1
|
Cristina Borges Araujo E, Cariaco Y, Paulo Oliveira Almeida M, Patricia Pallete Briceño M, Neto de Sousa JE, Rezende Lima W, Maria Costa-Cruz J, Maria Silva N. Beneficial effects of Strongyloides venezuelensis antigen extract in acute experimental toxoplasmosis. Parasite Immunol 2020; 43:e12811. [PMID: 33247953 DOI: 10.1111/pim.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Toxoplasma gondii is a protozoan with worldwide distribution and triggers a strong Th1 immune response in infected susceptible hosts. On the contrary, most helminth infections are characterized by Th2 immune response and the use of helminth-derived antigens to regulate immune response in inflammatory disorders has been broadly investigated. OBJECTIVES The aim of this study was to investigate whether treatment with Strongyloides venezuelensis antigen extract (SvAg) would alter immune response against T gondii. METHODS C57BL/6 mice were orally infected with T gondii and treated with SvAg, and parasitological, histological and immunological parameters were investigated. RESULTS It was observed that SvAg treatment improved survival rates of T gondii-infected mice. At day 7 post-infection, the parasite load was lower in the lung and small intestine of infected SvAg-treated mice than untreated infected mice. Remarkably, SvAg-treated mice infected with T gondii presented reduced inflammatory lesions in the small intestine than infected untreated mice and decreased intestinal and systemic levels of IFN-γ, TNF-α and IL-6. In contrast, SvAg treatment increased T gondii-specific IgA serum levels in infected mice. CONCLUSIONS S venezuelensis antigen extract has anti-parasitic and anti-inflammatory properties during T gondii infection suggesting as a possible alternative to parasite and inflammation control.
Collapse
Affiliation(s)
- Ester Cristina Borges Araujo
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Yusmaris Cariaco
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Marcos Paulo Oliveira Almeida
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | | | - José Eduardo Neto de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Wânia Rezende Lima
- Instituto de Biotecnologia, Universidade Federal de Catalão, Rua Terezinha Margon Vaz, s/n Residencial Barka II, Catalão, Brasil
| | - Julia Maria Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Neide Maria Silva
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| |
Collapse
|
2
|
Wang S, El-Fahmawi A, Christian DA, Fang Q, Radaelli E, Chen L, Sullivan MC, Misic AM, Ellringer JA, Zhu XQ, Winter SE, Hunter CA, Beiting DP. Infection-Induced Intestinal Dysbiosis Is Mediated by Macrophage Activation and Nitrate Production. mBio 2019; 10:e00935-19. [PMID: 31138751 PMCID: PMC6538788 DOI: 10.1128/mbio.00935-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
Oral infection of C57BL/6J mice with Toxoplasma gondii results in a marked bacterial dysbiosis and the development of severe pathology in the distal small intestine that is dependent on CD4+ T cells and interferon gamma (IFN-γ). This dysbiosis and bacterial translocation contribute to the development of ileal pathology, but the factors that support the bloom of bacterial pathobionts are unclear. The use of microbial community profiling and shotgun metagenomics revealed that Toxoplasma infection induces a dysbiosis dominated by Enterobacteriaceae and an increased potential for nitrate respiration. In vivo experiments using bacterial metabolic mutants revealed that during this infection, host-derived nitrate supports the expansion of Enterobacteriaceae in the ileum via nitrate respiration. Additional experiments with infected mice indicate that the IFN-γ/STAT1/iNOS axis, while essential for parasite control, also supplies a pool of nitrate that serves as a source for anaerobic respiration and supports overgrowth of Enterobacteriaceae Together, these data reveal a trade-off in intestinal immunity after oral infection of C57BL/6J mice with T. gondii, in which inducible nitric oxide synthase (iNOS) is required for parasite control, while this host enzyme is responsible for specific modification of the composition of the microbiome that contributes to pathology.IMPORTANCEToxoplasma gondii is a protozoan parasite and a leading cause of foodborne illness. Infection is initiated when the parasite invades the intestinal epithelium, and in many host species, this leads to intense inflammation and a dramatic disruption of the normal microbial ecosystem that resides in the healthy gut (the so-called microbiome). One characteristic change in the microbiome during infection with Toxoplasma-as well as numerous other pathogens-is the overgrowth of Escherichia coli or similar bacteria and a breakdown of commensal containment leading to seeding of peripheral organs with gut bacteria and subsequent sepsis. Our findings provide one clear explanation for how this process is regulated, thereby improving our understanding of the relationship between parasite infection, inflammation, and disease. Furthermore, our results could serve as the basis for the development of novel therapeutics to reduce the potential for harmful bacteria to bloom in the gut during infection.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ayah El-Fahmawi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qun Fang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Longfei Chen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Megan C Sullivan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ana M Misic
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jodi A Ellringer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Wang M, Zhang FK, Elsheikha HM, Zhang NZ, He JJ, Luo JX, Zhu XQ. Transcriptomic insights into the early host-pathogen interaction of cat intestine with Toxoplasma gondii. Parasit Vectors 2018; 11:592. [PMID: 30428922 PMCID: PMC6236892 DOI: 10.1186/s13071-018-3179-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Background Although sexual reproduction of the parasite Toxoplasma gondii exclusively occurs in the cat intestine, knowledge about the alteration of gene expression in the intestine of cats infected with T. gondii is still limited. Here, we investigated the temporal transcriptional changes that occur in the cat intestine during T. gondii infection. Methods Cats were infected with 100 T. gondii cysts and their intestines were collected at 6, 12, 18, 24, 72 and 96 hours post-infection (hpi). RNA sequencing (RNA-Seq) Illumina technology was used to gain insight into the spectrum of genes that are differentially expressed due to infection. Quantitative RT-PCR (qRT-PCR) was also used to validate the level of expression of a set of differentially expressed genes (DEGs) obtained by sequencing. Results Our transcriptome analysis revealed 2363 DEGs that were clustered into six unique patterns of gene expression across all the time points after infection. Our analysis revealed 56, 184, 404, 508, 400 and 811 DEGs in infected intestines compared to uninfected controls at 6, 12, 18, 24, 72 and 96 hpi, respectively. RNA-Seq results were confirmed by qRT-PCR. DEGs were mainly enriched in catalytic activity and metabolic process based on gene ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that transcriptional changes in the intestine of infected cats evolve over the course of infection, and the largest difference in the enriched pathways was observed at 96 hpi. The anti-T. gondii defense response of the feline host was mediated by Major Histocompatibility Complex class I, proteasomes, heat-shock proteins and fatty acid binding proteins. Conclusions This study revealed novel host factors, which may be critical for the successful establishment of an intracellular niche during T. gondii infection in the definitive feline host. Electronic supplementary material The online version of this article (10.1186/s13071-018-3179-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
4
|
The Lymphotoxin β Receptor Is Essential for Upregulation of IFN-Induced Guanylate-Binding Proteins and Survival after Toxoplasma gondii Infection. Mediators Inflamm 2017; 2017:7375818. [PMID: 28845089 PMCID: PMC5563413 DOI: 10.1155/2017/7375818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/23/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022] Open
Abstract
Lymphotoxin β receptor (LTβR) signaling plays an important role in efficient initiation of host responses to a variety of pathogens, encompassing viruses, bacteria, and protozoans via induction of the type I interferon response. The present study reveals that after Toxoplasma gondii infection, LTβR−/− mice show a substantially reduced survival rate when compared to wild-type mice. LTβR−/− mice exhibit an increased parasite load and a more pronounced organ pathology. Also, a delayed increase of serum IL-12p40 and a failure of the protective IFNγ response in LTβR−/− mice were observed. Serum NO levels in LTβR−/− animals rose later and were markedly decreased compared to wild-type animals. At the transcriptional level, LTβR−/− animals exhibited a deregulated expression profile of several cytokines known to play a role in activation of innate immunity in T. gondii infection. Importantly, expression of the IFNγ-regulated murine guanylate-binding protein (mGBP) genes was virtually absent in the lungs of LTβR−/− mice. This demonstrates clearly that the LTβR is essential for the induction of a type II IFN-mediated immune response against T. gondii. The pronounced inability to effectively upregulate host defense effector molecules such as GBPs explains the high mortality rates of LTβR−/− animals after T. gondii infection.
Collapse
|
5
|
Abstract
ABSTRACT
Parasites are an important cause of human disease worldwide. The clinical severity and outcome of parasitic disease is often dependent on the immune status of the host. Specific parasitic diseases discussed in this chapter are amebiasis, giardiasis, cryptosporidiosis, cyclosporiasis, cystoisosporiasis, microsporidosis, granulomatous amebic encephalitis, toxoplasmosis, leishmaniasis, Chagas disease, malaria, babesiosis, strongyloidiasis, and scabies.
Collapse
|
6
|
Severance EG, Gressitt KL, Yang S, Stallings CR, Origoni AE, Vaughan C, Khushalani S, Alaedini A, Dickerson FB, Yolken RH. Seroreactive marker for inflammatory bowel disease and associations with antibodies to dietary proteins in bipolar disorder. Bipolar Disord 2014; 16:230-40. [PMID: 24313887 PMCID: PMC4075657 DOI: 10.1111/bdi.12159] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 08/01/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Immune sensitivity to wheat glutens and bovine milk caseins may affect a subset of individuals with bipolar disorder. Digested byproducts of these foods are exorphins that have the potential to impact brain physiology through action at opioid receptors. Inflammation in the gastrointestinal (GI) tract might accelerate exposure of food antigens to systemic circulation and help explain elevated gluten and casein antibody levels in individuals with bipolar disorder. METHODS We measured a marker of GI inflammation, anti-Saccharomyces cerevisiae antibodies (ASCA), in non-psychiatric controls (n = 207), in patients with bipolar disorder without a recent onset of psychosis (n = 226), and in patients with bipolar disorder with a recent onset of psychosis (n = 38). We compared ASCA levels to antibodies against gluten, casein, Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV-1), influenza A, influenza B, measles, and Toxoplasma gondii. RESULTS Elevated ASCA conferred a 3.5-4.4-fold increased odds ratio of disease association (age-, race-, and gender-corrected multinomial logistic regressions, p ≤ 0.00001) that was independent of type of medication received. ASCA correlated with food antibodies in both bipolar disorder groups (R(2) = 0.29-0.59, p ≤ 0.0005), and with measles and T. gondii immunoglobulin G (IgG) in the recent onset psychosis bipolar disorder group (R(2) = 0.31-0.36, p ≤ 0.004-0.01). CONCLUSIONS Elevated seropositivity of a GI-related marker and its association with antibodies to food-derived proteins and self-reported GI symptoms suggest a GI comorbidity in at least a subgroup of individuals with bipolar disorder. Marker seroreactivity may also represent part of an overall heightened activated immune state inherent to this mood disorder.
Collapse
Affiliation(s)
- Emily G. Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - Kristin L. Gressitt
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - Shuojia Yang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - Cassie R. Stallings
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, 21285 U.S.A
| | - Andrea E. Origoni
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, 21285 U.S.A
| | - Crystal Vaughan
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, 21285 U.S.A
| | - Sunil Khushalani
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, 21285 U.S.A
| | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, NY, NY, 10032 U.S.A
| | - Faith B. Dickerson
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, 21285 U.S.A
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| |
Collapse
|
7
|
Severance EG, Kannan G, Gressitt KL, Xiao J, Alaedini A, Pletnikov MV, Yolken RH. Anti-gluten immune response following Toxoplasma gondii infection in mice. PLoS One 2012; 7:e50991. [PMID: 23209841 PMCID: PMC3510169 DOI: 10.1371/journal.pone.0050991] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/29/2012] [Indexed: 12/22/2022] Open
Abstract
Gluten sensitivity may affect disease pathogenesis in a subset of individuals who have schizophrenia, bipolar disorder or autism. Exposure to Toxoplasma gondii is a known risk factor for the development of schizophrenia, presumably through a direct pathological effect of the parasite on brain and behavior. A co-association of antibodies to wheat gluten and to T. gondii in individuals with schizophrenia was recently uncovered, suggesting a coordinated gastrointestinal means by which T. gondii and dietary gluten might generate an immune response. Here, we evaluated the connection between these infectious- and food-based antigens in mouse models. BALB/c mice receiving a standard wheat-based rodent chow were infected with T. gondii via intraperitoneal, peroral and prenatal exposure methods. Significant increases in the levels of anti-gluten IgG were documented in all infected mice and in offspring from chronically infected dams compared to uninfected controls (repetitive measures ANOVAs, two-tailed t-tests, all p≤0.00001). Activation of the complement system accompanied this immune response (p≤0.002–0.00001). Perorally-infected females showed higher levels of anti-gluten IgG than males (p≤0.009) indicating that T. gondii-generated gastrointestinal infection led to a significant anti-gluten immune response in a sex-dependent manner. These findings support a gastrointestinal basis by which two risk factors for schizophrenia, T. gondii infection and sensitivity to dietary gluten, might be connected to produce the immune activation that is becoming an increasingly recognized pathology of psychiatric disorders.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | | | | | |
Collapse
|
8
|
DZITKO K, ŁAWNICKA H, GATKOWSKA J, DZIADEK B, KOMOROWSKI J, DŁUGOŃSKA H. Inhibitory effect of prolactin on Toxoplasma proliferation in peripheral blood mononuclear cells from patients with hyperprolactinemia. Parasite Immunol 2012; 34:302-11. [DOI: 10.1111/j.1365-3024.2012.01359.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Vallochi AL, Goldberg AC, Falcai A, Ramasawmy R, Kalil J, Silveira C, Belfort R, Rizzo LV. Molecular markers of susceptibility to ocular toxoplasmosis, host and guest behaving badly. Clin Ophthalmol 2011; 2:837-48. [PMID: 19668438 PMCID: PMC2699811 DOI: 10.2147/opth.s1629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Infection with Toxoplasma gondii results in retinochoroiditis in 6% to 20% of immunocompetent individuals. The outcome of infection is the result of a set of interactions involving host genetic background, environmental, and social factors, and the genetic background of the parasite, all of which can be further modified by additional infections or even reinfection. Genes that encode several components of the immune system exhibit polymorphisms in their regulatory and coding regions that affect level and type of expression in response to stimuli, directing the immune response into different pathways. These variant alleles have been associated with susceptibility to immune-mediated diseases and with severity of pathology. We have investigated polymorphisms in several of these genes, identified as candidates for progression to retinochoroiditis caused by toxoplasmosis, namely chemokine (C-C motif) receptor 5 (CCR5), toll-like receptor-2 (TLR2), and TLR4. Furthermore, because interleukin-12 (IL-12) has been shown to be fundamental both in mice and in man to control a protective response against T. gondii, molecules that have a key function in IL-12 production will be emphasized in this review, in addition to discussing the importance of the genetic background of the parasite in the establishment of ocular disease.
Collapse
Affiliation(s)
- Adriana Lima Vallochi
- Oswaldo Cruz Institution (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Toxoplasma gondii is an obligate intracellular parasite. Following oral infection the parasite crosses the intestinal epithelial barrier to disseminate throughout the body and establish latent infection in central nervous tissues. The clinical presentation ranges from asymptomatic to severe neurological disorders in immunocompromised individuals. Since the clinical presentation is diverse and depends, among other factors, on the immune status of the host, in the present review, we introduce parasitological, epidemiological, clinical, and molecular biological aspects of infection with T. gondii to set the stage for an in-depth discussion of host immune responses. Since immune responses in humans have not been investigated in detail the present review is exclusively referring to immune responses in experimental models of infection. Systemic and local immune responses in different models of infection are discussed, and a separate chapter introduces commonly used animal models of infection.
Collapse
Affiliation(s)
- Melba Munoz
- Charite Medical School Berlin - Microbiology and Hygiene, Berlin, Germany
| | | | | |
Collapse
|
11
|
Holt N, Murray M, Cuddon P, Lappin M. Seroprevalence of Various Infectious Agents in Dogs with Suspected Acute Canine Polyradiculoneuritis. J Vet Intern Med 2011; 25:261-6. [DOI: 10.1111/j.1939-1676.2011.0692.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KDC, Saeij JPJ. Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. ACTA ACUST UNITED AC 2011; 208:195-212. [PMID: 21199955 PMCID: PMC3023140 DOI: 10.1084/jem.20100717] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
NF-κB is an integral component of the immune response to Toxoplasma gondii. Although evidence exists that T. gondii can directly modulate the NF-κB pathway, the parasite-derived effectors involved are unknown. We determined that type II strains of T. gondii activate more NF-κB than type I or type III strains, and using forward genetics we found that this difference is a result of the polymorphic protein GRA15, a novel dense granule protein which T. gondii secretes into the host cell upon invasion. A GRA15-deficient type II strain has a severe defect in both NF-κB nuclear translocation and NF-κB-mediated transcription. Furthermore, human cells expressing type II GRA15 also activate NF-κB, demonstrating that GRA15 alone is sufficient for NF-κB activation. Along with the rhoptry protein ROP16, GRA15 is responsible for a large part of the strain differences in the induction of IL-12 secretion by infected mouse macrophages. In vivo bioluminescent imaging showed that a GRA15-deficient type II strain grows faster compared with wild-type, most likely through its reduced induction of IFN-γ. These results show for the first time that a dense granule protein can modulate host signaling pathways, and dense granule proteins can therefore join rhoptry proteins in T. gondii's host cell-modifying arsenal.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Schreiner M, Liesenfeld O. Small intestinal inflammation following oral infection with Toxoplasma gondii does not occur exclusively in C57BL/6 mice: review of 70 reports from the literature. Mem Inst Oswaldo Cruz 2010; 104:221-33. [PMID: 19430647 DOI: 10.1590/s0074-02762009000200015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 02/02/2009] [Indexed: 11/21/2022] Open
Abstract
Small intestinal immunopathology following oral infection with tissue cysts of Toxoplasma gondii has been described in C57BL/6 mice. Seven days after infection, mice develop severe small intestinal necrosis and succumb to infection. The immunopathology is mediated by local overproduction of Th1-type cytokines, a so-called 'cytokine storm'. The immunopathogenesis of this pathology resembles that of inflammatory bowel disease in humans, i.e., Crohn's disease. In this review, we show that the development of intestinal pathology following oral ingestion of T. gondii is not limited to C57BL/6 mice, but frequently occurs in nature. Using a Pubmed search, we identified 70 publications that report the development of gastrointestinal inflammation following infection with T. gondii in 63 animal species. Of these publications, 53 reports are on accidental ingestion of T. gondii in 49 different animal species and 17 reports are on experimental infections in 19 different animal species. Thus, oral infection with T. gondii appears to cause immunopathology in a large number of animal species in addition to mice. This manuscript reviews the common features of small intestinal immunopathology in the animal kingdom and speculates on consequences of this immunopathology for humankind.
Collapse
Affiliation(s)
- Maximilian Schreiner
- Institute for Microbiology and Hygiene, Charité Medical School Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
14
|
Zeng J, Parvanova IA, Howard JC. A dedicated promoter drives constitutive expression of the cell-autonomous immune resistance GTPase, Irga6 (IIGP1) in mouse liver. PLoS One 2009; 4:e6787. [PMID: 20368812 PMCID: PMC2848866 DOI: 10.1371/journal.pone.0006787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 07/16/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In general, immune effector molecules are induced by infection. METHODOLOGY AND PRINCIPAL FINDINGS However, strong constitutive expression of the cell-autonomous resistance GTPase, Irga6 (IIGP1), was found in mouse liver, contrasting with previous evidence that expression of this protein is exclusively dependent on induction by IFNgamma. Constitutive and IFNgamma-inducible expression of Irga6 in the liver were shown to be dependent on transcription initiated from two independent untranslated 5' exons, which splice alternatively into the long exon encoding the full-length protein sequence. Irga6 is expressed constitutively in freshly isolated hepatocytes and is competent in these cells to accumulate on the parasitophorous vacuole membrane of infecting Toxoplasma gondii tachyzoites. CONCLUSIONS AND SIGNIFICANCE The role of constitutive hepatocyte expression of Irga6 in resistance to parasites invading from the gut via the hepatic portal system is discussed.
Collapse
Affiliation(s)
- Jia Zeng
- Institute for Genetics of the University of Cologne, Cologne, Germany
| | | | - Jonathan C. Howard
- Institute for Genetics of the University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
15
|
Does Toxoplasma gondii infection affect the levels of IgE and cytokines (IL-5, IL-6, IL-10, IL-12, and TNF-alpha)? Clin Dev Immunol 2009; 2009:374696. [PMID: 19478959 PMCID: PMC2685994 DOI: 10.1155/2009/374696] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/18/2009] [Indexed: 11/18/2022]
Abstract
In the study performed in a group of patients infected with T. gondii, we evaluated Th2 humoral response (IL-5, IL-6, IL-10) and Th1 cell response (IL-12, TNF-alpha). The study objective was to assess the effect of T. gondii on chosen indices of the immune response. The study involved 52 women infected with T. gondii (aged 18-42 years) prior to antiparasitic treatment. In all the patients, we found IgM (index >0.7) and IgG which exceeded 300 IU/ml. The control group (C) consisted of 40 healthy women aged 18-46 years. In the study group (T) and in the control group (C), the levels of IgE, IL-5, IL-6, IL-10, IL-12, and TNF-alpha were determined. In our study, T. gondii patients had twofold higher levels of IL-5 and IL-6 as compared to healthy subjects, which seems to confirm the presence of an inflammatory state. We found the level of IL-10 to be fivefold higher in the course of toxoplasmosis than in healthy controls. The levels of IL-12 and TNF-alpha were comparable to those observed in healthy controls. The study has revealed that patients infected with T. gondii show increased production of the humoral response cytokines, whereas the generation of the cell response cytokines remains unchanged.
Collapse
|
16
|
Benevides L, Milanezi CM, Yamauchi LM, Benjamim CF, Silva JS, Silva NM. CCR2 receptor is essential to activate microbicidal mechanisms to control Toxoplasma gondii infection in the central nervous system. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:741-51. [PMID: 18688032 DOI: 10.2353/ajpath.2008.080129] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemokines comprise a structurally related family of cytokines that regulate leukocyte trafficking. Because infection with Toxoplasma gondii can induce an important inflammatory reaction that, if left uncontrolled, can lead to death, we investigated the role of the chemokine receptor CCR2 in T. gondii infection. We orally infected CCR2(-/-) mice with five ME-49 T. gondii cysts and monitored morbidity, survival, and immune response thereafter. The CCR2(-/-) mice displayed higher susceptibility to infection as all mice died on day 28 after infection. Despite similar Th1 responses, a more evident anti-inflammatory response was induced in the peripheral organs of CCR2(-/-) mice compared with wild-type C57BL/6 mice. Additionally, CCR2(-/-) mice presented greater parasitism and a milder inflammatory reaction in their peripheral organs with lesser CD4(+) and MAC-1(+) and greater CD8(+) cell migration. The parasite load decreased in these organs in CCR2(-/-) mice but remained uncontrolled in the central nervous system. Additionally, we observed down-regulated inducible nitric oxide synthase expression in peripheral organs from CCR2(-/-) mice that was associated with a small nitric oxide production by spleen macrophages. In conclusion, in the absence of CCR2, another mechanism is activated to control tissue parasitism in peripheral organs. Nevertheless, CCR2 is essential for the activation of microbicidal mediators that control T. gondii replication in the central nervous system.
Collapse
Affiliation(s)
- Luciana Benevides
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Dzierszinski FS, Hunter CA. Advances in the use of genetically engineered parasites to study immunity to Toxoplasma gondii. Parasite Immunol 2008; 30:235-44. [PMID: 18194347 DOI: 10.1111/j.1365-3024.2007.01016.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studying in vivo biology and the host immune response to Toxoplasma gondii has yielded many insights into the pathogenesis of this parasitic organism. It is recognized that this infection in immune competent hosts elicits a strong Th1-type response, which is characterized by the generation of parasite-specific CD4(+) and CD8(+) T cells that produce IFN-gamma and provide protective immunity. One of the problems associated with studying resistance to Toxoplasma has been the lack of reagents to track parasite-specific T cell responses with a high degree of specificity. To overcome this difficulty, it is possible to use a combination of transgenic parasites that are engineered to express well-characterized heterologous reporters or antigens, and T cell hybridomas or naïve T cells that express a T cell receptor specific for the processed peptide. These approaches have provided new insights into parasite dissemination, antigen presentation, as well as immune regulation.
Collapse
Affiliation(s)
- F S Dzierszinski
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Canada.
| | | |
Collapse
|
18
|
Immunological control of congenital toxoplasmosis in the murine model. Immunol Lett 2008; 115:83-9. [DOI: 10.1016/j.imlet.2007.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 10/09/2007] [Accepted: 10/12/2007] [Indexed: 11/23/2022]
|
19
|
Minns LA, Menard LC, Foureau DM, Darche S, Ronet C, Mielcarz DW, Buzoni-Gatel D, Kasper LH. TLR9 is required for the gut-associated lymphoid tissue response following oral infection of Toxoplasma gondii. THE JOURNAL OF IMMUNOLOGY 2006; 176:7589-97. [PMID: 16751405 DOI: 10.4049/jimmunol.176.12.7589] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
TLRs expressed by a variety of cells, including epithelial cells, B cells, and dendritic cells, are important initiators of the immune response following stimulation with various microbial products. Several of the TLRs require the adaptor protein, MyD88, which is an important mediator for the immune response following Toxoplasma gondii infection. Previously, TLR9-mediated innate immune responses were predominantly associated with ligation of unmethylated bacterial CpG DNA. In this study, we show that TLR9 is required for the Th1-type inflammatory response that ensues following oral infection with T. gondii. After oral infection with T. gondii, susceptible wild-type (WT; C57BL/6) but not TLR9(-/-) (B6 background) mice develop a Th1-dependent acute lethal ileitis; TLR9(-/-) mice have higher parasite burdens than control WT mice, consistent with depressed IFN-gamma-dependent parasite killing. A reduction in the total T cell and IFN-gamma-producing T cell frequencies was observed in the lamina propria of the TLR9(-/-) parasite-infected mice. TLR9 and type I IFN production was observed by cells from infected intestines in WT mice. TLR9 expression by dendritic cell populations is essential for their expansion in the mesenteric lymph nodes of infected mice. Infection of chimeric mice deleted of TLR9 in either the hemopoietic or nonhemopoietic compartments demonstrated that TLR9 expression by cells from both compartments is important for efficient T cell responses to oral infection. These observations demonstrate that TLR9 mediates the innate response to oral parasite infection and is involved in the development of an effective Th1-type immune response.
Collapse
Affiliation(s)
- Laurie A Minns
- Department of Medicine, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Courret N, Darche S, Sonigo P, Milon G, Buzoni-Gâtel D, Tardieux I. CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 2005; 107:309-16. [PMID: 16051744 PMCID: PMC1895351 DOI: 10.1182/blood-2005-02-0666] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The protozoan parasite Toxoplasma gondii enters hosts through the intestinal mucosa and colonizes distant tissues such as the brain, where its progeny persists for a lifetime. We investigated the role of CD11c- and CD11b-expressing leukocytes in T. gondii transport during the early step of parasitism from the mouse small intestine and during subsequent parasite localization in the brain. Following intragastric inoculation of cyst-containing parasites in mice, CD11c+ dendritic cells from the intestinal lamina propria, the Peyer patches, and the mesenteric lymph nodes were parasitized while in the blood, parasites were associated with the CD11c- CD11b+ monocytes. Using adoptive transfer experiments, we demonstrated that these parasitized cells triggered a parasitic process in the brain of naive recipient mice. Ex vivo analysis of parasitized leukocytes showed that single tachyzoites remained at the cell periphery, often surrounded by the host cell plasma membrane, but did not divide. Using either a dye that labels circulating leukocytes or an antibody known to prevent CD11b+ circulating leukocytes from leaving the microvascular bed lumen, and chimeric mice in which the hematopoietic cells expressed the green fluorescent protein, we established that T. gondii zoites hijacked CD11b+ leukocytes to reach the brain extravascular space.
Collapse
Affiliation(s)
- Nathalie Courret
- Département des Maladies Infectieuses, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U567-Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, 22 rue Méchain, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
21
|
Kretschmer U, Bonhagen K, Debes GF, Mittrücker HW, Erb KJ, Liesenfeld O, Zaiss D, Kamradt T, Syrbe U, Hamann A. Expression of selectin ligands on murine effector and IL-10-producing CD4+ T cells from non-infected and infected tissues. Eur J Immunol 2004; 34:3070-81. [PMID: 15384048 DOI: 10.1002/eji.200424972] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Endothelial selectins are crucial for the recruitment of leukocytes into sites of inflammation. On T cells, ligands for selectins become induced upon differentiation into the effector/memory stage. Initial in vitro studies suggested a correlation between the Th1 phenotype and ligand expression, but whether this also holds true in vivo remained uncertain. We here analyzed selectin ligands on CD4+ T cells producing IFN-gamma, IL-4 or IL-10, prototypic cytokines of the Th1, Th2 and Tr1 subset, respectively. We analyzed mice infected with influenza virus, the bacterium Listeria, and the parasites Toxoplasma (all Th1 models) or Nippostrongylus (Th2 model). A link between the Th1 phenotype and ligand expression was not found in vivo. Surprisingly, the potentially regulatory IL-10-producing T cells displayed the highest frequency of ligand-positive cells in general. Within the inflamed tissues, the frequencies of P-selectin-binding cells increased in the dominant subset, either Th1 or Th2. Up-regulation was also found for E-selectin ligands during influenza, but not Nippostrongylus infection. In conclusion, conditions driving T cell polarization into either Th1 or Th2 in vivo do not affect the expression of selectin ligands, but acquisition of P-selectin binding and hence migration into inflamed tissues is boosted by an inflammatory milieu.
Collapse
Affiliation(s)
- Ute Kretschmer
- Experimentelle Rheumatologie, Medizinische Klinik, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Diana J, Persat F, Staquet MJ, Assossou O, Ferrandiz J, Gariazzo MJ, Peyron F, Picot S, Schmitt D, Vincent C. Migration and maturation of human dendritic cells infected with Toxoplasma gondii depend on parasite strain type. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2004; 42:321-31. [PMID: 15477046 DOI: 10.1016/j.femsim.2004.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 06/22/2004] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
Migration and maturation of human dendritic cells derived from CD34+ progenitor cells (DC) infected by Toxoplasma gondii were studied in an in vitro model. We demonstrated that infection with virulent type I strains RH and ENT or type II low virulent strains PRU and CAL induced DC migration towards MIP-3beta. However, type II strains induced a higher percentage of migrating cells than that induced by type I strains or positive controls (chemical allergen or lipopolysaccharides). Type II strains produced soluble factors responsible of the high migration whereas heat killed tachyzoites did not induced a migration higher than positive controls. We also demonstrated that infection by virulent strains and not by type II stains or heat killed tachyzoites triggers DC maturation. A soluble factor released by type II strains was responsible of the absence of DC maturation. Taken together, these results demonstrated that the interference of T. gondii in the behaviour of DC functions is related to the strain types and can be supported by secretion of soluble factors by the parasite.
Collapse
Affiliation(s)
- Julien Diana
- EA3732, Université Claude Bernard LYON I, Pavillon R, Hôpital Edouard Herriot, 5 place d'Arsonval, 69437 Lyon 03, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Artis D, Wang ML, Keilbaugh SA, He W, Brenes M, Swain GP, Knight PA, Donaldson DD, Lazar MA, Miller HRP, Schad GA, Scott P, Wu GD. RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci U S A 2004; 101:13596-600. [PMID: 15340149 PMCID: PMC518800 DOI: 10.1073/pnas.0404034101] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Indexed: 01/16/2023] Open
Abstract
Gastrointestinal (GI) nematode infections are an important public health and economic concern. Experimental studies have shown that resistance to infection requires CD4(+) T helper type 2 (Th2) cytokine responses characterized by the production of IL-4 and IL-13. However, despite >30 years of research, it is unclear how the immune system mediates the expulsion of worms from the GI tract. Here, we demonstrate that a recently described intestinal goblet cell-specific protein, RELMbeta/FIZZ2, is induced after exposure to three phylogenetically distinct GI nematode pathogens. Maximal expression of RELMbeta was coincident with the production of Th2 cytokines and host protective immunity, whereas production of the Th1 cytokine, IFN-gamma, inhibited RELMbeta expression and led to chronic infection. Furthermore, whereas induction of RELMbeta was equivalent in nematode-infected wild-type and IL-4-deficient mice, IL-4 receptor-deficient mice showed minimal RELMbeta induction and developed persistent infections, demonstrating a direct role for IL-13 in optimal expression of RELMbeta. Finally, we show that RELMbeta binds to components of the nematode chemosensory apparatus and inhibits chemotaxic function of a parasitic nematode in vitro. Together, these results suggest that intestinal goblet cell-derived RELMbeta may be a novel Th2 cytokine-induced immune-effector molecule in resistance to GI nematode infection.
Collapse
Affiliation(s)
- David Artis
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liesenfeld O, Dunay IR, Erb KJ. Infection with Toxoplasma gondii reduces established and developing Th2 responses induced by Nippostrongylus brasiliensis infection. Infect Immun 2004; 72:3812-22. [PMID: 15213122 PMCID: PMC427426 DOI: 10.1128/iai.72.7.3812-3822.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oral infection of C57BL/6 mice with 100 cysts of the protozoan parasite Toxoplasma gondii results in the development of small intestinal Th1-type immunopathology. In contrast, infection with intestinal helminths results in the development of protective Th2-type responses. We investigated whether infection with the helminth Nippostrongylus brasiliensis influences the development of T. gondii-induced Th1 responses and immunopathology in C57BL/6 mice infected with T. gondii. Prior as well as simultaneous infection of mice with N. brasiliensis did not alter the course of infection with 100 cysts of T. gondii. Coinfected mice produced high levels of interleukin-12 (IL-12) and gamma interferon (IFN-gamma), developed small intestinal immunopathology, and died at the same time as mice infected with T. gondii. Interestingly, local and systemic N. brasiliensis-induced Th2 responses, including IL-4 and IL-5 production by mesenteric lymph node and spleen cells and numbers of intestinal goblet cells and blood eosinophils, were markedly lower in coinfected than in N. brasiliensis-infected mice. Similar effects were seen when infection with 10 T. gondii cysts was administered following infection with N. brasiliensis. Infection of C57BL/6 mice with 10 T. gondii cysts prior to coinfection with N. brasiliensis inhibited the development of helminth-induced Th2 responses and was associated with higher and prolonged N. brasiliensis egg production. In contrast, oral administration of Toxoplasma lysate prior to N. brasiliensis infection had only a minor and short-lived effect on Th2 responses. Thus, N. brasiliensis-induced Th2 responses fail to alter T. gondii-induced Th1 responses and immunopathology, most likely because Th1 responses develop unchanged in C57BL/6 mice with a prior or simultaneous infection with N. brasiliensis. Our findings contribute to the understanding of immune regulation in coinfected animals and may assist in the design of immunotherapies for human Th1 and Th2 disorders.
Collapse
Affiliation(s)
- Oliver Liesenfeld
- Institut für Infektionsmedizin, Abteilung für Medizinische Mikrobiologie und Infektionsimmunologie, Charité Campus Benjamin Franklin, Hindenburgdamm 27, 12203 Berlin, Germany.
| | | | | |
Collapse
|
25
|
Abstract
Toxoplasma gondii is a protozoan parasite that infects up to a third of the world's population. Infection is mainly acquired by ingestion of food or water that is contaminated with oocysts shed by cats or by eating undercooked or raw meat containing tissue cysts. Primary infection is usually subclinical but in some patients cervical lymphadenopathy or ocular disease can be present. Infection acquired during pregnancy may cause severe damage to the fetus. In immunocompromised patients, reactivation of latent disease can cause life-threatening encephalitis. Diagnosis of toxoplasmosis can be established by direct detection of the parasite or by serological techniques. The most commonly used therapeutic regimen, and probably the most effective, is the combination of pyrimethamine with sulfadiazine and folinic acid. This Seminar provides an overview and update on management of patients with acute infection, pregnant women who acquire infection during gestation, fetuses or infants who are congenitally infected, those with ocular disease, and immunocompromised individuals. Controversy about the effectiveness of primary and secondary prevention in pregnant women is discussed. Important topics of current and future research are presented.
Collapse
Affiliation(s)
- J G Montoya
- Department of Medicine and Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
26
|
Piao LX, Aosai F, Chen M, Fang H, Mun HS, Norose K, Yano A. A quantitative assay method of Toxoplasma gondii HSP70 mRNA by quantitative competitive-reverse transcriptase-PCR. Parasitol Int 2004; 53:49-58. [PMID: 14984835 DOI: 10.1016/j.parint.2003.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 11/13/2003] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii (T. gondii)-derived heat shock protein 70 (T.g.HSP70) has been identified as a virulent molecule expressing only in T. gondii tachyzoites during lethal acute infection. Therefore, it is of importance to determine the expression of T.g.HSP70 mRNA in a quantitative manner for analysis of virulence of T. gondii in tissues. We have constructed a competitor T.g.HSP70 and have successfully established a quantitative competitive-reverse transcriptase-polymerase chain reaction (QC-RT-PCR) targeting T.g.HSP70 gene. By using the established QC-RT-PCR method, we have demonstrated that the copy number of T.g.HSP70 mRNA per T. gondii tachyzoite was highest in the lung among the organs examined in interferon-gamma knockout (GKO) mice.
Collapse
Affiliation(s)
- Lian-Xun Piao
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Buzoni-Gatel D, Debbabi H, Mennechet FJ, Martin V, Lepage AC, Schwartzman JD, Kasper LH. Murine ileitis after intracellular parasite infection is controlled by TGF-beta-producing intraepithelial lymphocytes. Gastroenterology 2001; 120:914-24. [PMID: 11231945 DOI: 10.1053/gast.2001.22432a] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Acute inflammatory ileitis occurs in susceptible (C57BL/6) mice after oral infection with Toxoplasma gondii. Overproduction of interferon (IFN)-gamma and synthesis of nitric oxide mediate the inflammation. We evaluated the role of transforming growth factor (TGF)-beta produced by intraepithelial lymphocytes (IELs) in this process. METHODS We analyzed the histologic and immunologic consequences of adoptive transfer of antigen-primed IELs into susceptible mice treated with anti-TGF-beta before oral challenge with T. gondii cysts. An in vitro coculture of enterocytes and IELs assessed the production of chemokines and cytokines in the presence of anti-TGF-beta. RESULTS Antigen-primed IELs prevent acute ileitis in susceptible mice that is reversed with anti-TGF-beta. Resistant mice (CBA/J) develop ileitis after treatment with anti-TGF-beta. Antigen-primed IELs can induce systemic immunosuppression as measured by depressed IFN-gamma production. In vitro, primed IELs reduce the production of inflammatory chemokines by infected enterocytes and IFN-gamma by splenocytes. CONCLUSIONS Regulation of the ileal inflammatory process resulting from T. gondii is dependent on TGF-beta-producing IELs. The IELs are an essential component in gut homeostasis after oral infection with this parasite.
Collapse
Affiliation(s)
- D Buzoni-Gatel
- Laboratoire Associe Institut National de la Recherche Agronomique d'Immunologie Parasitaire, Faculte de Pharmacie, Tours, France
| | | | | | | | | | | | | |
Collapse
|