1
|
Chan MMY, Choi CXT, Tsoi TCW, Zhong J, Han YMY. Clinical and neuropsychological correlates of theta-band functional excitation-inhibition ratio in autism: An EEG study. Clin Neurophysiol 2024; 163:56-67. [PMID: 38703700 DOI: 10.1016/j.clinph.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE How abnormal brain signaling impacts cognition in autism spectrum disorder (ASD) remained elusive. This study aimed to investigate the local and global brain signaling in ASD indicated by theta-band functional excitation-inhibition (fE/I) ratio and explored psychophysiological relationships between fE/I, cognitive deficits, and ASD symptomatology. METHODS A total of 83 ASD and typically developing (TD) individuals participated in this study. Participants' interference control and set-shifting abilities were assessed. Resting-state electroencephalography (EEG) was used for estimating theta-band fE/I ratio. RESULTS ASD individuals (n = 31 without visual EEG abnormality; n = 22 with visual EEG abnormality) generally performed slower in a cognitive task tapping interference control and set-maintenance abilities, but only ASD individuals with visually abnormal EEG performed significantly slower than their TD counterparts (Bonferroni-corrected ps < .001). Heightened theta-band fE/I ratios at the whole-head level, left and right hemispheres were observed in the ASD subgroup without visual EEG abnormality only (Bonferroni-corrected ps < .001), which remained highly significant when only data from medication-naïve participants were analyzed. In addition, higher left hemispheric fE/I ratios in ASD individuals without visual EEG abnormality were significantly correlated with faster interference control task performance, in turn faster reaction time was significantly associated with less severe restricted, repetitive behavior (Bonferroni-corrected ps ≤ .0017). CONCLUSIONS Differential theta-band fE/I within the ASD population. Heightened theta-band fE/I in ASD without visual EEG abnormality may be associated with more efficient filtering of distractors and a less severe ASD symptom manifestation. SIGNIFICANCE Brain signaling, indicated by theta-band fE/I, was different in ASD subgroups. Only ASD with visually-normal EEG showed heightened theta-band fE/I, which was associated with faster processing of visual distractors during a cognitive task. More efficient distractor filtering was associated with less restricted, repetitive behaviors.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Queensland Brain Institute, The University of Queensland, St Lucia QLD 4072, Australia
| | - Coco X T Choi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Tom C W Tsoi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Junpei Zhong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| |
Collapse
|
2
|
Morrone JM, Pedlar CR. EEG-based neurophysiological indices for expert psychomotor performance - a review. Brain Cogn 2024; 175:106132. [PMID: 38219415 DOI: 10.1016/j.bandc.2024.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
A primary objective of current human neuropsychological performance research is to define the physiological correlates of adaptive knowledge utilization, in order to support the enhanced execution of both simple and complex tasks. Within the present article, electroencephalography-based neurophysiological indices characterizing expert psychomotor performance, will be explored. As a means of characterizing fundamental processes underlying efficient psychometric performance, the neural efficiency model will be evaluated in terms of alpha-wave-based selective cortical processes. Cognitive and motor domains will initially be explored independently, which will act to encapsulate the task-related neuronal adaptive requirements for enhanced psychomotor performance associating with the neural efficiency model. Moderating variables impacting the practical application of such neuropsychological model, will also be investigated. As a result, the aim of this review is to provide insight into detectable task-related modulation involved in developed neurocognitive strategies which support heightened psychomotor performance, for the implementation within practical settings requiring a high degree of expert performance (such as sports or military operational settings).
Collapse
Affiliation(s)
- Jazmin M Morrone
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK.
| | - Charles R Pedlar
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK; Institute of Sport, Exercise and Health, Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
3
|
Yuan S, Zhang J, Sun T. Exploring neural oscillations in numerical inductive reasoning: unveiling effects of top-down and bottom-up conflict. Front Psychol 2024; 14:1288325. [PMID: 38274687 PMCID: PMC10808643 DOI: 10.3389/fpsyg.2023.1288325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Previous research has delved into the brain's response to top-down and bottom-up conflicts in numerical inductive reasoning. However, the specific neural oscillatory patterns associated with these conflict types in numerical inductive reasoning processing have remained elusive. In this study, we employed a number series completion task in which participants had to determine whether a given target number adhered to concealed rules. Three conditions were established: an identity condition (e.g., 13, 13, 13), a perceptual mismatch condition (representing bottom-up conflict, e.g., 13 13 ), and a rule violation condition (representing top-down conflict, e.g., 13 13 14). Our EEG results revealed significant distinctions: rule violation induced more pronounced alpha desynchronization compared to both perceptual mismatch and identity conditions. Conversely, perceptual mismatch was associated with increased theta synchronization in contrast to rule violation and the identity condition. These findings suggest that alpha desynchronization may indicate the integration of rules during top-down conflict, while theta synchronization may function as a mechanism to inhibit bottom-up perceptual interference in numerical inductive reasoning.
Collapse
Affiliation(s)
- Shangqing Yuan
- School of Psychology, Research Center for Child Development, Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Jun Zhang
- College of Home Economics, Hebei Normal University, Shijiazhuang, China
| | - Tie Sun
- Joint Education Institute of Zhejiang Normal University and University of Kansas, Zhejiang Normal University, Jinhua, China
- College of Education, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
4
|
Chan MMY, Choi CXT, Tsoi TCW, Shea CKS, Yiu KWK, Han YMY. Effects of multisession cathodal transcranial direct current stimulation with cognitive training on sociocognitive functioning and brain dynamics in autism: A double-blind, sham-controlled, randomized EEG study. Brain Stimul 2023; 16:1604-1616. [PMID: 37918630 DOI: 10.1016/j.brs.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Few treatment options are available for targeting core symptoms of autism spectrum disorder (ASD). The development of treatments that target common neural circuit dysfunctions caused by known genetic defects, namely, disruption of the excitation/inhibition (E/I) balance, is promising. Transcranial direct current stimulation (tDCS) is capable of modulating the E/I balance in healthy individuals, yet its clinical and neurobiological effects in ASD remain elusive. OBJECTIVE This double-blind, randomized, sham-controlled trial investigated the effects of multisession cathodal prefrontal tDCS coupled with online cognitive remediation on social functioning, information processing efficiency and the E/I balance in ASD patients aged 14-21 years. METHODS Sixty individuals were randomly assigned to receive either active or sham tDCS (10 sessions in total, 20 min/session, stimulation intensity: 1.5 mA, cathode: F3, anode: Fp2, size of electrodes: 25 cm2) combined with 20 min of online cognitive remediation. Social functioning, information processing efficiency during cognitive tasks, and theta- and gamma-band E/I balance were measured one day before and after the treatment. RESULTS Compared to sham tDCS, active cathodal tDCS was effective in enhancing overall social functioning [F(1, 58) = 6.79, p = .012, ηp2 = 0.105, 90% CI: (0.013, 0.234)] and information processing efficiency during cognitive tasks [F(1, 58) = 10.07, p = .002, ηp2 = 0.148, 90% CI: (0.034, 0.284)] in these individuals. Electroencephalography data showed that this cathodal tDCS protocol was effective in reducing the theta-band E/I ratio of the cortical midline structures [F(1, 58) = 4.65, p = .035, ηp2 = 0.074, 90% CI: (0.010, 0.150)] and that this reduction significantly predicted information processing efficiency enhancement (b = -2.546, 95% BCa CI: [-4.979, -0.113], p = .041). CONCLUSION Our results support the use of multisession cathodal tDCS over the left dorsolateral prefrontal cortex combined with online cognitive remediation for reducing the elevated theta-band E/I ratio in sociocognitive information processing circuits in ASD patients, resulting in more adaptive regulation of global brain dynamics that is associated with enhanced information processing efficiency after the intervention.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Coco X T Choi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Tom C W Tsoi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Caroline K S Shea
- Alice Ho Miu Ling Nethersole Hospital, Hospital Authority, Hong Kong Special Administrative Region; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Klaire W K Yiu
- Alice Ho Miu Ling Nethersole Hospital, Hospital Authority, Hong Kong Special Administrative Region
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Han YM, Chan MM, Shea CK, Mo FY, Yiu KW, Chung RC, Cheung MC, Chan AS. Effects of prefrontal transcranial direct current stimulation on social functioning in autism spectrum disorder: A randomized clinical trial. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2023; 27:2465-2482. [PMID: 37151094 DOI: 10.1177/13623613231169547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
LAY ABSTRACT Currently available pharmacological and behavioral interventions for adolescents and young adults with autism spectrum disorder (ASD) yield only modest effect in alleviating their core behavioral and cognitive symptoms, and some of these treatment options are associated with undesirable side effects. Hence, developing effective treatment protocols is urgently needed. Given emerging evidence shows that the abnormal connections of the frontal brain regions contribute to the manifestations of ASD behavioral and cognitive impairments, noninvasive treatment modalities that are capable in modulating brain connections, such as transcranial direct current stimulation (tDCS), have been postulated to be potentially promising for alleviating core symptoms in ASD. However, whether tDCS can reduce behavioral symptoms and enhance cognitive performance in ASD remains unclear. This randomized controlled trial involving 105 adolescents and young adults with ASD showed that multiple sessions of a tDCS protocol, which was paired up with computerized cognitive training, was effective in improving social functioning in adolescents and young adults with ASD. No prolonged and serious side effects were observed. With more future studies conducted in different clinical settings that recruit participants from a wider age range, this tDCS protocol may be potentially beneficial to a broad spectrum of individuals with autism.
Collapse
Affiliation(s)
| | - Melody My Chan
- The Hong Kong Polytechnic University, Hong Kong
- The University of Queensland, Australia
| | - Caroline Ks Shea
- Hospital Authority, Hong Kong
- The Chinese University of Hong Kong, Hong Kong
| | - Flora Ym Mo
- Hospital Authority, Hong Kong
- The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
6
|
Jain D, Graci V, Beam ME, Ayaz H, Prosser LA, Master CL, McDonald CC, Arbogast KB. Neurophysiological and gait outcomes during a dual-task gait assessment in concussed adolescents. Clin Biomech (Bristol, Avon) 2023; 109:106090. [PMID: 37696165 PMCID: PMC10758982 DOI: 10.1016/j.clinbiomech.2023.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Gait deficits are common after concussion in adolescents. However, the neurophysiological underpinnings of these gait deficiencies are currently unknown. Thus, the goal of this study was to compare spatiotemporal gait metrics, prefrontal cortical activation, and neural efficiency between concussed adolescents several weeks from injury and uninjured adolescents during a dual-task gait assessment. METHODS Fifteen concussed (mean age[SD]: 17.4[0.6], 13 female, days since injury: 26.3[9.9]) and 17 uninjured adolescents (18.0[0.7], 10 female) completed a gait assessment with three conditions repeated thrice: single-task walking, single-task subtraction, and dual-task, which involved walking while completing a subtraction task simultaneously. Gait metrics were measured using an inertial sensor system. Prefrontal cortical activation was captured via functional near-infrared spectroscopy. Neural efficiency was calculated by relating gait metrics to prefrontal cortical activity. Differences between groups and conditions were examined, with corrections for multiple comparisons. FINDINGS There were no significant differences in gait metrics between groups. Compared to uninjured adolescents, concussed adolescents displayed significantly greater prefrontal cortical activation during the single-task subtraction (P = 0.01) and dual-task (P = 0.01) conditions with lower neural efficiency based on cadence (P = 0.02), gait cycle duration (P = 0.03), step duration (P = 0.03), and gait speed (P = 0.04) during the dual-task condition. INTERPRETATION Our findings suggest that several weeks after injury concussed adolescents demonstrate lower neural efficiency and display a cost to gait performance when cognitive demand is high, e.g., while multitasking, suggesting that the concussed adolescent brain is less able to compensate when attention is divided between two concurrent tasks.
Collapse
Affiliation(s)
- Divya Jain
- Department of Bioengineering, University of Pennsylvania, USA; Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA.
| | - Valentina Graci
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Megan E Beam
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hasan Ayaz
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA; Department of Psychological and Brain Sciences, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA; Drexel Solutions Institute, Drexel University, Philadelphia, PA, USA; School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A Prosser
- Division of Rehabilitation Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina L Master
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Sports Medicine and Performance Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Catherine C McDonald
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA; School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristy B Arbogast
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Charlebois-Poirier AR, Lalancette E, Agbogba K, Fauteux AA, Knoth IS, Lippé S. Working memory and processing speed abilities are related to habituation and change detection in school-aged children: An ERP study. Neuropsychologia 2023; 187:108616. [PMID: 37339690 DOI: 10.1016/j.neuropsychologia.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/24/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
High cognitive performance is related to efficient brain processing while accomplishing complex cognitive tasks. This efficiency is observed through a rapid engagement of the brain regions and the cognitive processes required for task accomplishment. However, it is unclear if this efficiency is also present in basic sensory processes such as habituation and change detection. We recorded EEG with 85 healthy children (51 males) aged between 4 and 13 years old, while they listened to an auditory oddball paradigm. Cognitive functioning was evaluated using the Weschler Intelligence Scales for Children Fifth Edition and the Weschler Preschool & Primary School for Intelligence Fourth Edition. Auditory evoked potentials (AEPs) analyses and repeated measure analysis of covariance as well as regression models were performed. The analysis revealed that P1 and N1 repetition effects were observed across levels of cognitive functioning. Further, working memory abilities were related to repetition suppression on the auditory P2 component amplitude, while faster processing speed was related to repetition enhancement on the N2 component amplitude. Also, Late Discriminative Negativity (LDN) amplitude, a neural correlate of change detection, increased with working memory abilities. Our results confirm that efficient repetition suppression (i.e. greater reduction in amplitudes with greater levels of cognitive functioning) and more sensitive change detection (greater amplitude changes of the LDN) are related to the level of cognitive functioning in healthy children. More specifically, working memory and processing speed abilities are the cognitive domains related to efficient sensory habituation and change detection.
Collapse
Affiliation(s)
- A-R Charlebois-Poirier
- Research Center, Sainte-Justine Hospital, Université de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal Montréal, QC, Canada.
| | - E Lalancette
- Research Center, Sainte-Justine Hospital, Université de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal Montréal, QC, Canada
| | - K Agbogba
- Research Center, Sainte-Justine Hospital, Université de Montréal, Montréal, QC, Canada
| | - A-A Fauteux
- Research Center, Sainte-Justine Hospital, Université de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal Montréal, QC, Canada
| | - I S Knoth
- Research Center, Sainte-Justine Hospital, Université de Montréal, Montréal, QC, Canada
| | - S Lippé
- Research Center, Sainte-Justine Hospital, Université de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal Montréal, QC, Canada.
| |
Collapse
|
8
|
Anomal RF, Brandão DS, de Souza RFL, de Oliveira SS, Porto SB, Hazin Pires IA, Pereira A. The spectral profile of cortical activation during a visuospatial mental rotation task and its correlation with working memory. Front Neurosci 2023; 17:1134067. [PMID: 37008234 PMCID: PMC10061141 DOI: 10.3389/fnins.2023.1134067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionThe search for a cortical signature of intelligent behavior has been a longtime motivation in Neuroscience. One noticeable characteristic of intelligence is its association with visuospatial skills. This has led to a steady focus on the functional and structural characteristics of the frontoparietal network (FPN) of areas involved with higher cognition and spatial behavior in humans, including the question of whether intelligence is correlated with larger or smaller activity in this important cortical circuit. This question has broad significance, including speculations about the evolution of human cognition. One way to indirectly measure cortical activity with millisecond precision is to evaluate the event-related spectral perturbation (ERSP) of alpha power (alpha ERSP) during cognitive tasks. Mental rotation, or the ability to transform a mental representation of an object to accurately predict how the object would look from a different angle, is an important feature of everyday activities and has been shown in previous work by our group to be positively correlated with intelligence. In the present work, we evaluate whether alpha ERSP recorded over the parietal, frontal, temporal, and occipital regions of adolescents performing easy and difficult trials of the Shepard–Metzler’s mental rotation task, correlates or are predicted by intelligence measures of the Weschler’s intelligence scale.MethodsWe used a database obtained from a previous study of intellectually gifted (N = 15) and average intelligence (N = 15) adolescents.ResultsOur findings suggest that in challenging task conditions, there is a notable difference in the prominence of alpha event-related spectral perturbation (ERSP) activity between various cortical regions. Specifically, we found that alpha ERSP in the parietal region was less prominent relative to those in the frontal, temporal and occipital regions. Working memory scores predict alpha ERSP values in the frontal and parietal regions. In the frontal cortex, alpha ERSP of difficult trials was negatively correlated with working memory scores.DiscussionThus, our results suggest that even though the FPN is task-relevant during mental rotation tasks, only the frontal alpha ERSP is correlated with working memory score in mental rotation tasks.
Collapse
Affiliation(s)
| | | | | | | | | | - Izabel Augusta Hazin Pires
- Department of Psychology, Federal University of Rio Grande do Norte, Natal, Brazil
- Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Antonio Pereira
- Laboratory of Signal Processing, Institute of Technology, Federal University of Pará, Belém, Brazil
- *Correspondence: Antonio Pereira Jr.,
| |
Collapse
|
9
|
Zhang L, Cui H. Reliability of MUSE 2 and Tobii Pro Nano at capturing mobile application users' real-time cognitive workload changes. Front Neurosci 2022; 16:1011475. [PMID: 36518531 PMCID: PMC9743809 DOI: 10.3389/fnins.2022.1011475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/18/2022] [Indexed: 09/10/2023] Open
Abstract
Introduction Despite the importance of cognitive workload in examining the usability of smartphone applications and the popularity of smartphone usage globally, cognitive workload as one attribute of usability tends to be overlooked in Human-Computer Interaction (HCI) studies. Moreover, limited studies that have examined the cognitive workload aspect often measured some summative workloads using subjective measures (e.g., questionnaires). A significant limitation of subjective measures is that they can only assess the overall, subject-perceived cognitive workload after the procedures/tasks have been completed. Such measurements do not reflect the real-time workload fluctuation during the procedures. The reliability of some devices on a smartphone setting has not been thoroughly evaluated. Methods This study used mixed methods to empirically study the reliability of an eye-tracking device (i.e., Tobii Pro Nano) and a low-cost electroencephalogram (EEG) device (i.e., MUSE 2) for detecting real-time cognitive workload changes during N-back tasks. Results Results suggest that the EEG measurements collected by MUSE 2 are not very useful as indicators of cognitive workload changes in our setting, eye movement measurements collected by Tobii Pro Nano with mobile testing accessory are useful for monitoring cognitive workload fluctuations and tracking down interface design issues in a smartphone setting, and more specifically, the maximum pupil diameter is the preeminent indicator of cognitive workload surges. Discussion In conclusion, the pupil diameter measure combined with other subjective ratings would provide a comprehensive user experience assessment of mobile applications. They can also be used to verify the successfulness of a user interface design solution in improving user experience.
Collapse
Affiliation(s)
- Limin Zhang
- China School of Fine Arts, Huaiyin Normal University, Huaian, China
| | - Hong Cui
- USA School of Information, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Chan MMY, Chan MC, Yeung MK, Wang SM, Liu D, Han YMY. Aberrant prefrontal functional connectivity during verbal fluency test is associated with reading comprehension deficits in autism spectrum disorder: An fNIRS study. Front Psychol 2022; 13:984777. [PMID: 36204740 PMCID: PMC9530129 DOI: 10.3389/fpsyg.2022.984777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Children with autism spectrum disorder (ASD) show marked difficulties in reading comprehension, a complex cognitive skill fundamental to successful daily functioning that is associated with core executive functions. However, the neurophysiological mechanisms underlying reading comprehension deficits in these children remain elusive. Twenty-one right-handed males with high-functioning ASD (mean age = 10.24 years) and 23 age-, IQ-, educational level-, sex- and handedness-matched typically developing (TD; mean age = 10.14 years) individuals underwent a reading comprehension test and the semantic verbal fluency test that tapped core executive functions underlying reading comprehension during concurrent prefrontal functional near-infrared spectroscopy (fNIRS) measurement. Participants' information processing efficiency was also assessed. High-functioning ASD children exhibited general reading comprehension [main effect of group: F (1,40) = 7.58, p = 0.009], selective verbal fluency deficits [Group × category interaction: F (1,42) = 4.90, p = 0.032] and slower processing speed (t 42 = 2.36, p = 0.023). Regarding the hemodynamics of the prefrontal cortex (PFC), although ASD individuals showed comparable patterns of PFC brain activation to their healthy counterparts, lower PFC intrahemispheric [main effect of group: F (1,42) = 11.36, p = 0.002] and interhemispheric [main effect of group: F (1,42) = 7.79, p = 0.008] functional connectivity were evident during the semantic verbal fluency test. At the whole-group level, poorer reading comprehension performance was associated with poorer performance in the semantic verbal fluency test (r 42 = 0.508, p < 0.001). Moreover, poorer semantic verbal fluency test performance was associated with slower information processing speed (r 42 = -0.312, p = 0.044), which is associated with reduced left medial PFC functional connectivity (r 42 = -0.319, p = 0.040). Abnormal intrahemispheric and interhemispheric prefrontal hypoconnectivity is associated with deficits in executive processes essential for reading comprehension in ASD. Our study has provided important implications for the neuropsychological and neurophysiological mechanisms underlying reading comprehension deficits in ASD.
Collapse
Affiliation(s)
- Melody M. Y. Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ming-Chung Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Michael K. Yeung
- Department of Psychology, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shu-Mei Wang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Duo Liu
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yvonne M. Y. Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Chan MMY, Chan MC, Lai OLH, Krishnamurthy K, Han YMY. Abnormal Prefrontal Functional Connectivity Is Associated with Inflexible Information Processing in Patients with Autism Spectrum Disorder (ASD): An fNIRS Study. Biomedicines 2022; 10:1132. [PMID: 35625869 PMCID: PMC9139038 DOI: 10.3390/biomedicines10051132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 01/15/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) are characterized by impairments in flexibly acquiring and maintaining new information, as well as in applying learned information for problem solving. However, the neural mechanism underpinning such impairments remains unclear. This study investigated the flexibility in the acquisition and application of visual information in ASD (aged 14−21) when they performed the Wisconsin Card Sorting Test (WCST). Behavioral data including response accuracy and latency, and prefrontal hemodynamic data measured by functional near-infrared spectroscopy (fNIRS), were collected when individuals performed WCST. Canonical general linear model and functional connectivity analyses were performed to examine the prefrontal activation and synchronization patterns, respectively. Results showed that although ASD individuals (n = 29) achieved comparable accuracy rates when compared with age- and intelligence quotient (IQ)-matched typically developing (TD; n = 26) individuals (F1,53 = 3.15, p = 0.082), ASD individuals needed significantly more time to acquire and apply WCST card sorting rules (F1,53 = 17.92, p < 0.001). Moreover, ASD individuals showed significantly lower prefrontal functional connectivity than TD individuals during WCST (F1,42 = 9.99, p = 0.003). The hypoconnectivity in ASD individuals was highly significant in the right lateral PFC in the acquisition condition (p = 0.005) and in the bilateral lateral PFC in the application condition (ps = 0.006). Furthermore, slower WCST reaction time was correlated with lower bilateral lateral PFC functional connectivity only in the application condition (ps = 0.003) but not the acquisition condition. Impairment in information acquisition and application is evident in ASD individuals and is mediated by processing speed, which is associated with lower functional connectivity in the bilateral lateral PFC when these individuals apply learned rules to solve novel problems.
Collapse
Affiliation(s)
- Melody M. Y. Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (M.M.Y.C.); (M.-C.C.); (O.L.-H.L.); (K.K.)
| | - Ming-Chung Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (M.M.Y.C.); (M.-C.C.); (O.L.-H.L.); (K.K.)
| | - Oscar Long-Hin Lai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (M.M.Y.C.); (M.-C.C.); (O.L.-H.L.); (K.K.)
| | - Karthikeyan Krishnamurthy
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (M.M.Y.C.); (M.-C.C.); (O.L.-H.L.); (K.K.)
| | - Yvonne M. Y. Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (M.M.Y.C.); (M.-C.C.); (O.L.-H.L.); (K.K.)
- University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
12
|
Taylor BK, Heinrichs-Graham E, Eastman JA, Frenzel MR, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Longitudinal changes in the neural oscillatory dynamics underlying abstract reasoning in children and adolescents. Neuroimage 2022; 253:119094. [PMID: 35306160 PMCID: PMC9152958 DOI: 10.1016/j.neuroimage.2022.119094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Fluid reasoning is the ability to problem solve in the absence of prior knowledge and is commonly conceptualized as “non-verbal” intelligence. Importantly, fluid reasoning abilities rapidly develop throughout childhood and adolescence. Although numerous studies have characterized the neural underpinnings of fluid reasoning in adults, there is a paucity of research detailing the developmental trajectory of this neural processing. Herein, we examine longitudinal changes in the neural oscillatory dynamics underlying fluid intelligence in a sample of typically developing youths. A total of 34 participants age 10 to 16 years-old completed an abstract reasoning task during magnetoencephalography (MEG) on two occasions set one year apart. We found robust longitudinal optimization in theta, beta, and gamma oscillatory activity across years of the study across a distributed network commonly implicated in fluid reasoning abilities. More specifically, activity tended to decrease longitudinally in additional, compensatory areas such as the right lateral prefrontal cortex and increase in areas commonly utilized in mature adult samples (e.g., left frontal and parietal cortices). Importantly, shifts in neural activity were associated with improvements in task performance from one year to the next. Overall, the data suggest a longitudinal shift in performance that is accompanied by a reconfiguration of the functional oscillatory dynamics serving fluid reasoning during this important period of development.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Mind Research Network, Albuquerque, NM, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
13
|
Eymann V, Beck AK, Jaarsveld S, Lachmann T, Czernochowski D. Alpha oscillatory evidence for shared underlying mechanisms of creativity and fluid intelligence above and beyond working memory-related activity. INTELLIGENCE 2022. [DOI: 10.1016/j.intell.2022.101630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Lu R, Xi J, Zhang X, Shi J. High fluid intelligence is characterized by flexible allocation of attentional resources: Evidence from EEG. Neuropsychologia 2022; 164:108094. [PMID: 34822859 DOI: 10.1016/j.neuropsychologia.2021.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022]
Abstract
Recently, the integrated control hypothesis (Lu et al., 2020) was proposed to explain the relationship between fluid intelligence (Gf) and attentional resource allocation. This hypothesis suggested that individuals with higher Gf tend to flexibly and adaptively allocate their limited resources according to the task type and task difficulty rather than simply exert more or fewer resources in any condition. To examine this hypothesis, the present study used electroencephalogram (EEG) indicators (i.e., frontal theta-ERS and parietal-occipital alpha-ERD) as the measurements of participants' resource allocation during the exploration task and exploitation task with different difficulties. The results found that higher Gf individuals tend to allocate fewer resources in all difficulty levels in the exploitation task compared to average Gf participants. In contrast, in the exploration task, higher Gf participants would allocate more resources in the medium- and high-difficulty levels than average Gf participants, but this phenomenon was only found in males. These findings provided supportive evidence for the integrated control hypothesis that flexible and adaptive attentional control ability are important characteristics of human intelligence.
Collapse
Affiliation(s)
- Runhao Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Jie Xi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingli Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiannong Shi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Analysis of Alpha Band Decomposition in Different Level-k Scenarios with Semantic Processing. Brain Inform 2022. [DOI: 10.1007/978-3-031-15037-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
16
|
Recent developments, current challenges, and future directions in electrophysiological approaches to studying intelligence. INTELLIGENCE 2021. [DOI: 10.1016/j.intell.2021.101569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Dreszer J, Grochowski M, Lewandowska M, Nikadon J, Gorgol J, Bałaj B, Finc K, Duch W, Kałamała P, Chuderski A, Piotrowski T. Spatiotemporal complexity patterns of resting-state bioelectrical activity explain fluid intelligence: Sex matters. Hum Brain Mapp 2020; 41:4846-4865. [PMID: 32808732 PMCID: PMC7643359 DOI: 10.1002/hbm.25162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 11/11/2022] Open
Abstract
Neural complexity is thought to be associated with efficient information processing but the exact nature of this relation remains unclear. Here, the relationship of fluid intelligence (gf) with the resting-state EEG (rsEEG) complexity over different timescales and different electrodes was investigated. A 6-min rsEEG blocks of eyes open were analyzed. The results of 119 subjects (57 men, mean age = 22.85 ± 2.84 years) were examined using multivariate multiscale sample entropy (mMSE) that quantifies changes in information richness of rsEEG in multiple data channels at fine and coarse timescales. gf factor was extracted from six intelligence tests. Partial least square regression analysis revealed that mainly predictors of the rsEEG complexity at coarse timescales in the frontoparietal network (FPN) and the temporo-parietal complexities at fine timescales were relevant to higher gf. Sex differently affected the relationship between fluid intelligence and EEG complexity at rest. In men, gf was mainly positively related to the complexity at coarse timescales in the FPN. Furthermore, at fine and coarse timescales positive relations in the parietal region were revealed. In women, positive relations with gf were mostly observed for the overall and the coarse complexity in the FPN, whereas negative associations with gf were found for the complexity at fine timescales in the parietal and centro-temporal region. These outcomes indicate that two separate time pathways (corresponding to fine and coarse timescales) used to characterize rsEEG complexity (expressed by mMSE features) are beneficial for effective information processing.
Collapse
Affiliation(s)
- Joanna Dreszer
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Marek Grochowski
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| | - Monika Lewandowska
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Jan Nikadon
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
| | - Joanna Gorgol
- Faculty of PsychologyUniversity of WarsawWarsawPoland
| | - Bibianna Bałaj
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Karolina Finc
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
| | - Włodzisław Duch
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| | - Patrycja Kałamała
- Department of Cognitive ScienceInstitute of Philosophy, Jagiellonian UniversityKrakowPoland
| | - Adam Chuderski
- Department of Cognitive ScienceInstitute of Philosophy, Jagiellonian UniversityKrakowPoland
| | - Tomasz Piotrowski
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| |
Collapse
|
18
|
Li D, Liu T, Shi J. Fluid intelligence and neural mechanisms of emotional conflict adaptation. Int J Psychophysiol 2020; 152:1-14. [DOI: 10.1016/j.ijpsycho.2020.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
|
19
|
Impact of Tea and Coffee Consumption on Cognitive Performance: An fNIRS and EDA Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Coffee and tea are two of the most popular beverages in the world and have been consumed for more than a thousand years. They have become an integral part of the day for many consumers and may aid not only increased social interactions but also productivity. However, there is no conclusive evidence of their comparative effect on cognitive ability. This study investigated the impact of tea and coffee products on cognitive performance in typical office work-related tasks using brain, body, and behavioral measures. In a controlled multi-day study, we explored the effects of both traditional and cognition-enhancing hot beverages through task performance and self-reported measures. A total of 120 participants completed three work-related tasks from different cognitive domains and consumed either a traditional or cognition-enhancing hot beverage. During the study, we measured brain activity in the prefrontal cortex using functional near-infrared spectroscopy (fNIRS) as well as arousal from skin conductance through electrodermal activity (EDA) while participants completed cognitive tasks and consumed the beverages. Neural efficiency was used to evaluate cognitive performance in the tasks. Neural efficiency was calculated from a composite score of behavioral efficiency and cognitive effort, and emotional arousal was estimated from EDA activity. Results indicated that for different cognitive domains, the enhanced hot beverages showed improved neural efficiency over that of a traditional hot beverage. This is the first study to assess the impact of both traditional and cognition-enhancing drinks using a multimodal approach for workplace-related assignments.
Collapse
|
20
|
Taylor BK, Embury CM, Heinrichs-Graham E, Frenzel MR, Eastman JA, Wiesman AI, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Neural oscillatory dynamics serving abstract reasoning reveal robust sex differences in typically-developing children and adolescents. Dev Cogn Neurosci 2020; 42:100770. [PMID: 32452465 PMCID: PMC7052076 DOI: 10.1016/j.dcn.2020.100770] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/17/2019] [Accepted: 02/07/2020] [Indexed: 12/03/2022] Open
Abstract
A cohort of 10–16 year-olds completed an abstract reasoning task during MEG. Performance on the abstract reasoning task correlated with fluid intelligence. The task was associated with increased cortical dynamics in frontoparietal areas. Youth showed sexually divergent patterns of distributed cortical activity with age. Specific frontoparietal activity differentially predicted aspects of task behavior.
Fluid intelligence, the ability to problem-solve in novel situations, is linked to higher-order cognitive abilities, and to academic achievement in youth. Previous research has demonstrated that fluid intelligence and the underlying neural circuitry continues to develop throughout adolescence. Neuroimaging studies have predominantly focused on identifying the spatial distribution of brain regions associated with fluid intelligence, with only a few studies examining the temporally-sensitive cortical oscillatory dynamics underlying reasoning abilities. The present study collected magnetoencephalography (MEG) during an abstract reasoning task to examine these spatiotemporal dynamics in a sample of 10-to-16 year-old youth. We found increased cortical activity across a distributed frontoparietal network. Specifically, our key results showed: (1) age was associated with increased theta activity in occipital and cerebellar regions, (2) robust sex differences were distributed across frontoparietal regions, and (3) that specific frontoparietal regions differentially predicted abstract reasoning performance among males versus females despite similar mean performance. Among males, increased theta activity mediated the relationship between age and faster reaction times; conversely, among females, decreased theta mediated the relationship between age and improved accuracy. These findings may suggest that males and females engage in distinct neurocognitive strategies across development to achieve similar behavioral outcomes during fluid reasoning tasks.
Collapse
Affiliation(s)
- Brittany K Taylor
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christine M Embury
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michaela R Frenzel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jacob A Eastman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Mind Research Network, Albuquerque, NM, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
21
|
McKinney TL, Euler MJ. Neural anticipatory mechanisms predict faster reaction times and higher fluid intelligence. Psychophysiology 2019; 56:e13426. [PMID: 31241187 DOI: 10.1111/psyp.13426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/11/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
Higher cognitive ability is reliably linked to better performance on chronometric tasks (i.e., faster reaction times, RT), yet the neural basis of these effects remains unclear. Anticipatory processes represent compelling yet understudied potential mechanisms of these effects, which may facilitate performance through reducing the uncertainty surrounding the temporal onset of stimuli (temporal uncertainty) and/or facilitating motor readiness despite uncertainty about impending target locations (target uncertainty). Specifically, the contingent negative variation (CNV) represents a compelling candidate mechanism of anticipatory motor planning, while the alpha oscillation is thought to be sensitive to temporal contingencies in perceptual systems. The current study undertook a secondary analysis of a large data set (n = 91) containing choice RT, cognitive ability, and EEG measurements to help clarify these issues. Single-trial EEG analysis in conjunction with mixed-effects modeling revealed that higher fluid intelligence corresponded to faster RT on average. When considered together, temporal and target uncertainty moderated the RT-ability relationship, with higher ability being associated with greater resilience to both types of uncertainty. Target uncertainty attenuated the amplitude of the CNV for all participants, but higher ability individuals were more resilient to this effect. Similarly, only higher ability individuals showed increased prestimulus alpha power (at left-lateralized sites) during longer, more easily anticipated interstimulus intervals. Collectively, these findings emphasize top-down anticipatory processes as likely contributors to chronometry-ability correlations.
Collapse
Affiliation(s)
- Ty L McKinney
- Department of Psychology, University of Utah, Salt Lake City, Utah
| | - Matthew J Euler
- Department of Psychology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
22
|
Melo HMD, Nascimento LM, Takase E. Adaptações do cérebro durante uma tarefa de longa duração: Um estudo de Potencial Relacionado a Evento. PSICOLOGIA: TEORIA E PESQUISA 2019. [DOI: 10.1590/0102.3772e3527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo O objetivo deste estudo é investigar o efeito da demanda cognitiva prolongada na modulação do Potencial Relacionado a Evento (ERP) em um paradigma de controle inibitório. Os dados foram coletados em 19 voluntários destros, com a média de idade de 21,21 (±1,77) anos, que realizaram o paradigma do Go/NoGo durante 50 minutos, com gravação sincronizada do eletroencefalograma para obtenção dos ERPs. O efeito do tempo de realização da tarefa provocou alterações significativas nas variáveis subjetivas, de desempenho cognitivo e nas amplitudes máximas dos componentes N2 e P3. Nossos resultados sugerem que quando nosso cérebro está submetido a demandas cognitivas extensas, ocorrem adaptações para a manutenção do desempenho comportamental através da estratégia de realocação de recursos energéticos.
Collapse
|
23
|
Euler MJ. Intelligence and uncertainty: Implications of hierarchical predictive processing for the neuroscience of cognitive ability. Neurosci Biobehav Rev 2018; 94:93-112. [PMID: 30153441 DOI: 10.1016/j.neubiorev.2018.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/02/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022]
Abstract
Hierarchical predictive processing (PP) has recently emerged as a candidate theoretical paradigm for neurobehavioral research. To date, PP has found support through its success in offering compelling explanations for a number of perceptual, cognitive, and psychiatric phenomena, as well as from accumulating neurophysiological evidence. However, its implications for understanding intelligence and its neural basis have received relatively little attention. The present review outlines the key tenets and evidence for PP, and assesses its implications for intelligence research. It is argued that PP suggests indeterminacy as a unifying principle from which to investigate the cognitive hierarchy and brain-ability correlations. The resulting framework not only accommodates prominent psychometric models of intelligence, but also incorporates key findings from neuroanatomical and functional activation research, and motivates new predictions via the mechanisms of prediction-error minimization. Because PP also suggests unique neural signatures of experience-dependent activity, it may also help clarify environmental contributions to intellectual development. It is concluded that PP represents a plausible, integrative framework that could enhance progress in the neuroscience of intelligence.
Collapse
Affiliation(s)
- Matthew J Euler
- Department of Psychology, University of Utah, 380 S. 1530 E. Rm. 502, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
24
|
Euler MJ, McKinney TL, Schryver HM, Okabe H. ERP correlates of the decision time-IQ relationship: The role of complexity in task- and brain-IQ effects. INTELLIGENCE 2017. [DOI: 10.1016/j.intell.2017.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Making Brains run Faster: are they Becoming Smarter? SPANISH JOURNAL OF PSYCHOLOGY 2016; 19:E88. [DOI: 10.1017/sjp.2016.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractA brief overview of structural and functional brain characteristics related to g is presented in the light of major neurobiological theories of intelligence: Neural Efficiency, P-FIT and Multiple-Demand system. These theories provide a framework to discuss the main objective of the paper: what is the relationship between individual alpha frequency (IAF) and g? Three studies were conducted in order to investigate this relationship: two correlational studies and a third study in which we experimentally induced changes in IAF by means of transcranial alternating current stimulation (tACS). (1) In a large scale study (n = 417), no significant correlations between IAF and IQ were observed. However, in males IAF positively correlated with mental rotation and shape manipulation and with an attentional focus on detail. (2) The second study showed sex-specific correlations between IAF (obtained during task performance) and scope of attention in males and between IAF and reaction time in females. (3) In the third study, individuals’ IAF was increased with tACS. The induced changes in IAF had a disrupting effect on male performance on Raven’s matrices, whereas a mild positive effect was observed for females. Neuro-electric activity after verum tACS showed increased desynchronization in the upper alpha band and dissociation between fronto-parietal and right temporal brain areas during performance on Raven’s matrices. The results are discussed in the light of gender differences in brain structure and activity.
Collapse
|
26
|
Ben-Soussan TD, Glicksohn J, Berkovich-Ohana A. From Cerebellar Activation and Connectivity to Cognition: A Review of the Quadrato Motor Training. BIOMED RESEARCH INTERNATIONAL 2015; 2015:954901. [PMID: 26539545 PMCID: PMC4619922 DOI: 10.1155/2015/954901] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022]
Abstract
The importance of the cerebellum is increasingly recognized, not only in motor control but also in cognitive learning and function. Nevertheless, the relationship between training-induced cerebellar activation and electrophysiological and structural changes in humans has yet to be established. In the current paper, we suggest a general model tying cerebellar function to cognitive improvement, via neuronal synchronization, as well as biochemical and anatomical changes. We then suggest that sensorimotor training provides an optimal paradigm to test the proposed model and review supporting evidence of Quadrato Motor Training (QMT), a sensorimotor training aimed at increasing attention and coordination. Subsequently, we discuss the possible mechanisms through which QMT may exert its beneficial effects on cognition (e.g., increased creativity, reflectivity, and reading), focusing on cerebellar alpha activity as a possible mediating mechanism allowing cognitive improvement, molecular and anatomical changes. Using the example of QMT research, this paper emphasizes the importance of investigating whole-body sensorimotor training paradigms utilizing a multidisciplinary approach and its implications to healthy brain development.
Collapse
Affiliation(s)
- Tal Dotan Ben-Soussan
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Rome, Italy
| | - Joseph Glicksohn
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
| | - Aviva Berkovich-Ohana
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Physiology and Pharmacology, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
27
|
Zhang L, Gan JQ, Wang H. Localization of neural efficiency of the mathematically gifted brain through a feature subset selection method. Cogn Neurodyn 2015; 9:495-508. [PMID: 26379800 PMCID: PMC4568001 DOI: 10.1007/s11571-015-9345-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 04/29/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022] Open
Abstract
Based on the neural efficiency hypothesis and task-induced EEG gamma-band response (GBR), this study investigated the brain regions where neural resource could be most efficiently recruited by the math-gifted adolescents in response to varying cognitive demands. In this experiment, various GBR-based mental states were generated with three factors (level of mathematical ability, task complexity, and short-term learning) modulating the level of neural activation. A feature subset selection method based on the sequential forward floating search algorithm was used to identify an "optimal" combination of EEG channel locations, where the corresponding GBR feature subset could obtain the highest accuracy in discriminating pairwise mental states influenced by each experiment factor. The integrative results from multi-factor selections suggest that the right-lateral fronto-parietal system is highly involved in neural efficiency of the math-gifted brain, primarily including the bilateral superior frontal, right inferior frontal, right-lateral central and right temporal regions. By means of the localization method based on single-trial classification of mental states, new GBR features and EEG channel-based brain regions related to mathematical giftedness were identified, which could be useful for the brain function improvement of children/adolescents in mathematical learning through brain-computer interface systems.
Collapse
Affiliation(s)
- Li Zhang
- />Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, 210096 Jiangsu China
| | - John Q. Gan
- />Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, 210096 Jiangsu China
- />School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Haixian Wang
- />Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, 210096 Jiangsu China
| |
Collapse
|
28
|
Collado-Mateo D, Adsuar JC, Olivares PR, Cano-Plasencia R, Gusi N. Using a dry electrode EEG device during balance tasks in healthy young-adult males: Test-retest reliability analysis. Somatosens Mot Res 2015; 32:219-26. [PMID: 26369901 DOI: 10.3109/08990220.2015.1074566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The analysis of brain activity during balance is an important topic in different fields of science. Given that all measurements involve an error that is caused by different agents, like the instrument, the researcher, or the natural human variability, a test-retest reliability evaluation of the electroencephalographic assessment is a needed starting point. However, there is a lack of information about the reliability of electroencephalographic measurements, especially in a new wireless device with dry electrodes. OBJECTIVE The current study aims to analyze the reliability of electroencephalographic measurements from a wireless device using dry electrodes during two different balance tests. METHOD Seventeen healthy male volunteers performed two different static balance tasks on a Biodex Balance Platform: (a) with two feet on the platform and (b) with one foot on the platform. Electroencephalographic data was recorded using Enobio (Neuroelectrics). The mean power spectrum of the alpha band of the central and frontal channels was calculated. Relative and absolute indices of reliability were also calculated. RESULTS In general terms, the intraclass correlation coefficient (ICC) values of all the assessed channels can be classified as excellent (>0.90). The percentage standard error of measurement oscillated from 0.54% to 1.02% and the percentage smallest real difference ranged from 1.50% to 2.82%. CONCLUSION Electroencephalographic assessment through an Enobio device during balance tasks has an excellent reliability. However, its utility was not demonstrated because responsiveness was not assessed.
Collapse
Affiliation(s)
- Daniel Collado-Mateo
- a University of Extremadura , Cáceres , Spain .,b San Pedro de Alcántara Hospital, Clinical Neurophysiology, Avda. Universidad s/n , Cáceres , Spain , and
| | | | - Pedro R Olivares
- c Facultad de Educación , Universidad Autonoma de Chile , Talca , Chile
| | - Ricardo Cano-Plasencia
- b San Pedro de Alcántara Hospital, Clinical Neurophysiology, Avda. Universidad s/n , Cáceres , Spain , and
| | - Narcis Gusi
- a University of Extremadura , Cáceres , Spain
| |
Collapse
|
29
|
Basten U, Hilger K, Fiebach CJ. Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. INTELLIGENCE 2015. [DOI: 10.1016/j.intell.2015.04.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
|
31
|
Reliable activation to novel stimuli predicts higher fluid intelligence. Neuroimage 2015; 114:311-9. [PMID: 25862268 DOI: 10.1016/j.neuroimage.2015.03.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/21/2015] [Accepted: 03/28/2015] [Indexed: 11/23/2022] Open
Abstract
The ability to reliably respond to stimuli could be an important biological determinant of differences in fluid intelligence (Gf). However, most electrophysiological studies of Gf employ event-related potential (ERP) measures that average brain activity over trials, and hence have limited power to quantify neural variability. Time-frequency analyses can capture cross-trial variation in the phase of neural activity, and thus can help address the importance of neural reliability to differences in Gf. This study recruited a community sample of healthy adults and measured inter-trial phase clustering (ITPC), total spectral power, and ERP amplitudes elicited by Repeated and Novel non-target stimuli during two visual oddball tasks. Condition effects, relations among the EEG measures, and relations with Gf were assessed. Early visual responses to Repeated stimuli elicited higher ITPC, yet only ITPC elicited by Novel stimuli was associated with Gf. Analyses of spectral power further highlighted the contribution of phase consistency to the findings. The link between Gf and reliable responding to changing inputs suggests an important role for flexible resource allocation in fluid intellectual skills.
Collapse
|
32
|
Intelligence is related to specific processes in visual change detection: Fixed-links modeling of hit rate and reaction time. INTELLIGENCE 2014. [DOI: 10.1016/j.intell.2013.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Intelligence is differentially related to neural effort in the task-positive and the task-negative brain network. INTELLIGENCE 2013. [DOI: 10.1016/j.intell.2013.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Dotan Ben-Soussan T, Glicksohn J, Goldstein A, Berkovich-Ohana A, Donchin O. Into the square and out of the box: the effects of Quadrato Motor Training on creativity and alpha coherence. PLoS One 2013; 8:e55023. [PMID: 23383043 PMCID: PMC3559385 DOI: 10.1371/journal.pone.0055023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
The objective of the present study was to investigate the body-cognitive relationship through behavioral and electrophysiological measures in an attempt to uncover the underlying mediating neuronal mechanism for movement-induced cognitive change. To this end we examined the effects of Quadrato Motor Training (QMT), a new whole-body training paradigm on cognitive performance, including creativity and reaction time tasks, and electrophysiological change, using a within-subject pre-post design. Creativity was studied by means of the Alternate Uses Task, measuring ideational fluency and ideational flexibility. Electrophysiological effects were measured in terms of alpha power and coherence. In order to determine whether training-induced changes were driven by the cognitive or the motor aspects of the training, we used two control groups: Verbal Training (VT, identical cognitive training with verbal response) and Simple Motor Training (SMT, similar motor training with reduced choice requirements). Twenty-seven participants were randomly assigned to one of the groups. Following QMT, we found enhanced inter-hemispheric and intra-hemispheric alpha coherence, and increased ideational flexibility, which was not the case for either the SMT or VT groups. These findings indicate that it is the combination of the motor and cognitive aspects embedded in the QMT which is important for increasing ideational flexibility and alpha coherence.
Collapse
Affiliation(s)
- Tal Dotan Ben-Soussan
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
| | | | | | | | | |
Collapse
|
35
|
Jaušovec N, Jaušovec K. Sex differences in mental rotation and cortical activation patterns: Can training change them? INTELLIGENCE 2012. [DOI: 10.1016/j.intell.2012.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Benedek M, Bergner S, Könen T, Fink A, Neubauer AC. EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia 2011; 49:3505-11. [PMID: 21925520 PMCID: PMC3198250 DOI: 10.1016/j.neuropsychologia.2011.09.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/24/2011] [Accepted: 09/04/2011] [Indexed: 11/29/2022]
Abstract
Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing demands and to specific cognitive process involved in creative thinking. To this end, EEG was measured during a convergent and a divergent thinking task (i.e., creativity-related task) which once were processed involving low and once involving high internal processing demands. High internal processing demands were established by masking the stimulus (after encoding) and thus preventing further bottom-up processing. Frontal alpha synchronization was observed during convergent and divergent thinking only under exclusive top-down control (high internal processing demands), but not when bottom-up processing was allowed (low internal processing demands). We conclude that frontal alpha synchronization is related to top-down control rather than to specific creativity-related cognitive processes. Frontal alpha synchronization, which has been observed in a variety of different creativity tasks, thus may not reflect a brain state that is specific for creative cognition but can probably be attributed to high internal processing demands which are typically involved in creative thinking.
Collapse
Affiliation(s)
- Mathias Benedek
- Department of Psychology, University of Graz, Graz, Austria.
| | | | | | | | | |
Collapse
|
37
|
Del Percio C, Infarinato F, Marzano N, Iacoboni M, Aschieri P, Lizio R, Soricelli A, Limatola C, Rossini PM, Babiloni C. Reactivity of alpha rhythms to eyes opening is lower in athletes than non-athletes: a high-resolution EEG study. Int J Psychophysiol 2011; 82:240-7. [PMID: 21945479 DOI: 10.1016/j.ijpsycho.2011.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/17/2011] [Accepted: 09/04/2011] [Indexed: 12/22/2022]
Abstract
In the present study, we tested the hypothesis that compared with non-athletes, elite athletes are characterized by a reduction of reactivity of electroencephalographic (EEG) alpha rhythms (about 8-12 Hz) to eyes opening in the condition of resting state, as a possible index of spatially selective cortical activation (i.e. "neural efficiency"). EEG data (56 channels; Eb-Neuro©) were recorded in 18 elite karate athletes and 28 non-athletes during resting state eyes-closed and eyes-open conditions. The EEG data were spatially enhanced by surface Laplacian estimation. Cortical activity was indexed by task-related power decrease (TRPD), namely the alpha power during the eyes-open referenced to the eyes-closed resting condition. Low-frequency alpha TRPD (about 8-10 Hz) was lower in the elite karate athletes than in the non-athletes in frontal (p<0.00002), central (p<0.008) and right occipital (p<0.02) areas. Similarly, high-frequency alpha TRPD (about 10-12 Hz) was lower in the elite karate athletes than in the non-athletes in frontal (p<0.00009) and central (p<0.01) areas. These results suggest that athletes' brain is characterized by reduced cortical reactivity to eyes opening in the condition of resting state, in line with the "neural efficiency" hypothesis. The present study motivates future research evaluating the extent to which this general functional brain feature is related to heritable trait or intensive visuo-motor training of elite athletes.
Collapse
|
38
|
Liu T, Xiao T, Shi J, Zhao D. Response preparation and cognitive control of highly intelligent children: a Go-Nogo event-related potential study. Neuroscience 2011; 180:122-8. [DOI: 10.1016/j.neuroscience.2011.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/05/2011] [Accepted: 02/07/2011] [Indexed: 11/29/2022]
|
39
|
Del Percio C, Iacoboni M, Lizio R, Marzano N, Infarinato F, Vecchio F, Bertollo M, Robazza C, Comani S, Limatola C, Babiloni C. Functional coupling of parietal α rhythms is enhanced in athletes before visuomotor performance: a coherence electroencephalographic study. Neuroscience 2010; 175:198-211. [PMID: 21144884 DOI: 10.1016/j.neuroscience.2010.11.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/13/2010] [Accepted: 11/14/2010] [Indexed: 12/01/2022]
Abstract
It has been shown that elite pistol shooters are characterized by a power increase of wide cortical electroencephalographic (EEG) alpha (about 8-12 Hz) and beta (about 14-35 Hz) rhythms during the preparation of air pistol shots, possibly related to selective attentional and "neural efficiency" processes [Del Percio C, Babiloni C, Bertollo M, Marzano N, Iacoboni M, Infarinato F, Lizio R, Stocchi M, Robazza C, Cibelli G, Comani S, Eusebi F (2009a) Hum Brain Mapp 30(11):3527-3540; Del Percio C, Babiloni C, Marzano N, Iacoboni M, Infarinato F, Vecchio F, Lizio R, Aschieri P, Fiore A, Toràn G, Gallamini M, Baratto M, Eusebi F (2009b) Brain Res Bull 79(3-4):193-200]. Here, we tested the hypothesis that such processes are associated with an enhanced functional coupling of posterior cortical regions involved in task-relevant attentional processes and visuo-motor transformations. To this aim, between-electrodes spectral coherence was computed from spatially enhanced EEG data collected during a previous study (i.e. right handed 18 elite air pistol shooters and 10 matched non-athletes; augmented 10-20 system; surface Laplacian estimation). Theta (about 4-6 Hz), low-frequency alpha (about 8-10 Hz), high-frequency alpha (about 10-12 Hz), low-frequency beta (14-22 Hz), high-frequency beta (23-35 Hz), and gamma (36-44 Hz) bands were considered. Statistical results showed that intra-hemispheric low-frequency alpha (parietal-temporal and parietal-occipital regions), high-frequency alpha (parietal-temporal and parietal-occipital regions), high-frequency beta, and gamma (parietal-temporal regions) coherence values were stable in amplitude in the elite athletes but not in the non-athletes during the preparation of pistol shots. The same applies to inter-hemispheric low-frequency alpha (parietal regions), high-frequency alpha (parietal regions), high-frequency beta and gamma coherence values. These findings suggest that under the present experimental conditions, elite athletes are characterized by the stabilization of functional coupling of preparatory EEG rhythms between "visuo-spatial" parietal area and other posterior cortical areas.
Collapse
|
40
|
Antonenko P, Paas F, Grabner R, van Gog T. Using Electroencephalography to Measure Cognitive Load. EDUCATIONAL PSYCHOLOGY REVIEW 2010. [DOI: 10.1007/s10648-010-9130-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Babiloni C, Marzano N, Iacoboni M, Infarinato F, Aschieri P, Buffo P, Cibelli G, Soricelli A, Eusebi F, Del Percio C. Resting state cortical rhythms in athletes: a high-resolution EEG study. Brain Res Bull 2010; 81:149-56. [PMID: 19879337 DOI: 10.1016/j.brainresbull.2009.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/21/2009] [Accepted: 10/19/2009] [Indexed: 11/30/2022]
Abstract
The present electroencephalographic (EEG) study tested the working hypothesis that the amplitude of resting state cortical EEG rhythms (especially alpha, 8-12 Hz) was higher in elite athletes compared with amateur athletes and non-athletes, as a reflection of the efficiency of underlying back-ground neural synchronization mechanisms. Eyes closed resting state EEG data were recorded in 16 elite karate athletes, 20 amateur karate athletes, and 25 non-athletes. The EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Statistical results showed that the amplitude of parietal and occipital alpha 1 sources was significantly higher in the elite karate athletes than in the non-athletes and karate amateur athletes. Similar results were observed in parietal and occipital delta sources as well as in occipital theta sources. Finally, a control confirmatory experiment showed that the amplitude of parietal and occipital delta and alpha 1 sources was stronger in 8 elite rhythmic gymnasts compared with 14 non-athletes. These results supported the hypothesis that cortical neural synchronization at the basis of eyes-closed resting state EEG rhythms is enhanced in elite athletes than in control subjects.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
“Neural efficiency” of experts’ brain during judgment of actions: A high-resolution EEG study in elite and amateur karate athletes. Behav Brain Res 2010; 207:466-75. [DOI: 10.1016/j.bbr.2009.10.034] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 11/19/2022]
|
43
|
|
44
|
Movement-related desynchronization of alpha rhythms is lower in athletes than non-athletes: a high-resolution EEG study. Clin Neurophysiol 2010; 121:482-91. [PMID: 20097129 DOI: 10.1016/j.clinph.2009.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 11/24/2009] [Accepted: 12/04/2009] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The "neural efficiency" hypothesis posits that neural activity is reduced in experts. Here we tested the hypothesis that compared with non-athletes, elite athletes are characterized by a reduced cortical activation during simple voluntary movement and that this is reflected by the modulation of dominant alpha rhythms (8-12 Hz). METHODS EEG data (56 channels; EB-Neuro) were continuously recorded in the following right-handed subjects: 10 elite karate athletes and 12 non-athletes. During the EEG recordings, they performed brisk voluntary wrist extensions of the right or left hand (right movement and left movement). The EEG cortical sources were estimated by standardized low-resolution brain electromagnetic tomography (sLORETA) freeware. With reference to a baseline period, the power decrease of alpha rhythms during the motor preparation and execution indexed the cortical activation (event-related desynchronization, ERD). RESULTS During both preparation and execution of the right movements, the low- (about 8-10 Hz) and high-frequency alpha ERD (about 10-12 Hz) was lower in amplitude in primary motor area, in lateral and medial premotor areas in the elite karate athletes than in the non-athletes. For the left movement, only the high-frequency alpha ERD during the motor execution was lower in the elite karate athletes than in the non-athletes. CONCLUSIONS These results confirmed that compared with non-athletes, elite athletes are characterized by a reduced cortical activation during simple voluntary movement. SIGNIFICANCE Cortical alpha rhythms are implicated in the "neural efficiency" of athletes' motor systems.
Collapse
|
45
|
De Vico Fallani F, Maglione A, Babiloni F, Mattia D, Astolfi L, Vecchiato G, De Rinaldis A, Salinari S, Pachou E, Micheloyannis S. Cortical network analysis in patients affected by schizophrenia. Brain Topogr 2010; 23:214-20. [PMID: 20094766 DOI: 10.1007/s10548-010-0133-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 01/07/2010] [Indexed: 11/25/2022]
Abstract
In the present study, we studied the structural changes of the brain functional network in a group of schizophrenic (SCHZ) patients during a 2-back working memory task. Cortical signals were obtained from scalp EEG signals through the high-resolution EEG technique, which relies on realistic head models and linear inverse solutions. Functional networks were estimated by computing the spectral coherence--i.e. a measure of synchronization in the frequency domain--between the time series of all the available cortical sources. To analyze those cortical networks we followed a theoretical graph approach by computing the network density as the total number of links and the node degree as the number of links of each cortical source. The major result suggest that in the Alpha2 frequency band (11-13 Hz) the cortical functional networks of the SCHZ patients present the largest differences when compared with those of a group of control (CTRL) subjects. In particular, the structure of the SCHZ network altered radically during the memory task, as the number of links that were different from the REST condition increased sensibly with respect to the CTRL network. In addition, a compensatory mechanism was found in the SCHZ patients during the correct performance of the memory task where the node degree showed a frontal asymmetry with higher activation of the left frontal lobe--i.e. higher number of connections--in the Alpha2 frequency band.
Collapse
|
46
|
Del Percio C, Babiloni C, Bertollo M, Marzano N, Iacoboni M, Infarinato F, Lizio R, Stocchi M, Robazza C, Cibelli G, Comani S, Eusebi F. Visuo-attentional and sensorimotor alpha rhythms are related to visuo-motor performance in athletes. Hum Brain Mapp 2010; 30:3527-40. [PMID: 19350556 DOI: 10.1002/hbm.20776] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study tested the two following hypotheses: (i) compared with non-athletes, elite athletes are characterized by a reduced cortical activation during the preparation of precise visuo-motor performance; (ii) in elite athletes, an optimal visuo-motor performance is related to a low cortical activation. To this aim, electroencephalographic (EEG; 56 channels; Be Plus EB-Neuro) data were recorded in 18 right-handed elite air pistol shooters and 10 right-handed non-athletes. All subjects performed 120 shots. The EEG data were spatially enhanced by surface Laplacian estimation. With reference to a baseline period, power decrease/increase of alpha rhythms during the preshot period indexed the cortical activation/deactivation (event-related desynchronization/synchronization, ERD/ERS). Regarding the hypothesis (i), low- (about 8-10 Hz) and high-frequency (about 10-12 Hz) alpha ERD was lower in amplitude in the elite athletes than in the non-athletes over the whole scalp. Regarding the hypothesis (ii), the elite athletes showed high-frequency alpha ERS (about 10-12 Hz) larger in amplitude for high score shots (50%) than for low score shots; this was true in right parietal and left central areas. A control analysis confirmed these results with another indicator of cortical activation (beta ERD, about 20 Hz). The control analysis also showed that the amplitude reduction of alpha ERD for the high compared with low score shots was not observed in the non-athletes. The present findings globally suggest that in elite athletes (experts), visuo-motor performance is related to a global decrease of cortical activity, as a possible index of spatially selective cortical processes ("neural efficiency").
Collapse
|
47
|
Del Percio C, Babiloni C, Marzano N, Iacoboni M, Infarinato F, Vecchio F, Lizio R, Aschieri P, Fiore A, Toràn G, Gallamini M, Baratto M, Eusebi F. “Neural efficiency” of athletes’ brain for upright standing: A high-resolution EEG study. Brain Res Bull 2009; 79:193-200. [DOI: 10.1016/j.brainresbull.2009.02.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
|
48
|
Babiloni C, Del Percio C, Rossini PM, Marzano N, Iacoboni M, Infarinato F, Lizio R, Piazza M, Pirritano M, Berlutti G, Cibelli G, Eusebi F. Judgment of actions in experts: A high-resolution EEG study in elite athletes. Neuroimage 2009; 45:512-21. [DOI: 10.1016/j.neuroimage.2008.11.035] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/17/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022] Open
|
49
|
Babiloni C, Sarà M, Vecchio F, Pistoia F, Sebastiano F, Onorati P, Albertini G, Pasqualetti P, Cibelli G, Buffo P, Rossini PM. Cortical sources of resting-state alpha rhythms are abnormal in persistent vegetative state patients. Clin Neurophysiol 2009; 120:719-29. [PMID: 19299197 DOI: 10.1016/j.clinph.2009.02.157] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
Abstract
OBJECTIVE High power of pre-stimulus cortical alpha rhythms (about 8-12 Hz) underlies conscious perception in normal subjects. Here we tested the hypothesis that these rhythms are abnormal in persistent vegetative state (PVS) patients, who are awake but not aware of self and environment. METHODS Clinical and resting-state, eyes-closed electroencephalographic (EEG) data were taken from a clinical archive. These data were recorded in 50 PVS subjects (level of cognitive functioning--LCF score: I-II) and in 30 cognitively normal subjects. Rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). Cortical sources were estimated by low-resolution electromagnetic tomography (LORETA). Based on LCF score at 3-months follow-up, PVS patients were retrospectively divided into three groups: 30 subjects who did not recover (NON-REC patients; follow-up LCF: I-II), 8 subjects classified as minimally conscious state patients (MCS patients; follow-up LCF: III-IV), and 12 subjects who recovered (REC patients; follow-up LCF: V-VIII). RESULTS Occipital source power of alpha 1 and alpha 2 was high in normal subjects, low in REC patients, and practically null in NON-REC patients. A Cox regression analysis showed that the power of alpha source predicted the rate of the follow up recovery, namely the higher its power, the higher the chance to recover consciousness. Furthermore, the MCS patients showed intermediate values of occipital alpha source power between REC and NON-REC patients. CONCLUSIONS These results suggest that cortical sources of alpha rhythms are related to the chance of recovery at a 3-months follow-up in patients in persistent vegetative state. SIGNIFICANCE Cortical sources of resting alpha rhythms might predict recovery in PVS patients.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, University of Foggia, V.le Pinto 1, 71100 Foggia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Del Percio C, Rossini PM, Marzano N, Iacoboni M, Infarinato F, Aschieri P, Lino A, Fiore A, Toran G, Babiloni C, Eusebi F. Is there a “neural efficiency” in athletes? A high-resolution EEG study. Neuroimage 2008; 42:1544-53. [DOI: 10.1016/j.neuroimage.2008.05.061] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/14/2008] [Accepted: 05/31/2008] [Indexed: 10/22/2022] Open
|