1
|
Marianelli P, Berthoz A, Bennequin D. Crista egregia: a geometrical model of the crista ampullaris, a sensory surface that detects head rotations. BIOLOGICAL CYBERNETICS 2015; 109:5-32. [PMID: 25128319 DOI: 10.1007/s00422-014-0623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
The crista ampullaris is the epithelium at the end of the semicircular canals in the inner ear of vertebrates, which contains the sensory cells involved in the transduction of the rotational head movements into neuronal activity. The crista surface has the form of a saddle, or a pair of saddles separated by a crux, depending on the species and the canal considered. In birds, it was described as a catenoid by Landolt et al. (J Comp Neurol 159(2):257-287, doi: 10.1002/cne.901590207 , 1972). In the present work, we establish that this particular form results from principles of invariance maximization and energy minimization. The formulation of the invariance principle was inspired by Takumida (Biol Sci Space 15(4):356-358, 2001). More precisely, we suppose that in functional conditions, the equations of linear elasticity are valid, and we assume that in a certain domain of the cupula, in proximity of the crista surface, (1) the stress tensor of the deformed cupula is invariant under the gradient of the pressure, (2) the dissipation of energy is minimum. Then, we deduce that in this domain the crista surface is a minimal surface and that it must be either a planar, or helicoidal Scherk surface, or a piece of catenoid, which is the unique minimal surface of revolution. If we add the hypothesis that the direction of invariance of the stress tensor is unique and that a bilateral symmetry of the crista exists, only the catenoid subsists. This finding has important consequences for further functional modeling of the role of the vestibular system in head motion detection and spatial orientation.
Collapse
Affiliation(s)
- Prisca Marianelli
- Translational Neural Engineering LabS, The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, PI, Italy,
| | | | | |
Collapse
|
2
|
Lysakowski A, Goldberg JM. Ultrastructural analysis of the cristae ampullares in the squirrel monkey (Saimiri sciureus). J Comp Neurol 2008; 511:47-64. [PMID: 18729176 DOI: 10.1002/cne.21827] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Type I hair cells outnumber type II hair cells (HCs) in squirrel monkey (Saimiri sciureus) cristae by a nearly 3:1 ratio. Associated with this type I HC preponderance, calyx fibers make up a much larger fraction of the afferent innervation than in rodents (Fernández et al. [1995] J. Neurophysiol. 73:1253-1269). To study how this affects synaptic architecture, we used disector methods to estimate various features associated with type I and type II HCs in central (CZ) and peripheral (PZ) zones of monkey cristae. Each type I HC makes, on average, 5-10 ribbon synapses with the inner face of a calyx ending. Inner-face synapses outnumber those on calyx outer faces by a 40:1 ratio. Expressed per afferent, there are, on average, 15 inner-face ribbon synapses, 0.38 outer-face ribbons, and 2.6 efferent boutons on calyx-bearing endings. Calyceal invaginations per type I HC range from 19 in CZ to 3 in PZ. For type II HCs, there are many more ribbons and afferent boutons in PZ than in CZ, whereas efferent innervation is relatively uniform throughout the neuroepithelium. Despite outer-face ribbons being more numerous in chinchilla than in squirrel monkey, afferent discharge properties are similar (Lysakowski et al. [1995] J. Neurophysiol. 73:1270-1281), reinforcing the importance of inner-face ribbons in synaptic transmission. Comparisons across mammalian species suggest that the prevalence of type I HCs is a primate characteristic, rather than an arboreal life-style adaptation. Unlike cristae, type II HCs predominate in monkey maculae. Differences in hair-cell counts may reflect the stimulus magnitudes handled by semicircular canals and otolith organs.
Collapse
Affiliation(s)
- Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Illinois 60612, USA.
| | | |
Collapse
|
3
|
Russo G, Calzi D, Martini M, Rossi ML, Fesce R, Prigioni I. Potassium currents in the hair cells of vestibular epithelium: position-dependent expression of two types of A channels. Eur J Neurosci 2007; 25:695-704. [PMID: 17328770 DOI: 10.1111/j.1460-9568.2007.05327.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The complement of voltage-dependent K+ currents was investigated in hair cells of the frog crista ampullaris. The currents were recorded in transversal slices of the peripheral, intermediate and central regions of the crista by applying the patch clamp technique to cells located at different positions in the slices. Voltage-clamp recordings confirmed that cells located in each region have a distinctive complement of K+ channels. Detailed investigation of the currents in each region revealed that the complement of K+ channels in intermediate and central regions showed no variations among cells, whereas peripheral hair cells differed in the expression of two classes of A-type currents. These currents showed different kinetics of inactivation as well as steady-state inactivation properties. We termed these currents fast I(A) and slow I(A) based on their inactivation speed. The magnitude of both currents exhibited a significant gradient along the transversal axis of the peripheral regions. Fast I(A) magnitude was maximal in cells located in the external zone of the crista slice and decreased gradually to become very small in the median zone (centre) of the section, while the gradient of slow I(A) magnitude was reversed. A-type currents appear to act as a transient buffer that opposes hair cell depolarization induced by positive current injections. However, fast I(A) is partially active at the cell resting potential, while slow I(A) can be recruited only following large hyperpolarizations. Thus, two types of A currents are differentially distributed in vestibular hair cells and have different roles in shaping receptor potential.
Collapse
Affiliation(s)
- Giancarlo Russo
- Dipartimento di Scienze Fisiologiche-Farmacologiche Cellulari-Molecolari, Via Forlanini 6, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Haque A, Huss D, Dickman JD. Afferent innervation patterns of the pigeon horizontal crista ampullaris. J Neurophysiol 2006; 96:3293-304. [PMID: 16943311 DOI: 10.1152/jn.00930.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vestibular semicircular canals are responsible for detection of rotational head motion although the precise mechanisms underlying the transduction and encoding of movement information are still under study. In the present investigation, we utilized neural tracers and immunohistochemistry to quantitatively examine the topology and afferent innervation patterns of the horizontal semicircular canal crista (HCC) in pigeons (Columba livia). Two hundred and eighty-six afferents from five horizontal canal organs were identified of which 92 units were sufficiently labeled and isolated to perform anatomical reconstructions. In addition, a three-dimensional contour map of the crista was constructed. Bouton afferents were located only in the peripheral regions of the receptor epithelium. Bouton afferents had the most complex innervation patterns with significantly longer and more numerous branches as well as a higher branch order than any other fiber type. Bouton fibers also contained significantly more bouton terminals than did dimorph afferents. Calyx afferents were located only in the apex and central planar regions. Calyx fibers had the largest axonal diameters yet the smallest fiber lengths and innervation areas, the fewest number of branches, the lowest branch order, and the fewest total number of terminals of all fiber types. Dimorph afferents were located throughout the central crista with afferent terminations that were larger and more complex than calyx fibers but less so than bouton fibers. Overall, the pigeon HCC morphology and innervation shares many common features with those of other animal classes.
Collapse
Affiliation(s)
- Asim Haque
- Department of Anatomy and Neurobiology--Box 8108, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
5
|
Highstein SM, Rabbitt RD, Holstein GR, Boyle RD. Determinants of spatial and temporal coding by semicircular canal afferents. J Neurophysiol 2005; 93:2359-70. [PMID: 15845995 PMCID: PMC3000935 DOI: 10.1152/jn.00533.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vestibular semicircular canals are internal sensors that signal the magnitude, direction, and temporal properties of angular head motion. Fluid mechanics within the 3-canal labyrinth code the direction of movement and integrate angular acceleration stimuli over time. Directional coding is accomplished by decomposition of complex angular accelerations into 3 biomechanical components-one component exciting each of the 3 ampullary organs and associated afferent nerve bundles separately. For low-frequency angular motion stimuli, fluid displacement within each canal is proportional to angular acceleration. At higher frequencies, above the lower corner frequency, real-time integration is accomplished by viscous forces arising from the movement of fluid within the slender lumen of each canal. This results in angular velocity sensitive fluid displacements. Reflecting this, a subset of afferent fibers indeed report angular acceleration to the brain for low frequencies of head movement and report angular velocity for higher frequencies. However, a substantial number of afferent fibers also report angular acceleration, or a signal between acceleration and velocity, even at frequencies where the endolymph displacement is known to follow angular head velocity. These non-velocity-sensitive afferent signals cannot be attributed to canal biomechanics alone. The responses of non-velocity-sensitive cells include a mathematical differentiation (first-order or fractional) imparted by hair-cell and/or afferent complexes. This mathematical differentiation from velocity to acceleration cannot be attributed to hair cell ionic currents, but occurs as a result of the dynamics of synaptic transmission between hair cells and their primary afferent fibers. The evidence for this conclusion is reviewed below.
Collapse
Affiliation(s)
- Stephen M Highstein
- Washington University School of Medicine, Department of Otolaryngology, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
6
|
Rabbitt RD, Boyle R, Holstein GR, Highstein SM. Hair-cell versus afferent adaptation in the semicircular canals. J Neurophysiol 2004; 93:424-36. [PMID: 15306633 PMCID: PMC3000937 DOI: 10.1152/jn.00426.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The time course and extent of adaptation in semicircular canal hair cells was compared to adaptation in primary afferent neurons for physiological stimuli in vivo to study the origins of the neural code transmitted to the brain. The oyster toadfish, Opsanus tau, was used as the experimental model. Afferent firing-rate adaptation followed a double-exponential time course in response to step cupula displacements. The dominant adaptation time constant varied considerably among afferent fibers and spanned six orders of magnitude for the population ( approximately 1 ms to >1,000 s). For sinusoidal stimuli (0.1-20 Hz), the rapidly adapting afferents exhibited a 90 degrees phase lead and frequency-dependent gain, whereas slowly adapting afferents exhibited a flat gain and no phase lead. Hair-cell voltage and current modulations were similar to the slowly adapting afferents and exhibited a relatively flat gain with very little phase lead over the physiological bandwidth and dynamic range tested. Semicircular canal microphonics also showed responses consistent with the slowly adapting subset of afferents and with hair cells. The relatively broad diversity of afferent adaptation time constants and frequency-dependent discharge modulations relative to hair-cell voltage implicate a subsequent site of adaptation that plays a major role in further shaping the temporal characteristics of semicircular canal afferent neural signals.
Collapse
Affiliation(s)
- R D Rabbitt
- University of Utah, Dept. of Bioengineering, 20 South, 2030 East; Room 506 BPRB, Salt Lake City, UT 84112, USA.
| | | | | | | |
Collapse
|
7
|
Masetto S, Bosica M, Correia MJ, Ottersen OP, Zucca G, Perin P, Valli P. Na+ currents in vestibular type I and type II hair cells of the embryo and adult chicken. J Neurophysiol 2003; 90:1266-78. [PMID: 12702715 DOI: 10.1152/jn.01157.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In birds, type I and type II hair cells differentiate before birth. Here we describe that chick hair cells, from the semicircular canals, begin expressing a voltage-dependent Na current (INa) from embryonic day 14 (E14) and continue to express the current up to hatching (E21). During this period, INa was present in most (31/43) type I hair cells irrespective of their position in the crista, in most type II hair cells located far from the planum semilunatum (48/63), but only occasionally in type II hair cells close to the planum semilunatum (2/35). INa activated close to -60 mV, showed fast time- and voltage-dependent activation and inactivation, and was completely, and reversibly, blocked by submicromolar concentrations of tetrodotoxin (Kd = 17 nM). One peculiar property of INa concerns its steady-state inactivation, which is complete at -60 mV (half-inactivating voltage = -96 mV). INa was found in type I and type II hair cells from the adult chicken as well, where it had similar, although possibly not identical, properties and regional distribution. Current-clamp experiments showed that INa could contribute to the voltage response provided that the cell membrane was depolarized from holding potentials more negative than -80 mV. When recruited, INa produced a significant acceleration of the cell membrane depolarization, which occasionally elicited a large rapid depolarization followed by a rapid repolarization (action-potential-like response). Possible physiological roles for INa in the embryo and adult chicken are discussed.
Collapse
Affiliation(s)
- S Masetto
- Dipartimento di Scienze Fisiologiche-Farmacologiche Cellulari-Molecolari-Sez. di Fisiologia Generale e Biofisica Cellulare, Università di Pavia, 27100 Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Russo G, Lelli A, Gioglio L, Prigioni I. Nature and expression of dihydropyridine-sensitive and -insensitive calcium currents in hair cells of frog semicircular canals. Pflugers Arch 2003; 446:189-97. [PMID: 12684799 DOI: 10.1007/s00424-003-1050-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Accepted: 02/27/2003] [Indexed: 11/27/2022]
Abstract
Ca(2+) currents in hair cells of the frog crista ampullaris were studied using the whole-cell patch-clamp technique. Currents were recorded in situ from hair cells in peripheral, intermediate and central regions of the sensory epithelium. Two types of Ca(2+) currents were found: a partially inactivating current that was expressed by nearly all central cells and by about 65% of intermediate and peripheral cells, and a sustained current expressed by the remaining cell population. The mean Ca(2+) current amplitude was larger in intermediate cells than in central or peripheral cells. The two types of Ca(2+) currents were composed of two components: a large, nifedipine-sensitive (NS) current and a small, nifedipine-insensitive (NI) current. The latter was resistant to SNX-482, omega-conotoxin MVIIC and omega-agatoxin IVA and to omega-conotoxin GVIA, antagonists of R, P/Q and N-type Ca(2+) channels. The amplitude of NS and NI currents varied among peripheral cells, where the current density gradually increased from the beginning of the region toward its end. No significant variation of Ca(2+) current density was detected in hair cells of either intermediate or central regions. These results demonstrate the presence of regional and intraregional variations in the expression of L and non-L Ca(2+) channels in the frog crista ampullaris. Finally, immunocytochemical investigations revealed the presence of Ca(2+) channel subunits of the alpha(1D) type and the unexpected expression of alpha(1B)-subunits.
Collapse
Affiliation(s)
- Giancarlo Russo
- Dipartimento di Scienze Fisiologiche Farmacologiche Cellulari-Molecolari, Università di Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | | | | | | |
Collapse
|
9
|
Abstract
Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were located in the extrastriola. The cellular organization and innervation patterns of the utricular maculae in birds appear to represent an organ in adaptive evolution, different from that observed for amphibians or mammals.
Collapse
Affiliation(s)
- Xiaohong Si
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39211, USA
| | | | | |
Collapse
|
10
|
Abstract
The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.
Collapse
Affiliation(s)
- M Zakir
- Research Department, Central Institute for the Deaf, Washington University, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
11
|
Brichta AM, Goldberg JM. Morphological identification of physiologically characterized afferents innervating the turtle posterior crista. J Neurophysiol 2000; 83:1202-23. [PMID: 10712450 DOI: 10.1152/jn.2000.83.3.1202] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The turtle posterior crista consists of two hemicristae. Each hemicrista extends from the planum semilunatum to the nonsensory torus and includes a central zone (CZ) surrounded by a peripheral zone (PZ). Type I and type II hair cells are found in the CZ and are innervated by calyx, dimorphic and bouton afferents. Only type II hair cells and bouton fibers are found in the PZ. Units were intraaxonally labeled in a half-head preparation. Bouton (B) units could be near the planum (BP), near the torus (BT), or in midportions of a hemicrista, including the PZ and CZ. Discharge properties of B units vary with longitudinal position in a hemicrista but not with morphological features of their peripheral terminations. BP units are regularly discharging and have small gains and small phase leads re angular head velocity. BT units are irregular and have large gains and large phase leads. BM units have intermediate properties. Calyx (C) and dimorphic (D) units have similar discharge properties and were placed into a single calyx-bearing (CD) category. While having an irregular discharge resembling BT units, CD units have gains and phases similar to those of BM units. Rather than any single discharge property, it is the relation between discharge regularity and either gain or phase that makes CD units distinctive. Multivariate statistical formulas were developed to infer a unit's morphological class (B or CD) and longitudinal position solely from its discharge properties. To verify the use of the formulas, discharge properties were compared for units recorded intraaxonally or extracellularly in the half-head or extracellularly in intact animals. Most B units have background rates of 10-30 spikes/s. The CD category was separated into CD-high and CD-low units with background rates above or below 5 spikes/s, respectively. CD-low units have lower gains and phases and are located nearer the planum than CD-high units. In their response dynamics over a frequency range from 0.01-3 Hz, BP units conform to an overdamped torsion-pendulum model. Other units show departures from the model, including high-frequency gain increases and phase leads. The longitudinal gradient in the physiology of turtle B units resembles a similar gradient in the anamniote crista. In many respects, turtle CD units have discharge properties resembling those of calyx-bearing units in the mammalian central zone.
Collapse
Affiliation(s)
- A M Brichta
- Department of Surgery (Otolaryngology-Head and Neck Surgery), Pharmacology and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
12
|
Abstract
This review considers whether the vestibular system includes separate populations of sensory axons innervating individual organs and giving rise to distinct central pathways. There is a variability in the discharge properties of afferents supplying each organ. Discharge regularity provides a marker for this diversity since fibers which differ in this way also differ in many other properties. Postspike recovery of excitability determines the discharge regularity of an afferent and its sensitivity to depolarizing inputs. Sensitivity is small in regularly discharging afferents and large in irregularly discharging afferents. The enhanced sensitivity of irregular fibers explains their larger responses to sensory inputs, to efferent activation, and to externally applied galvanic currents, but not their distinctive response dynamics. Morphophysiological studies show that regular and irregular afferents innervate overlapping regions of the vestibular nuclei. Intracellular recordings of EPSPs reveal that some secondary vestibular neurons receive a restricted input from regular or irregular afferents, but that most such neurons receive a mixed input from both kinds of afferents. Anodal currents delivered to the labyrinth can result in a selective and reversible silencing of irregular afferents. Such a functional ablation can provide estimates of the relative contributions of regular and irregular inputs to a central neuron's discharge. From such estimates it is concluded that secondary neurons need not resemble their afferent inputs in discharge regularity or response dynamics. Several suggestions are made as to the potentially distinctive contributions made by regular and irregular afferents: (1) Reflecting their response dynamics, regular and irregular afferents could compensate for differences in the dynamic loads of various reflexes or of individual reflexes in different parts of their frequency range; (2) The gating of irregular inputs to secondary VOR neurons could modify the operation of reflexes under varying behavioral circumstances; (3) Two-dimensional sensitivity can arise from the convergence onto secondary neurons of otolith inputs differing in their directional properties and response dynamics; (4) Calyx afferents have relatively low gains when compared with irregular dimorphic afferents. This could serve to expand the stimulus range over which the response of calyx afferents remains linear, while at the same time preserving the other features peculiar to irregular afferents. Among those features are phasic response dynamics and large responses to efferent activation; (5) Because of the convergence of several afferents onto each secondary neuron, information transmission to the latter depends on the gain of individual afferents, but not on their discharge regularity.
Collapse
|