)individuals have a predominant effector memory CD8(+)T cell phenotype (CCR7-, CD62L-). Moreover, CD8(+)T cells from non-HLA-A*0201 and HLA-A*0201(+)individuals expressed IL-2, IFN-gamma and perforin without any differences. These findings support that K1 peptide is a promiscuous epitope presented by HLA-A2 supertype molecules and is highly recognized by chagasic patients.
Collapse
Affiliation(s)
- P Lasso
- Laboratorio de Parasitología Molecular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Batista AM, Aguiar C, Almeida EA, Guariento ME, Wanderley JS, Costa SCB. Evidence of Chagas disease in seronegative Brazilian patients with megaesophagus. Int J Infect Dis 2010; 14:e974-7. [PMID: 20833571 DOI: 10.1016/j.ijid.2010.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 02/12/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND After 100 years of research, Chagas disease (CD) remains an important public health problem in Latin America. The symptomatic chronic phase is usually characterized by cardiac or digestive involvement and diagnosis currently relies on the measurement of Trypanosoma cruzi-specific antibodies produced in response to the infection. However, the detection of parasite DNA in seronegative persons has been reported. METHODS The prevalence of CD in a population with esophageal disorders was assessed by conventional serology. We also detected T. cruzi DNA in blood samples of seronegative and inconclusive patients by nested polymerase chain reaction (N-PCR). RESULTS The seroprevalence of CD determined by conventional serologic tests (indirect immunofluorescence (IIF) and enzyme-linked immunosorbent assay (ELISA)) was 79% in 513 patients with esophageal disorders. Out of 41 blood samples, N-PCR was positive in 31 (76%) cases for which serology was negative or inconclusive. CONCLUSIONS As all patients presented with clinical signs suggestive of the digestive form of CD and most of them were born in endemic areas, we highlight the importance of improving diagnosis of the disease and the implications for blood bank screening. Our data suggest that N-PCR is effective in the detection of T. cruzi DNA in patients with inconclusive or negative serology, and it may eventually be useful in the determination of the etiology of megaesophagus.
Collapse
Affiliation(s)
- Angelica M Batista
- Universidade Estadual de Campinas - UNICAMP, Faculdade de Ciências Médicas, PO Box 6111, 13083-970 Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Rodrigues WF, Miguel CB, Chica JEL, Napimoga MH. 15d-PGJ(2) modulates acute immune responses to Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2010; 105:137-43. [PMID: 20428671 DOI: 10.1590/s0074-02762010000200005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 03/16/2010] [Indexed: 01/24/2023] Open
Abstract
The acute phase of Trypanosoma cruzi infection is associated with a strong inflammatory reaction in the heart characterised by a massive infiltration of immune cells that is dependent on the T. cruzi strain and the host response. 15d-PGJ(2) belongs to a new class of anti-inflammatory compounds with possible clinical applications. We evaluated the effects of 15d-PGJ(2) administered during the acute phase of T. cruzi infection in mice. Mice were infected with the Colombian strain of T. cruzi and subsequently treated with 15d-PGJ2 repeatedly for seven days. The inflammatory infiltrate was examined by histologic analysis. Slides were immunohistochemically stained to count the number and the relative size of parasite nests. Infection-induced changes in serum cytokine levels were measured by ELISA. The results demonstrated that treatment with 15d-PGJ(2) reduced the inflammatory infiltrate in the skeletal muscle at the site of infection and decreased the number of lymphocytes and neutrophils in the blood. In addition, we found that 15d-PGJ(2) led to a decrease in the relative volume density of amastigote nests in cardiac muscle. T. cruzi-infected animals treated with 15d-PGJ(2) displayed a statistically significant increase in IL-10 levels with no change in IFN-gamma levels. Taken together, we demonstrate that treatment with 15d-PGJ(2) in the acute phase of Chagas disease led to a controlled immune response with decreased numbers of amastigote nests, as measured by the volume density.
Collapse
Affiliation(s)
- Wellington F Rodrigues
- Laboratório de Biopatologia e Biologia Molecular, Universidade de Uberaba, Uberaba, MG, Brasil
| | | | | | | |
Collapse
|
45
|
Caetano LC, Brazão V, Filipin MDV, Santello FH, Toldo MPA, Caldeira JC, do Prado JC. Corticosterone evaluation in Wistar rats infected with the Y strain of Trypanosoma cruzi during the chronic phase. Exp Parasitol 2010; 127:31-5. [PMID: 20599998 DOI: 10.1016/j.exppara.2010.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/02/2010] [Accepted: 06/15/2010] [Indexed: 12/21/2022]
Abstract
Understanding the mechanisms responsible for mediating the effects of stress on Trypanosoma cruzi infection is crucial for determining the full impact of stress on Chagas' disease and for devising effective interventions. Dehydroepiandrosterone (DHEA), a steroid hormone synthesized from pregnenolone, is secreted by the adrenal cortex in response to stress. Although its physiologic role has not been fully defined, DHEA has been shown to modulate immune function. In the present study, we evaluated the levels of corticosterone and the ability of T. cruzi infection to modulate the expression of Th2 cytokines in Wistar rats with chronic Chagas' disease submitted to repetitive stress. The animals submitted to stress displayed enhanced levels of corticosterone as compared to control counterparts. Stress and infection triggered the most elevated concentrations of corticosterone. DHEA significantly reduced corticosterone levels for infected and stressed animals with DHEA. The infected animals displayed enhanced levels of IL-10 and IL-4 as compared to control ones. Stress combined with infection triggered the higher levels of IL-10 and IL-4. DHEA alone and combined with infection and stress significantly increased IL-10 and IL-4 levels. Then, this study might provide additional clues about factors that regulate some of the immunoregulatory aspects of T. cruzi infection and might offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Leony Cristina Caetano
- Laboratório de Parasitologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abad-Franch F, Santos WS, Schofield CJ. Research needs for Chagas disease prevention. Acta Trop 2010; 115:44-54. [PMID: 20227378 DOI: 10.1016/j.actatropica.2010.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/17/2010] [Accepted: 03/05/2010] [Indexed: 11/30/2022]
Abstract
We present an overview of the two main strategies for the primary (vector control) and secondary (patient care) prevention of Chagas disease (CD). We identify major advances, knowledge gaps, and key research needs in both areas. Improved specific chemotherapy, including more practical formulations (e.g., paediatric) or combinations of existing drugs, and a better understanding of pathogenesis, including the relative weights of parasite and host genetic makeup, are clearly needed. Regarding CD vectors, we find that only about 10-20% of published papers on triatomines deal directly with disease control. We pinpoint the pitfalls of the current consensus on triatomine systematics, particularly within the Triatomini, and suggest how some straightforward sampling and analytical strategies would improve research on vector ecology, naturally leading to sounder control-surveillance schemes. We conclude that sustained research on CD prevention is still crucial. In the past, it provided not only the know-how, but also the critical mass of scientists needed to foster and consolidate CD prevention programmes; in the future, both patient care and long-term vector control would nonetheless benefit from more sharply focused, problem-oriented research.
Collapse
Affiliation(s)
- Fernando Abad-Franch
- Instituto Leônidas e Maria Deane-Fiocruz Amazonia, Rua Teresina 476, 69057-070 Manaus, Amazonas, Brazil.
| | | | | |
Collapse
|
47
|
Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 2010; 115:55-68. [PMID: 19900395 DOI: 10.1016/j.actatropica.2009.10.023] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 01/31/2023]
Abstract
A critical review of the development of specific chemotherapeutic approaches for the management of American Trypanosomiasis or Chagas disease is presented, including controversies on the pathogenesis of the disease, the initial efforts that led to the development of currently available drugs (nifurtimox and benznidazole), limitations of these therapies and novel approaches for the development of anti-Trypanosoma cruzi drugs, based on our growing understanding of the biology of this parasite. Among the later, the most promising approaches are ergosterol biosynthesis inhibitors such as posaconazole and ravuconazole, poised to enter clinical trials for chronic Chagas disease in the short term; inhibitors of cruzipain, the main cysteine protease of T. cruzi, essential for its survival and proliferation in vitro and in vivo; bisphosphonates, metabolic stable pyrophosphate analogs that have trypanocidal activity through the inhibition of the parasite's farnesyl-pyrophosphate synthase or hexokinase; inhibitors of trypanothione synthesis and redox metabolism and inhibitors of hypoxanthine-guanine phosphoribosyl-transferase, an essential enzyme for purine salvage in T. cruzi and related organisms. Finally, the economic and political challenges faced by development of drugs for the treatment of neglected tropical diseases, which afflict almost exclusively poor populations in developing countries, are analyzed and recent potential solutions for this conundrum are discussed.
Collapse
|
48
|
Murcia L, Carrilero B, Munoz MJ, Iborra MA, Segovia M. Usefulness of PCR for monitoring benznidazole response in patients with chronic Chagas' disease: a prospective study in a non-disease-endemic country. J Antimicrob Chemother 2010; 65:1759-64. [DOI: 10.1093/jac/dkq201] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
49
|
Abstract
Chagas disease is a chronic, systemic, parasitic infection caused by the protozoan Trypanosoma cruzi, and was discovered in 1909. The disease affects about 8 million people in Latin America, of whom 30-40% either have or will develop cardiomyopathy, digestive megasyndromes, or both. In the past three decades, the control and management of Chagas disease has undergone several improvements. Large-scale vector control programmes and screening of blood donors have reduced disease incidence and prevalence. Although more effective trypanocidal drugs are needed, treatment with benznidazole (or nifurtimox) is reasonably safe and effective, and is now recommended for a widened range of patients. Improved models for risk stratification are available, and certain guided treatments could halt or reverse disease progression. By contrast, some challenges remain: Chagas disease is becoming an emerging health problem in non-endemic areas because of growing population movements; early detection and treatment of asymptomatic individuals are underused; and the potential benefits of novel therapies (eg, implantable cardioverter defibrillators) need assessment in prospective randomised trials.
Collapse
Affiliation(s)
- Anis Rassi
- Division of Cardiology, Anis Rassi Hospital, Goiânia, GO, Brazil.
| | | | | |
Collapse
|
50
|
Rassi A, Rassi A, Marin-Neto JA. Chagas heart disease: pathophysiologic mechanisms, prognostic factors and risk stratification. Mem Inst Oswaldo Cruz 2010; 104 Suppl 1:152-8. [PMID: 19753470 DOI: 10.1590/s0074-02762009000900021] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 05/26/2009] [Indexed: 10/21/2023] Open
Abstract
Chagas heart disease (CHD) results from infection with the protozoan parasite Trypanosoma cruzi and is the leading cause of infectious myocarditis worldwide. It poses a substantial public health burden due to high morbidity and mortality. CHD is also the most serious and frequent manifestation of chronic Chagas disease and appears in 20-40% of infected individuals between 10-30 years after the original acute infection. In recent decades, numerous clinical and experimental investigations have shown that a low-grade but incessant parasitism, along with an accompanying immunological response [either parasite-driven (most likely) or autoimmune-mediated], plays an important role in producing myocardial damage in CHD. At the same time, primary neuronal damage and microvascular dysfunction have been described as ancillary pathogenic mechanisms. Conduction system disturbances, atrial and ventricular arrhythmias, congestive heart failure, systemic and pulmonary thromboembolism and sudden cardiac death are the most common clinical manifestations of chronic Chagas cardiomyopathy. Management of CHD aims to relieve symptoms, identify markers of unfavourable prognosis and treat those individuals at increased risk of disease progression or death. This article reviews the pathophysiology of myocardial damage, discusses the value of current risk stratification models and proposes an algorithm to guide mortality risk assessment and therapeutic decision-making in patients with CHD.
Collapse
Affiliation(s)
- Anis Rassi
- Anis Rassi Hospital, Goiânia, GO, Brasil.
| | | | | |
Collapse
|