1
|
Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, Baek KH, Jan AT. Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Curr Issues Mol Biol 2024; 46:5194-5222. [PMID: 38920984 PMCID: PMC11201952 DOI: 10.3390/cimb46060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Plants being sessile are exposed to different environmental challenges and consequent stresses associated with them. With the prerequisite of minerals for growth and development, they coordinate their mobilization from the soil through their roots. Phosphorus (P) and iron (Fe) are macro- and micronutrient; P serves as an important component of biological macromolecules, besides driving major cellular processes, including photosynthesis and respiration, and Fe performs the function as a cofactor for enzymes of vital metabolic pathways. These minerals help in maintaining plant vigor via alterations in the pH, nutrient content, release of exudates at the root surface, changing dynamics of root microbial population, and modulation of the activity of redox enzymes. Despite this, their low solubility and relative immobilization in soil make them inaccessible for utilization by plants. Moreover, plants have evolved distinct mechanisms to cope with these stresses and coregulate the levels of minerals (Fe, P, etc.) toward the maintenance of homeostasis. The present study aims at examining the uptake mechanisms of Fe and P, and their translocation, storage, and role in executing different cellular processes in plants. It also summarizes the toxicological aspects of these minerals in terms of their effects on germination, nutrient uptake, plant-water relationship, and overall yield. Considered as an important and indispensable component of sustainable agriculture, a separate section covers the current knowledge on the cross-talk between Fe and P and integrates complete and balanced information of their effect on plant hormone levels.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| |
Collapse
|
2
|
Montejano-Ramírez V, Valencia-Cantero E. Cross-Talk between Iron Deficiency Response and Defense Establishment in Plants. Int J Mol Sci 2023; 24:ijms24076236. [PMID: 37047208 PMCID: PMC10094134 DOI: 10.3390/ijms24076236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Plants are at risk of attack by various pathogenic organisms. During pathogenesis, microorganisms produce molecules with conserved structures that are recognized by plants that then initiate a defense response. Plants also experience iron deficiency. To address problems caused by iron deficiency, plants use two strategies focused on iron absorption from the rhizosphere. Strategy I is based on rhizosphere acidification and iron reduction, whereas Strategy II is based on iron chelation. Pathogenic defense and iron uptake are not isolated phenomena: the antimicrobial phenols are produced by the plant during defense, chelate and solubilize iron; therefore, the production and secretion of these molecules also increase in response to iron deficiency. In contrast, phytohormone jasmonic acid and salicylic acid that induce pathogen-resistant genes also modulate the expression of genes related to iron uptake. Iron deficiency also induces the expression of defense-related genes. Therefore, in the present review, we address the cross-talk that exists between the defense mechanisms of both Systemic Resistance and Systemic Acquired Resistance pathways and the response to iron deficiency in plants, with particular emphasis on the regulation genetic expression.
Collapse
|
3
|
Principal Component Analysis to Assess the Changes of Yield and Quality in Pinellia ternata at Different Stages after Brassinolide Treatments. Int J Mol Sci 2022; 23:ijms232315375. [PMID: 36499701 PMCID: PMC9740233 DOI: 10.3390/ijms232315375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Brassinolide (BR) is the "sixth class" plant hormone, which plays an important role in various physiological and biochemical processes of plants. The wide variety of functions of Pinellia ternata means that there is huge demand for it and thus it is in short supply. This paper mainly assessed the changes of yield and quality in P. ternata at different stages after BR treatments by principal component analysis, in order to improve the yield and quality of P. ternata and at the same time determine the best harvest time. The results showed that the tuber yield of P. ternata was significantly increased by BR treatments at different stages (except for the 15th day). After the 15th, 45th, 60th, 75th, 90th, and 105th day of treatments, the tuber yield of P. ternata reached peak values at 0.10 (0.65 g), 0.50 (1.97 g), 0.50 (1.98 g), 1.00 (2.37 g), 1.00 (2.84 g), and 2.00 mg/L (3.76 g) BR treatment, respectively. The optimal harvest time was the 75th day after 0.10, 0.50, and 1.00 mg/L BR treatments, which not only significantly improved the yield of P. ternata, but also retained high level of total alkaloids in the tubers (20.89, 5.37, and 13.44%) and bulbils (9.74, 20.42, and 13.62%), high total flavone content in the tubers (17.66, 16.26, and 12.74%) and bulbils (52.63, 12.79, and 38.69%), and high β-sitosterol content in the tubers (25.26, 16.65, and 0.62%) of P. ternata, compared with the control, respectively.
Collapse
|
4
|
Guo C, Li M, Chen Y, Xu X, Liu C, Chu J, Yao X. Seed bulb size influences the effects of exogenous brassinolide on yield and quality of Pinellia ternata. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:117-126. [PMID: 34693612 DOI: 10.1111/plb.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
In recent years, natural Pinellia ternata populations of have gradually been exhausted, while the cultivated yield has been limited due to lack of research and uncertain climate condition. Therefore, it is necessary to explore methods of improving yield and quality in P. ternata using brassinolide (BR) treatments and choice of a suitable seed bulb size. This article reports the effects of BR and two seed bulb sizes (diameter: 0.5-1.0 cm and 1.0-1.5 cm) on active and nutrient components and antioxidant activity in P. ternata. The experiment included six levels of BR (0, 0.05, 0.10, 0.50, 1.00 and 2.00 mg l-1 ). The tuber yield of the two seed bulb sizes and bulbil yield of small seed bulbs increased 5.67%, 22.66% and 69.23% by day 105 after 0.50 mg l-1 BR treatment, compared with the control. On day 105, only 0.05 mg l-1 BR increased scores in principal components analysis (PCA) in tubers of small seed bulbs by 167.29%, and 0.05 and 0.50 mg l-1 BR increased PCA score in bulbils of large seed bulbs by 145.66% and 252.97%, respectively, compared with the control. Significant BR × seed bulb size interactions were found on yield and quality of P. ternata. The results indicate that BR effects on yield and quality of tubers and bulbils of P. ternata are not only related to BR concentration but also to seed bulb size.
Collapse
Affiliation(s)
- C Guo
- College of Life Sciences, Hebei University, Baoding, China
| | - M Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Y Chen
- College of Life Sciences, Hebei University, Baoding, China
| | - X Xu
- College of Life Sciences, Hebei University, Baoding, China
| | - C Liu
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - J Chu
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - X Yao
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
5
|
Kothari A, Lachowiec J. Roles of Brassinosteroids in Mitigating Heat Stress Damage in Cereal Crops. Int J Mol Sci 2021; 22:2706. [PMID: 33800127 PMCID: PMC7962182 DOI: 10.3390/ijms22052706] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 01/24/2023] Open
Abstract
Heat stress causes huge losses in the yield of cereal crops. Temperature influences the rate of plant metabolic and developmental processes that ultimately determine the production of grains, with high temperatures causing a reduction in grain yield and quality. To ensure continued food security, the tolerance of high temperature is rapidly becoming necessary. Brassinosteroids (BR) are a class of plant hormones that impact tolerance to various biotic and abiotic stresses and regulate cereal growth and fertility. Fine-tuning the action of BR has the potential to increase cereals' tolerance and acclimation to heat stress and maintain yields. Mechanistically, exogenous applications of BR protect yields through amplifying responses to heat stress and rescuing the expression of growth promoters. Varied BR compounds and differential signaling mechanisms across cereals point to a diversity of mechanisms that can be leveraged to mitigate heat stress. Further, hormone transport and BR interaction with other molecules in plants may be critical to utilizing BR as protective agrochemicals against heat stress. Understanding the interplay between heat stress responses, growth processes and hormone signaling may lead us to a comprehensive dogma of how to tune BR application for optimizing cereal growth under challenging environments in the field.
Collapse
Affiliation(s)
| | - Jennifer Lachowiec
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
6
|
Tanveer M, Shahzad B, Sharma A, Khan EA. 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:295-303. [PMID: 30599306 DOI: 10.1016/j.plaphy.2018.12.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/26/2018] [Accepted: 12/16/2018] [Indexed: 05/03/2023]
Abstract
Drought stress is one of most dramatic abiotic stresses, reduces crop yield significantly. Application of hormones proved as an effective drought stress ameliorating approach. 24-Epibrassinolide (EBL), an active by-product from brassinolide biosynthesis increases drought stress tolerance in plants significantly. EBL application enhances plant growth and development under drought stress by acting as signalling compound in different physiological processes. This article discussed potential role of 24-epibrassinolide application and drought tolerance in plants. Briefly, EBL sustains or improves plant growth and yield by enhancing carbon assimilation rate, maintaining a balance between ROS and antioxidants and also plays important role in solute accumulation and water relations. Furthermore, we also compared different EBL application methods and concluded that seed priming and foliar application are more productive as compared with root application method. In conclusion, EBL is very impressive phyto-hormone, which can ameliorate drought stress induced detrimental effects in plants.
Collapse
Affiliation(s)
- Mohsin Tanveer
- School of Land and Food, University of Tasmania, Australia.
| | - Babar Shahzad
- School of Land and Food, University of Tasmania, Australia
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | | |
Collapse
|
7
|
Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:69-79. [PMID: 29966934 DOI: 10.1016/j.plaphy.2018.06.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/09/2018] [Accepted: 06/23/2018] [Indexed: 05/24/2023]
Abstract
Salt stress is one of most dramatic abiotic stresses, reduces crop yield significantly. Application of hormones proved effective salt stress ameliorating approach. 24-Epibrassinolide (EBL), an active by-product from brassinolide biosynthesis shows significant salt stress tolerance in plants. EBL application improves plant growth and development under salt stress by playing as signalling compound in different metabolic and physiological processes. This article compiles all identified ways by which EBL improves plant growth and enhances crop yield. Furthermore, EBL enhances photosynthetic rate, reduces ROS production and plays important role in ionic homeostasis. Furthermore EBL-induced salt stress tolerance suggest that complex transcriptional and translational reprogramming occurs in response to EBL and salt stress therefore transcriptional and translational changes in response to EBL application are also discussed in this article.
Collapse
Affiliation(s)
- Mohsin Tanveer
- School of Land and Food, University of Tasmania Hobart 2007, Tasmania, Australia.
| | - Babar Shahzad
- School of Land and Food, University of Tasmania Hobart 2007, Tasmania, Australia
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sajitha Biju
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, 3010, Australia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
8
|
Siddiqui H, Ahmed KBM, Hayat S. Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:198-212. [PMID: 29894860 DOI: 10.1016/j.plaphy.2018.05.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/26/2018] [Indexed: 05/11/2023]
Abstract
BRs are polyhydroxylated sterol derivatives, classified as phytohormones. Plants of Brassica juncea var. Varuna were grown in pots and an aqueous solution (10-8 M) of two brassinosteroid isomers 28-homobrassinolide (HBL) and 24-epibrassinolide (EBL) of same concentration (10-8 M) was applied to their leaves. The treatment up-regulated the photosynthetic machinery directly by enhancing water splitting activity, photochemical quenching, non-photochemical quenching, maximum PSII efficiency, actual PSII efficiency, electron transport rate, stomatal movement, stomatal conductance, internal CO2 concentration, transpiration rate, net photosynthetic rate and carbohydrate synthesis. Moreover, the level of biochemical enzymes (carbonic anhydrase and nitrate reductase), reactive oxygen species (superoxide and hydrogen peroxide) generation, antioxidant enzyme activity and mineral status (C, N, Mg, P, S, K), which indirectly influence the rate of photosynthesis, also improved in the treated plants. Out of the two BR analogues tested, EBL excelled in its effects over HBL.
Collapse
Affiliation(s)
- Husna Siddiqui
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Khan Bilal Mukhtar Ahmed
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
9
|
Abhinandan K, Skori L, Stanic M, Hickerson NMN, Jamshed M, Samuel MA. Abiotic Stress Signaling in Wheat - An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:734. [PMID: 29942321 PMCID: PMC6004395 DOI: 10.3389/fpls.2018.00734] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/15/2018] [Indexed: 05/19/2023]
Abstract
Rapid global warming directly impacts agricultural productivity and poses a major challenge to the present-day agriculture. Recent climate change models predict severe losses in crop production worldwide due to the changing environment, and in wheat, this can be as large as 42 Mt/°C rise in temperature. Although wheat occupies the largest total harvested area (38.8%) among the cereals including rice and maize, its total productivity remains the lowest. The major production losses in wheat are caused more by abiotic stresses such as drought, salinity, and high temperature than by biotic insults. Thus, understanding the effects of these stresses becomes indispensable for wheat improvement programs which have depended mainly on the genetic variations present in the wheat genome through conventional breeding. Notably, recent biotechnological breakthroughs in the understanding of gene functions and access to whole genome sequences have opened new avenues for crop improvement. Despite the availability of such resources in wheat, progress is still limited to the understanding of the stress signaling mechanisms using model plants such as Arabidopsis, rice and Brachypodium and not directly using wheat as the model organism. This review presents an inclusive overview of the phenotypic and physiological changes in wheat due to various abiotic stresses followed by the current state of knowledge on the identified mechanisms of perception and signal transduction in wheat. Specifically, this review provides an in-depth analysis of different hormonal interactions and signaling observed during abiotic stress signaling in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcus A. Samuel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Spraying Brassinolide improves Sigma Broad tolerance in foxtail millet (Setaria italica L.) through modulation of antioxidant activity and photosynthetic capacity. Sci Rep 2017; 7:11232. [PMID: 28894251 PMCID: PMC5593917 DOI: 10.1038/s41598-017-11867-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/30/2017] [Indexed: 11/12/2022] Open
Abstract
To explore the role of Brassinolide (BR) in improving the tolerance of Sigma Broad in foxtail millet (Setaria italica L.), effects of 0.1 mg/L of BR foliar application 24 h before 3.37 g/ha of Sigma Broad treatment at five-leaf stage of foxtail millet on growth parameters, antioxidant enzymes, malondialdehyde (MDA), chlorophyll, net photosynthetic rate (PN), chlorophyll fluorescence and P700 parameters were studied 7 and 15 d after herbicide treatment, respectively. Results showed that Sigma Broad significantly decreased plant height, activities of superoxide dismutase (SOD), chlorophyll content, PN, PS II effective quantum yield (Y (II)), PS II electron transport rate (ETR (II)), photochemical quantum yield of PSI(Y (I)) and PS I electron transport rate ETR (I), but significantly increased MDA. Compared to herbicide treatment, BR dramatically increased plant height, activities of SOD, Y (II), ETR (II), Y (I) and ETR (I). This study showed BR pretreatment could improve the tolerance of Sigma Broad in foxtail millet through improving the activity of antioxidant enzymes, keeping electron transport smooth, and enhancing actual photochemical efficiency of PS II and PSI.
Collapse
|
11
|
Efimova MV, Vankova R, Kusnetsov VV, Litvinovskaya RP, Zlobin IE, Dobrev P, Vedenicheva NP, Savchuk AL, Karnachuk RA, Kudryakova NV, Kuznetsov VV. Effects of 24-epibrassinolide and green light on plastid gene transcription and cytokinin content of barley leaves. Steroids 2017; 120:32-40. [PMID: 27998756 DOI: 10.1016/j.steroids.2016.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
In order to evaluate whether brassinosteroids (BS) and green light regulate the transcription of plastid genes in a cross-talk with cytokinins (CKs), transcription rates of 12 plastid genes (ndhF, rrn23, rpoB, psaA, psaB, rrn16, psbA, psbD, psbK, rbcL, atpB, and trnE/trnY) as well as the accumulation of transcripts of some photoreceptors (PHYA, CRY2, CRY1A, and CRY1B) and signaling (SERK and CAS) genes were followed in detached etiolated barley leaves exposed to darkness, green or white light ±1μm 24-epibrassinolide (EBL). EBL in the dark was shown to up-regulate the transcription of 12 plastid genes, while green light activated 10 genes and the EBL combined with the green light affected the transcription of only two genes (psaB and rpoB). Green light inhibited the expression of photoreceptor genes, except for CRY1A. Under the green light, EBL practically did not affect the expression of CRY1A, CAS and SERK genes, but it reduced the influence of white light on the accumulation of CAS, CRY1A, CRY1B, and SERK gene transcripts. The total content of BS in the dark and under white light remained largely unchanged, while under green light the total content of BRs (brassinolide, castasterone, and 6-deoxocastasterone) and HBRs (28-homobrassinolide, 28-homocastasterone, and 6-deoxo-28-homocastasterone) increased. The EBL-dependent up-regulation of plastome transcription in the dark was accompanied by a significant decrease in CK deactivation by O-glucosylation. However, no significant effect on the content of active CKs was detected. EBL combined with green light moderately increased the contents of trans-zeatin and isopentenyladenine, but had a negative effect on cis-zeatin. The most significant promotive effect of EBL on active CK bases was observed in white light. The data obtained suggest the involvement of CKs in the BS- and light-dependent transcription regulation of plastid genes.
Collapse
Affiliation(s)
- Marina V Efimova
- National Research Tomsk State University, Lenin Av., 36, 634050 Tomsk, Russia.
| | - Radomira Vankova
- Institute of Experimental Botany, AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Victor V Kusnetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Str., 35, 127276 Moscow, Russia
| | - Raisa P Litvinovskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| | - Ilya E Zlobin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Str., 35, 127276 Moscow, Russia
| | - Petre Dobrev
- Institute of Experimental Botany, AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Nina P Vedenicheva
- Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereshchenkivska Str., 2, 01601 Kyiv, Ukraine
| | - Alina L Savchuk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| | - Raisa A Karnachuk
- National Research Tomsk State University, Lenin Av., 36, 634050 Tomsk, Russia
| | - Natalia V Kudryakova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Str., 35, 127276 Moscow, Russia
| | - Vladimir V Kuznetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Str., 35, 127276 Moscow, Russia; National Research Tomsk State University, Lenin Av., 36, 634050 Tomsk, Russia
| |
Collapse
|
12
|
Synthesis of Five Known Brassinosteroid Analogs from Hyodeoxycholic Acid and Their Activities as Plant-Growth Regulators. Int J Mol Sci 2017; 18:ijms18030516. [PMID: 28282853 PMCID: PMC5372532 DOI: 10.3390/ijms18030516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 11/29/2022] Open
Abstract
Brassinosteroids (BRs) are plant hormones that promote growth in different plant organs and tissues. The structural requirements that these compounds should possess to exhibit this biological activity have been studied. In this work, a series of known BR analogs 5–15, were synthesized starting from hyodeoxycholic acid 4, and maintaining the alkyl side chain as cholic acid or its methyl ester. The growth-promoting effects of brassinolide (1) and synthesized analogs were evaluated by using the rice lamina inclination assay at concentrations ranging from 1 × 10−8–1 × 10−6 M. Our results indicate that in this concentration range the induced bending angle of rice seedlings increases with increasing concentration of BRs. Analysis of the activities, determined at the lowest tested concentration, in terms of BR structures shows that the 2α,3α-dihydroxy-7-oxa-6-ketone moiety existing in brassinolide is required for the plant growing activity of these compounds, as it has been proposed by some structure-activity relationship studies. The effect of compound 8 on cell elongation was assessed by microscopy analysis, and the results indicate that the growth-promoting effect of analog 8 is mainly due to cell elongation of the adaxial sides, instead of an increase on cell number.
Collapse
|
13
|
Schröder F, Lisso J, Obata T, Erban A, Maximova E, Giavalisco P, Kopka J, Fernie AR, Willmitzer L, Müssig C. Consequences of induced brassinosteroid deficiency in Arabidopsis leaves. BMC PLANT BIOLOGY 2014; 14:309. [PMID: 25403461 PMCID: PMC4240805 DOI: 10.1186/s12870-014-0309-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/27/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND The identification of brassinosteroid (BR) deficient and BR insensitive mutants provided conclusive evidence that BR is a potent growth-promoting phytohormone. Arabidopsis mutants are characterized by a compact rosette structure, decreased plant height and reduced root system, delayed development, and reduced fertility. Cell expansion, cell division, and multiple developmental processes depend on BR. The molecular and physiological basis of BR action is diverse. The BR signalling pathway controls the activity of transcription factors, and numerous BR responsive genes have been identified. The analysis of dwarf mutants, however, may to some extent reveal phenotypic changes that are an effect of the altered morphology and physiology. This restriction holds particularly true for the analysis of established organs such as rosette leaves. RESULTS In this study, the mode of BR action was analysed in established leaves by means of two approaches. First, an inhibitor of BR biosynthesis (brassinazole) was applied to 21-day-old wild-type plants. Secondly, BR complementation of BR deficient plants, namely CPD (constitutive photomorphogenic dwarf)-antisense and cbb1 (cabbage1) mutant plants was stopped after 21 days. BR action in established leaves is associated with stimulated cell expansion, an increase in leaf index, starch accumulation, enhanced CO2 release by the tricarboxylic acid cycle, and increased biomass production. Cell number and protein content were barely affected. CONCLUSION Previous analysis of BR promoted growth focused on genomic effects. However, the link between growth and changes in gene expression patterns barely provided clues to the physiological and metabolic basis of growth. Our study analysed comprehensive metabolic data sets of leaves with altered BR levels. The data suggest that BR promoted growth may depend on the increased provision and use of carbohydrates and energy. BR may stimulate both anabolic and catabolic pathways.
Collapse
Affiliation(s)
- Florian Schröder
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Janina Lisso
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Erban
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Eugenia Maximova
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Carsten Müssig
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
14
|
Yusuf M, Fariduddin Q, Ahmad A. 24-epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shotgun approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 57:143-53. [PMID: 22705589 DOI: 10.1016/j.plaphy.2012.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/02/2012] [Indexed: 05/22/2023]
Abstract
The objective of this study was to explore the response of 24-epibrassinolide to improve the biological yield of Ni-tolerant and Ni-sensitive varieties of Vigna radiata and also to test the propositions that 24-epibrassinolide induced up-regulation of antioxidant system protects the efficiency of V. radiata, grown under Ni-stress. Surface sterilized seeds of var. T-44 (Ni-tolerant) and PDM-139 (Ni-sensitive) were soaked in DDW (control), 10(-10), 10(-8), or 10(-6) M of 24-epibrassinolide for 8 h (shotgun approach). These treated seeds were then inoculated with specific Rhizobium grown in sandy loam soil supplemented with different levels of Ni 0, 50, 100, or 150 mg Ni kg(-1) of soil and were allowed to grow for 45-days. At this stage of growth, plants were sampled to assess the various growths and nodule related traits as well as selected biochemical characteristics. The remaining plants were allowed to grow to maturity to study the yield characteristics. The results indicated that plant-fresh and dry mass, number of nodules, their fresh and dry mass, leghemoglobin content, nitrogen and carbohydrate content in the nodules, leaf chlorophyll content, activities of nitrate reductase and carbonic anhydrase decreased proportionately with the increasing concentrations of soil nickel. However, the application of 24-epibrassinolide as shotgun approach (pre-sowing seed soaking) to the nickel-stressed or non-stressed plants improved growth, nodulation and enhanced the activity of various antioxidant enzymes (viz. catalase, peroxidase and superoxide dismutase) and also the content of proline. The up-regulation of antioxidant enzymes as well as proline (osmolyte) triggered by 24-epibrassinolide could have conferred tolerance to the Ni-stressed plants resulting in improved growth, nodulation and yield attributes.
Collapse
Affiliation(s)
- M Yusuf
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | | | |
Collapse
|
15
|
Isidro J, Knox R, Singh A, Clarke F, Krishna P, DePauw R, Clarke J, Somers D. Brassinosteroid leaf unrolling QTL mapping in durum wheat. PLANTA 2012; 236:273-281. [PMID: 22350765 DOI: 10.1007/s00425-012-1603-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
Brassinosteroids are a newly reported class of plant growth phytohormones found in plants throughout the plant kingdom. Functioning at very low concentrations, they play an essential role in improving biomass yield and stress tolerance. There are no reports in the literature of the genetic variability of responsiveness of brassinosteroids in wheat; most studies on brassinosteroids have focused on the physiological effects of exogenous addition of brassinosteroids. Our aim was to study the genetic variation in the responsiveness of a doubled haploid durum wheat population to three brassinosteroid concentrations using the leaf unrolling test, which is a simple bioassay to test brassinosteroid activity. An F(1)-derived doubled haploid population of 77 individuals from the cross Strongfield/Blackbird was used to construct a genetic map of 427 molecular marker loci. The leaf unrolling test was performed on the parents and doubled haploid genotypes of the population using 0.2, 2 and 20 nM brassinosteroid concentrations. The results indicated significant differences in leaf unrolling between the two parents, doubled haploid genotypes, treatments and genotype-by-treatment combinations. Transgressive segregation beyond Strongfield of leaf unrolling was observed for all concentrations, with the strongest response at 20 nM. Putative quantitative trait loci were revealed in the intervals Xgwm2-Xbarc45 on chromosome 3A and Xwmc643a-Xwmc625a on chromosome 3B. Additional quantitative trait loci were associated with markers Xwmc48a, Xwmc511, Xwmc89a and Xgwmc692 on chromosome 4B, and Xwmc17 on chromosome 7A. This work should enhance the understanding of the relationship between stress tolerance and productivity, and responsiveness to brassinosteroids.
Collapse
Affiliation(s)
- Julio Isidro
- Semiarid Prairie Agriculture Research Centre, Agriculture and Agri-Food Canada (AAFC), Swift Current, SK, S9H 3X2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Efimova MV, Kusnetsov VV, Kravtsov AK, Karnachuk RA, Khripach VA, Kuznetsov VV. Regulation of the transcription of plastid genes in plants by brassinosteroids. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2012; 445:272-275. [PMID: 22945534 DOI: 10.1134/s0012496612040199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Indexed: 06/01/2023]
|
17
|
Hayat S, Alyemeni MN, Hasan SA. Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 2012; 19:325-35. [PMID: 23961193 DOI: 10.1016/j.sjbs.2012.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 12/26/2022] Open
Abstract
The presence of cadmium in the soil above a particular level is proposed to check not only plant growth but also productivity and fruit quality. Therefore, in the present study investigations are directed to evaluate the effect of four levels of cadmium (3, 6, 9, 12 mg kg(-1)) in interaction with two analogs of brassinosteroids on the growth, fruit yield and quality of tomato. Under greenhouse conditions plants were analyzed for antioxidant system activity and photosynthetic assimilation efficiency. Cd stressed plants exhibited poor growth and biological yield. The metal also had a negative impact on the antioxidant system of the resulting fruits. However, the follow up application of BRs (10(-8) M) neutralized the damaging effects of the metal on the plants.
Collapse
Affiliation(s)
- Shamsul Hayat
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia ; Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, UP, India
| | | | | |
Collapse
|
18
|
Hayat S, Maheshwari P, Wani AS, Irfan M, Alyemeni MN, Ahmad A. Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 53:61-8. [PMID: 22322250 DOI: 10.1016/j.plaphy.2012.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/16/2012] [Indexed: 05/09/2023]
Abstract
Among various environmental stresses, salt stress is extensively damaging to major crops all over the world. An experiment was conducted to explore the role of exogenously applied 28 homobrassinolide (HBL) and salicylic acid (SA) on growth, photosynthetic parameters, transpiration and proline content of Brassica juncea L. cultivar Varuna in presence or absence of saline conditions (4.2 dsm(-1)). The leaves of 29d old plants were sprayed with distilled water, HBL and/or SA and plant responses were studied at 30 days after sowing (24 h after spray) and 45 days after sowing. The salinity significantly reduced the plant growth, gas exchange parameters but increased proline content and electrolyte leakage in the leaves. The effects were more pronounced at 30 DAS than 45 DAS. Out of the two hormones (HBL/SA) HBL excelled in its effects at both sampling stages. Toxic effects generated by salinity stress were completely overcome by the combination of the two hormones (HBL and SA) at 45 DAS.
Collapse
Affiliation(s)
- Shamsul Hayat
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | | | | | | | | | | |
Collapse
|
19
|
Bajguz A. Metabolism of brassinosteroids in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:95-107. [PMID: 17346983 DOI: 10.1016/j.plaphy.2007.01.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 01/08/2007] [Indexed: 05/14/2023]
Abstract
Brassinosteroids represent a class of plant hormones. More than 70 compounds have been isolated from plants. Currently 42 brassinosteroid metabolites and their conjugates are known. This review describes the miscellaneous metabolic pathways of brassinosteroids in plants. There are some types of metabolic processes involving brassinosteroids in plants: dehydrogenation, demethylation, epimerization, esterification, glycosylation, hydroxylation, side-chain cleavage and sulfonation. Metabolism of brassinosteroids can be divided into two categories: i) structural changes to the steroidal skeleton; and ii) structural changes to the side-chain.
Collapse
Affiliation(s)
- Andrzej Bajguz
- University of Bialystok, Institute of Biology, Swierkowa 20 B, 15-950 Bialystok, Poland.
| |
Collapse
|
20
|
Lisso J, Altmann T, Müssig C. Metabolic changes in fruits of the tomato dx mutant. PHYTOCHEMISTRY 2006; 67:2232-8. [PMID: 16930643 DOI: 10.1016/j.phytochem.2006.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/06/2006] [Accepted: 07/11/2006] [Indexed: 05/11/2023]
Abstract
The tomato DWARF cytochrome P450 protein catalyzes the C-6 oxidation of 6-deoxo-castasterone to castasterone. The d(x) mutant does not produce a functional DWARF enzyme, and d(x) shoots display severe symptoms of brassinosteroid-deficiency. However, fruits express the CYP85A3 protein which compensates for the deficiency of the DWARF protein and produce bioactive brassinosteroids. Here, we report on the metabolic characterization of d(x) fruits. Fruit size, fresh weight, and pigment content were not altered. However, d(x) fruits showed reduced dry mass content. Levels of starch and various sugars were reduced, amino acid levels were elevated. BR application to d(x) leaves partially normalized dry mass content, sugar and amino acid levels in d(x) fruits. The data demonstrate that brassinosteroid in shoots is required for fruit development in tomato.
Collapse
Affiliation(s)
- Janina Lisso
- Universität Potsdam, Genetik, Karl-Liebknecht-Strasse 24/25, Haus 26, 14476 Golm, Germany
| | | | | |
Collapse
|
21
|
Bajguz A, Asami T. Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. PHYTOCHEMISTRY 2005; 66:1787-96. [PMID: 16038953 DOI: 10.1016/j.phytochem.2005.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 05/03/2023]
Abstract
The effect of the brassinosteroid (BR) 24-epibrassinolide (epiBL; 10(-13)-10(-6)M) on growth and levels of chlorophylls, carotenoids, sugars and protein in Wolffia arrhiza after 7 days of cultivation is reported. Application of epiBL to W. arrhiza cultures stimulates the growth and increases the content of photosynthetic pigments, sugar and protein. The greatest effect of epiBL is observed at a concentration of 10(-9)M. We tested the action of Brz2001, a specific BR biosynthesis inhibitor, in the range of 10(-6)-10(-4)M. Addition of Brz2001 to W. arrhiza cultures inhibits their growth after 7 days of cultivation. The inhibition of growth could be reversed by the addition of epiBL. Moreover, there was not complete recovery to the level of control, especially at 5 x 10(-5)-10(-4)M Brz2001. The effects of treatment with 10(-9)M epiBL mixed with a mevalonate pathway inhibitor (mevinolin), or a 2-methylerythritol 4-phosphate pathway inhibitor (clomazone), were also investigated. Mevinolin did not inhibit growth of W. arrhiza after 7 days of cultivation. However, clomazone did. Addition of epiBL overcame this inhibition. These results suggest that the mevalonate pathway may not function well in W. arrhiza and that biosynthesis of BRs through the non-mevalonate pathway in W. arrhiza could be possible.
Collapse
Affiliation(s)
- Andrzej Bajguz
- Department of Plant Biochemistry, University of Bialystok, Institute of Biology, Swierkowa 20 B, 15-950 Bialystok, Poland.
| | | |
Collapse
|
22
|
Yang MT, Chen SL, Lin CY, Chen YM. Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. PLANTA 2005; 221:374-385. [PMID: 15599759 DOI: 10.1007/s00425-004-1451-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 11/10/2004] [Indexed: 05/24/2023]
Abstract
Etiolated leaves of 28 degrees C-dark-grown mung bean (Vigna radiata L. cv. 2937) seedlings fail to turn green after being shifted to a light and cold environment. At the visible phenotypic level, incapability of leaf greening is the only failure event for the de-etiolation of mung bean seedlings at low temperature. Ultrastructural studies revealed that chloroplast development was completely suppressed by chilling treatment. A cDNA library originating from 28 degrees C-light-grown seedling leaves was constructed for screening cold-suppressed (cos) genes. Thirteen full-length cDNA clones were obtained, with 12 clones encoding chloroplast proteins, which, according to their known physiological functions, were important for chloroplast development and photosynthesis. Another cos cDNA encodes CYP90A2, which is a cytochrome P450 protein involved in the biosynthesis of brassinosteroid hormones. All cos genes are light-regulated at normal temperature. The influence of chilling stress on cos expression was examined in 10 degrees C-light- and 10 degrees C-dark-grown etiolated seedlings, and in 10 degrees C-light-grown green plants. The data show that cos expression in these three treatments is severely suppressed. This suppression is controlled at the transcriptional level, as demonstrated by nuclear runoff experiments, and is reversible because cos mRNAs accumulate again after the cold-treated plants have been transferred to 28 degrees C.
Collapse
Affiliation(s)
- Ming-Tzong Yang
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 106, Taiwan (ROC)
| | | | | | | |
Collapse
|
23
|
Abstract
Brassinosteroids (BRs) are highly potent growth-promoting sterol derivatives. BR-deficient or BR-insensitive mutants display dwarfism. Whole plants and excised tissues have been used to analyse the mechanisms involved in BR-promoted growth. BR stimulates cell elongation and cell division, and BR has specific effects on differentiation. Underlying physiological pathways include modification of cell wall properties, effects on carbohydrate assimilation and allocation, and control of aquaporin activities. BR apparently coordinates and integrates diverse processes required for growth, partly via interactions with other phytohormones setting the frame for BR responses. Ultimately, BR-promoted growth is mediated through genomic pathways. Positive regulators of the BR response (such as BZR1 and BES1) and putative downstream components (such as EXO) are involved in the regulation of BR-responsive genes and growth promotion. BR-responsive genes have been identified in several plant species. However, causal links between physiological effects and changes of transcript patterns, for the most part, are still unresolved. This review focuses on physiology and molecular mechanisms underlying BR-promoted growth in the different plant organs. Interactions with other phytohormones are discussed.
Collapse
Affiliation(s)
- C Müssig
- Universität Potsdam-Genetik, Karl-Liebknecht-Strasse 24 - 25, Haus 26, 14476 Golm, Germany.
| |
Collapse
|
24
|
Müssig C, Fischer S, Altmann T. Brassinosteroid-regulated gene expression. PLANT PHYSIOLOGY 2002; 129:1241-51. [PMID: 12114578 PMCID: PMC166518 DOI: 10.1104/pp.011003] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Revised: 01/31/2002] [Accepted: 02/20/2002] [Indexed: 05/18/2023]
Abstract
Major brassinosteroid (BR) effects such as BR-induced growth are mediated through genomic pathways because RNA synthesis inhibitors and protein synthesis inhibitors interfere with these processes. A limited number of BR-regulated genes have been identified hitherto. The majority of genes (such as BRU1, CycD3, Lin6, OPR3, and TRIP-1) were identified by comparisons of BR-treated versus control-treated plants. However, altered transcript levels after BR application may not reflect normal physiological events. A complementary approach is the comparison of BR-deficient plants versus wild-type plants. No artificial treatments interfere with endogenous signaling pathways, but a subset of phenotypic alterations of phytohormone-deficient plants most probably is secondary. To identify genes that are subject to direct BR regulation, we analyzed CPD antisense and dwf1-6 (cbb1) mutant plants. Both show a mild phenotype in comparison with BR-deficient mutants such as cpd/cbb3, det2, and dwf4. Plants were grown under two different environments to filter out BR deficiency effects that occur only at certain environmental conditions. Finally, we established expression patterns after BR treatment of wild-type and dwf1-6 (cbb1) plants. Ideally, a BR-regulated gene displays a dose-response relationship in such a way that a gene with decreased transcript levels in BR-deficient plants is BR inducible and vice versa. Expression profile analysis of above ground part of plants was performed by means of Affymetrix Arabidopsis Genome Arrays.
Collapse
Affiliation(s)
- Carsten Müssig
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department Willmitzer, Am Mühlenberg 1, 14476 Golm, Germany.
| | | | | |
Collapse
|
25
|
Brassinosteroide ?eine neue Phytohormon-Gruppe? Naturwissenschaften 1994. [DOI: 10.1007/bf01138545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
|
27
|
Yokota T, Takahashi N. Chemistry, Physiology and Agricultural Application of Brassinolide and Related Steroids. PROCEEDINGS IN LIFE SCIENCES 1986. [DOI: 10.1007/978-3-642-71018-6_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|