1
|
Loh Z, Huan X, Awate S, Schrittwieser M, Renia L, Ren EC. Molecular Characterization of MHC Class I Alpha 1 and 2 Domains in Asian Seabass ( Lates calcarifer). Int J Mol Sci 2022; 23:10688. [PMID: 36142628 PMCID: PMC9500968 DOI: 10.3390/ijms231810688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
The Asian seabass is of importance both as a farmed and wild animal. With the emergence of infectious diseases, there is a need to understand and characterize the immune system. In humans, the highly polymorphic MHC class I (MHC-I) molecules play an important role in antigen presentation for the adaptive immune system. In the present study, we characterized a single MHC-I gene in Asian seabass (Lates calcarifer) by amplifying and sequencing the MHC-I alpha 1 and alpha 2 domains, followed by multi-sequence alignment analyses. The results indicated that the Asian seabass MHC-I α1 and α2 domain sequences showed an overall similarity within Asian seabass and retained the majority of the conserved binding residues of human leukocyte antigen-A2 (HLA-A2). Phylogenetic tree analysis revealed that the sequences belonged to the U lineage. Mapping the conserved binding residue positions on human HLA-A2 and grass carp crystal structure showed a high degree of similarity. In conclusion, the availability of MHC-I α1 and α2 sequences enhances the quality of MHC class I genetic information in Asian seabass, providing new tools to analyze fish immune responses to pathogen infections, and will be applicable in the study of the phylogeny and the evolution of antigen-specific receptors.
Collapse
Affiliation(s)
- Zhixuan Loh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Xuelu Huan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | | | | | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
2
|
Osterman J, Hammenhag C, Ortiz R, Geleta M. Insights Into the Genetic Diversity of Nordic Red Clover ( Trifolium pratense) Revealed by SeqSNP-Based Genic Markers. FRONTIERS IN PLANT SCIENCE 2021; 12:748750. [PMID: 34759943 PMCID: PMC8574770 DOI: 10.3389/fpls.2021.748750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 06/01/2023]
Abstract
Red clover (Trifolium pratense) is one of the most important fodder crops worldwide. The knowledge of genetic diversity among red clover populations, however, is under development. This study provides insights into its genetic diversity, using single nucleotide polymorphism (SNP) markers to define population structure in wild and cultivated red clover. Twenty-nine accessions representing the genetic resources available at NordGen (the Nordic gene bank) and Lantmännen (a Swedish agricultural company with a red clover breeding program) were used for this study. Genotyping was performed via SeqSNP, a targeted genotype by sequencing method that offers the capability to target specific SNP loci and enables de novo discovery of new SNPs. The SNPs were identified through a SNP mining approach based on coding sequences of red clover genes known for their involvement in development and stress responses. After filtering the genotypic data using various criteria, 623 bi-allelic SNPs, including 327 originally targeted and 296 de novo discovered SNPs were used for population genetics analyses. Seventy-one of the SNP loci were under selection considering both Hardy-Weinberg equilibrium and pairwise FST distributions. The average observed heterozygosity (H O ), within population diversity (H S ) and overall diversity (H T ) were 0.22, 0.21 and 0.22, respectively. The tetraploids had higher average H O (0.35) than diploids (0.21). The analysis of molecular variance (AMOVA) showed low but significant variation among accessions (5.4%; P < 0.001), and among diploids and tetraploids (1.08%; P = 0.02). This study revealed a low mean inbreeding coefficient (FIS = -0.04) exhibiting the strict outcrossing nature of red clover. As per cluster, principal coordinate and discriminant analyses, most wild populations were grouped together and were clearly differentiated from the cultivated types. The cultivated types of red clover had a similar level of genetic diversity, suggesting that modern red clover breeding programs did not negatively affect genetic diversity or population structure. Hence, the breeding material used by Lantmännen represents the major genetic resources in Scandinavia. This knowledge of how different types of red clover accessions relate to each other and the level of outcrossing and heterozygosity will be useful for future red clover breeding.
Collapse
|
3
|
Sebastian W, Sukumaran S, Abdul Azeez S, Muraleedharan KR, Dinesh Kumar PK, Zacharia PU, Gopalakrishnan A. Genomic investigations provide insights into the mechanisms of resilience to heterogeneous habitats of the Indian Ocean in a pelagic fish. Sci Rep 2021; 11:20690. [PMID: 34667208 PMCID: PMC8526693 DOI: 10.1038/s41598-021-00129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/05/2021] [Indexed: 11/08/2022] Open
Abstract
The adaptive genetic variation in response to heterogeneous habitats of the Indian Ocean was investigated in the Indian oil sardine using ddRAD sequencing to understand the subpopulation structure, stock complexity, mechanisms of resilience, and vulnerability in the face of climate change. Samples were collected from different ecoregions of the Indian ocean and ddRAD sequencing was carried out. Population genetic analyses revealed that samples from the Gulf of Oman significantly diverged from other Indian Ocean samples. SNP allele-environment correlation revealed the presence of candidate loci correlated with the environmental variables like annual sea surface temperature, chlorophyll-a, and dissolved oxygen concentration which might represent genomic regions allegedly diverging as a result of local adaptation. Larval dispersal modelling along the southwest coast of India indicated a high dispersal rate. The two major subpopulations (Gulf of Oman and Indian) need to be managed regionally to ensure the preservation of genetic diversity, which is crucial for climatic resilience.
Collapse
Affiliation(s)
- Wilson Sebastian
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - Sandhya Sukumaran
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - S Abdul Azeez
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr Salim Ali Road, Post Box No. 1913, Kochi, Kerala, India
| | - K R Muraleedharan
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr Salim Ali Road, Post Box No. 1913, Kochi, Kerala, India
| | - P K Dinesh Kumar
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr Salim Ali Road, Post Box No. 1913, Kochi, Kerala, India
| | - P U Zacharia
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - A Gopalakrishnan
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
4
|
Li X, Liu T, Li A, Zhang L, Dai W, Jin L, Sun K, Feng J. Genetic polymorphisms and the independent evolution of major histocompatibility complex class II‐
DRB
in sibling bat species
Rhinolophus episcopus
and
Rhinolophus siamensis. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Lin Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- Key Laboratory of Vegetation Ecology Ministry of Education Changchun China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- College of Life Science Jilin Agricultural University Changchun China
| |
Collapse
|
5
|
Blume RY, Rabokon’ AM, Postovoitova AS, Demkovich AY, Pirko YV, Yemets AI, Rakhmetov DB, Blume YB. Evaluating the Diversity and Breeding Prospects of Ukrainian Spring Camelina Genotypes. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720050084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Wu Y, Li M, He Z, Dreisigacker S, Wen W, Jin H, Zhai S, Li F, Gao F, Liu J, Wang R, Zhang P, Wan Y, Cao S, Xia X. Development and validation of high-throughput and low-cost STARP assays for genes underpinning economically important traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2431-2450. [PMID: 32451598 DOI: 10.1007/s00122-020-03609-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/13/2020] [Indexed: 05/12/2023]
Abstract
We developed and validated 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for 46 genes of important wheat quality, biotic and abiotic stress resistance, grain yield, and adaptation-related traits for marker-assisted selection in wheat breeding. Development of high-throughput, low-cost, gene-specific molecular markers is important for marker-assisted selection in wheat breeding. In this study, we developed 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for wheat quality, tolerance to biotic and abiotic stresses, grain yield, and adaptation-related traits. The STARP assays were validated by (1) comparison of the assays with corresponding diagnostic STS/CAPS markers on 40 diverse wheat cultivars and (2) characterization of allelic effects based on the phenotypic and genotypic data of three segregating populations and 305 diverse wheat accessions from China and 13 other countries. The STARP assays showed the advantages of high-throughput, accuracy, flexibility, simple assay design, low operational costs, and platform compatibility. The state-of-the-art assays of this study provide a robust and reliable molecular marker toolkit for wheat breeding programs.
Collapse
Affiliation(s)
- Yuying Wu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ming Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Susanne Dreisigacker
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, 201 Dalian Road, Zunyi, 563099, Guizhou, China
| | - Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Street, Harbin, 150086, Heilongjiang, China
| | - Shengnan Zhai
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Faji Li
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Fengmei Gao
- Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Street, Harbin, 150086, Heilongjiang, China
| | - Jindong Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfei Road, Shenzhen, 518120, Guangdong, China
| | - Rongge Wang
- Farm of Seed Production of Gaoyi County, Gaoyi, 051330, Hebei, China
| | - Pingzhi Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, 230001, Anhui, China
| | - Yingxiu Wan
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, 230001, Anhui, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
7
|
Zimmerman SJ, Aldridge CL, Oyler-McCance SJ. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics 2020; 21:382. [PMID: 32487020 PMCID: PMC7268520 DOI: 10.1186/s12864-020-06783-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Use of genomic tools to characterize wildlife populations has increased in recent years. In the past, genetic characterization has been accomplished with more traditional genetic tools (e.g., microsatellites). The explosion of genomic methods and the subsequent creation of large SNP datasets has led to the promise of increased precision in population genetic parameter estimates and identification of demographically and evolutionarily independent groups, as well as questions about the future usefulness of the more traditional genetic tools. At present, few empirical comparisons of population genetic parameters and clustering analyses performed with microsatellites and SNPs have been conducted. RESULTS Here we used microsatellite and SNP data generated from Gunnison sage-grouse (Centrocercus minimus) samples to evaluate concordance of the results obtained from each dataset for common metrics of genetic diversity (HO, HE, FIS, AR) and differentiation (FST, GST, DJost). Additionally, we evaluated clustering of individuals using putatively neutral (SNPs and microsatellites), putatively adaptive, and a combined dataset of putatively neutral and adaptive loci. We took particular interest in the conservation implications of any differences. Generally, we found high concordance between microsatellites and SNPs for HE, FIS, AR, and all differentiation estimates. Although there was strong correlation between metrics from SNPs and microsatellites, the magnitude of the diversity and differentiation metrics were quite different in some cases. Clustering analyses also showed similar patterns, though SNP data was able to cluster individuals into more distinct groups. Importantly, clustering analyses with SNP data suggest strong demographic independence among the six distinct populations of Gunnison sage-grouse with some indication of evolutionary independence in two or three populations; a finding that was not revealed by microsatellite data. CONCLUSION We demonstrate that SNPs have three main advantages over microsatellites: more precise estimates of population-level diversity, higher power to identify groups in clustering methods, and the ability to consider local adaptation. This study adds to a growing body of work comparing the use of SNPs and microsatellites to evaluate genetic diversity and differentiation for a species of conservation concern with relatively high population structure and using the most common method of obtaining SNP genotypes for non-model organisms.
Collapse
Affiliation(s)
- Shawna J Zimmerman
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA.
- Department of Ecosystem Science and Sustainability and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80526, USA.
| | - Cameron L Aldridge
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA
- Department of Ecosystem Science and Sustainability and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80526, USA
| | - Sara J Oyler-McCance
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA
| |
Collapse
|
8
|
Medeiros C, Balsalobre TWA, Carneiro MS. Molecular diversity and genetic structure of Saccharum complex accessions. PLoS One 2020; 15:e0233211. [PMID: 32442233 PMCID: PMC7244124 DOI: 10.1371/journal.pone.0233211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Sugarcane is an important crop for food and energy security, providing sucrose and bioethanol from sugar content and bioelectricity from lignocellulosic bagasse. In order to evaluate the diversity and genetic structure of the Brazilian Panel of Sugarcane Genotypes (BPSG), a core collection composed by 254 accessions of the Saccharum complex, eight TRAP markers anchored in sucrose and lignin metabolism genes were evaluated. A total of 584 polymorphic fragments were identified and used to investigate the genetic structure of BPSG through analysis of molecular variance (AMOVA), principal components analysis (PCA), a Bayesian method using STRUCTURE software, genetic dissimilarity and phylogenetic tree. AMOVA showed a moderate genetic differentiation between ancestors and improved accessions, 0.14, and the molecular variance was higher within populations than among populations, with values of 86%, 95% and 97% when constrasting improved with ancestors, foreign with ancestors and improved with foreign, respectively. The PCA approach suggests clustering in according with evolutionary and Brazilian breeding sugarcane history, since improved accessions from older generations were positioned closer to ancestors than improved accessions from recent generations. This result was also confirmed by STRUCTURE analysis and phylogenetic tree. The Bayesian method was able to separate ancestors of the improved accessions while the phylogenetic tree showed clusters considering the family relatedness within three major clades; the first being composed mainly by ancestors and the other two mainly by improved accessions. This work can contribute to better management of the crosses considering functional regions of the sugarcane genome.
Collapse
Affiliation(s)
- Carolina Medeiros
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, São Paulo, Brasil
| | - Thiago Willian Almeida Balsalobre
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, São Paulo, Brasil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, São Paulo, Brasil
| |
Collapse
|
9
|
Brandies P, Peel E, Hogg CJ, Belov K. The Value of Reference Genomes in the Conservation of Threatened Species. Genes (Basel) 2019; 10:E846. [PMID: 31717707 PMCID: PMC6895880 DOI: 10.3390/genes10110846] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Conservation initiatives are now more crucial than ever-over a million plant and animal species are at risk of extinction over the coming decades. The genetic management of threatened species held in insurance programs is recommended; however, few are taking advantage of the full range of genomic technologies available today. Less than 1% of the 13505 species currently listed as threated by the International Union for Conservation of Nature (IUCN) have a published genome. While there has been much discussion in the literature about the importance of genomics for conservation, there are limited examples of how having a reference genome has changed conservation management practice. The Tasmanian devil (Sarcophilus harrisii), is an endangered Australian marsupial, threatened by an infectious clonal cancer devil facial tumor disease (DFTD). Populations have declined by 80% since the disease was first recorded in 1996. A reference genome for this species was published in 2012 and has been crucial for understanding DFTD and the management of the species in the wild. Here we use the Tasmanian devil as an example of how a reference genome has influenced management actions in the conservation of a species.
Collapse
Affiliation(s)
| | | | | | - Katherine Belov
- School of Life & Environmental Sciences, The University of Sydney, Sydney 2006, Australia; (P.B.); (E.P.); (C.J.H.)
| |
Collapse
|
10
|
Manlik O, Krützen M, Kopps AM, Mann J, Bejder L, Allen SJ, Frère C, Connor RC, Sherwin WB. Is MHC diversity a better marker for conservation than neutral genetic diversity? A case study of two contrasting dolphin populations. Ecol Evol 2019; 9:6986-6998. [PMID: 31380027 PMCID: PMC6662329 DOI: 10.1002/ece3.5265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic diversity is essential for populations to adapt to changing environments. Measures of genetic diversity are often based on selectively neutral markers, such as microsatellites. Genetic diversity to guide conservation management, however, is better reflected by adaptive markers, including genes of the major histocompatibility complex (MHC). Our aim was to assess MHC and neutral genetic diversity in two contrasting bottlenose dolphin (Tursiops aduncus) populations in Western Australia-one apparently viable population with high reproductive output (Shark Bay) and one with lower reproductive output that was forecast to decline (Bunbury). We assessed genetic variation in the two populations by sequencing the MHC class II DQB, which encompasses the functionally important peptide binding regions (PBR). Neutral genetic diversity was assessed by genotyping twenty-three microsatellite loci. We confirmed that MHC is an adaptive marker in both populations. Overall, the Shark Bay population exhibited greater MHC diversity than the Bunbury population-for example, it displayed greater MHC nucleotide diversity. In contrast, the difference in microsatellite diversity between the two populations was comparatively low. Our findings are consistent with the hypothesis that viable populations typically display greater genetic diversity than less viable populations. The results also suggest that MHC variation is more closely associated with population viability than neutral genetic variation. Although the inferences from our findings are limited, because we only compared two populations, our results add to a growing number of studies that highlight the usefulness of MHC as a potentially suitable genetic marker for animal conservation. The Shark Bay population, which carries greater adaptive genetic diversity than the Bunbury population, is thus likely more robust to natural or human-induced changes to the coastal ecosystem it inhabits.
Collapse
Affiliation(s)
- Oliver Manlik
- Biology Department, College of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Michael Krützen
- Department of AnthropologyUniversity of ZurichZurichSwitzerland
| | - Anna M. Kopps
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Janet Mann
- Department of Biology and Department of PsychologyGeorgetown UniversityWashingtonDistrict of Columbia
| | - Lars Bejder
- Marine Mammal Research Program, Hawai'i Institute of Marine BiologyUniversity of Hawai'i at ManoaKaneoheHonolulu
- Aquatic Megafauna Research Unit, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Simon J. Allen
- School of Biological SciencesUniversity of BristolBristolUnited Kingdom
| | - Celine Frère
- Faculty of Science, Health, Education and EngineeringUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | | | - William B. Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Aquatic Megafauna Research Unit, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| |
Collapse
|
11
|
Rocha RG, Magalhães V, López-Bao JV, van der Loo W, Llaneza L, Alvares F, Esteves PJ, Godinho R. Alternated selection mechanisms maintain adaptive diversity in different demographic scenarios of a large carnivore. BMC Evol Biol 2019; 19:90. [PMID: 30975084 PMCID: PMC6460805 DOI: 10.1186/s12862-019-1420-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/04/2019] [Indexed: 01/26/2023] Open
Abstract
Background Different population trajectories are expected to impact the signature of neutral and adaptive processes at multiple levels, challenging the assessment of the relative roles of different microevolutionary forces. Here, we integrate adaptive and neutral variability patterns to disentangle how adaptive diversity is driven under different demographic scenarios within the Iberian wolf (Canis lupus) range. We studied the persistent, the expanding and a small, isolated group within the Iberian wolf population, using 3 MHC class II genes (DRB1, DQA1, and DQB1), which diversity was compared with 39 microsatellite loci. Results Both the persistent and the expanding groups show evidence of balancing selection, revealed by a significant departure from neutrality at MHC loci, significant higher observed and expected heterozygosity and lower differentiation at MHC than at neutral loci, and signs of positive selection. However, despite exhibiting a significantly higher genetic diversity than the isolated group, the persistent group did not show significant excess of MHC heterozygotes. The expanding group, while showing a similar level of genetic diversity than the persistent group, displays by contrast a significant excess of MHC heterozygotes, which is compatible with the heterozygote advantage mechanism. Results are not clear regarding the role of drift and selection in the isolated group due to the small size of this population. Although diversity indices of MHC loci correspond to neutral expectations in the isolated group, accelerated MHC divergence, revealed by a higher differentiation at MHC than neutral loci, may indicate diversifying selection. Conclusion Different selective pressures were observed in the three different demographic scenarios, which are possibly driven by different selection mechanisms to maintain adaptive diversity. Electronic supplementary material The online version of this article (10.1186/s12862-019-1420-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rita G Rocha
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Vanessa Magalhães
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - José V López-Bao
- Research Unit of Biodiversity (UO/CSIC/PA), University of Oviedo, 33600, Mieres, Spain
| | - Wessel van der Loo
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Luis Llaneza
- A.RE.NA, S.L. Asesores en Recursos Naturales S.L., 27003, Lugo, Spain
| | - Francisco Alvares
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Raquel Godinho
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| |
Collapse
|
12
|
Das R, Arora V, Jaiswal S, Iquebal MA, Angadi UB, Fatma S, Singh R, Shil S, Rai A, Kumar D. PolyMorphPredict: A Universal Web-Tool for Rapid Polymorphic Microsatellite Marker Discovery From Whole Genome and Transcriptome Data. FRONTIERS IN PLANT SCIENCE 2019; 9:1966. [PMID: 30687361 PMCID: PMC6337687 DOI: 10.3389/fpls.2018.01966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Microsatellites are ubiquitously distributed, polymorphic repeat sequence valuable for association, selection, population structure and identification. They can be mined by genomic library, probe hybridization and sequencing of selected clones. Such approach has many limitations like biased hybridization and selection of larger repeats. In silico mining of polymorphic markers using data of various genotypes can be rapid and economical. Available tools lack in some or other aspects like: targeted user defined primer generation, polymorphism discovery using multiple sequence, size and number limits of input sequence, no option for primer generation and e-PCR evaluation, transferability, lack of complete automation and user-friendliness. They also lack the provision to evaluate published primers in e-PCR mode to generate additional allelic data using re-sequenced data of various genotypes for judicious utilization of previously generated data. We developed the tool (PolyMorphPredict) using Perl, R, Java and launched at Apache which is available at http://webtom.cabgrid.res.in/polypred/. It mines microsatellite loci and computes primers from genome/transcriptome data of any species. It can perform e-PCR using published primers for polymorphism discovery and across species transferability of microsatellite loci. Present tool has been evaluated using five species of different genome size having 21 genotypes. Though server is equipped with genomic data of three species for test run with gel simulation, but can be used for any species. Further, polymorphism predictability has been validated using in silico and in vitro PCR of four rice genotypes. This tool can accelerate the in silico microsatellite polymorphism discovery in re-sequencing projects of any species of plant and animal for their diversity estimation along with variety/breed identification, population structure, MAS, QTL and gene discovery, traceability, parentage testing, fungal diagnostics and genome finishing.
Collapse
Affiliation(s)
- Ritwika Das
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Vasu Arora
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - MA Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - UB Angadi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Samar Fatma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sandip Shil
- Research Center, ICAR-Central Plantation Crops Research Institute, Jalpaiguri, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
13
|
Elbers JP, Clostio RW, Taylor SS. Neutral Genetic Processes Influence MHC Evolution in Threatened Gopher Tortoises (Gopherus polyphemus). J Hered 2017; 108:515-523. [PMID: 28387863 DOI: 10.1093/jhered/esx034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/04/2017] [Indexed: 11/12/2022] Open
Abstract
Levels of adaptive genetic variation influence how species deal with environmental and ecological change, but these levels are frequently inferred using neutral genetic markers. Major histocompatibility complex (MHC) genes play a key role in the adaptive branch of the immune system and have been used extensively to estimate levels of adaptive genetic variation. Parts of the peptide binding region, sites where MHC molecules directly interact with pathogen and self-proteins, were sequenced from a MHC class I (95/441 tortoises) and class II (245/441 tortoises) gene in threatened and nonthreatened populations of gopher tortoises (Gopherus polyphemus), and adaptive genetic variation at MHC genes was compared to neutral genetic variation derived from 10 microsatellite loci (441 tortoises). Genetic diversity at the MHC class II locus and microsatellites was greater in populations in the nonthreatened portion of the gopher tortoise's range (MHC class II difference in mean A = 8.11, AR = 0.79, HO = 0.51, and HE = 0.16; microsatellite difference in mean A = 1.05 and AR = 0.47). Only MHC class II sequences showed evidence of positive selection (dN/dS > 1, Z = 1.81, P = 0.04). Historical gene flow as estimated with Migrate-N was greater than recent migration estimated with BayesAss, suggesting that populations were better connected in the past when habitat was less fragmented. MHC genetic differentiation was correlated with microsatellite differentiation (Mantel r = 0.431, P = 0.001) suggesting neutral genetic processes are influencing MHC evolution, and advantageous MHC alleles could be lost due to genetic drift.
Collapse
Affiliation(s)
- Jean P Elbers
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Bldg., Baton Rouge, LA 70803; and Department of Biology, University of Louisiana at Lafayette, Lafayette, LA
| | - Rachel W Clostio
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Bldg., Baton Rouge, LA 70803; and Department of Biology, University of Louisiana at Lafayette, Lafayette, LA
| | - Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Bldg., Baton Rouge, LA 70803; and Department of Biology, University of Louisiana at Lafayette, Lafayette, LA
| |
Collapse
|
14
|
Cortázar-Chinarro M, Lattenkamp EZ, Meyer-Lucht Y, Luquet E, Laurila A, Höglund J. Drift, selection, or migration? Processes affecting genetic differentiation and variation along a latitudinal gradient in an amphibian. BMC Evol Biol 2017; 17:189. [PMID: 28806900 PMCID: PMC5557520 DOI: 10.1186/s12862-017-1022-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. RESULTS Using outlier analyses, we identified the MHC II exon 2 (corresponding to the β-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. CONCLUSION Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.
Collapse
Affiliation(s)
- Maria Cortázar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| | - Ella Z Lattenkamp
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Present address: Department of Neurogenetics of Vocal Communication, Max Planck Institute of Psycholinguistics, Box 310, 6500, Nijmegen, Netherlands
| | - Yvonne Meyer-Lucht
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Emilien Luquet
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Present address: Université Claude Bernard - Lyon I, CNRS, UMR 5023 - LEHNA, 3-6, rue Raphaël Dubois - Bâtiments Darwin C and Forel, 69622 Villeurbanne Cedex 43, Boulevard du 11 novembre, 1918, Lyon, France
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|
15
|
Dalton DL, Vermaak E, Smit-Robinson HA, Kotze A. Lack of diversity at innate immunity Toll-like receptor genes in the Critically Endangered White-winged Flufftail (Sarothrura ayresi). Sci Rep 2016; 6:36757. [PMID: 27827442 PMCID: PMC5101489 DOI: 10.1038/srep36757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023] Open
Abstract
The White-winged Flufftail (Sarothrura ayresi) population is listed as globally Critically Endangered. White-winged Flufftails are only known to occur, with any regularity, in the high-altitude wetlands of South Africa and Ethiopia. Threats to the species include the limited number of suitable breeding sites in Ethiopia and severe habitat degradation and loss both in Ethiopia and South Africa. Toll-like receptors (TLRs) are increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune regions of the White-winged Flufftail similar to that observed in other bird species that have undergone population bottlenecks. Low TLR diversity in White-winged Flufftail indicates that this species is more likely to be threatened by changes to the environment that would potentially expose the species to new diseases. Thus, conservation efforts should be directed towards maintaining pristine habitat for White-winged Flufftail in its current distribution range. To date, no studies on immunogenetic variation in White-winged Flufftail have been conducted and to our knowledge, this is the first study of TLR genetic diversity in a critically endangered species.
Collapse
Affiliation(s)
- Desire L. Dalton
- National Zoological Gardens of South Africa, P.O. Box 754, Pretoria, 0001, South Africa
- Genetics Department, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Elaine Vermaak
- National Zoological Gardens of South Africa, P.O. Box 754, Pretoria, 0001, South Africa
| | - Hanneline A. Smit-Robinson
- BirdLife South Africa, Private Bag X5000 Parklands 2121, Gauteng, South Africa
- Applied Behavioural Ecological & Ecosystem Research Unit (ABEERU), UNISA, Private Bag X6, Florida, 1717, South Africa
| | - Antoinette Kotze
- National Zoological Gardens of South Africa, P.O. Box 754, Pretoria, 0001, South Africa
- Genetics Department, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|
16
|
Lasagna E, Ceccobelli S, Di Lorenzo P, Albera A, Filippini F, Sarti FM, Panella F, Di Stasio L. Comparison of Four Italian Beef Cattle Breeds by Means of Functional Genes. ITALIAN JOURNAL OF ANIMAL SCIENCE 2015. [DOI: 10.4081/ijas.2015.3465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Pattern of genetic variation of yellow catfish Pelteobagrus fulvidraco Richardso in Huaihe river and the Yangtze river revealed using mitochondrial DNA control region sequences. Mol Biol Rep 2014; 41:5593-606. [PMID: 25052185 DOI: 10.1007/s11033-014-3251-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 02/08/2014] [Indexed: 10/25/2022]
Abstract
Genetic variability and population genetic structure of the yellow catfish Pelteobagrus fulvidraco Richardso in the Huaihe river and the Yangtze river was examined with a 810-bp of the mitochondrial DNA control region. A total of 70 haplotypes were identified from 145 samples, which were characterized with high haplotype diversity (h = 0.9832 ± 0.0041) but low nucleotide diversity (π = 0.0415 ± 0.0201). The analysis of molecular variance and phylogenetic reconstructions detected significant geographic structure between Huaihe river and Yangtze with FST = 0.1183 (P = 0.0000). Neighbor-joining (NJ) phylogenetic analyses identified two distinct clades (bootstrap support 99 %). The medium joining network drawn using the complete data set was reticulated and also distinctly split the 70 haplotypes into two groups corresponding to those of the NJ tree. Departures from neutrality were not significant for the Huaihe river and the Yangtze river Pelteobagrus fulvidraco, concordant with the observed multimodal mismatch distributions (P > 0.05), which suggested that the effective size of this species has been large and stable for a long period. The question about the existence of significant genetic differentiation for Pelteobagrus fulvidraco in the Yangtze river and Huaihe river basins remains to be further studied with molecular nuclear markers and larger sample sizes from throughout the river basins.
Collapse
|
18
|
Younis A, Hwang YJ, Lim KB. Classical vs. Modern Genetic and Breeding Approaches for Lily (Lilium) Crop Improvement: A Review. ACTA ACUST UNITED AC 2014. [DOI: 10.11623/frj.2014.22.2.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Villellas J, Berjano R, Terrab A, García MB. Divergence between phenotypic and genetic variation within populations of a common herb across Europe. Ecosphere 2014. [DOI: 10.1890/es13-00291.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Omondi BA, van den Berg J, Masiga D, Schulthess F. Molecular markers reveal narrow genetic base and culturing-associated genetic drift in Teretrius nigrescens Lewis populations released for the biological control of the larger grain borer in Africa. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:143-154. [PMID: 24308303 DOI: 10.1017/s0007485313000552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In biological control, successful establishment of a natural enemy species depends on its adaptability in the introduced range including its ability to re-establish desired ecological interactions with the pest. These are affected by genetic parameters hitherto largely unresolved in biological control. The larger grain borer (LGB), Prostephanus truncatus, an invasive species from meso-America, is the most important post-harvest pest of maize in Africa. We studied the genetic structure of Teretrius nigrescens, a predatory beetle previously released for the control of the pest in Africa, to test the hypothesis that establishment patterns were a result of ecotype-environment mismatch and to follow up on our earlier reports of distinct lineages of the predator. We studied 13 populations of T. nigrescens, using 16 polymorphic microsatellite markers. Five genetic populations with a hierarchical structure and significant isolation by distance were detected. The most diverse population was found in southern Mexico, consistent with earlier lineage coexistence observations. Populations introduced to Africa maintained genetic similarity to local geographic populations of their area of origin. The more successful Benin releases were also more genetically diverse. Loss of rare alleles and a higher frequency of existing private alleles in some populations indicated population expansions following bottleneck events. Sustainable biological control should accommodate pest and natural enemy species, and monitor genetic changes associated with introduction and release.
Collapse
Affiliation(s)
- B A Omondi
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - J van den Berg
- School of Environmental Sciences and Development, North West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - D Masiga
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - F Schulthess
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
21
|
Conserving marine biodiversity: insights from life-history trait candidate genes in Atlantic cod (Gadus morhua). CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0532-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Johnston SE, Lindqvist M, Niemelä E, Orell P, Erkinaro J, Kent MP, Lien S, Vähä JP, Vasemägi A, Primmer CR. Fish scales and SNP chips: SNP genotyping and allele frequency estimation in individual and pooled DNA from historical samples of Atlantic salmon (Salmo salar). BMC Genomics 2013; 14:439. [PMID: 23819691 PMCID: PMC3716687 DOI: 10.1186/1471-2164-14-439] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/18/2013] [Indexed: 12/02/2022] Open
Abstract
Background DNA extracted from historical samples is an important resource for understanding genetic consequences of anthropogenic influences and long-term environmental change. However, such samples generally yield DNA of a lower amount and quality, and the extent to which DNA degradation affects SNP genotyping success and allele frequency estimation is not well understood. We conducted high density SNP genotyping and allele frequency estimation in both individual DNA samples and pooled DNA samples extracted from dried Atlantic salmon (Salmo salar) scales stored at room temperature for up to 35 years, and assessed genotyping success, repeatability and accuracy of allele frequency estimation using a high density SNP genotyping array. Results In individual DNA samples, genotyping success and repeatability was very high (> 0.973 and > 0.998, respectively) in samples stored for up to 35 years; both increased with the proportion of DNA of fragment size > 1000 bp. In pooled DNA samples, allele frequency estimation was highly repeatable (Repeatability = 0.986) and highly correlated with empirical allele frequency measures (Mean Adjusted R2 = 0.991); allele frequency could be accurately estimated in > 95% of pooled DNA samples with a reference group of at least 30 individuals. SNPs located in polyploid regions of the genome were more sensitive to DNA degradation: older samples had lower genotyping success at these loci, and a larger reference panel of individuals was required to accurately estimate allele frequencies. Conclusions SNP genotyping was highly successful in degraded DNA samples, paving the way for the use of degraded samples in SNP genotyping projects. DNA pooling provides the potential for large scale population genetic studies with fewer assays, provided enough reference individuals are also genotyped and DNA quality is properly assessed beforehand. We provide recommendations for future studies intending to conduct high-throughput SNP genotyping and allele frequency estimation in historical samples.
Collapse
|
23
|
MHC II DRB variation and trans-species polymorphism in the golden snub-nosed monkey (Rhinopithecus roxellana). CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-5713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Víquez-Zamora M, Vosman B, van de Geest H, Bovy A, Visser RGF, Finkers R, van Heusden AW. Tomato breeding in the genomics era: insights from a SNP array. BMC Genomics 2013; 14:354. [PMID: 23711327 PMCID: PMC3680325 DOI: 10.1186/1471-2164-14-354] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/20/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The major bottle neck in genetic and linkage studies in tomato has been the lack of a sufficient number of molecular markers. This has radically changed with the application of next generation sequencing and high throughput genotyping. A set of 6000 SNPs was identified and 5528 of them were used to evaluate tomato germplasm at the level of species, varieties and segregating populations. RESULTS From the 5528 SNPs, 1980 originated from 454-sequencing, 3495 from Illumina Solexa sequencing and 53 were additional known markers. Genotyping different tomato samples allowed the evaluation of the level of heterozygosity and introgressions among commercial varieties. Cherry tomatoes were especially different from round/beefs in chromosomes 4, 5 and 12. We were able to identify a set of 750 unique markers distinguishing S. lycopersicum 'Moneymaker' from all its distantly related wild relatives. Clustering and neighbour joining analysis among varieties and species showed expected grouping patterns, with S. pimpinellifolium as the most closely related to commercial tomatoes earlier results. CONCLUSIONS Our results show that a SNP search in only a few breeding lines already provides generally applicable markers in tomato and its wild relatives. It also shows that the Illumina bead array generated data are highly reproducible. Our SNPs can roughly be divided in two categories: SNPs of which both forms are present in the wild relatives and in domesticated tomatoes (originating from common ancestors) and SNPs unique for the domesticated tomato (originating from after the domestication event). The SNPs can be used for genotyping, identification of varieties, comparison of genetic and physical linkage maps and to confirm (phylogenetic) relations. In the SNPs used for the array there is hardly any overlap with the SolCAP array and it is strongly recommended to combine both SNP sets and to select a core collection of robust SNPs completely covering the entire tomato genome.
Collapse
Affiliation(s)
- Marcela Víquez-Zamora
- Wageningen UR Plant Breeding, P.O. Box 16, AJ, Wageningen, 6700, The Netherlands
- Centre for Biosystems Genomics, P.O. Box 98, AB, Wageningen, 6700, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen Campus, PB Wageningen, 6807, The Netherlands
| | - Ben Vosman
- Wageningen UR Plant Breeding, P.O. Box 16, AJ, Wageningen, 6700, The Netherlands
- Centre for Biosystems Genomics, P.O. Box 98, AB, Wageningen, 6700, The Netherlands
| | - Henri van de Geest
- Centre for Biosystems Genomics, P.O. Box 98, AB, Wageningen, 6700, The Netherlands
- Bioscience, Plant Research International, P.O. Box 619, AP Wageningen, 6700, The Netherlands
| | - Arnaud Bovy
- Wageningen UR Plant Breeding, P.O. Box 16, AJ, Wageningen, 6700, The Netherlands
- Centre for Biosystems Genomics, P.O. Box 98, AB, Wageningen, 6700, The Netherlands
| | - Richard GF Visser
- Wageningen UR Plant Breeding, P.O. Box 16, AJ, Wageningen, 6700, The Netherlands
- Centre for Biosystems Genomics, P.O. Box 98, AB, Wageningen, 6700, The Netherlands
| | - Richard Finkers
- Wageningen UR Plant Breeding, P.O. Box 16, AJ, Wageningen, 6700, The Netherlands
- Centre for Biosystems Genomics, P.O. Box 98, AB, Wageningen, 6700, The Netherlands
| | - Adriaan W van Heusden
- Wageningen UR Plant Breeding, P.O. Box 16, AJ, Wageningen, 6700, The Netherlands
- Centre for Biosystems Genomics, P.O. Box 98, AB, Wageningen, 6700, The Netherlands
| |
Collapse
|
25
|
Monteiro F, Romeiras MM, Batista D, Duarte MC. Biodiversity Assessment of Sugar Beet Species and Its Wild Relatives: Linking Ecological Data with New Genetic Approaches. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.48a003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Kamath PL, Getz WM. Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga) populations. PLoS One 2012; 7:e50971. [PMID: 23251409 PMCID: PMC3522668 DOI: 10.1371/journal.pone.0050971] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC), play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga) populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.
Collapse
Affiliation(s)
- Pauline L Kamath
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, United States of America.
| | | |
Collapse
|
27
|
Moura AE, Natoli A, Rogan E, Hoelzel AR. Evolution of Functional Genes in Cetaceans Driven by Natural Selection on a Phylogenetic and Population Level. Evol Biol 2012. [DOI: 10.1007/s11692-012-9215-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Nie C, Zhao J, Li Y, Wu X. Diversity and selection of MHC class IIb gene exon3 in Chinese alligator. Mol Biol Rep 2012; 40:295-301. [PMID: 23065218 DOI: 10.1007/s11033-012-2061-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 10/03/2012] [Indexed: 12/01/2022]
Abstract
Our study used MHC class IIb gene exon3 complete sequence as markers to investigate genetic variability, selection and population differentiation in Chinese alligator. In this study, 282 bp MHC IIb exon3 complete sequence was got, none of the sequences contained insertions/deletions or stop codons, suggesting that all sequences might come from functional molecules in the genome. The neighbor-joining (NJ) tree revealed that Xuangzhou and Changxing populations were genetically close related, while Wild population showed the most diverse from the other. Gene flow (Nm) was very higher than one, suggesting that inter-group gene flow may have occurred. Furthermore, the results showed that MHC IIb gene might be a good molecular marker, we think that this technology could be used for Chinese alligator breeding and releasing in future.
Collapse
Affiliation(s)
- Chuanpeng Nie
- College of Life Sciences, Institute of Traditional Chinese Medicine Resources, Anhui Normal University, Wuhu 241000, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Taylor SS, Jenkins DA, Arcese P. Loss of MHC and neutral variation in Peary caribou: genetic drift is not mitigated by balancing selection or exacerbated by MHC allele distributions. PLoS One 2012; 7:e36748. [PMID: 22655029 PMCID: PMC3360046 DOI: 10.1371/journal.pone.0036748] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/09/2012] [Indexed: 11/18/2022] Open
Abstract
Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks.
Collapse
Affiliation(s)
- Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, Louisiana, United States of America.
| | | | | |
Collapse
|
30
|
Assessment of genetic diversity in Zingiberaceae through nucleotide binding site-based motif-directed profiling. Biochem Genet 2012; 50:642-56. [PMID: 22573136 DOI: 10.1007/s10528-012-9507-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 01/09/2012] [Indexed: 10/28/2022]
Abstract
Functional motif-directed profiling was performed with 15 nucleotide binding site (NBS) primer-enzyme combinations to identify and elucidate the phylogenetic relationships among 15 genotypes of the family Zingiberaceae. We retrieved 167 polymorphic bands (24.85 %), with an average of 11.13 bands per primer. Mean polymorphism rates were detected using MseI (26 %), RsaI (21 %), and AluI (28 %) as restriction enzymes. The polymorphism information content (PIC) for each NBS primer-enzyme combination ranged from 0.48 to 0.76 with a mean value of 0.65. The 38 NBS profiling markers had PIC values ranging from 0.3 to 0.6 and exhibited good power to discriminate between genotypes. Comparison of NBS profiling with microsatellite data for the same set of genotypes exhibited a correlation value of 0.78, P ≤ 0.001. Our study suggests that genetic variability assessment could be more efficient if it targeted genes that exhibit functionally relevant variation, rather than random markers.
Collapse
|
31
|
Ploshnitsa AI, Goltsman ME, Macdonald DW, Kennedy LJ, Sommer S. Impact of historical founder effects and a recent bottleneck on MHC variability in Commander Arctic foxes (Vulpes lagopus). Ecol Evol 2012; 2:165-80. [PMID: 22408734 PMCID: PMC3297186 DOI: 10.1002/ece3.42] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 11/11/2022] Open
Abstract
Populations of Arctic foxes (Vulpes lagopus) have been isolated on two of the Commander Islands (Bering and Mednyi) from the circumpolar distributed mainland population since the Pleistocene. In 1970-1980, an epizootic outbreak of mange caused a severe population decline on Mednyi Island. Genes of the major histocompatibility complex (MHC) play a primary role in infectious disease resistance. The main objectives of our study were to compare contemporary variation of MHC class II in mainland and island Arctic foxes, and to document the effects of the isolation and the recent bottleneck on MHC polymorphism by analyzing samples from historical and contemporary Arctic foxes. In 184 individuals, we found 25 unique MHC class II DRB and DQB alleles, and identified evidence of balancing selection maintaining allelic lineages over time at both loci. Twenty different MHC alleles were observed in mainland foxes and eight in Bering Island foxes. The historical Mednyi population contained five alleles and all contemporary individuals were monomorphic at both DRB and DQB. Our data indicate that despite positive and diversifying selection leading to elevated rates of amino acid replacement in functionally important antigen-binding sites, below a certain population size, balancing selection may not be strong enough to maintain genetic diversity in functionally important genes. This may have important fitness consequences and might explain the high pathogen susceptibility in some island populations. This is the first study that compares MHC diversity before and after a bottleneck in a wild canid population using DNA from museum samples.
Collapse
|
32
|
Lee SI, Park KC, Song YS, Son JH, Kwon SJ, Na JK, Kim JH, Kim NS. Development of expressed sequence tag derived-simple sequence repeats in the genus Lilium. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0203-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
33
|
Population genetic structure of Tunisian Hypericum humifusum assessed by RAPD markers. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0106-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Pollegioni P, Van der Linden G, Belisario A, Gras M, Anselmi N, Olimpieri I, Luongo L, Santini A, Turco E, Scarascia Mugnozza G, Malvolti ME. Mechanisms governing the responses to anthracnose pathogen in Juglans spp. J Biotechnol 2011; 159:251-64. [PMID: 21884735 DOI: 10.1016/j.jbiotec.2011.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 07/28/2011] [Accepted: 08/08/2011] [Indexed: 11/24/2022]
Abstract
Juglans nigra and Juglans regia are two highly economically important species for wood and fruit production that are susceptible to anthracnose caused by Gnomonia leptostyla. The identification of genotypes resistant to anthracnose could represent a valid alternative to agronomic and chemical management. In this study, we analyzed 72 walnut genotypes that showed a variety of resistance phenotypes in response to natural infection. According to the disease severity rating and microsatellite fingerprinting analysis, these genotypes were divided into three main groups: (40) J. nigra resistant, (1) J. nigra susceptible, and (31) J. regia susceptible. Data on leaf emergence rates and analysis of in vivo pathogenicity indicated that the incidence of anthracnose disease in the field might be partially conditioned by two key factors: the age and/or availability of susceptible leaves during the primary infection of fungus (avoidance by late flushing) and partial host resistance. NBS profiling approach, based on PCR amplification with an adapter primer for an adapter matching a restriction enzyme site and a degenerate primer targeting the conserved motifs present in the NBS domain of NBS-LRR genes, was applied. The results revealed the presence of a candidate marker that correlated to a reduction in anthracnose incidence in 72 walnut genotypes.
Collapse
Affiliation(s)
- P Pollegioni
- C.N.R. - Institute of Agro-environmental and Forest Biology, Viale Marconi 2, 05010 Porano, Terni, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
[Genetic structure and variation of Glyptothorax laosensis of the Lancang River based on cytochrome b]. YI CHUAN = HEREDITAS 2011; 33:255-61. [PMID: 21402534 DOI: 10.3724/sp.j.1005.2011.00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The hillstream catfish, Glyptothorax laosensis, is endemic to basin of Lancang River (also known as Mekong River). Genetic variation was detected within and among 8 populations of G. laosensis in Lancang River based on mitochondrial cytochrome b sequences. A total 16 nucleotides sites were detected in 1 138 bp fragment, which defined 15 haplotypes from 129 sequences. The variation level was very low, with mean h=0.299 and π=0.00032, respectively, and no variation was detected in some populations. Hierarchical analysis of molecular variance (AMOVA) showed no significant genetic structuring among populations. The unimodel mismatch distribution of pairwise haplotype difference and the negatively selective neutrality test (Tajima's D=2.3696, P<0.02; Fu's Fs=20.975, P<0.05) suggested that a recent population expansion had occurred.
Collapse
|
36
|
Sayar-Turet M, Dreisigacker S, Braun HJ, Hede A, MacCormack R, Boyd LA. Genetic variation within and between winter wheat genotypes from Turkey, Kazakhstan, and Europe as determined by nucleotide-binding-site profiling. Genome 2011; 54:419-30. [PMID: 21534722 DOI: 10.1139/g11-008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic diversity within wheat breeding programs across Turkey and Kazakhstan was compared with a selection of European cultivars that represented the genetic diversity across eight European countries and six decades of wheat breeding. To focus the measure of genetic diversity on that relevant to disease-resistant phenotypes, nucleotide-binding-site (NBS) profiling was used to detect polymorphisms associated with the NBS motifs found within the NBS--leucine-rich repeat (LRR) class of resistance (R) genes. Cereal-specific NBS primers, designed specifically to the conserved NBS motifs found within cereal R-genes, provided distinct NBS profiles. Although the genetic diversity associated with NBS motifs was only slightly higher within the Eastern wheat genotypes, the NBS profiles produced by Eastern and European wheat lines differed considerably. Structure analysis divided the wheat genotypes into four groups, which compared well with the origin of the wheat genotypes. The highest levels of genetic diversity were seen for the wheat genotypes from the Genetic Resource Collection held in Ankara, Turkey, as wheat genotypes within breeding programs were genetically more similar. The wheat genotypes from Kazakhstan were the most similar to the European cultivars, reflecting the significant number of eastern European cultivars used in the breeding program in Kazakhstan. In general, the NBS profiles suggested that NBS-LRR R-gene usage in winter wheat breeding in Turkey and Kazakhstan differed from that deployed in European cultivars.
Collapse
Affiliation(s)
- Muge Sayar-Turet
- Bogazici University, Department of Molecular Biology and Genetics, 34342, Bebek-Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
37
|
Utility of microsatellites and mitochondrial DNA for species delimitation in the spruce budworm (Choristoneura fumiferana) species complex (Lepidoptera: Tortricidae). Mol Phylogenet Evol 2011; 58:232-43. [DOI: 10.1016/j.ympev.2010.11.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 11/16/2010] [Accepted: 11/28/2010] [Indexed: 10/18/2022]
|
38
|
Clotault J, Geoffriau E, Lionneton E, Briard M, Peltier D. Carotenoid biosynthesis genes provide evidence of geographical subdivision and extensive linkage disequilibrium in the carrot. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:659-72. [PMID: 20411232 DOI: 10.1007/s00122-010-1338-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 04/03/2010] [Indexed: 05/15/2023]
Abstract
According to the history of the cultivated carrot, root colour can be considered as a structural factor of carrot germplasm. Therefore, molecular variations of carotenoid biosynthesis genes, these being involved in colour traits, represent a good putative source of polymorphism related to diversity structure. Seven candidate genes involved in the carotenoid biosynthesis pathway have been analysed from a sample of 48 individual plants, each one from a different cultivar of carrot (Daucus carota L. ssp. sativus). The cultivars were chosen to represent a large diversity and a wide range of root colour. A high single nucleotide polymorphism (SNP) frequency of 1 SNP per 22 bp (mean pi (sil) = 0.020) was found on average within these genes. The analysis of genetic structure from carotenoid biosynthesis gene sequences and 17 putatively neutral microsatellites showed moderate genetic differentiation between cultivars originating from the West and the East (F (ST) = 0.072), this being consistent with breeding history, but not previously evidenced by molecular tools. Surprisingly, carotenoid biosynthesis genes did not exhibit decay of LD (mean r (2) = 0.635) within the 700-1,000 bp analysed, even though a fast decay level of LD is expected in outcrossing species. The high level of intralocus LD found for carotenoid biosynthesis genes implies that candidate-gene association mapping for carrot root colour should be useful to validate gene function, but may be unable to identify precisely the causative variations involved in trait determinism. Finally this study affords the first molecular evidence of a genetic structure in cultivated carrot germplasm related to phylogeography.
Collapse
Affiliation(s)
- Jérémy Clotault
- Agrocampus Ouest, INHP, IFR 149 Quasav, UMR 1259 GenHort, 2 Rue Le Nôtre, 49045, Angers, France
| | | | | | | | | |
Collapse
|
39
|
Xu S, Ren W, Zhou X, Zhou K, Yang G. Sequence polymorphism and geographical variation at a positively selected MHC-DRB gene in the finless porpoise (Neophocaena phocaenoides): implication for recent differentiation of the Yangtze finless porpoise? J Mol Evol 2010; 71:6-22. [PMID: 20563867 DOI: 10.1007/s00239-010-9357-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 06/01/2010] [Indexed: 01/03/2023]
Abstract
Sequence polymorphism at the MHC class II DRB locus was investigated in three finless porpoise (Neophocaena phocaenoides) populations in Chinese waters. Intragenic recombination and strong positive selection were the main forces in generating sequence diversity in the DRB gene. MHC sequence diversity changed significantly along the study period. Significant decrease in heterozygosity and lost alleles have been detected in the Yangtze River population and South China Sea population since 1990. Furthermore, there is a trend of increasing population differentiation over time. Especially, the genetic differentiation between the Yangtze River population and the Yellow Sea population was very low prior to 1990 (F (ST) = 0.036, P = 0.009), but became very significant after 1990 (F (ST) = 0.134, P < 0.001), suggesting a recent augmentation of genetic differentiation between both populations probably in a relatively short-term period. Porpoises from the Yangtze River displayed divergent frequencies of shared and private alleles from those displayed by two marine populations, which suggest that the former riverine population has been under a different selection regime (characteristic of a fresh water environment) than that of its marine counterparts.
Collapse
Affiliation(s)
- Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | | | | | | | | |
Collapse
|
40
|
Reusch TBH, Bolte S, Sparwel M, Moss AG, Javidpour J. Microsatellites reveal origin and genetic diversity of Eurasian invasions by one of the world's most notorious marine invader, Mnemiopsis leidyi (Ctenophora). Mol Ecol 2010; 19:2690-9. [PMID: 20561193 DOI: 10.1111/j.1365-294x.2010.04701.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Marine invasions are taking place at an increasing rate. When occurring in blooms, zooplanktivorous comb jellies of the genus Mnemiopsis are able to cause pelagic regime shifts in coastal areas and may cause the collapse of commercially important fish populations. Using microsatellites, developed for the first time in the phylum Ctenophora, we show that Mnemiopsis leidyi has colonized Eurasia from two source regions. Our preliminary data set included four sites within the putative source region (US East Coast and Gulf of Mexico) and 10 invaded locations in Eurasian waters. Bayesian clustering and phylogeographic approaches revealed the origin of earlier invasions of the Black and Caspian Sea in the 1980s/1990s within or close to the Gulf of Mexico, while the 2006 invasion of the North and Baltic Seas can be directly traced to New England (pairwise F(ST) = 0). We found no evidence for mixing among both gene pools in the invaded areas. While the genetic diversity (allelic richness) remained similar in the Baltic Sea compared to the source region New England, it was reduced in the North Sea, supporting the view of an initial invasion of Northern Europe to a Baltic Sea port. In Black and Caspian Sea samples, we found a gradual decline in allelic richness compared to the Gulf of Mexico region, supporting a stepping-stone model of colonization with two sequential genetic founder events. Our data also suggest that current practices of ballast water treatment are insufficient to prevent repeated invasions of gelatinous zooplankton.
Collapse
Affiliation(s)
- Thorsten B H Reusch
- Leibniz-Institute of Marine Sciences (IFM-GEOMAR), Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| | | | | | | | | |
Collapse
|
41
|
Sun H, Lee OR, Kim YJ, Jeong SK, In JG, Kwon WS, Kim SY, Yang DC. Identification of 'Chunpoong' among Panax ginseng Cultivars Using Real Time PCR and SNP Marker. J Ginseng Res 2010. [DOI: 10.5142/jgr.2010.34.1.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Ciampi MB, Gale LR, de Macedo Lemos EG, Ceresini PC. Distinctively variable sequence-based nuclear DNA markers for multilocus phylogeography of the soybean- and rice-infecting fungal pathogen Rhizoctonia solani AG-1 IA. Genet Mol Biol 2009; 32:840-6. [PMID: 21637462 PMCID: PMC3036909 DOI: 10.1590/s1415-47572009005000063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 05/13/2009] [Indexed: 11/22/2022] Open
Abstract
A series of multilocus sequence-based nuclear DNA markers was developed to infer the phylogeographical history of the Basidiomycetous fungal pathogen Rhizoctonia solani AG-1 IA infecting rice and soybean worldwide. The strategy was based on sequencing of cloned genomic DNA fragments (previously used as RFLP probes) and subsequent screening of fungal isolates to detect single nucleotide polymorphisms (SNPs). Ten primer pairs were designed based on these sequences, which resulted in PCR amplification of 200-320 bp size products and polymorphic sequences in all markers analyzed. By direct sequencing we identified both homokaryon and heterokaryon (i.e. dikaryon) isolates at each marker. Cloning the PCR products effectively estimated the allelic phase from heterokaryotic isolates. Information content varied among markers from 0.5 to 5.9 mutations per 100 bp. Thus, the former RFLP codominant probes were successfully converted into six distinctively variable sequence-based nuclear DNA markers. Rather than discarding low polymorphism loci, the combination of these distinctively variable anonymous nuclear markers would constitute an asset for the unbiased estimate of the phylogeographical parameters such as population sizes and divergent times, providing a more reliable species history that shaped the current population structure of R. solani AG-1 IA.
Collapse
Affiliation(s)
- Maisa B Ciampi
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Campus de Jaboticabal, Jaboticabal, SP Brazil
| | | | | | | |
Collapse
|
43
|
Evans ML, Neff BD, Heath DD. MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha). Heredity (Edinb) 2009; 104:449-59. [PMID: 19773808 DOI: 10.1038/hdy.2009.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G'(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G'(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels.
Collapse
Affiliation(s)
- M L Evans
- Department of Biology, University of Western Ontario, Ontario, Canada
| | | | | |
Collapse
|
44
|
NIELSEN EINARE, HEMMER-HANSEN JAKOB, LARSEN PETERFOGED, BEKKEVOLD DORTE. Population genomics of marine fishes: identifying adaptive variation in space and time. Mol Ecol 2009; 18:3128-50. [DOI: 10.1111/j.1365-294x.2009.04272.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Wu SB, Wirthensohn MG, Hunt P, Gibson JP, Sedgley M. High resolution melting analysis of almond SNPs derived from ESTs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 118:1-14. [PMID: 18781291 DOI: 10.1007/s00122-008-0870-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 08/15/2008] [Indexed: 05/22/2023]
Abstract
High resolution melting curve (HRM) is a recent advance for the detection of SNPs. The technique measures temperature induced strand separation of short PCR amplicons, and is able to detect variation as small as one base difference between samples. It has been applied to the analysis and scan of mutations in the genes causing human diseases. In plant species, the use of this approach is limited. We applied HRM analysis to almond SNP discovery and genotyping based on the predicted SNP information derived from the almond and peach EST database. Putative SNPs were screened from almond and peach EST contigs by HRM analysis against 25 almond cultivars. All 4 classes of SNPs, INDELs and microsatellites were discriminated, and the HRM profiles of 17 amplicons were established. The PCR amplicons containing single, double and multiple SNPs produced distinctive HRM profiles. Additionally, different genotypes of INDEL and microsatellite variations were also characterised by HRM analysis. By sequencing the PCR products, 100 SNPs were validated/revealed in the HRM amplicons and their flanking regions. The results showed that the average frequency of SNPs was 1:114 bp in the genic regions, and transition to transversion ratio was 1.16:1. Rare allele frequencies of the SNPs varied from 0.02 to 0.5, and the polymorphic information contents of the SNPs were from 0.04 to 0.53 at an average of 0.31. HRM has been demonstrated to be a fast, low cost, and efficient approach for SNP discovery and genotyping, in particular, for species without much genomic information such as almond.
Collapse
Affiliation(s)
- Shu-Biao Wu
- School of Environmental and Rural Science and The Institute of Genetics and Bioinformatics, The University of New England, Armidale, NSW, 2351, Australia.
| | | | | | | | | |
Collapse
|
46
|
Johnson MS, Black R. Adaptive responses of independent traits to the same environmental gradient in the intertidal snail Bembicium vittatum. Heredity (Edinb) 2008; 101:83-91. [PMID: 18461084 DOI: 10.1038/hdy.2008.33] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The snail Bembicium vittatum occupies a wide range of intertidal habitats in the Houtman Abrolhos Islands, Western Australia. Allozyme variation reflects patterns of connectivity, which are independent of local habitat. In contrast, heritable differences in shell shape among 83 shore sites vary with habitat, indicating local adaptation. Here we examine dimorphisms of colour and spotting of the shell in the same populations, as a test of consistency and complexity of patterns of local adaptation. Within populations, the frequency of spotted shells is higher in dark shells. Despite this association, spatial variations of colour and spotting are only weakly correlated. As predicted for traits associated with local adaptation, subdivision is greater for colour, spotting and shape than for allozymes. Colour and shape are associated with local habitat, such that populations on vertical shores have higher frequencies of dark and relatively flatter shells than those on gently sloping shores. These associations are repeatable between three separate groups of islands. Spotting shows a weaker, but significant association with the same gradient. Although shape does not differ between colour morphs within populations, the proportion of dark shells is strongly associated with shape. Thus, the independent shell traits are apparently adapted to a common, biologically significant gradient, even though the adaptive mechanisms probably differ for colour and shape. The parallel variations of independent traits highlight both the complexity of local adaptation and the potential to reveal evolutionarily significant environmental contrasts by examining adaptively relevant traits.
Collapse
Affiliation(s)
- M S Johnson
- School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia.
| | | |
Collapse
|
47
|
Reusch TBH, Veron AS, Preuss C, Weiner J, Wissler L, Beck A, Klages S, Kube M, Reinhardt R, Bornberg-Bauer E. Comparative analysis of expressed sequence tag (EST) libraries in the seagrass Zostera marina subjected to temperature stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:297-309. [PMID: 18239962 PMCID: PMC2757623 DOI: 10.1007/s10126-007-9065-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 10/27/2007] [Accepted: 11/01/2007] [Indexed: 05/20/2023]
Abstract
Global warming is associated with increasing stress and mortality on temperate seagrass beds, in particular during periods of high sea surface temperatures during summer months, adding to existing anthropogenic impacts, such as eutrophication and habitat destruction. We compare several expressed sequence tag (EST) in the ecologically important seagrass Zostera marina (eelgrass) to elucidate the molecular genetic basis of adaptation to environmental extremes. We compared the tentative unigene (TUG) frequencies of libraries derived from leaf and meristematic tissue from a control situation with two experimentally imposed temperature stress conditions and found that TUG composition is markedly different among these conditions (all P < 0.0001). Under heat stress, we find that 63 TUGs are differentially expressed (d.e.) at 25 degrees C compared with lower, no-stress condition temperatures (4 degrees C and 17 degrees C). Approximately one-third of d.e. eelgrass genes were characteristic for the stress response of the terrestrial plant model Arabidopsis thaliana. The changes in gene expression suggest complex photosynthetic adjustments among light-harvesting complexes, reaction center subunits of photosystem I and II, and components of the dark reaction. Heat shock encoding proteins and reactive oxygen scavengers also were identified, but their overall frequency was too low to perform statistical tests. In all conditions, the most abundant transcript (3-15%) was a putative metallothionein gene with unknown function. We also find evidence that heat stress may translate to enhanced infection by protists. A total of 210 TUGs contain one or more microsatellites as potential candidates for gene-linked genetic markers. Data are publicly available in a user-friendly database at http://www.uni-muenster.de/Evolution/ebb/Services/zostera .
Collapse
Affiliation(s)
- Thorsten B H Reusch
- Institute for Evolution & Biodiversity, Plant Evolutionary Ecology, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Latta RG. Conservation genetics as applied evolution: from genetic pattern to evolutionary process. Evol Appl 2008; 1:84-94. [PMID: 25567493 PMCID: PMC3352403 DOI: 10.1111/j.1752-4571.2007.00008.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 11/27/2007] [Indexed: 11/29/2022] Open
Abstract
Conservation genetics can be seen as the effort to influence the evolutionary process in ways that enhance the persistence of populations. Much published research in the field applies genetic sampling techniques to infer population parameters from the patterns of variation in threatened populations. The limited resolution of these inferences seems to yield limited confidence which results in conservative policy recommendations. As an alternative, I suggest that conservation genetics focus on the relationships between those variables conservationists can control, and the probability of desirable evolutionary outcomes. This research would involve three phases - a greater use of existing evolutionary theory; testing management options using experimental evolution; and 'field trials' under an adaptive management framework. It would take a probabilistic approach that recognizes the stochasticity inherent in evolutionary change. This would allow a more nuanced approach to conservation policy than rule of thumb guidelines. Moreover, it would capitalize on the fact that evolution is a unifying theory in biology and draw on the substantial body of evolutionary knowledge that has been built up over the last half a century.
Collapse
Affiliation(s)
- Robert G Latta
- Department of Biology, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
49
|
Menchari Y, Délye C, Le Corre V. Genetic variation and population structure in black-grass (Alopecurus myosuroides Huds.), a successful, herbicide-resistant, annual grass weed of winter cereal fields. Mol Ecol 2007; 16:3161-72. [PMID: 17651194 DOI: 10.1111/j.1365-294x.2007.03390.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Black-grass (Alopecurus myosuroides) is an allogamous grass weed common in cereal fields of northern Europe, which developed resistance to a widely used family of herbicides, the ACCase-inhibiting herbicides. Resistance is caused by mutations at the ACCase gene and other, metabolism-based, mechanisms. We investigated the genetic structure of 36 populations of black-grass collected in one region of France (Côte d'Or), using 116 amplified fragment length polymorphism (AFLP) loci and sequence data at the ACCase gene. The samples were characterized for their level of herbicide resistance and genotyped for seven known ACCase mutations conferring resistance. All samples contained herbicide-resistant plants, and 19 contained ACCase mutations. The genetic diversity at AFLP loci was high (H(T) = 0.246), while differentiation among samples was low (F(ST) = 0.023) and no isolation by distance was detected. Genetic diversity within samples did not vary with the frequency of herbicide resistance. A Bayesian algorithm was used to infer population structure. The two genetic clusters inferred were not associated with any geographical structure or with herbicide resistance. A high haplotype diversity (H(d) = 0.873) and low differentiation (G(ST) = 0.056) were observed at ACCase. However, haplotype diversity within samples decreased with the frequency of ACCase-based resistance. We suggest that the genetic structure of black-grass is affected by its recent expansion as a weed. Our data demonstrate that the strong selection imposed by herbicides did not modify the genome-wide genetic structure of an allogamous weed that probably has large effective population sizes. Our study gives keys to a better understanding of the evolution of successful, noxious weeds in modern agriculture.
Collapse
Affiliation(s)
- Y Menchari
- UMR1210 Biologie et Gestion des Adventices, INRA, F-21000 Dijon cedex, France
| | | | | |
Collapse
|
50
|
Song BH, Mitchell-Olds T. High genetic diversity and population differentiation in Boechera fecunda, a rare relative of Arabidopsis. Mol Ecol 2007; 16:4079-88. [PMID: 17784916 DOI: 10.1111/j.1365-294x.2007.03500.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Conservation of endangered species becomes a critical issue with the increasing rates of extinction. In this study, we use 13 microsatellite loci and 27 single-copy nuclear loci to investigate the population genetics of Boechera fecunda, a rare relative of Arabidopsis thaliana, known from only 21 populations in Montana. We investigated levels of genetic diversity and population structure in comparison to its widespread congener, Boechera stricta, which shares similar life history and mating system. Despite its rarity, B. fecunda had levels of genetic diversity similar to B. stricta for both microsatellites and nucleotide polymorphism. Populations of B. fecunda are highly differentiated, with a majority of genetic diversity existing among populations (F(ST) = 0.57). Differences in molecular diversity and allele frequencies between western and eastern population groups suggest they experienced very different evolutionary histories.
Collapse
Affiliation(s)
- Bao-Hua Song
- Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA
| | | |
Collapse
|