1
|
Samarakoon MC, Hyde KD, Hongsanan S, McKenzie EHC, Ariyawansa HA, Promputtha I, Zeng XY, Tian Q, Liu JK(J. Divergence time calibrations for ancient lineages of Ascomycota classification based on a modern review of estimations. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00423-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
2
|
Hyde KD, Maharachchikumbura SSN, Hongsanan S, Samarakoon MC, Lücking R, Pem D, Harishchandra D, Jeewon R, Zhao RL, Xu JC, Liu JK, Al-Sadi AM, Bahkali AH, Elgorban AM. The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0383-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Phillips MJ. Geomolecular Dating and the Origin of Placental Mammals. Syst Biol 2015; 65:546-57. [PMID: 26658702 DOI: 10.1093/sysbio/syv115] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
In modern evolutionary divergence analysis the role of geological information extends beyond providing a timescale, to informing molecular rate variation across the tree. Here I consider the implications of this development. I use fossil calibrations to test the accuracy of models of molecular rate evolution for placental mammals, and reveal substantial misspecification associated with life history rate correlates. Adding further calibrations to reduce dating errors at specific nodes unfortunately tends to transfer underlying rate errors to adjacent branches. Thus, tight calibration across the tree is vital to buffer against rate model errors. I argue that this must include allowing maximum bounds to be tight when good fossil records permit, otherwise divergences deep in the tree will tend to be inflated by the interaction of rate errors and asymmetric confidence in minimum and maximum bounds. In the case of placental mammals I sought to reduce the potential for transferring calibration and rate model errors across the tree by focusing on well-supported calibrations with appropriately conservative maximum bounds. The resulting divergence estimates are younger than others published recently, and provide the long-anticipated molecular signature for the placental mammal radiation observed in the fossil record near the 66 Ma Cretaceous-Paleogene extinction event.
Collapse
Affiliation(s)
- Matthew J Phillips
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
4
|
Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S. A Protocol for Diagnosing the Effect of Calibration Priors on Posterior Time Estimates: A Case Study for the Cambrian Explosion of Animal Phyla. Mol Biol Evol 2015; 32:1907-12. [PMID: 25808541 DOI: 10.1093/molbev/msv075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We present a procedure to test the effect of calibration priors on estimated times, which applies a recently developed calibration-free approach (RelTime) method that produces relative divergence times for all nodes in the tree. We illustrate this protocol by applying it to a timetree of metazoan diversification (Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091-1097.), which placed the divergence of animal phyla close to the time of the Cambrian explosion inferred from the fossil record. These analyses revealed that the two maximum-only calibration priors in the pre-Cambrian are the primary determinants of the young divergence times among animal phyla in this study. In fact, these two maximum-only calibrations produce divergence times that severely violate minimum boundaries of almost all of the other 22 calibration constraints. The use of these 22 calibrations produces dates for metazoan divergences that are hundreds of millions of years earlier in the Proterozoic. Our results encourage the use of calibration-free approaches to identify most influential calibration constraints and to evaluate their impact in order to achieve biologically robust interpretations.
Collapse
Affiliation(s)
| | - Paul Billing-Ross
- Department of Molecular Biology and Genetics, College of Human Ecology, Cornell University
| | - Oscar Murillo
- Institute for Genomics and Evolutionary Medicine, Temple University
| | - Alan Filipski
- Institute for Genomics and Evolutionary Medicine, Temple University
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University Department of Biology, Temple University Center for Genomic Medicine and Research, King Abdulaziz University, Jddah, Saudi Arabia
| |
Collapse
|
5
|
Averianov AO, Lopatin AV. High-level systematics of placental mammals: Current status of the problem. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014090039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Gill PG, Purnell MA, Crumpton N, Brown KR, Gostling NJ, Stampanoni M, Rayfield EJ. Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 2014; 512:303-5. [DOI: 10.1038/nature13622] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/27/2014] [Indexed: 11/10/2022]
|
7
|
|
8
|
Jaakkola K, Guarino E, Rodriguez M, Hecksher J. Switching strategies: a dolphin's use of passive and active acoustics to imitate motor actions. Anim Cogn 2013; 16:701-9. [PMID: 23389771 DOI: 10.1007/s10071-013-0605-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 11/26/2022]
Abstract
Scientists have long debated the extent to which animals can imitate. Observations of bottlenose dolphins suggest a sophisticated capacity for social imitation, but little is known about the nature of these abilities. Here, we explore the behavioral mechanisms underlying a dolphin's ability to copy motor actions while blindfolded (i.e., wearing eyecups). When a dolphin was asked to imitate a dolphin, a human, and then another dolphin blindfolded, his accuracy remained relatively consistent across models. However, his blindfolded echolocation dramatically increased when copying a human as compared to other dolphins, suggesting he actively switched between strategies: recognizing behaviors via characteristic sounds when possible, but via echolocation for the more novel sounding behaviors of the human. Such flexibility in changing perceptual routes demonstrates that the dolphin's imitation was not automatically elicited, but rather results from an intentional, problem-solving approach to imitation.
Collapse
Affiliation(s)
- Kelly Jaakkola
- Dolphin Research Center, 58901 Overseas Highway, Grassy Key, FL 33050, USA.
| | | | | | | |
Collapse
|
9
|
Epitope of titin A-band-specific monoclonal antibody Tit1 5 H1.1 is highly conserved in several Fn3 domains of the titin molecule. Centriole staining in human, mouse and zebrafish cells. Cell Div 2012; 7:21. [PMID: 22985877 PMCID: PMC3541999 DOI: 10.1186/1747-1028-7-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 09/14/2012] [Indexed: 12/01/2022] Open
Abstract
Background Previously we have reported on the development of a new mouse anti-titin monoclonal antibody, named MAb Titl 5 H1.1, using the synthetic peptide N-AVNKYGIGEPLESDSVVAK-C which corresponds to an amino acid sequence in the A-region of the titin molecule as immunogen. In the human skeletal muscles, MAb Titl 5 H1.1 reacts specifically with titin in the A-band of the sarcomere and in different non-muscle cell types with nucleus and cytoplasm, including centrioles. In this report we have studied the evolutionary aspects of the binding of MAb Tit1 5 H1.1 with its target antigen (titin). Results We have specified the epitope area of MAb Tit1 5 H1.1 by subpeptide mapping to the hexapeptide N-AVNKYG-C. According to protein databases this amino acid sequence is located in the COOH-terminus of several different Fn3 domains of the A-region of titin molecule in many organisms, such as human being, mouse, rabbit, zebrafish (Danio rerio), and even in sea squirt (Ciona intestinalis). Our immunohisto- and cytochemical studies with MAb Tit1 5 H1.1 in human, mouse and zebrafish tissues and cell cultures showed a striated staining pattern in muscle cells and also staining of centrioles, cytoplasm and nuclei in non-muscle cells. Conclusions The data confirm that titin can play, in addition to the known roles in striated muscle cells also an important role in non-muscle cells as a centriole associated protein. This phenomenon is highly conserved in the evolution and is related to Fn3 domains of the titin molecule. Using titin A-band-specific monoclonal antibody MAb Tit1 5 H1.1 it was possible to locate titin in the sarcomeres of skeletal muscle cells and in the centrioles, cytoplasm and nuclei of non-muscle cells in phylogenetically so distant organisms as Homo sapiens, Mus musculus and zebrafish (Danio rerio).
Collapse
|
10
|
Sterli J, Pol D, Laurin M. Incorporating phylogenetic uncertainty on phylogeny-based palaeontological dating and the timing of turtle diversification. Cladistics 2012; 29:233-246. [DOI: 10.1111/j.1096-0031.2012.00425.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Hayakawa T, Tachibana SI, Hikosaka K, Arisue N, Matsui A, Horii T, Tanabe K. Age of the last common ancestor of extant Plasmodium parasite lineages. Gene 2012; 502:36-9. [DOI: 10.1016/j.gene.2012.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 02/21/2012] [Accepted: 04/17/2012] [Indexed: 11/26/2022]
|
12
|
Bromham L. The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos Trans R Soc Lond B Biol Sci 2011; 366:2503-13. [PMID: 21807731 DOI: 10.1098/rstb.2011.0014] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
DNA sequences evolve at different rates in different species. This rate variation has been most closely examined in mammals, revealing a large number of characteristics that can shape the rate of molecular evolution. Many of these traits are part of the mammalian life-history continuum: species with small body size, rapid generation turnover, high fecundity and short lifespans tend to have faster rates of molecular evolution. In addition, rate of molecular evolution in mammals might be influenced by behaviour (such as mating system), ecological factors (such as range restriction) and evolutionary history (such as diversification rate). I discuss the evidence for these patterns of rate variation, and the possible explanations of these correlations. I also consider the impact of these systematic patterns of rate variation on the reliability of the molecular date estimates that have been used to suggest a Cretaceous radiation of modern mammals, before the final extinction of the dinosaurs.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for Macroevolution and Macroecology, Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra.
| |
Collapse
|
13
|
Bidegaray-Batista L, Arnedo MA. Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. BMC Evol Biol 2011; 11:317. [PMID: 22039781 PMCID: PMC3273451 DOI: 10.1186/1471-2148-11-317] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/31/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The major islands of the Western Mediterranean--Corsica, Sardinia, and the Balearic Islands--are continental terrenes that drifted towards their present day location following a retreat from their original position on the eastern Iberian Peninsula about 30 million years ago. Several studies have taken advantage of this well-dated geological scenario to calibrate molecular rates in species for which distributions seemed to match this tectonic event. Nevertheless, the use of external calibration points has revealed that most of the present-day fauna on these islands post-dated the opening of the western Mediterranean basin. In this study, we use sequence information of the cox1, nad1, 16S, L1, and 12S mitochondrial genes and the 18S, 28S, and h3 nuclear genes, along with relaxed clock models and a combination of biogeographic and fossil external calibration points, to test alternative historical scenarios of the evolutionary history of the ground-dweller spider genus Parachtes (Dysderidae), which is endemic to the region. RESULTS We analyse 49 specimens representing populations of most Parachtes species and close relatives. Our results reveal that both the sequence of species formation in Parachtes and the estimated divergence times match the geochronological sequence of separation of the main islands, suggesting that the diversification of the group was driven by Tertiary plate tectonics. In addition, the confirmation that Parachtes diversification matches well-dated geological events provides a model framework to infer substitution rates of molecular markers. Divergence rates estimates ranged from 3.5% My(-1) (nad1) to 0.12% My(-1) (28S), and the average divergence rate for the mitochondrial genes was 2.25% My(-1), very close to the "standard" arthropod mitochondrial rate (2.3% My(-1)). CONCLUSIONS Our study provides the first unequivocal evidence of terrestrial endemic fauna of the major western Mediterranean islands, whose origin can be traced back to the Oligocene separation of these islands from the continent. Moreover, our study provides useful information on the divergence rate estimates of the most commonly used genes for phylogenetic inference in non-model arthropods.
Collapse
Affiliation(s)
- Leticia Bidegaray-Batista
- Institut de Recerca de la Biodiversitat & Departament de Biologia Animal, Universitat de Barcelona, Av. Diagonal 643, 08020, Barcelona, Spain
| | - Miquel A Arnedo
- Institut de Recerca de la Biodiversitat & Departament de Biologia Animal, Universitat de Barcelona, Av. Diagonal 643, 08020, Barcelona, Spain
| |
Collapse
|
14
|
Pearson HC. Sociability of female bottlenose dolphins (Tursiops spp.) and chimpanzees (Pan troglodytes): Understanding evolutionary pathways toward social convergence. Evol Anthropol 2011; 20:85-95. [DOI: 10.1002/evan.20296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Prasad GVR. Divergence time estimates of mammals from molecular clocks and fossils: relevance of new fossil finds from India. J Biosci 2010; 34:649-59. [PMID: 20009262 DOI: 10.1007/s12038-009-0063-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper presents a brief review of recent advances in the classification of mammals at higher levels using fossils and molecular clocks. It also discusses latest fossil discoveries from the Cretaceous - Eocene (66-55 m.y.) rocks of India and their relevance to our current understanding of placental mammal origins and diversifications.
Collapse
Affiliation(s)
- G V R Prasad
- Indian Institute of Science Education and Research (IISER-K), BCKV Main Campus, Mohanpur 741 252, India.
| |
Collapse
|
16
|
Butti C, Sherwood CC, Hakeem AY, Allman JM, Hof PR. Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans. J Comp Neurol 2009; 515:243-59. [PMID: 19412956 DOI: 10.1002/cne.22055] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Von Economo neurons (VENs) are a type of large, layer V spindle-shaped neurons that were previously described in humans, great apes, elephants, and some large-brained cetaceans. Here we report the presence of Von Economo neurons in the anterior cingulate (ACC), anterior insular (AI), and frontopolar (FP) cortices of small odontocetes, including the bottlenose dolphin (Tursiops truncatus), the Risso's dolphin (Grampus griseus), and the beluga whale (Delphinapterus leucas). The total number and volume of VENs and the volume of neighboring layer V pyramidal neurons and layer VI fusiform neurons were obtained by using a design-based stereologic approach. Two humpback whale (Megaptera novaeangliae) brains were investigated for comparative purposes as representatives of the suborder Mysticeti. Our results show that the distribution of VENs in these cetacean species is comparable to that reported in humans, great apes, and elephants. The number of VENs in these cetaceans is also comparable to data available from great apes, and stereologic estimates indicate that VEN volume follows in these cetacean species a pattern similar to that in hominids, the VENs being larger than neighboring layer V pyramidal cells and conspicuously larger than fusiform neurons of layer VI. The fact that VENs are found in species representative of both cetacean suborders in addition to hominids and elephants suggests that these particular neurons have appeared convergently in phylogenetically unrelated groups of mammals possibly under the influence of comparable selective pressures that influenced specifically the evolution of cortical domains involved in complex cognitive and social/emotional processes.
Collapse
Affiliation(s)
- Camilla Butti
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
17
|
Steiper ME, Young NM. Timing primate evolution: Lessons from the discordance between molecular and paleontological estimates. Evol Anthropol 2008. [DOI: 10.1002/evan.20177] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
|
19
|
Hayakawa T, Culleton R, Otani H, Horii T, Tanabe K. Big bang in the evolution of extant malaria parasites. Mol Biol Evol 2008; 25:2233-9. [PMID: 18687771 DOI: 10.1093/molbev/msn171] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.
Collapse
Affiliation(s)
- Toshiyuki Hayakawa
- Laboratory of Malariology, International Research Center of Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
20
|
Welch JJ, Bininda-Emonds ORP, Bromham L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol Biol 2008; 8:53. [PMID: 18284663 PMCID: PMC2289806 DOI: 10.1186/1471-2148-8-53] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 02/19/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rates of molecular evolution in different lineages can vary widely, and some of this variation might be predictable from aspects of species' biology. Investigating such predictable rate variation can help us to understand the causes of molecular evolution, and could also help to improve molecular dating methods. Here we present a comprehensive study of the life history correlates of substitution rate variation across the mammals, comparing results for mitochondrial and nuclear loci, and for synonymous and non-synonymous sites. We use phylogenetic comparative methods, refined to take into account the special nature of substitution rate data. Particular attention is paid to the widespread correlations between the components of mammalian life history, which can complicate the interpretation of results. RESULTS We find that mitochondrial synonymous substitution rates, estimated from the 9 longest mitochondrial genes, show strong negative correlations with body mass and with maximum recorded lifespan. But lifespan is the sole variable to remain after multiple regression and model simplification. Nuclear synonymous substitution rates, estimated from 6 genes, show strong negative correlations with body mass and generation time, and a strong positive correlation with fecundity. In contrast to the mitochondrial results, the same trends are evident in rates of nonsynonymous substitution. CONCLUSION A substantial proportion of variation in mammalian substitution rates can be explained by aspects of their life history, implying that molecular and life history evolution are closely interlinked in this group. The strength and consistency of the nuclear body mass effect suggests that molecular dating studies may have been systematically misled, but also that methods could be improved by incorporating the finding as a priori information. Mitochondrial synonymous rates also show the body mass effect, but for apparently quite different reasons, and the strength of the relationship with maximum lifespan provides support for the hypothesis that mtDNA damage is causally linked to aging.
Collapse
Affiliation(s)
- John J Welch
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Rd., Edinburgh EH9 3JT, UK.
| | | | | |
Collapse
|
21
|
Abstract
Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.
Collapse
Affiliation(s)
- Zhe-Xi Luo
- Carnegie Museum of Natural History, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
22
|
Meijaard E, Sheil D, Marshall AJ, Nasi R. Phylogenetic Age is Positively Correlated with Sensitivity to Timber Harvest in Bornean Mammals. Biotropica 2007. [DOI: 10.1111/j.1744-7429.2007.00340.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Hosaka K, Castellano MA, Spatafora JW. Biogeography of Hysterangiales (Phallomycetidae, Basidiomycota). ACTA ACUST UNITED AC 2007; 112:448-62. [PMID: 18314317 DOI: 10.1016/j.mycres.2007.06.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 05/22/2007] [Accepted: 06/10/2007] [Indexed: 10/23/2022]
Abstract
To understand the biogeography of truffle-like fungi, DNA sequences were analysed from representative taxa of Hysterangiales. Multigene phylogenies and the results of ancestral area reconstructions are consistent with the hypothesis of an Australian, or eastern Gondwanan, origin of Hysterangiales with subsequent range expansions to the Northern Hemisphere. However, neither Northern Hemisphere nor Southern Hemisphere taxa formed a monophyletic group, which is in conflict with a strictly vicariant scenario. Therefore, the occurrence and importance of long-distance dispersal could not be rejected. Although a pre-Gondwanan origin of Hysterangiales remains as a possibility, this hypothesis requires that Hysterangiales exist prior to the origin of the currently recognized ectomycorrhizal plants, as well as the arrival of mycophagous animals in Australia. This also requires that a basal paraphyletic assemblage represents parallel evolution of the ectomycorrhizal symbiosis, or that Hysterangiales was mycorrhizal with members of the extinct flora of Gondwana. Regardless, models for both ancient and more recent origins of Hysterangiales are consistent with truffle-like fungi being capable of transoceanic dispersal.
Collapse
Affiliation(s)
- Kentaro Hosaka
- Department of Botany and Plant Pathology, Cordley Hall 2082, Oregon State University, Corvallis, OR 97331-2902, USA.
| | | | | |
Collapse
|
24
|
Affiliation(s)
- Naoyuki Takahata
- Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan.
| |
Collapse
|
25
|
Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A. The delayed rise of present-day mammals. Nature 2007; 446:507-12. [PMID: 17392779 DOI: 10.1038/nature05634] [Citation(s) in RCA: 1375] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/31/2007] [Indexed: 11/08/2022]
Abstract
Did the end-Cretaceous mass extinction event, by eliminating non-avian dinosaurs and most of the existing fauna, trigger the evolutionary radiation of present-day mammals? Here we construct, date and analyse a species-level phylogeny of nearly all extant Mammalia to bring a new perspective to this question. Our analyses of how extant lineages accumulated through time show that net per-lineage diversification rates barely changed across the Cretaceous/Tertiary boundary. Instead, these rates spiked significantly with the origins of the currently recognized placental superorders and orders approximately 93 million years ago, before falling and remaining low until accelerating again throughout the Eocene and Oligocene epochs. Our results show that the phylogenetic 'fuses' leading to the explosion of extant placental orders are not only very much longer than suspected previously, but also challenge the hypothesis that the end-Cretaceous mass extinction event had a major, direct influence on the diversification of today's mammals.
Collapse
Affiliation(s)
- Olaf R P Bininda-Emonds
- Lehrstuhl für Tierzucht, Technical University of Munich, 85354 Freising-Weihenstephan, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Waters JM, Rowe DL, Apte S, King TM, Wallis GP, Anderson L, Norris RJ, Craw D, Burridge CP. Geological Dates and Molecular Rates: Rapid Divergence of Rivers and Their Biotas. Syst Biol 2007; 56:271-82. [PMID: 17464882 DOI: 10.1080/10635150701313855] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We highlight a novel molecular clock calibration system based on geologically dated river reversal and river capture events. Changes in drainage pattern may effect vicariant isolation of freshwater taxa, and thus provide a predictive framework for associated phylogeographic study. As a case in point, New Zealand's Pelorus and Kaituna rivers became geologically isolated from the larger Wairau River system 70 to 130 kyr BP. We conducted mitochondrial DNA phylogeographic analyses of two unrelated freshwater-limited fish taxa native to these river systems (Gobiomorphus breviceps, n = 63; Galaxias divergens, n = 95). Phylogenetic analysis of combined control region and cytochrome b sequences yielded reciprocally monophyletic clades of Pelorus-Kaituna and Wairau haplotypes for each species. Calibrated rates of molecular change based on this freshwater vicariant event are substantially faster than traditionally accepted rates for fishes but consistent with other recent inferences based on geologically young calibration points. A survey of freshwater phylogeographic literature reveals numerous examples in which the ages of recent evolutionary events may have been substantially overestimated through the use of "accepted" calibrations. We recommend that--wherever possible--biologists should start to reassess the conclusions of such studies by using more appropriate molecular calibrations derived from recent geological events.
Collapse
Affiliation(s)
- Jonathan M Waters
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pulquério MJF, Nichols RA. Dates from the molecular clock: how wrong can we be? Trends Ecol Evol 2006; 22:180-4. [PMID: 17157408 DOI: 10.1016/j.tree.2006.11.013] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/13/2006] [Accepted: 11/30/2006] [Indexed: 11/29/2022]
Abstract
Large discrepancies have been found in dates of evolutionary events obtained using the molecular clock. Twofold differences have been reported between the dates estimated from molecular data and those from the fossil record; furthermore, different molecular methods can give dates that differ 20-fold. New software attempts to incorporate appropriate allowances for this uncertainty into the calculation of the accuracy of date estimates. Here, we propose that these innovations represent welcome progress towards obtaining reliable dates from the molecular clock, but warn that they are currently unproven, given that the causes and pattern of the discrepancies are the subject of ongoing research. This research implies that many previous studies, even some of those using recently developed methods, might have placed too much confidence in their date estimates, and their conclusions might need to be revised.
Collapse
Affiliation(s)
- Mário J F Pulquério
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, UK.
| | | |
Collapse
|
28
|
Abstract
The comparison of DNA and protein sequences of extant species might be informative for reconstructing the chronology of evolutionary events on Earth. A phylogenetic tree inferred from molecular data directly depicts the evolutionary affinities of species and indirectly allows estimating the age of their origin and diversification. Molecular dating is achieved by assuming the molecular clock hypothesis, i.e., that the rate of change of nucleotide and amino acid sequences is on average constant over geological time. If paleontological calibrations are available, then absolute divergence times of species can be estimated. However, three major difficulties potentially hamper molecular dating : (1) a limited sample of genes and organisms, (2) a limited number of fossil references, and (3) pervasive variations of molecular evolutionary rates among genomes and species. To circumvent these problems, different solutions have been recently proposed. Larger data sets are built with more genes and more species sampled through the mining of an increasing number of genomes. Moreover, independent key fossils are identified to calibrate molecular clocks, and the uncertainty on their age is integrated in subsequent analyses. Finally, models of molecular rate variations are constructed, and incorporated in the so-called relaxed molecular clock approaches. As an illustration of these improvements, we mention that the debated age of the animal (bilaterian metazoans) diversification may have occurred between 642-761 million years ago (Mya), roughly 100 Ma before the Cambrian explosion. Among mammals, the initial diversification of major placental groups may have taken place around 100 Mya, well before the Cretaceous/Tertiary boundary marking the extinction of dinosaurs.
Collapse
Affiliation(s)
- Emmanuel J P Douzery
- Laboratoire de Paléontologie, Phylogénie et Paléobiologie-CC064, Institut des Sciences de l'Evolution UMR 5554/CNRS, Université Montpellier II, place E. Bataillon, 34095 Montpellier Cedex 05, France.
| | | | | |
Collapse
|
29
|
Pereira SL, Baker AJ. A Mitogenomic Timescale for Birds Detects Variable Phylogenetic Rates of Molecular Evolution and Refutes the Standard Molecular Clock. Mol Biol Evol 2006; 23:1731-40. [PMID: 16774978 DOI: 10.1093/molbev/msl038] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Current understanding of the diversification of birds is hindered by their incomplete fossil record and uncertainty in phylogenetic relationships and phylogenetic rates of molecular evolution. Here we performed the first comprehensive analysis of mitogenomic data of 48 vertebrates, including 35 birds, to derive a Bayesian timescale for avian evolution and to estimate rates of DNA evolution. Our approach used multiple fossil time constraints scattered throughout the phylogenetic tree and accounts for uncertainties in time constraints, branch lengths, and heterogeneity of rates of DNA evolution. We estimated that the major vertebrate lineages originated in the Permian; the 95% credible intervals of our estimated ages of the origin of archosaurs (258 MYA), the amniote-amphibian split (356 MYA), and the archosaur-lizard divergence (278 MYA) bracket estimates from the fossil record. The origin of modern orders of birds was estimated to have occurred throughout the Cretaceous beginning about 139 MYA, arguing against a cataclysmic extinction of lineages at the Cretaceous/Tertiary boundary. We identified fossils that are useful as time constraints within vertebrates. Our timescale reveals that rates of molecular evolution vary across genes and among taxa through time, thereby refuting the widely used mitogenomic or cytochrome b molecular clock in birds. Moreover, the 5-Myr divergence time assumed between 2 genera of geese (Branta and Anser) to originally calibrate the standard mitochondrial clock rate of 0.01 substitutions per site per lineage per Myr (s/s/l/Myr) in birds was shown to be underestimated by about 9.5 Myr. Phylogenetic rates in birds vary between 0.0009 and 0.012 s/s/l/Myr, indicating that many phylogenetic splits among avian taxa also have been underestimated and need to be revised. We found no support for the hypothesis that the molecular clock in birds "ticks" according to a constant rate of substitution per unit of mass-specific metabolic energy rather than per unit of time, as recently suggested. Our analysis advances knowledge of rates of DNA evolution across birds and other vertebrates and will, therefore, aid comparative biology studies that seek to infer the origin and timing of major adaptive shifts in vertebrates.
Collapse
Affiliation(s)
- Sergio L Pereira
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada.
| | | |
Collapse
|
30
|
Allegrucci G, Todisco V, Sbordoni V. Molecular phylogeography of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae): a scenario suggested by mitochondrial DNA. Mol Phylogenet Evol 2006; 37:153-64. [PMID: 15964214 DOI: 10.1016/j.ympev.2005.04.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 04/29/2005] [Accepted: 04/29/2005] [Indexed: 11/25/2022]
Abstract
This study focuses on the phylogenetic relationships among a number of West-Mediterranean cave crickets species belonging to Dolichopoda; primarily a Mediterranean genus, distributed from eastern Pyrenees to Caucasus. In this paper, 11 Dolichopoda species from the French Pyrenees (D. linderi), the island of Corsica (D. bormansi and D. cyrnensis), and northern, central, and southern Italy (D. ligustica, D. schiavazzii, D. aegilion, D. baccettii, D. laetitiae, D. geniculata, D. capreensis, and D. palpata) were studied. Two more species, one from the Caucasus, D. euxina, and one from Greece, D. remyi, were also included in the analyses, together with more distant species within the same family to be used as outgroups. Fifteen hundred base pairs of mitochondrial DNA, corresponding to the small subunit of the ribosomal RNA (16S rRNA) and to the subunit I of the cytochrome oxidase I (COI), were sequenced in order to clarify the phylogenetic relationships and biogeography of this group of Mediterranean cave crickets. The molecular data are congruent with a phylogeographic pattern; with the geographically close species also the most related ones. Based on mtDNA divergence, the present-day distribution of genetic diversity seems to have been impacted by climatic events due to glacial and interglacial cycles that have characterized the Pleistocene era.
Collapse
|
31
|
Tolley KA, Burger M, Turner AA, Matthee CA. Biogeographic patterns and phylogeography of dwarf chameleons (Bradypodion) in an African biodiversity hotspot. Mol Ecol 2006; 15:781-93. [PMID: 16499702 DOI: 10.1111/j.1365-294x.2006.02836.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The southern African landscape appears to have experienced frequent shifts in vegetation associated with climatic change through the mid-Miocene and Plio-Pleistocene. One group whose historical biogeography may have been affected by these fluctuations are the dwarf chameleons (Bradypodion), due to their associations with distinct vegetation types. Thus, this group provides an opportunity to investigate historical biogeography in light of climatic fluctuations. A total of 138 dwarf chameleons from the Cape Floristic Region of South Africa were sequenced for two mitochondrial genes (ND2 and 16S), and resulting phylogenetic analyses showed two well-supported clades that are distributed allopatrically. Within clades, diversity among some lineages was low, and haplotype networks showed patterns of reticulate evolution and incomplete lineage sorting, suggesting relatively recent origins for some of these lineages. A dispersal-vicariance analysis and a relaxed Bayesian clock suggest that vicariance between the two main clades occurred in the mid-Miocene, and that both dispersal and vicariance have played a role in shaping present-day distributions. These analyses also suggest that the most recent series of lineage diversification events probably occurred within the last 3-6 million years. This suggests that the origins of many present-day lineages were founded in the Plio-Pleistocene, a time period that corresponds to the reduction of forests in the region and the establishment of the fynbos biome.
Collapse
Affiliation(s)
- Krystal A Tolley
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa.
| | | | | | | |
Collapse
|
32
|
Fountaine TMR, Benton MJ, Dyke GJ, Nudds RL. The quality of the fossil record of Mesozoic birds. Proc Biol Sci 2005; 272:289-94. [PMID: 15705554 PMCID: PMC1634967 DOI: 10.1098/rspb.2004.2923] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Mesozoic fossil record has proved critical for understanding the early evolution and subsequent radiation of birds. Little is known, however, about its relative completeness: just how 'good' is the fossil record of birds from the Mesozoic? This question has come to prominence recently in the debate over differences in estimated dates of origin of major clades of birds from molecular and palaeontological data. Using a dataset comprising all known fossil taxa, we present analyses that go some way towards answering this question. Whereas avian diversity remains poorly represented in the Mesozoic, many relatively complete bird specimens have been discovered. New taxa have been added to the phylogenetic tree of basal birds, but its overall shape remains constant, suggesting that the broad outlines of early avian evolution are consistently represented: no stage in the Mesozoic is characterized by an overabundance of scrappy fossils compared with more complete specimens. Examples of Neornithes (modern orders) are known from later stages in the Cretaceous, but their fossils are rarer and scrappier than those of basal bird groups, which we suggest is a biological, rather than a geological, signal.
Collapse
Affiliation(s)
- Toby M R Fountaine
- Department of Earth Sciences, University of Bristol, Queens Road, Bristol BS8 IRJ, UK
| | | | | | | |
Collapse
|
33
|
|
34
|
van Tuinen M, Ramakrishnan U, Hadly EA. Studying the effect of environmental change on biotic evolution: past genetic contributions, current work and future directions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:2795-2820. [PMID: 15539371 DOI: 10.1098/rsta.2004.1465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Evolutionary geneticists currently face a major scientific opportunity when integrating across the rapidly increasing amount of genetic data and existing biological scenarios based on ecology, fossils or climate models. Although genetic data acquisition and analysis have improved tremendously, several limitations remain. Here, we discuss the feedback between history and genetic variation in the face of environmental change with increasing taxonomic and temporal scale, as well as the major challenges that lie ahead. In particular, we focus on recent developments in two promising genetic methods, those of 'phylochronology' and 'molecular clocks'. With the advent of ancient DNA techniques, we can now directly sample the recent past. We illustrate this amazing and largely untapped utility of ancient DNA extracted from accurately dated localities with documented environmental changes. Innovative statistical analyses of these genetic data expose the direct effect of recent environmental change on genetic endurance, or maintenance of genetic variation. The 'molecular clock' (assumption of a linear relationship between genetic distance and evolutionary time) has been used extensively in phylogenetic studies to infer time and correlation between lineage divergence time and concurrent environmental change. Several studies at both population and species scale support a persuasive relationship between particular perturbation events and time of biotic divergence. However, we are still a way from gleaning an overall pattern to this relationship, which is a prerequisite to ultimately understanding the mechanisms by which past environments have shaped the evolutionary trajectory. Current obstacles include as-yet undecided reasons behind the frequent discrepancy between molecular and fossil time estimates, and the frequent lack of consideration of extensive confidence intervals around time estimates. We suggest that use and interpretation of both ancient DNA and molecular clocks is most effective when results are synthesized with palaeontological (fossil) and ecological (life history) information.
Collapse
Affiliation(s)
- Marcel van Tuinen
- Department of Biological Sciences, Gilbert Hall, Stanford University, Stanford, CA 94305-5020, USA.
| | | | | |
Collapse
|
35
|
Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci U S A 2004; 101:15386-91. [PMID: 15494441 PMCID: PMC524432 DOI: 10.1073/pnas.0403984101] [Citation(s) in RCA: 364] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 09/13/2004] [Indexed: 11/18/2022] Open
Abstract
The use of nucleotide and amino acid sequences allows improved understanding of the timing of evolutionary events of life on earth. Molecular estimates of divergence times are, however, controversial and are generally much more ancient than suggested by the fossil record. The limited number of genes and species explored and pervasive variations in evolutionary rates are the most likely sources of such discrepancies. Here we compared concatenated amino acid sequences of 129 proteins from 36 eukaryotes to determine the divergence times of several major clades, including animals, fungi, plants, and various protists. Due to significant variations in their evolutionary rates, and to handle the uncertainty of the fossil record, we used a Bayesian relaxed molecular clock simultaneously calibrated by six paleontological constraints. We show that, according to 95% credibility intervals, the eukaryotic kingdoms diversified 950-1,259 million years ago (Mya), animals diverged from choanoflagellates 761-957 Mya, and the debated age of the split between protostomes and deuterostomes occurred 642-761 Mya. The divergence times appeared to be robust with respect to prior assumptions and paleontological calibrations. Interestingly, these relaxed clock time estimates are much more recent than those obtained under the assumption of a global molecular clock, yet bilaterian diversification appears to be approximately 100 million years more ancient than the Cambrian boundary.
Collapse
Affiliation(s)
- Emmanuel J P Douzery
- Department of Paleontology, Phylogeny, and Paleobiology, Institut des Sciences de l'Evolution (Unité Mixte de Recherche 5554, Centre National de la Recherche Scientifique), Université Montpellier II, Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
36
|
Bromham L, Woolfit M. Explosive Radiations and the Reliability of Molecular Clocks: Island Endemic Radiations as a Test Case. Syst Biol 2004; 53:758-66. [PMID: 15545253 DOI: 10.1080/10635150490522278] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The reliability of molecular clocks has been questioned for several key evolutionary radiations on the basis that the clock might run fast in explosive radiations. Molecular date estimates for the radiations of metazoan phyla (the Cambrian explosion) and modern orders of mammals and birds are in many cases twice as old as the palaeontological evidence would suggest. Could some aspect of explosive radiations speed the molecular clock, making molecular date estimates too old? Here we use 19 independent instances of recent explosive radiations of island endemic taxa as a model system for testing the proposed influence of rapid adaptive radiation on the rate of molecular evolution. These radiations are often characterized by many of the potential mechanisms for fast rates in explosive radiations--such as small population size, elevated speciation rate, rapid rate of morphological change, release from previous ecological constraints, and adaptation to new niches--and represent a wide variety of species, islands, and genes. However, we find no evidence of a consistent increase in rates in island taxa compared to their mainland relatives, and therefore find no support for the hypothesis that the molecular clock runs fast in explosive radiations.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Falmer, Brighton, UK.
| | | |
Collapse
|
37
|
Abstract
Molecular data are ideal for exploring evolutionary history because of its universality, stochasticity, and abundance. These features provide a means of exploring the evolutionary history of all organisms (including those that do not tend to leave fossils), potentially within a statistical framework that allows testing of evolutionary hypotheses. However, the discrepancy between molecular and paleontological dates for three key "explosive" radiations inferred from the fossil record--the Cambrian explosion of animal phyla and the post-KT radiations of modern orders of mammals and birds--have led to a reexamination of the assumptions on which molecular dates are based. Could variation in the rate of molecular evolution, perhaps associated with "explosive" radiations, cause overestimation of diversification dates? Here I examine four hypothetical causes of fast molecular rates in explosive radiations--body size, morphological rate, speciation rate, and ecological diversification--using available empirical evidence on patterns of variation in rate of molecular evolution.
Collapse
Affiliation(s)
- Lindell Bromham
- Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
38
|
Douzery EJP, Delsuc F, Stanhope MJ, Huchon D. Local molecular clocks in three nuclear genes: divergence times for rodents and other mammals and incompatibility among fossil calibrations. J Mol Evol 2004; 57 Suppl 1:S201-13. [PMID: 15008417 DOI: 10.1007/s00239-003-0028-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Reconstructing the chronology of mammalian evolution is a debated issue between molecule- and fossil-based inferences. A methodological limitation of molecules is the evolutionary rate variation among lineages, precluding the application of the global molecular clock. We considered 2422 first and second codon positions of the combined ADRA2B, IRBP, and vWF nuclear genes for a well-documented set of placentals including an extensive sampling of rodents. Using seven independent calibration points and a maximum-likelihood framework, we evaluated whether molecular and paleontological estimates of mammalian divergence dates may be reconciled by the local molecular clocks approach, allowing local constancy of substitution rates with variations at larger phylogenetic scales. To handle the difficulty of choosing among all possible rate assignments for various lineages, local molecular clocks were based on the results of branch-length and two-cluster tests. Extensive lineage-specific variation of evolutionary rates was detected, even among rodents. Cross-calibrations indicated some incompatibilities between divergence dates based on different paleontological references. To decrease the impact of a single calibration point, estimates derived from independent calibrations displaying only slight reciprocal incompatibility were averaged. The divergence dates inferred for the split between mice and rats (approximately 13-19 Myr) was younger than previously published molecular estimates. The most recent common ancestors of rodents, primates and rodents, boreoeutherians, and placentals were estimated to be, respectively, approximately 60, 70, 75, and 78 Myr old. Global clocks, local clocks, and quartet dating analyses suggested a Late Cretaceous origin of the crown placental clades followed by a Tertiary radiation of some placental orders like rodents.
Collapse
Affiliation(s)
- Emmanuel J P Douzery
- Laboratoire de Paléontologie, Paléobiologie et Phylogenie-CC064, Institut des Sciences de l'Evolution UMR 5554/CNRS, Université Montpellier II, Place E. Bataillon, 34 095 Montpellier Cedex 05, France.
| | | | | | | |
Collapse
|
39
|
|
40
|
Abstract
The date of a single divergence point--between living alligators and crocodiles--was estimated with quartet dating using calibrations of widely divergent ages. For five mitochondrial sequence datasets, there is a clear relationship between calibration age and quartet estimate--quartets based on two relatively recent calibrations support younger divergence estimates than do quartets based on two older calibrations. Some of the estimates supported by young quartets are impossibly young and exclude the first appearance of the group in the fossil record as too old. The older estimates--those based on two relatively old calibrations--may be overestimates, and those based on one old and one recent calibration support divergence estimates very close to fossil data. This suggests that quartet dating methods may be most effective when calibrations are applied from different parts of a clade's history.
Collapse
|
41
|
Megens HJ, van Moorsel CHM, Piel WH, Pierce NE, de Jong R. Tempo of speciation in a butterfly genus from the Southeast Asian tropics, inferred from mitochondrial and nuclear DNA sequence data. Mol Phylogenet Evol 2004; 31:1181-96. [PMID: 15120408 DOI: 10.1016/j.ympev.2003.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 10/02/2003] [Indexed: 10/26/2022]
Abstract
Molecular systematics is frequently beset with phylogenetic results that are not fully resolved. Researchers either state that the absence of resolution is due to character conflict, explosive speciation, or some combination of the two, but seldom do they carefully examine their data to distinguish between these causes. In this study, we exhaustively analyze a set of nuclear and mitochondrial nucleotide data for the Asian tropical butterfly genus Arhopala so as to highlight the causes of polytomies in the phylogenetic trees, and, as a result, to infer important biological events in the history of this genus. We began by using non-parametric statistical methods to determine whether the ambiguously resolved regions in these trees represent hard or soft polytomies. In addition we determined how this correlated to number of inferred changes on branches, using parametric maximum likelihood estimations. Based on congruent patterns in both mitochondrial and nuclear DNA sequences, we concluded that at two stages in the history of Arhopala there have been accelerated instances of speciation. One event, at the base of the phylogeny, generated many of the groups and subgroups currently recognized in this genus, while a later event generated another major clade consisting of both Oriental and Papuan species groups. Based on comparisons of closely related taxa, the ratio of instantaneous rate of evolution between mitochondrial and nuclear DNA evolution is established at approximately 3:1. The earliest radiation is dated between 7 and 11 Ma by a molecular clock analysis, setting the events generating much of the diversity of Arhopala at well before the Pleistocene. Periodical flooding of the Sunda plateau during interglacial periods was, therefore, not responsible for generating the major divisions in the genus Arhopala. Instead, we hypothesize that large-scale climatic changes taking place in the Miocene have induced the early acceleration in speciation.
Collapse
Affiliation(s)
- Hendrik-Jan Megens
- Institute of Evolutionary and Ecological Sciences, Leiden University, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
MENG JIN. Chapter 7: Phylogeny and Divergence of Basal Glires. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2004. [DOI: 10.1206/0003-0090(2004)285<0093:c>2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Delsuc F, Vizcaíno SF, Douzery EJP. Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evol Biol 2004; 4:11. [PMID: 15115541 PMCID: PMC419338 DOI: 10.1186/1471-2148-4-11] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Accepted: 04/28/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative genomic data among organisms allow the reconstruction of their phylogenies and evolutionary time scales. Molecular timings have been recently used to suggest that environmental global change have shaped the evolutionary history of diverse terrestrial organisms. Living xenarthrans (armadillos, anteaters and sloths) constitute an ideal model for studying the influence of past environmental changes on species diversification. Indeed, extant xenarthran species are relicts from an evolutionary radiation enhanced by their isolation in South America during the Tertiary era, a period for which major climate variations and tectonic events are relatively well documented. RESULTS We applied a Bayesian approach to three nuclear genes in order to relax the molecular clock assumption while accounting for differences in evolutionary dynamics among genes and incorporating paleontological uncertainties. We obtained a molecular time scale for the evolution of extant xenarthrans and other placental mammals. Divergence time estimates provide substantial evidence for contemporaneous diversification events among independent xenarthran lineages. This correlated pattern of diversification might possibly relate to major environmental changes that occurred in South America during the Cenozoic. CONCLUSIONS The observed synchronicity between planetary and biological events suggests that global change played a crucial role in shaping the evolutionary history of extant xenarthrans. Our findings open ways to test this hypothesis further in other South American mammalian endemics like hystricognath rodents, platyrrhine primates, and didelphid marsupials.
Collapse
Affiliation(s)
- Frédéric Delsuc
- Laboratoire de Paléontologie, Paléobiologie et Phylogénie, Institut des Sciences de l'Evolution, Université Montpellier II, Montpellier, France
- The Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| | - Sergio F Vizcaíno
- Departamento Científico Paleontología de Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina
| | - Emmanuel JP Douzery
- Laboratoire de Paléontologie, Paléobiologie et Phylogénie, Institut des Sciences de l'Evolution, Université Montpellier II, Montpellier, France
| |
Collapse
|
44
|
|
45
|
Abstract
In the field of hearing research, recent advances using the mouse as a model for human hearing loss have brought exciting insights into the molecular pathways that lead to normal hearing, and into the mechanisms that are disrupted once a mutation occurs in one of the critical genes. Inaccessible for most procedures other than high-resolution computed tomography (CT) scanning or invasive surgery, most studies on the ear in humans can only be performed postmortem. A major goal in hearing research is to gain a full understanding of how a sound is heard at the molecular level, so that diagnostic and eventually therapeutic interventions can be developed that can treat the diseased inner ear before permanent damage has occurred, such as hair cell loss. The mouse, with its advantages of short gestation time, ease of selective matings, and similarity of the genome and inner ear to humans, is truly a remarkable resource for attaining this goal and investigating the intrigues of the human ear.
Collapse
Affiliation(s)
- Karen B Avraham
- Department of Human Genetics, Sackler School of Medicine, TelAviv University, Tel Aviv, Israel, USA.
| |
Collapse
|
46
|
Doyle CK, Davis BK, Cook RG, Rich RR, Rodgers JR. Hyperconservation of the N-formyl peptide binding site of M3: evidence that M3 is an old eutherian molecule with conserved recognition of a pathogen-associated molecular pattern. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:836-44. [PMID: 12847252 DOI: 10.4049/jimmunol.171.2.836] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse MHC class I-b molecule H2-M3 has unique specificity for N-formyl peptides, derived from bacteria (and mitochondria), and is thus a pathogen-associated molecular pattern recognition receptor (PRR). To test whether M3 was selected for this PRR function, we studied M3 sequences from diverse murid species of murine genera Mus, Rattus, Apodemus, Diplothrix, Hybomys, Mastomys, and Tokudaia and of sigmodontine genera Sigmodon and PEROMYSCUS: We found that M3 is highly conserved, and the 10 residues coordinating the N-formyl group are almost invariant. The ratio of nonsynonymous and synonymous substitution rates suggests the Ag recognition site of M3, unlike the Ag recognition site of class I-a molecules, is under strong negative (purifying) selection and has been for at least 50-65 million years. Consistent with this, M3 alpha1alpha2 domains from Rattus norvegicus and Sigmodon hispidus and from the "null" allele H2-M3(b) specifically bound N-formyl peptides. The pattern of nucleotide substitution in M3 suggests M3 arose rapidly from murid I-a precursors by an evolutionary leap ("saltation"), perhaps involving intense selective pressure from bacterial pathogens. Alternatively, M3 arose more slowly but prior to the radiation of eutherian (placental) mammals. Older dates for the emergence of M3, and the accepted antiquity of CD1, suggest that primordial class I MHC molecules could have evolved originally as monomorphic PRR, presenting pathogen-associated molecular patterns. Such MHC PRR molecules could have been preadaptations for the evolution of acquired immunity during the early vertebrate radiation.
Collapse
Affiliation(s)
- C Kuyler Doyle
- Baylor College of Medicine, Department of Immunology, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Phylogenies provide new ways to measure biodiversity, to assess conservation priorities, and to quantify the evolutionary history in any set of species. Methodological problems and a lack of knowledge about most species have so far hampered their use. In the future, as techniques improve and more data become accessible, we will have an expanded set of conservation options, including ways to prioritize outcomes from evolutionary and ecological processes.
Collapse
Affiliation(s)
- Georgina M Mace
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | | | | |
Collapse
|
48
|
Abstract
The concept of evolvability covers a broad spectrum of, often contradictory, ideas. At one end of the spectrum it is equivalent to the statement that evolution is possible, at the other end are untestable post hoc explanations, such as the suggestion that current evolutionary theory cannot explain the evolution of evolvability. We examine similarities and differences in eukaryote and prokaryote evolvability, and look for explanations that are compatible with a wide range of observations. Differences in genome organisation between eukaryotes and prokaryotes meets this criterion. The single origin of replication in prokaryote chromosomes (versus multiple origins in eukaryotes) accounts for many differences because the time to replicate a prokaryote genome limits its size (and the accumulation of junk DNA). Both prokaryotes and eukaryotes appear to switch from genetic stability to genetic change in response to stress. We examine a range of stress responses, and discuss how these impact on evolvability, particularly in unicellular organisms versus complex multicellular ones. Evolvability is also limited by environmental interactions (including competition) and we describe a model that places limits on potential evolvability. Examples are given of its application to predator competition and limits to lateral gene transfer. We suggest that unicellular organisms evolve largely through a process of metabolic change, resulting in biochemical diversity. Multicellular organisms evolve largely through morphological changes, not through extensive changes to cellular biochemistry.
Collapse
Affiliation(s)
- Anthony M Poole
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
49
|
|
50
|
Abstract
The discovery of the molecular clock--a relatively constant rate of molecular evolution--provided an insight into the mechanisms of molecular evolution, and created one of the most useful new tools in biology. The unexpected constancy of rate was explained by assuming that most changes to genes are effectively neutral. Theory predicts several sources of variation in the rate of molecular evolution. However, even an approximate clock allows time estimates of events in evolutionary history, which provides a method for testing a wide range of biological hypotheses ranging from the origins of the animal kingdom to the emergence of new viral epidemics.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for the Study of Evolution, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | |
Collapse
|