1
|
Aggarwal DD, Mishra P, Singh M. An analysis of direct and indirect effects in Drosophila melanogaster undergoing a few cycles of experimental evolution for stress-related traits. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110795. [PMID: 35970341 DOI: 10.1016/j.cbpb.2022.110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
The physiological mechanisms underpinning adaptations to starvation and cold stresses have been extensively studied in Drosophila, yet the understanding of correlated changes in stress-related and life-history traits, as well as the energetics of stress tolerance, still remains elusive. To answer the questions empirically in this context, we allowed D. melanogaster to evolve for either increased starvation or cold tolerance (24-generations / regime) in an experimental evolution system, and examined whether selection of either trait affects un-selected stress trait, as well as the impacts potential changes in life-history and mating success-related traits. Our results revealed remarkable changes in starvation/cold tolerance (up to 1.5-fold) as a direct effect of selection, while cold tolerance had been dramatically reduced (1.26-fold) in the starvation tolerant (ST) lines compared to control counterparts, although no such changes were evident in cold-tolerant (CT) lines. ST lines exhibited a higher level of body lipids and a reduced level of trehalose content, while CT lines accumulated a greater levels of body lipid and trehalose contents. Noticeably, we found that selection for starvation or cold tolerance positively correlates with larval development time, longevity, and copulation duration, indicating that these traits are among the most common targets of selection trajectories shaping stress tolerance. Altogether, this study highlights the complexity of mechanisms evolved in ST lines that contribute to enhanced starvation tolerance, but also negatively impact cold tolerance. Nevertheless, mechanisms foraging enhanced cold tolerance in CT lines appear not to target starvation tolerance. Moreover, the parallel changes in life history/mating success traits across stress regimes could indicate some generic pathways evolved in stressful environments, targeting life-history and mating success characteristics to optimize fitness.
Collapse
Affiliation(s)
- Dau Dayal Aggarwal
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India.
| | - Prachi Mishra
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Manvender Singh
- Department of Biotechnology, University Institute of Technology, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
2
|
Coughlan JM, Dagilis AJ, Serrato-Capuchina A, Elias H, Peede D, Isbell K, Castillo DM, Cooper BS, Matute DR. Patterns of Population Structure and Introgression Among Recently Differentiated Drosophila melanogaster Populations. Mol Biol Evol 2022; 39:msac223. [PMID: 36251862 PMCID: PMC9641974 DOI: 10.1093/molbev/msac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite a century of genetic analysis, the evolutionary processes that have generated the patterns of exceptional genetic and phenotypic variation in the model organism Drosophila melanogaster remains poorly understood. In particular, how genetic variation is partitioned within its putative ancestral range in Southern Africa remains unresolved. Here, we study patterns of population genetic structure, admixture, and the spatial structuring of candidate incompatibility alleles across a global sample, including 223 new accessions, predominantly from remote regions in Southern Africa. We identify nine major ancestries, six that primarily occur in Africa and one that has not been previously described. We find evidence for both contemporary and historical admixture between ancestries, with admixture rates varying both within and between continents. For example, while previous work has highlighted an admixture zone between broadly defined African and European ancestries in the Caribbean and southeastern USA, we identify West African ancestry as the most likely African contributor. Moreover, loci showing the strongest signal of introgression between West Africa and the Caribbean/southeastern USA include several genes relating to neurological development and male courtship behavior, in line with previous work showing shared mating behaviors between these regions. Finally, while we hypothesized that potential incompatibility loci may contribute to population genetic structure across the range of D. melanogaster; these loci are, on average, not highly differentiated between ancestries. This work contributes to our understanding of the evolutionary history of a key model system, and provides insight into the partitioning of diversity across its range.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Andrius J Dagilis
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | | | - Hope Elias
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - David Peede
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Kristin Isbell
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Dean M Castillo
- Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Izutsu M, Lenski RE. Experimental test of the contributions of initial variation and new mutations to adaptive evolution in a novel environment. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.958406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Experimental evolution is an approach that allows researchers to study organisms as they evolve in controlled environments. Despite the growing popularity of this approach, there are conceptual gaps among projects that use different experimental designs. One such gap concerns the contributions to adaptation of genetic variation present at the start of an experiment and that of new mutations that arise during an experiment. The primary source of genetic variation has historically depended largely on the study organisms. In the long-term evolution experiment (LTEE) using Escherichia coli, for example, each population started from a single haploid cell, and therefore, adaptation depended entirely on new mutations. Most other microbial evolution experiments have followed the same strategy. By contrast, evolution experiments using multicellular, sexually reproducing organisms typically start with preexisting variation that fuels the response to selection. New mutations may also come into play in later generations of these experiments, but it is generally difficult to quantify their contribution in these studies. Here, we performed an experiment using E. coli to compare the contributions of initial genetic variation and new mutations to adaptation in a new environment. Our experiment had four treatments that varied in their starting diversity, with 18 populations in each treatment. One treatment depended entirely on new mutations, while the other three began with mixtures of clones, whole-population samples, or mixtures of whole-population samples from the LTEE. We tracked a genetic marker associated with different founders in two treatments. These data revealed significant variation in fitness among the founders, and that variation impacted evolution in the early generations of our experiment. However, there were no differences in fitness among the treatments after 500 or 2,000 generations in the new environment, despite the variation in fitness among the founders. These results indicate that new mutations quickly dominated, and eventually they contributed more to adaptation than did the initial variation. Our study thus shows that preexisting genetic variation can have a strong impact on early evolution in a new environment, but new beneficial mutations may contribute more to later evolution and can even drive some initially beneficial variants to extinction.
Collapse
|
4
|
Diamond SE, Martin RA, Bellino G, Crown KN, Prileson EG. Urban evolution of thermal physiology in a range-expanding, mycophagous fruit fly, Drosophila tripunctata. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
In Drosophila spp., their often high number of annual generations, large population sizes and large amounts of standing genetic variation should predispose them to undergo contemporary adaptation to climatic warming. However, a number of laboratory experimental evolution studies in this group of organisms suggest strong limits on the rate and magnitude of contemporary thermal adaptation. Here, we explore this discrepancy by examining the potential for rapid evolutionary divergence between wild populations of Drosophila tripunctata Loew, 1862 from rural and urban sites. We performed a multi-generation common garden study and found evidence for the evolution of higher heat tolerance (critical thermal maximum) in flies from urban populations. We also detected evolutionary divergence in cold resistance (chill coma recovery time), with diminished cold resistance in flies from urban populations, although the effect was weaker than the shift in heat tolerance. Our study provides evidence of contemporary urban thermal adaptation, although the magnitude of phenotypic change lagged the magnitude of environmental temperature change across the urbanization gradient, suggesting potential limits on the evolution of urban thermal physiology.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University , Cleveland, OH 44106 , USA
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University , Cleveland, OH 44106 , USA
| | - Grace Bellino
- Department of Biology, Case Western Reserve University , Cleveland, OH 44106 , USA
| | - K Nicole Crown
- Department of Biology, Case Western Reserve University , Cleveland, OH 44106 , USA
| | - Eric G Prileson
- Department of Biology, Case Western Reserve University , Cleveland, OH 44106 , USA
| |
Collapse
|
5
|
Villamil N, Sommervogel B, Pannell JR. Disentangling the effects of jasmonate and tissue loss on the sex allocation of an annual plant. FRONTIERS IN PLANT SCIENCE 2022; 13:812558. [PMID: 36119626 PMCID: PMC9478112 DOI: 10.3389/fpls.2022.812558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Selection through pollinators plays a major role in the evolution of reproductive traits. However, herbivory can also induce changes in plant sexual expression and sexual systems, potentially influencing conditions governing transitions between sexual systems. Previous work has shown that herbivory has a strong effect on sex allocation in the wind-pollinated annual plant Mercurialis annua, likely via responses to resource loss. It is also known that many plants respond to herbivory by inducing signaling, and endogenous responses to it, via the plant hormone jasmonate. Here, we attempt to uncouple the effects of herbivory on sex allocation in M. annua through resource limitation (tissue loss) versus plant responses to jasmonate hormone signaling. We used a two-factorial experiment with four treatment combinations: control, herbivory (25% chronic tissue loss), jasmonate, and combined herbivory and jasmonate. We estimated the effects of tissue loss and defense-inducing hormones on reproductive allocation, male reproductive effort, and sex allocation. Tissue loss caused plants to reduce their male reproductive effort, resulting in changes in total sex allocation. However, application of jasmonate after herbivory reversed its effect on male investment. Our results show that herbivory has consequences on plant sex expression and sex allocation, and that defense-related hormones such as jasmonate can buffer the impacts. We discuss the physiological mechanisms that might underpin the effects of herbivory on sex allocation, and their potential implications for the evolution of plant sexual systems.
Collapse
|
6
|
Olson ME. Linking xylem structure and function: the comparative method in from the cold. THE NEW PHYTOLOGIST 2022; 235:815-820. [PMID: 35770485 PMCID: PMC9328200 DOI: 10.1111/nph.18179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article is a Commentary on Savage et al. (2022), 235: 953–964.
Collapse
Affiliation(s)
- Mark E. Olson
- Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoTercer Circuito sn de Ciudad UniversitariaCiudad de México04510Mexico
| |
Collapse
|
7
|
Queiroz MCV, Douin M, Sato ME, Tixier MS. Molecular variation of the cytochrome b DNA and protein sequences in Phytoseiulus macropilis and P. persimilis (Acari: Phytoseiidae) reflect population differentiation. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:687-701. [PMID: 34324135 DOI: 10.1007/s10493-021-00648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Several phytoseiid mite species are important natural enemies used in biological control strategies. In the present study, Cytb mtDNA sequences of various populations of two species, Phytoseiulus macropolis and P. persimilis, were compared to determine whether the specimens collected in Brazil could belong to P. persimilis as this latter species is reported in South America but not in Brazil. The Cytb marker was used because of its high evolution rate, assumed to capture intraspecific variation. No overlap between intra- and interspecific distances was observed but the distances were quite low for interspecific variation. This can be due to the particular biology of Phytoseiulus species and this shows the difficulty to apply a universal threshold in genetic distances to conclude about the existence of one or several species. Cytb mtDNA sequences were also considered to assess intraspecific variation. The DNA sequences of P. persimilis populations were very similar, probably because they all originated from the West Palearctic region or because of a prevalence of commercialized specimens in natura. For P. macropilis, higher genetic distances were observed and differentiation was noted according to geographic location and, to a smaller extent, pyrethroid resistance. To determine how DNA variation might impact the protein function (CytB fragment considered), the amino acid compositions of the populations studied were compared. No diagnostic mutation was observed between pyrethroid resistant and susceptible populations, whereas four mutations were identified between populations of P. macropilis separated by 1300 km (different climatic conditions). The impact of such mutations is discussed but knowledge is scarce, which makes it difficult to root testable hypotheses. The protein analysis clearly opens new perspectives in Phytoseiidae studies.
Collapse
Affiliation(s)
| | - Martial Douin
- CBGP, Montpellier SupAgro, INRA, CIRAD, IRD, Univ. Montpellier, Campus International de Baillarguet, CS 30016, Montferrier-sur-Lez cedex, 34988, Montpellier, France
| | - Mario Eidi Sato
- Instituto Biológico, APTA, Caixa Postal 70, Campinas, SP, 13001-970, Brazil
| | - Marie-Stéphane Tixier
- CBGP, Montpellier SupAgro, INRA, CIRAD, IRD, Univ. Montpellier, Campus International de Baillarguet, CS 30016, Montferrier-sur-Lez cedex, 34988, Montpellier, France.
| |
Collapse
|
8
|
How well do genetic markers inform about responses to intraspecific admixture? A comparative analysis of microsatellites and RADseq. BMC Genom Data 2021; 22:22. [PMID: 34182923 PMCID: PMC8237422 DOI: 10.1186/s12863-021-00974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
Background Fitness consequences of intraspecific genetic admixture can vary from positive to negative depending on the genetic composition of the populations and environmental conditions. Because admixture has potential to influence the success of management and conservation efforts, genetic similarity has been suggested to be used as a proxy to predict the outcome. Studies utilizing microsatellites (a neutral marker) to investigate associations between genetic distance and admixture effects show conflicting results. Marker types that yield information on genome-wide and/or adaptive variation might be more useful for predicting responses to inter-population hybridization. In this study we utilized published data for three populations of pike (Esox lucius) to investigate associations between offspring performance (hatching success) and parental genetic similarity in experimentally purebred and admixed families, based on neutral (microsatellites), genome-wide neutral (RADseq SNPs), and adaptive (SNPs under selection) markers. Results Estimated similarity varied among the markers, likely reflecting differences in their inherent properties, but was consistently higher in purebred than admixed families. A significant interaction between marker type and admixture treatment reflected that neutral SNPs yielded higher estimates than adaptive SNPs for admixed families whereas no difference was found for purebred families, which indicates that neutral similarity was not reflective of adaptive similarity. When all samples were pooled, no association between similarity and performance was found for any marker. For microsatellites, similarity was positively correlated with hatching success in purebred families, whereas no association was found in admixed families; however, the direction of the effect differed between the population combinations. Conclusions The results strengthen the notion that, as of today, there is no proxy that can reliably predicted the outcome of admixture. This emphasizes the need of further studies to advance knowledge that can shed light on how to safeguard against negative consequences of admixture, and thereby inform management and promote conservation of biological diversity. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00974-3.
Collapse
|
9
|
Wilson AE, Siddiqui A, Dworkin I. Spatial heterogeneity in resources alters selective dynamics in Drosophila melanogaster. Evolution 2021; 75:1792-1804. [PMID: 33963761 DOI: 10.1111/evo.14262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
Environmental features can alter the behaviors and phenotypes of organisms, influencing the dynamics of natural and sexual selection. Experimental environmental manipulation, particularly when conducted in experiments where the dynamics of the purging of deleterious alleles are compared, has demonstrated both direct and indirect effects on the strength and direction of selection. However, many of these studies are conducted with fairly simplistic environments, where it is not always clear how or why particular forms of spatial heterogeneity influence behavior or selection. Using Drosophila melanogaster, we tested three different spatial environments designed to determine if spatial constraint of critical resources influences the efficiency of natural and sexual selection. We conducted two allele purging experiments to (1) assess effects of these spatial treatments on selective dynamics of six recessive mutations, and (2) determine how these dynamics changed when sexual selection was relaxed and spatial area reduced for two of the mutants. Allele purging dynamics depended on spatial environment, however the patterns of purging rates between the environments differed across distinct deleterious mutations. We also tested two of the mutant alleles, and demonstrate sexual selection increased the purging rate.
Collapse
Affiliation(s)
- Audrey E Wilson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ali Siddiqui
- Department of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Stazione L, Norry FM, Sambucetti P. Do Longevity and Fecundity Change by Selection on Mating Success at Elevated Temperature? Correlated Selection Responses in Drosophila buzzatii. Evol Biol 2021. [DOI: 10.1007/s11692-021-09540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Grainger TN, Rudman SM, Schmidt P, Levine JM. Competitive history shapes rapid evolution in a seasonal climate. Proc Natl Acad Sci U S A 2021; 118:e2015772118. [PMID: 33536336 PMCID: PMC8017725 DOI: 10.1073/pnas.2015772118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eco-evolutionary dynamics will play a critical role in determining species' fates as climatic conditions change. Unfortunately, we have little understanding of how rapid evolutionary responses to climate play out when species are embedded in the competitive communities that they inhabit in nature. We tested the effects of rapid evolution in response to interspecific competition on subsequent ecological and evolutionary trajectories in a seasonally changing climate using a field-based evolution experiment with Drosophila melanogaster Populations of D. melanogaster were either exposed, or not exposed, to interspecific competition with an invasive competitor, Zaprionus indianus, over the summer. We then quantified these populations' ecological trajectories (abundances) and evolutionary trajectories (heritable phenotypic change) when exposed to a cooling fall climate. We found that competition with Z. indianus in the summer affected the subsequent evolutionary trajectory of D. melanogaster populations in the fall, after all interspecific competition had ceased. Specifically, flies with a history of interspecific competition evolved under fall conditions to be larger and have lower cold fecundity and faster development than flies without a history of interspecific competition. Surprisingly, this divergent fall evolutionary trajectory occurred in the absence of any detectible effect of the summer competitive environment on phenotypic evolution over the summer or population dynamics in the fall. This study demonstrates that competitive interactions can leave a legacy that shapes evolutionary responses to climate even after competition has ceased, and more broadly, that evolution in response to one selective pressure can fundamentally alter evolution in response to subsequent agents of selection.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Ecology and Evolutionary Biology Department, Princeton University, Princeton NJ 08544;
| | - Seth M Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
- School of Biological Sciences, Washington State University, Vancouver, WA 98686
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jonathan M Levine
- Ecology and Evolutionary Biology Department, Princeton University, Princeton NJ 08544
| |
Collapse
|
12
|
Di Martino E, Liow LH. Trait-fitness associations do not predict within-species phenotypic evolution over 2 million years. Proc Biol Sci 2021; 288:20202047. [PMID: 33468005 PMCID: PMC7893266 DOI: 10.1098/rspb.2020.2047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long-term patterns of phenotypic change are the cumulative results of tens of thousands to millions of years of evolution. Yet, empirical and theoretical studies of phenotypic selection are largely based on contemporary populations. The challenges in studying phenotypic evolution, in particular trait-fitness associations in the deep past, are barriers to linking micro- and macroevolution. Here, we capitalize on the unique opportunity offered by a marine colonial organism commonly preserved in the fossil record to investigate trait-fitness associations over 2 Myr. We use the density of female polymorphs in colonies of Antartothoa tongima as a proxy for fecundity, a fitness component, and investigate multivariate signals of trait-fitness associations in six time intervals on the backdrop of Pleistocene climatic shifts. We detect negative trait-fitness associations for feeding polymorph (autozooid) sizes, positive associations for autozooid shape but no particular relationship between fecundity and brood chamber size. In addition, we demonstrate that long-term trait patterns are explained by palaeoclimate (as approximated by ∂18O), and to a lesser extent by ecological interactions (i.e. overgrowth competition and substrate crowding). Our analyses show that macroevolutionary outcomes of trait evolution are not a simple scaling-up from the trait-fitness associations.
Collapse
Affiliation(s)
| | - Lee Hsiang Liow
- Natural History Museum, University of Oslo, Oslo, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Ng'oma E, Williams-Simon PA, Rahman A, King EG. Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population. BMC Genomics 2020; 21:84. [PMID: 31992183 PMCID: PMC6988245 DOI: 10.1186/s12864-020-6467-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
Background Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pathways in laboratory model organisms, chiefly the insulin/TOR signaling pathway. However, the genetic basis of diet-induced variation in gene expression is less clear. Results To describe the natural genetic variation underlying nutrient-dependent differences, we used an outbred panel derived from a multiparental population, the Drosophila Synthetic Population Resource. We analyzed RNA sequence data from multiple female tissue samples dissected from flies reared in three nutritional conditions: high sugar (HS), dietary restriction (DR), and control (C) diets. A large proportion of genes in the experiment (19.6% or 2471 genes) were significantly differentially expressed for the effect of diet, and 7.8% (978 genes) for the effect of the interaction between diet and tissue type (LRT, Padj. < 0.05). Interestingly, we observed similar patterns of gene expression relative to the C diet, in the DR and HS treated flies, a response likely reflecting diet component ratios. Hierarchical clustering identified 21 robust gene modules showing intra-modularly similar patterns of expression across diets, all of which were highly significant for diet or diet-tissue interaction effects (FDR Padj. < 0.05). Gene set enrichment analysis for different diet-tissue combinations revealed a diverse set of pathways and gene ontology (GO) terms (two-sample t-test, FDR < 0.05). GO analysis on individual co-expressed modules likewise showed a large number of terms encompassing many cellular and nuclear processes (Fisher exact test, Padj. < 0.01). Although a handful of genes in the IIS/TOR pathway including Ilp5, Rheb, and Sirt2 showed significant elevation in expression, many key genes such as InR, chico, most insulin peptide genes, and the nutrient-sensing pathways were not observed. Conclusions Our results suggest that a more diverse network of pathways and gene networks mediate the diet response in our population. These results have important implications for future studies focusing on diet responses in natural populations.
Collapse
Affiliation(s)
- E Ng'oma
- University of Missouri, 401 Tucker Hall, Columbia, MO, 65211, USA.
| | | | - A Rahman
- University of Missouri, 401 Tucker Hall, Columbia, MO, 65211, USA
| | - E G King
- University of Missouri, 401 Tucker Hall, Columbia, MO, 65211, USA
| |
Collapse
|
14
|
Critical Thermal Limits Do Not Vary between Wild-caught and Captive-bred Tadpoles of Agalychnis spurrelli (Anura: Hylidae). DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Captive-bred organisms are widely used in ecology, evolution and conservation research, especially in scenarios where natural populations are scarce or at risk of extinction. Yet, it is still unclear whether captivity may alter thermal tolerances, crucial traits to predict species resilience to global warming. Here, we study whether captive-bred tadpoles of the gliding treefrog (Agalychnis spurrelli) show different thermal tolerances than wild-caught individuals. Our results show that there are no differences between critical thermal limits (CTmax and CTmin) of captive-bred and wild-caught tadpoles exposed to three-day acclimatization at 20 °C. Therefore, we suggest that the use of captive-bred amphibians is valid and may be appropriate in experimental comparisons to thermal physiological studies of wild populations.
Collapse
|
15
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
16
|
Ecological genomics of adaptation to unpredictability in experimental rotifer populations. Sci Rep 2019; 9:19646. [PMID: 31873145 PMCID: PMC6927961 DOI: 10.1038/s41598-019-56100-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022] Open
Abstract
Elucidating the genetic basis of phenotypic variation in response to different environments is key to understanding how populations evolve. Facultatively sexual rotifers can develop adaptive responses to fluctuating environments. In a previous evolution experiment, diapause-related traits changed rapidly in response to two selective regimes (predictable vs unpredictable) in laboratory populations of the rotifer Brachionus plicatilis. Here, we investigate the genomic basis of adaptation to environmental unpredictability in these experimental populations. We identified and genotyped genome-wide polymorphisms in 169 clones from both selective regimes after seven cycles of selection using genotyping by sequencing (GBS). Additionally, we used GBS data from the 270 field clones from which the laboratory populations were established. This GBS dataset was used to identify candidate SNPs under selection. A total of 76 SNPs showed divergent selection, three of which are candidates for being under selection in the particular unpredictable fluctuation pattern studied. Most of the remaining SNPs showed strong signals of adaptation to laboratory conditions. Furthermore, a genotype-phenotype association approach revealed five SNPs associated with two key life-history traits in the adaptation to unpredictability. Our results contribute to elucidating the genomic basis for adaptation to unpredictable environments and lay the groundwork for future evolution studies in rotifers.
Collapse
|
17
|
Kinzner MC, Gamisch A, Hoffmann AA, Seifert B, Haider M, Arthofer W, Schlick-Steiner BC, Steiner FM. Major range loss predicted from lack of heat adaptability in an alpine Drosophila species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133753. [PMID: 31425981 DOI: 10.1016/j.scitotenv.2019.133753] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Climate warming is threatening biodiversity worldwide. Climate specialists such as alpine species are especially likely to be vulnerable. Adaptation by rapid evolution is the only long-term option for survival of many species, but the adaptive evolutionary potential of heat resistance has not been assessed in an alpine invertebrate. Here, we show that the alpine fly Drosophila nigrosparsa cannot readily adapt to heat stress. Heat-exposed flies from a regime with increased ambient temperature and a regime with increased temperature plus artificial selection for heat tolerance were less heat tolerant than the control group. Increased ambient temperature affected negatively both fitness and competitiveness. Ecological niche models predicted the loss of three quarters of the climatically habitable areas of this fly by the end of this century. Our findings suggest that, alongside with other climate specialists, species from mountainous regions are highly vulnerable to climate warming and unlikely to adapt through evolutionary genetic changes.
Collapse
Affiliation(s)
| | - Alexander Gamisch
- Department of Ecology, University of Innsbruck, Innsbruck, Austria; Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Ary A Hoffmann
- School of Biosciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Brigitta Seifert
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Marlene Haider
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
18
|
Ko L, Harshman L, Hangartner S, Hoffmann A, Kachman S, Black P. Changes in lipid classes of Drosophila melanogaster in response to selection for three stress traits. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103890. [PMID: 31153895 DOI: 10.1016/j.jinsphys.2019.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Laboratory selection on environmental stress traits is an evolutionary approach that is informative in the context of understanding stress adaptation. Here we characterize changes in a lipidome of Drosophila melanogaster in lines selected for increased heat (elevated heat knockdown refractoriness), cold (decreased time to recover from chill-coma) and desiccation survival. Selection for desiccation resistance resulted in changes in multiple lipid classes used to characterize a lipidome. This included a decrease in triacylglycerols (TAGs) which is relevant to interpretation of storage lipid levels in previous D. melanogaster desiccation survival selection experiments. Chill-coma recovery rate selection was expected to show extensive changes in lipid classes, but only phosphatidic acids exhibited significant change. Selection for increased heat knockdown resistance resulted in a substantial change in the abundance of a class of lipids (diacylglycerols) which could play a role in mediating the heat shock response or result in an increase in neutral lipid mobilization.
Collapse
Affiliation(s)
- Li Ko
- School of Biological Sciences, University of Nebraska Lincoln, 1104 T St, Lincoln, NE 68588, USA.
| | - Lawrence Harshman
- School of Biological Sciences, University of Nebraska Lincoln, 1104 T St, Lincoln, NE 68588, USA
| | - Sandra Hangartner
- School of Biological Sciences, The University of Melbourne, 30 Flemington Road, Parkville 3010, Australia
| | - Ary Hoffmann
- School of Biological Sciences, The University of Melbourne, 30 Flemington Road, Parkville 3010, Australia
| | - Steve Kachman
- Department of Statistics, University of Nebraska Lincoln, 340 Hardin Hall North Wing, Lincoln, NE 68583, USA
| | - Paul Black
- Department of Biochemistry, University of Nebraska Lincoln, 1901 Vince Street, Lincoln, NE 68588, USA
| |
Collapse
|
19
|
Zajitschek F, Zajitschek S, Bonduriansky R. Senescence in wild insects: Key questions and challenges. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13399] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Felix Zajitschek
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Susanne Zajitschek
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Russell Bonduriansky
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
20
|
Tratter Kinzner M, Kinzner MC, Kaufmann R, Hoffmann AA, Arthofer W, Schlick-Steiner BC, Steiner FM. Is temperature preference in the laboratory ecologically relevant for the field? The case of Drosophila nigrosparsa. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Michalak P, Kang L, Schou MF, Garner HR, Loeschcke V. Genomic signatures of experimental adaptive radiation in Drosophila. Mol Ecol 2018; 28:600-614. [PMID: 30375065 DOI: 10.1111/mec.14917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Abiotic environmental factors play a fundamental role in determining the distribution, abundance and adaptive diversification of species. Empowered by new technologies enabling rapid and increasingly accurate examination of genomic variation in populations, researchers may gain new insights into the genomic background of adaptive radiation and stress resistance. We investigated genomic variation across generations of large-scale experimental selection regimes originating from a single founder population of Drosophila melanogaster, diverging in response to ecologically relevant environmental stressors: heat shock, heat knock down, cold shock, desiccation and starvation. When compared to the founder population, and to parallel unselected controls, there were more than 100,000 single nucleotide polymorphisms (SNPs) displaying consistent allelic changes in response to selective pressures across generations. These SNPs were found in both coding and noncoding sequences, with the highest density in promoter regions, and involved a broad range of functionalities, including molecular chaperoning by heat-shock proteins. The SNP patterns were highly stressor-specific despite considerable variation among line replicates within each selection regime, as reflected by a principal component analysis, and co-occurred with selective sweep regions. Only ~15% of SNPs with putatively adaptive changes were shared by at least two selective regimes, while less than 1% of SNPs diverged in opposite directions. Divergent stressors driving evolution in the experimental system of adaptive radiation left distinct genomic signatures, most pronounced in starvation and heat-shock selection regimes.
Collapse
Affiliation(s)
- Pawel Michalak
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia.,One Health Research Center, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia.,Institute of Evolution, University of Haifa, Haifa, Israel
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia
| | - Mads F Schou
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Harold R Garner
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia.,The Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA
| | | |
Collapse
|
22
|
Male courtship behaviors and female choice reduced during experimental starvation stress. Behav Ecol 2018. [DOI: 10.1093/beheco/ary144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
23
|
VanKuren NW, Long M. Gene duplicates resolving sexual conflict rapidly evolved essential gametogenesis functions. Nat Ecol Evol 2018; 2:705-712. [PMID: 29459709 PMCID: PMC5866764 DOI: 10.1038/s41559-018-0471-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/05/2018] [Indexed: 02/04/2023]
Abstract
Males and females have different fitness optima but share the vast majority of their genomes, causing an inherent genetic conflict between the two sexes that must be resolved to achieve maximal population fitness. We show that two tandem duplicate genes found specifically in Drosophila melanogaster are sexually antagonistic, but rapidly evolved sex-specific functions and expression patterns that mitigate their antagonistic effects. We use copy-specific knockouts and rescue experiments to show that Apollo (Apl) is essential for male fertility but detrimental to female fertility, in addition to its important role in development, while Artemis (Arts) is essential for female fertility but detrimental to male fertility. Further analyses show that Apl and Arts have essential roles in spermatogenesis and oogenesis. These duplicates formed ~200,000 years ago, underwent a strong selective sweep and lost most expression in the antagonized sex. These data provide direct evidence that gene duplication allowed rapid mitigation of sexual conflict by allowing Apl and Arts to evolve essential sex-specific reproductive functions and complementary expression in male and female gonads.
Collapse
Affiliation(s)
- Nicholas W VanKuren
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
Maclean HJ, Kristensen TN, Sørensen JG, Overgaard J. Laboratory maintenance does not alter ecological and physiological patterns among species: a Drosophila case study. J Evol Biol 2018; 31:530-542. [PMID: 29446196 DOI: 10.1111/jeb.13241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 11/29/2022]
Abstract
Large comparative studies in animal ecology, physiology and evolution often use animals reared in the laboratory for many generations; however, the relevance of these studies hinges on the assumption that laboratory populations are still representative for their wild living conspecifics. In this study, we investigate whether laboratory-maintained and freshly collected animal populations are fundamentally different and whether data from laboratory-maintained animals are valid to use in large comparative investigations of ecological and physiological patterns. Here, we obtained nine species of Drosophila with paired populations of laboratory-maintained and freshly collected flies. These species, representing a range of ecotypes, were assayed for four stress-tolerance, two body-size traits and six life-history traits. For all of these traits, we observed small differences in species-specific comparisons between field and laboratory populations; however, these differences were unsystematic and laboratory maintenance did not eclipse fundamental species characteristics. To investigate whether laboratory maintenance influence the general patterns in comparative studies, we correlated stress tolerance and life-history traits with environmental traits for the laboratory-maintained and freshly collected populations. Based on this analysis, we found that the comparative physiological and ecological trait correlations are similar irrespective of provenience. This finding is important for comparative biology in general because it validates comparative meta-analyses based on laboratory-maintained populations.
Collapse
Affiliation(s)
- H J Maclean
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - T N Kristensen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.,Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark
| | - J G Sørensen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - J Overgaard
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
25
|
Menezes BF, Salces-Ortiz J, Muller H, Burlet N, Martinez S, Fablet M, Vieira C. An attempt to select non-genetic variation in resistance to starvation and reduced chill coma recovery time in Drosophila melanogaster. J Exp Biol 2018; 221:jeb.186254. [DOI: 10.1242/jeb.186254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
Abstract
Phenotypic variance is attributed to genetic and non-genetic factors, and only the former are supposed to be inherited and thus suitable for the action of selection. Although increasing amounts of data suggest that non-genetic variability may be inherited, we have limited empirical data in animals. Here, we performed an artificial selection experiment using Drosophila melanogaster inbred lines. We quantified the response to selection for a decrease in chill coma recovery time and an increase in starvation resistance. We observed a weak response to selection in the inbred and outbred lines, with variability across lines. At the end of the selection process, differential expression was detected for some genes associated with epigenetics, the piRNA pathway and canalization functions. As the selection process can disturb the canalization process and increase the phenotypic variance of developmental traits, we also investigated possible effects of the selection process on the number of scutellar bristles, fluctuating asymmetry levels, and fitness estimates. These results suggest that, contrary to what was shown in plants, selection of non-genetic variability is not straightforward in Drosophila and appears to be strongly genotype-dependent.
Collapse
Affiliation(s)
- Bianca F. Menezes
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, France
| | - Judit Salces-Ortiz
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, France
| | - Heloïse Muller
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, France
| | - Sonia Martinez
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, France
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
26
|
Lin JE, Hard JJ, Hilborn R, Hauser L. Modeling local adaptation and gene flow in sockeye salmon. Ecosphere 2017. [DOI: 10.1002/ecs2.2039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jocelyn E. Lin
- School of Aquatic and Fishery Sciences University of Washington Box 355020 Seattle Washington 98195 USA
| | - Jeffrey J. Hard
- Conservation Biology Division Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle Washington 98112 USA
| | - Ray Hilborn
- School of Aquatic and Fishery Sciences University of Washington Box 355020 Seattle Washington 98195 USA
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences University of Washington Box 355020 Seattle Washington 98195 USA
| |
Collapse
|
27
|
Gotcha N, Terblanche JS, Nyamukondiwa C. Plasticity and cross-tolerance to heterogeneous environments: divergent stress responses co-evolved in an African fruit fly. J Evol Biol 2017; 31:98-110. [PMID: 29080375 DOI: 10.1111/jeb.13201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 01/16/2023]
Abstract
Plastic adjustments of physiological tolerance to a particular stressor can result in fitness benefits for resistance that might manifest not only in that same environment but also be advantageous when faced with alternative environmental stressors, a phenomenon termed 'cross-tolerance'. The nature and magnitude of cross-tolerance responses can provide important insights into the underlying genetic architecture, potential constraints on or versatility of an organism's stress responses. In this study, we tested for cross-tolerance to a suite of abiotic factors that likely contribute to setting insect population dynamics and geographic range limits: heat, cold, desiccation and starvation resistance in adult Ceratitis rosa following acclimation to all these isolated individual conditions prior to stress assays. Traits of stress resistance scored included critical thermal (activity) limits, chill coma recovery time (CCRT), heat knockdown time (HKDT), desiccation and starvation resistance. In agreement with other studies, we found that acclimation to one stress typically increased resistance for that same stress experienced later in life. A more novel outcome, however, is that here we also found substantial evidence for cross-tolerance. For example, we found an improvement in heat tolerance (critical thermal maxima, CTmax ) following starvation or desiccation hardening and improved desiccation resistance following cold acclimation, indicating pronounced cross-tolerance to these environmental stressors for the traits examined. We also found that two different traits of the same stress resistance differed in their responsiveness to the same stress conditions (e.g. HKDT was less cross-resistant than CTmax ). The results of this study have two major implications that are of broader importance: (i) that these traits likely co-evolved to cope with diverse or simultaneous stressors, and (ii) that a set of common underlying physiological mechanisms might exist between apparently divergent stress responses in this species. This species may prove to be a valuable model for future work on the evolutionary and mechanistic basis of cross-tolerance.
Collapse
Affiliation(s)
- N Gotcha
- Department of Biological Sciences and Biotechnology Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - J S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - C Nyamukondiwa
- Department of Biological Sciences and Biotechnology Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| |
Collapse
|
28
|
Pedrosa JAM, Cocchiararo B, Bordalo MD, Rodrigues ACM, Soares AMVM, Barata C, Nowak C, Pestana JLT. The role of genetic diversity and past-history selection pressures in the susceptibility of Chironomus riparius populations to environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:807-816. [PMID: 27810765 DOI: 10.1016/j.scitotenv.2016.10.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
Natural populations experiencing intense selection and genetic drift may exhibit limited potential to adapt to environmental change. The present study addresses the following aspects of the "genetic erosion" hypothesis in the midge Chironomus riparius: does long-term mercury (Hg) contamination affect the Hg tolerance of midge populations inhabiting such impacted areas? If so, is there any fitness cost under changing environmental conditions? And does genetic impoverishment influence the susceptibility of C. riparius to cope with environmental stressful conditions? For this end, we tested the acute and chronic tolerance to Hg and salinity in four C. riparius populations differing in their levels of genetic diversity (assessed through microsatellite markers) and past-histories of Hg exposure. Results showed that the midge population collected from a heavily Hg-contaminated site had higher Hg tolerance compared to the population collected from a closely-located reference site suggesting directional selection for Hg-tolerant traits in its native environment despite no genetic erosion in the field. No increased susceptibility under changing environmental conditions of salinity stress was observed. Moreover, results also showed that populations with higher genetic diversity performed better in the partial life-cycle assays providing evidence on the key role that genetic diversity plays as mediator of populations' susceptibility to environmental stress. Our findings are discussed in terms of the suitability of C. riparius as a model organism in evolutionary toxicology studies as well as the validity of ecotoxicological assessments using genetically eroded laboratory populations.
Collapse
Affiliation(s)
- João A M Pedrosa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Conservation Genetics Group, Senckenberg Research Institute, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Maria D Bordalo
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia C M Rodrigues
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Michalak P, Kang L, Sarup PM, Schou MF, Loeschcke V. Nucleotide diversity inflation as a genome-wide response to experimental lifespan extension in Drosophila melanogaster. BMC Genomics 2017; 18:84. [PMID: 28088192 PMCID: PMC5237518 DOI: 10.1186/s12864-017-3485-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022] Open
Abstract
Background Evolutionary theory predicts that antagonistically selected alleles, such as those with divergent pleiotropic effects in early and late life, may often reach intermediate population frequencies due to balancing selection, an elusive process when sought out empirically. Alternatively, genetic diversity may increase as a result of positive frequency-dependent selection and genetic purging in bottlenecked populations. Results While experimental evolution systems with directional phenotypic selection typically result in at least local heterozygosity loss, we report that selection for increased lifespan in Drosophila melanogaster leads to an extensive genome-wide increase of nucleotide diversity in the selected lines compared to replicate control lines, pronounced in regions with no or low recombination, such as chromosome 4 and centromere neighborhoods. These changes, particularly in coding sequences, are most consistent with the operation of balancing selection and the antagonistic pleiotropy theory of aging and life history traits that tend to be intercorrelated. Genes involved in antioxidant defenses, along with multiple lncRNAs, were among those most affected by balancing selection. Despite the overwhelming genetic diversification and the paucity of selective sweep regions, two genes with functions important for central nervous system and memory, Ptp10D and Ank2, evolved under positive selection in the longevity lines. Conclusions Overall, the ‘evolve-and-resequence’ experimental approach proves successful in providing unique insights into the complex evolutionary dynamics of genomic regions responsible for longevity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3485-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pawel Michalak
- Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA.
| | - Lin Kang
- Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA
| | - Pernille M Sarup
- Department of Bioscience, Aarhus University, Ny Munkegade 114-116, Aarhus, DK-8000, Denmark
| | - Mads F Schou
- Department of Bioscience, Aarhus University, Ny Munkegade 114-116, Aarhus, DK-8000, Denmark
| | - Volker Loeschcke
- Department of Bioscience, Aarhus University, Ny Munkegade 114-116, Aarhus, DK-8000, Denmark.
| |
Collapse
|
30
|
Genomic Trajectories to Desiccation Resistance: Convergence and Divergence Among Replicate Selected Drosophila Lines. Genetics 2016; 205:871-890. [PMID: 28007884 DOI: 10.1534/genetics.116.187104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Adaptation to environmental stress is critical for long-term species persistence. With climate change and other anthropogenic stressors compounding natural selective pressures, understanding the nature of adaptation is as important as ever in evolutionary biology. In particular, the number of alternative molecular trajectories available for an organism to reach the same adaptive phenotype remains poorly understood. Here, we investigate this issue in a set of replicated Drosophila melanogaster lines selected for increased desiccation resistance-a classical physiological trait that has been closely linked to Drosophila species distributions. We used pooled whole-genome sequencing (Pool-Seq) to compare the genetic basis of their selection responses, using a matching set of replicated control lines for characterizing laboratory (lab-)adaptation, as well as the original base population. The ratio of effective population size to census size was high over the 21 generations of the experiment at 0.52-0.88 for all selected and control lines. While selected SNPs in replicates of the same treatment (desiccation-selection or lab-adaptation) tended to change frequency in the same direction, suggesting some commonality in the selection response, candidate SNP and gene lists often differed among replicates. Three of the five desiccation-selection replicates showed significant overlap at the gene and network level. All five replicates showed enrichment for ovary-expressed genes, suggesting maternal effects on the selected trait. Divergence between pairs of replicate lines for desiccation-candidate SNPs was greater than between pairs of control lines. This difference also far exceeded the divergence between pairs of replicate lines for neutral SNPs. Overall, while there was overlap in the direction of allele frequency changes and the network and functional categories affected by desiccation selection, replicates showed unique responses at all levels, likely reflecting hitchhiking effects, and highlighting the challenges in identifying candidate genes from these types of experiments when traits are likely to be polygenic.
Collapse
|
31
|
Gagliardi BS, Pettigrove VJ, Long SM, Hoffmann AA. A Meta-Analysis Evaluating the Relationship between Aquatic Contaminants and Chironomid Larval Deformities in Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12903-12911. [PMID: 27787987 DOI: 10.1021/acs.est.6b04020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chironomid larval deformities have been widely investigated as an aquatic pollution toxicity end point. Field chironomid surveys often show a spatial association between contaminants and deformities, suggesting contaminants cause deformities. However, over 40 years of laboratory assays have not been able to confirm this causality. We therefore conducted a review of the literature and meta-analysis, in order to (A) assess whether trends across assays indicated dose-response effects, (B) characterize the consistency of results, and (C) investigate whether experimental issues and publication bias were contributing to inconsistency and/or reducing confidence in results. The experimental issues we investigated were extraneous nonchemical laboratory stressors (which may mask or interact with chemical effects), and mortality (which can confound deformity results). Our meta-analysis of the most commonly tested chemicals suggested dose-response effects for copper, but not lead or zinc. However, we also found substantial inconsistency across studies. Both mortality and extraneous stressors were potentially contributing to this inconsistency, reducing confidence in most published data. We observed no evidence of publication bias. We conclude that any causal link between contaminants and deformities remains uncertain, and suggest improved experimental and data reporting procedures to better assess this relationship.
Collapse
Affiliation(s)
- Bryant S Gagliardi
- Centre for Aquatic Pollution Identification and Management (CAPIM), BioSciences 4, School of BioSciences, The University of Melbourne , Melbourne, Victoria 3010 Australia
| | - Vincent J Pettigrove
- Centre for Aquatic Pollution Identification and Management (CAPIM), BioSciences 4, School of BioSciences, The University of Melbourne , Melbourne, Victoria 3010 Australia
| | - Sara M Long
- Centre for Aquatic Pollution Identification and Management (CAPIM), Bio21 Institute and School of BioSciences, The University of Melbourne , 30 Flemington Road, Parkville, Victoria 3010 Australia
| | - Ary A Hoffmann
- Centre for Aquatic Pollution Identification and Management (CAPIM), Bio21 Institute and School of BioSciences, The University of Melbourne , 30 Flemington Road, Parkville, Victoria 3010 Australia
| |
Collapse
|
32
|
Tejeda MT, Arredondo J, Liedo P, Pérez-Staples D, Ramos-Morales P, Díaz-Fleischer F. Reasons for success: Rapid evolution for desiccation resistance and life-history changes in the polyphagous flyAnastrepha ludens. Evolution 2016; 70:2583-2594. [DOI: 10.1111/evo.13070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Marco T. Tejeda
- INBIOTECA; Universidad Veracruzana; Xalapa Veracruz 91090 México
- Departamento de Cría; Programa Moscamed acuerdo SAGARPA-IICA; Metapa de Domínguez Chiapas 30860 México
| | - José Arredondo
- Departamento de Biología, Ecología y Comportamiento; Desarrollo de Métodos; Programa Moscafrut acuerdo SAGARPA-IICA Metapa de Domínguez Chiapas 30860 México
| | - Pablo Liedo
- El Colegio de la Frontera Sur; Tapachula Chiapas 30700 México
| | | | - Patricia Ramos-Morales
- UNAM, Facultad de Ciencias; Laboratorio de Genética y Toxicología Ambiental and Drosophila Stock Center México; Distrito Federal 04510 México
| | | |
Collapse
|
33
|
Nouhaud P, Tobler R, Nolte V, Schlötterer C. Ancestral population reconstitution from isofemale lines as a tool for experimental evolution. Ecol Evol 2016; 6:7169-7175. [PMID: 27895897 PMCID: PMC5114691 DOI: 10.1002/ece3.2402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 02/03/2023] Open
Abstract
Experimental evolution is a powerful tool to study adaptation under controlled conditions. Laboratory natural selection experiments mimic adaptation in the wild with better‐adapted genotypes having more offspring. Because the selected traits are frequently not known, adaptation is typically measured as fitness increase by comparing evolved populations against an unselected reference population maintained in a laboratory environment. With adaptation to the laboratory conditions and genetic drift, however, it is not clear to what extent such comparisons provide unbiased estimates of adaptation. Alternatively, ancestral variation could be preserved in isofemale lines that can be combined to reconstitute the ancestral population. Here, we assess the impact of selection on alleles segregating in newly established Drosophila isofemale lines. We reconstituted two populations from isofemale lines and compared them to two original ancestral populations (AP) founded from the same lines shortly after collection. No significant allele frequency changes could be detected between both AP and simulations showed that drift had a low impact compared to Pool‐Seq‐associated sampling effects. We conclude that laboratory selection on segregating variation in isofemale lines is too weak to have detectable effects, which validates ancestral population reconstitution from isofemale lines as an unbiased approach for measuring adaptation in evolved populations.
Collapse
Affiliation(s)
- Pierre Nouhaud
- Institut für Populationsgenetik Vetmeduni Vienna Vienna Austria
| | - Ray Tobler
- Institut für Populationsgenetik Vetmeduni Vienna Vienna Austria; Present address: Ray Tobler, Australian Centre for Ancient DNA School of Biological Sciences University of Adelaide Adelaide SA Australia
| | - Viola Nolte
- Institut für Populationsgenetik Vetmeduni Vienna Vienna Austria
| | | |
Collapse
|
34
|
Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection. J Therm Biol 2016; 59:77-85. [PMID: 27264892 DOI: 10.1016/j.jtherbio.2016.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/10/2016] [Accepted: 04/15/2016] [Indexed: 11/22/2022]
Abstract
Artificial selection can be used to create populations with extreme phenotypic responses to environmental stressors. When artificial selection is applied to a single component of a stress response, this selection may result in correlated responses in other stress responses, a phenomenon called cross-tolerance, which is ultimately controlled by the genetic correlations among traits. We selected for extreme responses to cold tolerance by selecting for chill-coma recovery time from a single temperate population of Drosophila melanogaster. Chill-coma recovery time is a common metric of low, but non-lethal, cold temperature tolerance. Replicated divergent artificial selection was applied to a genetically variable base population for 31 generations, resulting in two cold resistant, two cold susceptible, and two unselected control lines. To quantify the relationship between selection on chill-coma recovery and other metrics of thermal performance, we also measured survivorship after acute cold exposure, survivorship after chronic cold exposure, survivorship after cold exposure following a pre-treatment period (rapid cold hardening), starvation tolerance, and heat tolerance. We find that chill-coma recovery time is heritable within this population and that there is an asymmetric response to increased and decreased chill-coma recovery time. Surprisingly, we found no cross-tolerances between selection on chill-coma recovery time and the other environmental stress response traits. These results suggest that although artificial selection has dramatically altered chill-coma recovery time, the correlated response to selection on other stress response phenotypes has been negligible. The lack of a correlated response suggests that chill-coma recovery time in these selection lines is likely genetically independent from measures of cold survivorship tested here.
Collapse
|
35
|
Lyons CL, Oliver SV, Hunt RH, Coetzee M. The Influence of Insecticide Resistance, Age, Sex, and Blood Feeding Frequency on Thermal Tolerance of Wild and Laboratory Phenotypes of Anopheles funestus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:394-400. [PMID: 26718714 DOI: 10.1093/jme/tjv196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Resistance to insecticides is a global phenomenon and is increasing at an unprecedented rate. How resistant and susceptible strains of malaria vectors might differ in terms of life history and basic biology is often overlooked, despite the potential importance of such information in light of changing climates. Here, we investigated the upper thermal limits (ULT50) of wild and laboratory strains of Anopheles funestus Giles mosquitoes, including resistance status, sex, age, and blood feeding status as potential factors influencing ULT50. No significant differences in ULT50 were observed between strains displaying different resistance patterns, nor was there a significant difference between wild and laboratory strains. In some instances, strains showed a senescence response, displaying decreased ULT50 with an increase in age, and differences between males and females (females displaying higher ULT50 than males). Blood feeding did not seem to influence ULT50 in any way. For An. funestus, it seems evident that there is no cost to resistance despite what is displayed in other anopheline species. This could have significant impacts for vector control, with resistant populations of An. funestus performing just as well, if not better, than susceptible strains, especially under changing environmental conditions such as those expected to occur with climate change.
Collapse
|
36
|
Briga M, Verhulst S. What can long-lived mutants tell us about mechanisms causing aging and lifespan variation in natural environments? Exp Gerontol 2015; 71:21-6. [DOI: 10.1016/j.exger.2015.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/14/2022]
|
37
|
Wit J, Loeschcke V, Kellermann V. Life span variation in 13 Drosophila
species: a comparative study on life span, environmental variables and stress resistance. J Evol Biol 2015. [DOI: 10.1111/jeb.12706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- J. Wit
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
| | - V. Loeschcke
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
| | - V. Kellermann
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
- Department of Biological Sciences; Monash University; Clayton Vic. Australia
| |
Collapse
|
38
|
Hangartner S, Hoffmann AA. Evolutionary potential of multiple measures of upper thermal tolerance in
D
rosophila melanogaster. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12499] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandra Hangartner
- School of BioSciences The University of Melbourne 30 Flemington Road Parkville Vic.3010 Australia
- School of Biological Sciences Monash University, Clayton Campus Building 18Vic.3800 Australia
| | - Ary A. Hoffmann
- School of BioSciences The University of Melbourne 30 Flemington Road Parkville Vic.3010 Australia
| |
Collapse
|
39
|
Tobler R, Hermisson J, Schlötterer C. Parallel trait adaptation across opposing thermal environments in experimental Drosophila melanogaster populations. Evolution 2015; 69:1745-59. [PMID: 26080903 PMCID: PMC4755034 DOI: 10.1111/evo.12705] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/18/2015] [Accepted: 06/02/2015] [Indexed: 01/05/2023]
Abstract
Thermal stress is a pervasive selective agent in natural populations that impacts organismal growth, survival, and reproduction. Drosophila melanogaster exhibits a variety of putatively adaptive phenotypic responses to thermal stress in natural and experimental settings; however, accompanying assessments of fitness are typically lacking. Here, we quantify changes in fitness and known thermal tolerance traits in replicated experimental D. melanogaster populations following more than 40 generations of evolution to either cyclic cold or hot temperatures. By evaluating fitness for both evolved populations alongside a reconstituted starting population, we show that the evolved populations were the best adapted within their respective thermal environments. More strikingly, the evolved populations exhibited increased fitness in both environments and improved resistance to both acute heat and cold stress. This unexpected parallel response appeared to be an adaptation to the rapid temperature changes that drove the cycling thermal regimes, as parallel fitness changes were not observed when tested in a constant thermal environment. Our results add to a small, but growing group of studies that demonstrate the importance of fluctuating temperature changes for thermal adaptation and highlight the need for additional work in this area.
Collapse
Affiliation(s)
- Ray Tobler
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Joachim Hermisson
- Department of Mathematics, University of Vienna, Nordbergstrasse 15, 1090, Vienna, Austria
- Max F. Perutz Laboratories, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna, A-1210, Austria.
| |
Collapse
|
40
|
Schou MF, Loeschcke V, Kristensen TN. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster. PLoS One 2015; 10:e0130307. [PMID: 26075607 PMCID: PMC4468168 DOI: 10.1371/journal.pone.0130307] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
Abstract
Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions.
Collapse
|
41
|
Jha AR, Miles CM, Lippert NR, Brown CD, White KP, Kreitman M. Whole-Genome Resequencing of Experimental Populations Reveals Polygenic Basis of Egg-Size Variation in Drosophila melanogaster. Mol Biol Evol 2015; 32:2616-32. [PMID: 26044351 PMCID: PMC4576704 DOI: 10.1093/molbev/msv136] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Complete genome resequencing of populations holds great promise in deconstructing complex polygenic traits to elucidate molecular and developmental mechanisms of adaptation. Egg size is a classic adaptive trait in insects, birds, and other taxa, but its highly polygenic architecture has prevented high-resolution genetic analysis. We used replicated experimental evolution in Drosophila melanogaster and whole-genome sequencing to identify consistent signatures of polygenic egg-size adaptation. A generalized linear-mixed model revealed reproducible allele frequency differences between replicated experimental populations selected for large and small egg volumes at approximately 4,000 single nucleotide polymorphisms (SNPs). Several hundred distinct genomic regions contain clusters of these SNPs and have lower heterozygosity than the genomic background, consistent with selection acting on polymorphisms in these regions. These SNPs are also enriched among genes expressed in Drosophila ovaries and many of these genes have well-defined functions in Drosophila oogenesis. Additional genes regulating egg development, growth, and cell size show evidence of directional selection as genes regulating these biological processes are enriched for highly differentiated SNPs. Genetic crosses performed with a subset of candidate genes demonstrated that these genes influence egg size, at least in the large genetic background. These findings confirm the highly polygenic architecture of this adaptive trait, and suggest the involvement of many novel candidate genes in regulating egg size.
Collapse
Affiliation(s)
- Aashish R Jha
- Institute for Genomics and Systems Biology, The University of Chicago Department of Human Genetics, The University of Chicago Department of Ecology and Evolution, The University of Chicago
| | | | | | - Christopher D Brown
- Institute for Genomics and Systems Biology, The University of Chicago Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Kevin P White
- Institute for Genomics and Systems Biology, The University of Chicago Department of Human Genetics, The University of Chicago Department of Ecology and Evolution, The University of Chicago Committee on Genetics, Genomics & Systems Biology, The University of Chicago
| | - Martin Kreitman
- Institute for Genomics and Systems Biology, The University of Chicago Department of Ecology and Evolution, The University of Chicago Committee on Genetics, Genomics & Systems Biology, The University of Chicago
| |
Collapse
|
42
|
Aggarwal DD. Physiological basis of starvation resistance in Drosophila leontia: analysis of sexual dimorphism. ACTA ACUST UNITED AC 2015; 217:1849-59. [PMID: 24871919 DOI: 10.1242/jeb.096792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Geographically varying starvation stress has often been considered as a natural selector that constrains between-population differences for starvation resistance (SR) in Drosophila species. On the Indian subcontinent, a dozen Drosophila species have shown clinal variations in SR across latitude, but the evolved physiological basis of such contrasting adaptations is largely unknown. In the present study, I untangled the physiological basis of sex-specific as well as between-population divergence for SR in D. leontia, collected across a latitudinal transect of the Indian subcontinent (11°45'-31°19'N). Secondly, I tested the assumptions that hardening to starvation stress facilitates an increased survival under subsequent lethal levels of starvation, and such plastic effects differ between the sexes. I observed several interesting results. In contrast to a steeper cline of starvation-related traits with latitude in females, a shallower gradient was observed for males. Females stored higher (~1.3-fold) dry-mass-specific levels of body lipids and glycogen contents, and utilized these both of these energy resources under starvation stress, whereas the starved males metabolized only body lipids as a source of energy. Conversely, the rate of body lipid utilization and threshold need were considerably higher in females as compared with males. Between-population differences were significant for storage levels of energy reserves only, but not for other avenues (rate of metabolite utilization and threshold need) of SR for both sexes. These findings indicate that multiple pathways shape the physiological basis of sexual dimorphism for SR in D. leontia. Further, single or multiple bouts of starvation hardening conferred an increased longevity (~4-9 h; P<0.001) under subsequent lethal levels of starvation stress for females only, and such plastic responses were consistent with a decrease in rate of metabolite utilization. Nevertheless, between-population effects were non-significant for absolute hardening capacity (AHC=KSR-C). Altogether, these findings suggest that similar evolutionary constraints have resulted in divergent genetic as well as plastic responses to evolve adaptations under starvation stress, and account for the observed sexual dimorphism for basal SR in D. leontia.
Collapse
Affiliation(s)
- Dau Dayal Aggarwal
- Institute of Evolution, University of Haifa, 31905 Haifa, Israel Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
43
|
Irwin KK, Carter PA. Artificial selection on larval growth curves in Tribolium: correlated responses and constraints. J Evol Biol 2014; 27:2069-79. [PMID: 25066460 DOI: 10.1111/jeb.12457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Body size is often constrained from evolving. Although artificial selection on body size in insects frequently results in a sizable response, these responses usually bear fitness costs. Further, these experiments tend to select only on size at one landmark age, rather than selecting for patterns of growth over the whole larval life stage. To address whether constraints may be caused by larval growth patterns rather than final size, we implemented a function-valued (FV) trait method of selection, in which entire larval growth curves from Tribolium were artificially selected. The selection gradient function used was previously predicted to give the maximal response and was implemented using a novel selection index in the FV framework. Results indicated a significant response after one generation of selection, but no response in subsequent generations. Correlated responses included increased mortality, increased critical weight, and decreased development time (DT). The lack of response in size and development time after the first generation was likely caused by increased mortality suffered in selected lines; we demonstrated that the selection criterion caused both increased body size and increased mortality. We conclude that artificial selection on continuous traits using FV methods is very efficient and that the constraint of body size evolution is likely caused by a suite of trade-offs with other traits.
Collapse
Affiliation(s)
- K K Irwin
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
44
|
Santos J, Pascual M, Simões P, Fragata I, Rose MR, Matos M. Fast evolutionary genetic differentiation during experimental colonizations. J Genet 2014; 92:183-94. [PMID: 23970074 DOI: 10.1007/s12041-013-0239-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Founder effects during colonization of a novel environment are expected to change the genetic composition of populations, leading to differentiation between the colonizer population and its source population. Another expected outcome is differentiation among populations derived from repeated independent colonizations starting from the same source. We have previously detected significant founder effects affecting rate of laboratory adaptation among Drosophila subobscura laboratory populations derived from the wild. We also showed that during the first generations in the laboratory, considerable genetic differentiation occurs between foundations. The present study deepens that analysis, taking into account the natural sampling hierarchy of six foundations, derived from different locations, different years and from two samples in one of the years. We show that striking stochastic effects occur in the first two generations of laboratory culture, effects that produce immediate differentiation between foundations, independent of the source of origin and despite similarity among all founders. This divergence is probably due to powerful genetic sampling effects during the first few generations of culture in the novel laboratory environment, as a result of a significant drop in Ne. Changes in demography as well as high variance in reproductive success in the novel environment may contribute to the low values of Ne. This study shows that estimates of genetic differentiation between natural populations may be accurate when based on the initial samples collected in the wild, though considerable genetic differentiation may occur in the very first generations of evolution in a new, confined environment. Rapid and significant evolutionary changes can thus occur during the early generations of a founding event, both in the wild and under domestication, effects of interest for both scientific and conservation purposes.
Collapse
Affiliation(s)
- Josiane Santos
- Centro de Biologia Ambiental, Departamento de Biologia Animal, Campo Grande, 1749-016 Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
45
|
Mueller LD, Joshi A, Santos M, Rose MR. Effective population size and evolutionary dynamics in outbred laboratory populations of Drosophila. J Genet 2014; 92:349-61. [PMID: 24371158 DOI: 10.1007/s12041-013-0296-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Census population size, sex-ratio and female reproductive success were monitored in 10 laboratory populations of Drosophila melanogaster selected for different ages of reproduction. With this demographic information, we estimated eigenvalue, variance and probability of allele loss effective population sizes. We conclude that estimates of effective size based on genefrequency change at a few loci are biased downwards. We analysed the relative roles of selection and genetic drift in maintaining genetic variation in laboratory populations of Drosophila. We suggest that rare, favourable genetic variants in our laboratory populations have a high chance of being lost if their fitness effect is weak, e.g. 1% or less. However, if the fitness effect of this variation is 10% or greater, these rare variants are likely to increase to high frequency. The demographic information developed in this study suggests that some of our laboratory populations harbour more genetic variation than expected. One explanation for this finding is that part of the genetic variation in these outbred laboratory Drosophila populations may be maintained by some form of balancing selection. We suggest that, unlike bacteria, medium-term adaptation of laboratory populations of fruit flies is not primarily driven by new mutations, but rather by changes in the frequency of preexisting alleles.
Collapse
Affiliation(s)
- Laurence D Mueller
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
46
|
Schou MF, Kristensen TN, Kellermann V, Schlötterer C, Loeschcke V. A Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future. J Evol Biol 2014; 27:1859-68. [PMID: 24925446 DOI: 10.1111/jeb.12436] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/20/2014] [Indexed: 11/29/2022]
Abstract
The ability to respond evolutionarily to increasing temperatures is important for survival of ectotherms in a changing climate. Recent studies suggest that upper thermal limits may be evolutionary constrained. We address this hypothesis in a laboratory evolution experiment, encompassing ecologically relevant thermal regimes. To examine the potential for species to respond to climate change, we exposed replicate populations of Drosophila melanogaster to increasing temperatures (0.3 °C every generation) for 20 generations, whereas corresponding replicate control populations were held at benign thermal conditions throughout the experiment. We hypothesized that replicate populations exposed to increasing temperatures would show increased resistance to warm and dry environments compared with replicate control populations. Contrasting replicate populations held at the two thermal regimes showed (i) an increase in desiccation resistance and a decline in heat knock-down resistance in replicate populations exposed to increasing temperatures, (ii) similar egg-to-adult viability and fecundity in replicate populations from the two thermal regimes, when assessed at high stressful temperatures and (iii) no difference in nucleotide diversity between thermal regimes. The limited scope for adaptive evolutionary responses shown in this study highlights the challenges faced by ectotherms under climate change.
Collapse
Affiliation(s)
- M F Schou
- Department of Bioscience, Aarhus University, Aarhus C, Denmark; Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| | | | | | | | | |
Collapse
|
47
|
Wit J, Kristensen TN, Sarup P, Frydenberg J, Loeschcke V. Laboratory selection for increased longevity in Drosophila melanogaster reduces field performance. Exp Gerontol 2013; 48:1189-95. [DOI: 10.1016/j.exger.2013.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
|
48
|
Klepsatel P, Gáliková M, De Maio N, Ricci S, Schlötterer C, Flatt T. Reproductive and post-reproductive life history of wild-caught Drosophila melanogaster
under laboratory conditions. J Evol Biol 2013; 26:1508-20. [DOI: 10.1111/jeb.12155] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- P. Klepsatel
- Institut für Populationsgenetik; Vetmeduni Vienna; Vienna Austria
| | - M. Gáliková
- Institut für Populationsgenetik; Vetmeduni Vienna; Vienna Austria
| | - N. De Maio
- Institut für Populationsgenetik; Vetmeduni Vienna; Vienna Austria
| | - S. Ricci
- Dipartimento di Matematica; Università di Pisa; Pisa Italy
| | - C. Schlötterer
- Institut für Populationsgenetik; Vetmeduni Vienna; Vienna Austria
| | - T. Flatt
- Institut für Populationsgenetik; Vetmeduni Vienna; Vienna Austria
- Wissenschaftskolleg zu Berlin; Berlin Germany
| |
Collapse
|
49
|
Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster. Evol Biol 2013. [DOI: 10.1007/s11692-013-9235-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Wit J, Frydenberg J, Sarup P, Loeschcke V. Confirming candidate genes for longevity by RT-qPCR using two different genetic backgrounds and selection methods. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:255-262. [PMID: 23357090 DOI: 10.1016/j.jinsphys.2013.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Elucidating genes that affect life span or that can be used as biomarkers for ageing has received attention in diverse studies in recent years. Using model organisms and various approaches several genes have been linked to the longevity phenotype. For Drosophila melanogaster those studies have usually focussed on one sex and on flies originating from one genetic background, and results from different studies often do not overlap. Using D. melanogaster selected for increased longevity we aimed to find robust longevity related genes by examining gene expression in both sexes of flies originating from different genetic backgrounds. Further, we compared expression changes across three ages, when flies were young, middle aged or old, to examine how candidate gene expression changes with the onset of ageing. We selected 10 genes based on their expression differences in prior microarray studies. For about 50% of these we confirmed their potential as a candidate longevity gene. We found one robust candidate gene for longevity, CG32638. Three other genes, CG8934, mRpS10 and Spn43Ad, showed a tendency to be involved in life span determination in both backgrounds tested.
Collapse
Affiliation(s)
- Janneke Wit
- Department of Bioscience, Integrative Ecology and Evolution, Aarhus University, NyMunkegade 114-116, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|