1
|
Höpfinger A, Schmid A, Karrasch T, Pankuweit S, Schäffler A, Grote K. Cathelicidin Antimicrobial Peptide Levels in Atherosclerosis and Myocardial Infarction in Mice and Human. Int J Mol Sci 2024; 25:2909. [PMID: 38474156 PMCID: PMC10931542 DOI: 10.3390/ijms25052909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity represents a worldwide health challenge, and the condition is accompanied by elevated risk of cardiovascular diseases caused by metabolic dysfunction and proinflammatory adipokines. Among those, the immune-modulatory cathelicidin antimicrobial peptide (human: CAMP; murine: CRAMP) might contribute to the interaction of the innate immune system and metabolism in these settings. We investigated systemic CAMP/CRAMP levels in experimental murine models of atherosclerosis, myocardial infarction and cardiovascular patients. Atherosclerosis was induced in low-density lipoprotein receptor-deficient (Ldlr-/-) mice by high-fat diet (HFD). C57BL/6J wild-type mice were subjected to myocardial infarction by permanent or transient left anterior descending (LAD)-ligation. Cramp gene expression in murine organs and tissues was investigated via real-time PCR. Blood samples of 234 adult individuals with or without coronary artery disease (CAD) were collected. Human and murine CAMP/CRAMP serum levels were quantified by ELISA. Atherosclerotic mice exhibited significantly increased CRAMP serum levels and induced Cramp gene expression in the spleen and liver, whereas experimental myocardial infarction substantially decreased CRAMP serum levels. Human CAMP serum quantities were not significantly affected by CAD while being correlated with leukocytes and pro-inflammatory cytokines. Our data show an influence of cathelicidin in experimental atherosclerosis, myocardial infarction, as well as in patients with CAD. Further studies are needed to elucidate the pathophysiological mechanism.
Collapse
Affiliation(s)
- Alexandra Höpfinger
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (A.S.); (T.K.); (A.S.)
| | - Andreas Schmid
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (A.S.); (T.K.); (A.S.)
| | - Thomas Karrasch
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (A.S.); (T.K.); (A.S.)
| | - Sabine Pankuweit
- Department of Cardiology and Angiology, Philipps-University Marburg, Baldinger Str., 35043 Marburg, Germany; (S.P.); (K.G.)
| | - Andreas Schäffler
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (A.S.); (T.K.); (A.S.)
| | - Karsten Grote
- Department of Cardiology and Angiology, Philipps-University Marburg, Baldinger Str., 35043 Marburg, Germany; (S.P.); (K.G.)
| |
Collapse
|
2
|
Wang G. The antimicrobial peptide database is 20 years old: Recent developments and future directions. Protein Sci 2023; 32:e4778. [PMID: 37695921 PMCID: PMC10535814 DOI: 10.1002/pro.4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
In 2023, the Antimicrobial Peptide Database (currently available at https://aps.unmc.edu) is 20-years-old. The timeline for the APD expansion in peptide entries, classification methods, search functions, post-translational modifications, binding targets, and mechanisms of action of antimicrobial peptides (AMPs) has been summarized in our previous Protein Science paper. This article highlights new database additions and findings. To facilitate antimicrobial development to combat drug-resistant pathogens, the APD has been re-annotating the data for antibacterial activity (active, inactive, and uncertain), toxicity (hemolytic and nonhemolytic AMPs), and salt tolerance (salt sensitive and insensitive). Comparison of the respective desired and undesired AMP groups produces new knowledge for peptide design. Our unification of AMPs from the six life kingdoms into "natural AMPs" enabled the first comparison with globular or transmembrane proteins. Due to the dominance of amphipathic helical and disulfide-linked peptides, cysteine, glycine, and lysine in natural AMPs are much more abundant than those in globular proteins. To include peptides predicted by machine learning, a new "predicted" group has been created. Remarkably, the averaged amino acid composition of predicted peptides is located between the lower bound of natural AMPs and the upper bound of synthetic peptides. Synthetic peptides in the current APD, with the highest cationic and hydrophobic amino acid percentages, are mostly designed with varying degrees of optimization. Hence, natural AMPs accumulated in the APD over 20 years have laid the foundation for machine learning prediction. We discuss future directions for peptide discovery. It is anticipated that the APD will continue to play a role in research and education.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
3
|
Stress Responses in Pathogenic Vibrios and Their Role in Host and Environmental Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:213-232. [PMID: 36792878 DOI: 10.1007/978-3-031-22997-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio is a genus of bacteria commonly found in estuarine, marine, and freshwater environments. Vibrio species have evolved to occupy diverse niches in the aquatic ecosystem, with some having complex lifestyles. About a dozen of the described Vibrio species have been reported to cause human disease, while many other species cause disease in other organisms. Vibrio cholerae causes epidemic cholera, a severe dehydrating diarrheal disease associated with the consumption of contaminated food or water. The human pathogenic non-cholera Vibrio species, Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Infections caused by V. parahaemolyticus and V. vulnificus are normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. The human pathogenic Vibrios are exposed to numerous different stress-inducing agents and conditions in the aquatic environment and when colonizing a human host. Therefore, they have evolved a variety of mechanisms to survive in the presence of these stressors. Here we discuss what is known about important stress responses in pathogenic Vibrio species and their role in bacterial survival.
Collapse
|
4
|
In Vitro, In Vivo and In Silico Assessment of the Antimicrobial and Immunomodulatory Effects of a Water Buffalo Cathelicidin (WBCATH) in Experimental Pulmonary Tuberculosis. Antibiotics (Basel) 2022; 12:antibiotics12010075. [PMID: 36671276 PMCID: PMC9855185 DOI: 10.3390/antibiotics12010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis (TB) is considered the oldest pandemic in human history. The emergence of multidrug-resistant (MDR) strains is currently considered a serious global health problem. As components of the innate immune response, antimicrobial peptides (AMPs) such as cathelicidins have been proposed to have efficacious antimicrobial activity against Mycobacterium tuberculosis (Mtb). In this work, we assessed a cathelicidin from water buffalo, Bubalus bubalis, (WBCATH), determining in vitro its antitubercular activity (MIC), cytotoxicity and the peptide effect on bacillary loads and cytokines production in infected alveolar macrophages. Our results showed that WBCATH has microbicidal activity against drug-sensitive and MDR Mtb, induces structural mycobacterial damage demonstrated by electron microscopy, improves Mtb killing and induces the production of protective cytokines by murine macrophages. Furthermore, in vivo WBCATH showed decreased bacterial loads in a model of progressive pulmonary TB in BALB/c mice infected with drug-sensitive or MDR mycobacteria. In addition, a synergistic therapeutic effect was observed when first-line antibiotics were administered with WBCATH. These results were supported by computational modeling of the potential effects of WBCATH on the cellular membrane of Mtb. Thus, this water buffalo-derived cathelicidin could be a promising adjuvant therapy for current anti-TB drugs by enhancing a protective immune response and potentially reducing antibiotic treatment duration.
Collapse
|
5
|
Bhusal A, Nam Y, Seo D, Rahman MH, Hwang EM, Kim S, Lee W, Suk K. Cathelicidin‐related antimicrobial peptide promotes neuroinflammation through astrocyte–microglia communication in experimental autoimmune encephalomyelitis. Glia 2022; 70:1902-1926. [DOI: 10.1002/glia.24227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Youngpyo Nam
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Donggun Seo
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- Division of Endocrinology, Department of Medicine Rutgers Robert Wood Johnson Medical School New Brunswick New Jersey USA
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology Seoul Republic of Korea
| | - Seung‐Chan Kim
- Brain Science Institute, Korea Institute of Science and Technology Seoul Republic of Korea
| | - Won‐Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group Kyungpook National University Daegu Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine Kyungpook National University Daegu Republic of Korea
- Brain Science and Engineering Institute Kyungpook National University Daegu Republic of Korea
| |
Collapse
|
6
|
O’Neill AM, Liggins MC, Seidman JS, Do TH, Li F, Cavagnero KJ, Dokoshi T, Cheng JY, Shafiq F, Hata TR, Gudjonsson JE, Modlin RL, Gallo RL. Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci Transl Med 2022; 14:eabh1478. [PMID: 35171653 PMCID: PMC9885891 DOI: 10.1126/scitranslmed.abh1478] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Innate immune defense against deep tissue infection by Staphylococcus aureus is orchestrated by fibroblasts that become antimicrobial when triggered to differentiate into adipocytes. However, the role of this process in noninfectious human diseases is unknown. To investigate the potential role of adipogenesis by dermal fibroblasts in acne, a disorder triggered by Cutibacterium acnes, single-cell RNA sequencing was performed on human acne lesions and mouse skin challenged by C. acnes. A transcriptome consistent with adipogenesis was observed within specific fibroblast subsets from human acne and mouse skin lesions infected with C. acnes. Perifollicular dermal preadipocytes in human acne and mouse skin lesions showed colocalization of PREF1, an early marker of adipogenesis, and cathelicidin (Camp), an antimicrobial peptide. This capacity of C. acnes to specifically trigger production of cathelicidin in preadipocytes was dependent on TLR2. Treatment of wild-type mice with retinoic acid (RA) suppressed the capacity of C. acnes to form acne-like lesions, inhibited adipogenesis, and enhanced cathelicidin expression in preadipocytes, but lesions were unresponsive in Camp-/- mice, despite the anti-adipogenic action of RA. Analysis of inflamed skin of acne patients after retinoid treatment also showed enhanced induction of cathelicidin, a previously unknown beneficial effect of retinoids in difficult-to-treat acne. Overall, these data provide evidence that adipogenic fibroblasts are a critical component of the pathogenesis of acne and represent a potential target for therapy.
Collapse
Affiliation(s)
- Alan M. O’Neill
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc C. Liggins
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason S. Seidman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tran H. Do
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kellen J. Cavagnero
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joyce Y. Cheng
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Faiza Shafiq
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tissa R. Hata
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Robert L. Modlin
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA.,Corresponding author.
| |
Collapse
|
7
|
Bescucci DM, Clarke ST, Brown CLJ, Boras VF, Montina T, Uwiera RRE, Inglis GD. The absence of murine cathelicidin-related antimicrobial peptide impacts host responses enhancing Salmonella enterica serovar Typhimurium infection. Gut Pathog 2020; 12:53. [PMID: 33292444 PMCID: PMC7666523 DOI: 10.1186/s13099-020-00386-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/03/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cathelicidins are a class of antimicrobial peptide, and the murine cathelicidin-related antimicrobial peptide (mCRAMP) has been demonstrated in vitro to impair Salmonella enterica serovar Typhimurium proliferation. However, the impact of mCRAMP on host responses and the microbiota following S. Typhimurium infection has not been determined. In this study mCRAMP-/- and mCRAMP+/+ mice (± streptomycin) were orally inoculated with S. enterica serovar Typhimurium DT104 (SA +), and impacts on the host and enteric bacterial communities were temporally evaluated. RESULTS Higher densities of the pathogen were observed in cecal digesta and associated with mucosa in SA+/mCRAMP-/- mice that were pretreated (ST+) and not pretreated (ST-) with streptomycin at 24 h post-inoculation (hpi). Both SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice were more susceptible to infection exhibiting greater histopathologic changes (e.g. epithelial injury, leukocyte infiltration, goblet cell loss) at 48 hpi. Correspondingly, immune responses in SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice were affected (e.g. Ifnγ, Kc, Inos, Il1β, RegIIIγ). Systemic dissemination of the pathogen was characterized by metabolomics, and the liver metabolome was affected to a greater degree in SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice (e.g. taurine, cadaverine). Treatment-specific changes to the structure of the enteric microbiota were associated with infection and mCRAMP deficiency, with a higher abundance of Enterobacteriaceae and Veillonellaceae observed in infected null mice. The microbiota of mice that were administered the antibiotic and infected with Salmonella was dominated by Proteobacteria. CONCLUSION The study findings showed that the absence of mCRAMP modulated both host responses and the enteric microbiota enhancing local and systemic infection by Salmonella Typhimurium.
Collapse
Affiliation(s)
- Danisa M Bescucci
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sandra T Clarke
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Catherine L J Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.,Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Valerie F Boras
- Chinook Regional Hospital, Alberta Health Services, Lethbridge, AB, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, Canada
| | - Richard R E Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - G Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
8
|
The Antimicrobial Cathelicidin CRAMP Augments Platelet Activation during Psoriasis in Mice. Biomolecules 2020; 10:biom10091267. [PMID: 32887440 PMCID: PMC7565973 DOI: 10.3390/biom10091267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Platelet-associated complications including thrombosis, thrombocytopenia, and haemorrhage are commonly observed during various inflammatory diseases such as psoriasis. Although several mechanisms that may contribute to the dysfunction of platelets during inflammatory diseases have been reported, knowledge on the primary molecules/mechanisms that underpin platelet-associated complications in such conditions is not fully established. Here, we report the significance of the mouse antimicrobial cathelicidin, mouse cathelicidin-related antimicrobial peptide (mCRAMP) (an orthologue of LL37 in humans), on the modulation of platelet reactivity during psoriasis using Imiquimod-induced psoriasis in mice as an inflammatory disease model for psoriasis vulgaris in humans. The activation of platelets during psoriasis is increased as evidenced by the elevated levels of fibrinogen binding and P-selectin exposure on the surface of platelets, and the level of soluble P-selectin in the plasma of psoriatic mice. The skin and plasma of psoriatic mice displayed increased levels of mCRAMP. Moreover, the plasma of psoriatic mice augmented the activation of platelets obtained from healthy mice. The effect of mCRAMP is partially mediated through formyl peptide receptor 2/3 (Fpr2/3, the orthologue to human FPR2/ALX) in platelets as a significant reduction in their activation was observed when FPR2/ALX-selective inhibitors such as WRW4 or Fpr2/3-deficient mouse platelets were used in these assays. Since the level of antimicrobial cathelicidin is increased in numerous inflammatory diseases such as psoriasis, atherosclerosis, and inflammatory bowel disease, the results of this study point towards a critical role for antimicrobial cathelicidin and FPR2/ALX in the development of platelet-related complications in such diseases.
Collapse
|
9
|
Wu Y, Zhang Y, Zhang J, Zhai T, Hu J, Luo H, Zhou H, Zhang Q, Zhou Z, Liu F. Cathelicidin aggravates myocardial ischemia/reperfusion injury via activating TLR4 signaling and P2X 7R/NLRP3 inflammasome. J Mol Cell Cardiol 2020; 139:75-86. [PMID: 31982429 DOI: 10.1016/j.yjmcc.2019.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/01/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
AIMS The antimicrobial peptide cathelicidin (Camp) has multifunctional immunomodulatory activities. However, its roles in inflammation-related myocardial ischemia/reperfusion (MI/R) injury remain unclear. METHODS AND RESULTS In this study, adult male C57BL/6 wild-type (WT) mice were subjected to MI/R injury by left anterior descending coronary artery ligation for 45 min followed by 3 or 24 h of reperfusion. An abundant cardiac expression of cathelicidin was observed during ischemia and reperfusion, which was mainly derived from heart-infiltrating neutrophils. Knockout of Camp in mice reduced MI/R-induced myocardial inflammation, infarct size, and circulating cTnI levels (an indicator of heart damage). CRAMP (the mature form of murine cathelicidin) administration of WT mice immediately before MI/R exerted detrimental effects on the reperfused heart. CRAMP exacerbates MI/R injury via a TLR4 and P2X7R/NLRP3 inflammasome-dependent mechanism, since I/R-induced myocardial infarction was reserved by inhibition of TLR4, P2X7R, or NLRP3 inflammasome in CRAMP-treated WT mice. Depletion of neutrophils before MI/R abrogated the amplification of infarct size in CRAMP-treated WT mice. Heart-infiltrating neutrophils were found to be one of major cellular sources of myocardial IL-1β (a "first line" pro-inflammatory cytokine) at the early stage of MI/R. At this stage, CRAMP administration just before MI/R induced pro-IL-1β protein expression in heart-infiltrating neutrophils, but not in non-neutrophils. In vitro experiments showed that LL-37 (the mature form of human cathelicidin) treatment promotes the processing and secretion of IL-1β from human neutrophils via stimulating TLR4 signaling and P2X7R/NLRP3 inflammasome. CONCLUSIONS Our findings reveal that, at the early stage of MI/R, neutrophil-derived cathelicidin plays an injurious role in the heart. Cathelicidin aggravates MI/R injury by over-activating TLR4 signaling and P2X7R/NLRP3 inflammasome in heart-infiltrating neutrophils, which leads to the excessive secretion of IL-1β and subsequent inflammatory injury.
Collapse
Affiliation(s)
- Yan Wu
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yacheng Zhang
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jie Zhang
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Tingting Zhai
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingping Hu
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hairong Luo
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Haiyan Zhou
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qinghai Zhang
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Feng Liu
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Pharmacology, University of Texas at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
10
|
Febriza A, Hatta M, Natzir R, Kasim VN, Idrus HH. Activity of Antimicrobial Peptide; Cathelicidin, on Bacterial Infection. Open Biochem J 2019. [DOI: 10.2174/1874091x01913010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antimicrobial peptide is an effector molecule from the natural immune system which plays a central role in defense as an antimicrobial. Cathelicidin is one of the antimicrobial peptides. Human only has one cathelicidin antimicrobial peptide called LL-37 or hCAP18. The detailed mechanism on CAMP (Cathelicidin Antimicrobial Peptide) gene regulation is still unknown, however, cathelicidin is found to have upregulation when there is bacterial infection. The most effective expression inducer of CAMP gene is 1,25-dihydroxyvitamin D3(1,25(OH)2D3), which is the active form of vitamin D. Vitamin D mediates cathelicidin synthesis through the expression of Vitamin D Receptor (VDR), then the interaction activates CAMP gene to express cathelicidin. The work mechanisms of cathelicidin against bacterial infection include damaging the bacterial cell membrane, inducing autophagy process of macrophage cell, neutralizing LPS produced by bacteria, and chemotactic activities of PMNs, monocytes and lymphocytes.
Collapse
|
11
|
Winderickx S, De Brucker K, Bird MJ, Windmolders P, Meert E, Cammue BPA, Thevissen K. Structure-activity relationship study of the antimicrobial CRAMP-derived peptide CRAMP20-33. Peptides 2018; 109:33-38. [PMID: 30176261 DOI: 10.1016/j.peptides.2018.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 02/01/2023]
Abstract
We report here on the structure-activity relationship study of a 14 amino acid fragment of the cathelicidin-related antimicrobial peptide (CRAMP), CRAMP20-33 (KKIGQKIKNFFQKL). It showed activity against Escherichia coli and filamentous fungi with IC50 values below 30 μM and 10 μM, respectively. CRAMP20-33 variants with glycine at position 23 substituted by phenylalanine, leucine or tryptophan showed 2- to 4-fold improved activity against E. coli but not against filamentous fungi. Furthermore, the most active single-substituted peptide, CRAMP20-33 G23 W (IC50 = 2.3 μM against E. coli), showed broad-spectrum activity against Candida albicans, Staphylococcus epidermidis and Salmonella Typhimurium. Introduction of additional arginine substitutions in CRAMP20-33 G23 W, more specifically in CRAMP20-33 G23 W N28R or CRAMP20-33 G23 W Q31R, resulted in 3-fold increased activity against S. epidermidis (IC50 = 4 μM and 4.8 μM, respectively) as compared to CRAMP20-33 G23 W (IC50 = 15.1 μM) but not against the other pathogens tested. In general, double-substituted variants were non-toxic for human HepG2 cells, pointing to their therapeutic potential.
Collapse
Affiliation(s)
- Sofie Winderickx
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | - Katrijn De Brucker
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | - Matthew J Bird
- Department of Hepatology, University Hospital Gasthuisberg, Herestraat 49, Box 7003 09, 3000, Leuven, Belgium
| | - Petra Windmolders
- Department of Hepatology, University Hospital Gasthuisberg, Herestraat 49, Box 7003 09, 3000, Leuven, Belgium
| | - Els Meert
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium; Centre of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| |
Collapse
|
12
|
Xu X, Cai X, Zhu Y, He W, Wu Q, Shi X, Fang Y, Pei Z. MFG-E8 inhibits Aβ-induced microglial production of cathelicidin-related antimicrobial peptide: A suitable target against Alzheimer’s disease. Cell Immunol 2018; 331:59-66. [DOI: 10.1016/j.cellimm.2018.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
|
13
|
Staphylococcus aureus Uses the GraXRS Regulatory System To Sense and Adapt to the Acidified Phagolysosome in Macrophages. mBio 2018; 9:mBio.01143-18. [PMID: 30018109 PMCID: PMC6050959 DOI: 10.1128/mbio.01143-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Macrophages are critical to innate immunity due to their ability to phagocytose bacteria. The macrophage phagolysosome is a highly acidic organelle with potent antimicrobial properties, yet remarkably, ingested Staphylococcus aureus replicates within this niche. Herein we demonstrate that S. aureus requires the GraXRS regulatory system for growth within this niche, while the SaeRS and AgrAC two-component regulatory systems and the α-phenol soluble modulins are dispensable. Importantly, we find that it is exposure to acidic pH that is required for optimal growth of S. aureus inside fully acidified macrophage phagolysosomes. Exposure of S. aureus to acidic pH evokes GraS signaling, which in turn elicits an adaptive response that endows the bacteria with increased resistance to antimicrobial effectors, such as antimicrobial peptides, encountered inside macrophage phagolysosomes. Notably, pH-dependent induction of antimicrobial peptide resistance in S. aureus requires the GraS sensor kinase. GraS and MprF, a member of the GraS regulon, play an important role for bacterial survival in the acute stages of systemic infection, where in murine models of infection, S. aureus resides within liver-resident Kupffer cells. We conclude that GraXRS represents a vital regulatory system that functions to allow S. aureus to evade killing, prior to commencement of replication, within host antibacterial immune cells. S. aureus can infect any site of the body, including the microbicidal phagolysosome of the macrophage. The ability of S. aureus to infect diverse niches necessitates that the bacteria be highly adaptable. Here we show that S. aureus responds to phagolysosome acidification to evoke changes in gene expression that enable the bacteria to resist phagolysosomal killing and to promote replication. Toxin production is dispensable for this response; however, the bacteria require the sensor kinase GraS, which transduces signals in response to acidic pH. GraS is necessary for phagolysosomal replication and survival of S. aureus in the acute stage of systemic infection. Disruption of this S. aureus adaptation would render S. aureus susceptible to phagocyte restriction.
Collapse
|
14
|
Zhao L, Tan S, Zhang H, Liu P, Tan YZ, Li JC, Jia D, Shen XF. Astragalus polysaccharides exerts anti-infective activity by inducing human cathelicidin antimicrobial peptide LL-37 in respiratory epithelial cells. Phytother Res 2018; 32:1521-1529. [PMID: 29672953 DOI: 10.1002/ptr.6080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/05/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022]
Abstract
Astragalus polysaccharides (APS), one of the major active components in Astragalus membranaceus, is an effective immunomodulator used in the treatment of immunological diseases in China. However, the anti-infective action and mechanism of APS is not fully known. In the present study, we found that APS induced the expression of human cathelicidin antimicrobial peptide LL-37, a key host anti-infective molecule, in both mRNA and protein levels in respiratory epithelial cells HBE16 and A549. Furthermore, the lysate and supernatant from APS-treated HBE16 cells both exhibited an obvious antibacterial action, which was partially neutralizated by LL-37 monoclonal antibody. In addition, APS also significantly elevated the phosphorylation of p38 MAPK and JNK and caused the degradation of IκBα. Specific inhibitors of p38 MAPK, JNK, or NF-κB obviously abolished APS-induced LL-37 synthesis and antibacterial activity, respectively. Taken together, our results confirmed the enhancement of APS on LL-37 induction and antibacterial action in respiratory epithelial cells, which may be attributed to activation of p38 MAPK/JNK and NF-κB pathways. Furthermore, these results also supported the clinical application of APS in the treatment of infectious diseases.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuai Tan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hai Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Liu
- Shaanxi TASLY Plant Pharmaceutical Co Ltd., Shangluo, Shaanxi, China
| | - Yu-Zhu Tan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Chuan Li
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiao-Fei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Abstract
Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases, and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide. Increasingly, the crucial role of nonhost environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, because these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen Vibrio cholerae to describe recent advances in our understanding of how pathogens survive between hosts and to highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of V. cholerae to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry into and exit from human hosts.
Collapse
|
16
|
Gupta S, Winglee K, Gallo R, Bishai WR. Bacterial subversion of cAMP signalling inhibits cathelicidin expression, which is required for innate resistance to Mycobacterium tuberculosis. J Pathol 2017; 242:52-61. [PMID: 28097645 PMCID: PMC5397332 DOI: 10.1002/path.4878] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/14/2016] [Accepted: 01/03/2017] [Indexed: 01/03/2023]
Abstract
Antimicrobial peptides such as cathelicidins are important components of innate immune defence against inhaled microorganisms, and have shown antimicrobial activity against Mycobacterium tuberculosis in in vitro models. Despite this, little is known about the regulation and expression of cathelicidin during tuberculosis in vivo. We sought to determine whether the cathelicidin-related antimicrobial peptide gene (Cramp), the murine functional homologue of the human cathelicidin gene (CAMP or LL-37), is required for regulation of protective immunity during M. tuberculosis infection in vivo. We used Cramp-/- mice in a validated model of pulmonary tuberculosis, and conducted cell-based assays with macrophages from these mice. We evaluated the in vivo susceptibility of Cramp-/- mice to infection, and also dissected various pro-inflammatory immune responses against M. tuberculosis. We observed increased susceptibility of Cramp-/- mice to M. tuberculosis as compared with wild-type mice. Macrophages from Cramp-/- mice were unable to control M. tuberculosis growth in an in vitro infection model, were deficient in intracellular calcium influx, and were defective in stimulating T cells. Additionally, CD4+ and CD8+ T cells from Cramp-/- mice produced less interferon-β upon stimulation. Furthermore, bacterial-derived cAMP modulated cathelicidin expression in macrophages. Our results demonstrate that cathelicidin is required for innate resistance to M. tuberculosis in a relevant animal model and is a key mediator in regulation of the levels of pro-inflammatory cytokines by calcium and cyclic nucleotides. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shashank Gupta
- Center for Tuberculosis Research, Department of Medicine, JHU, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Kathryn Winglee
- Center for Tuberculosis Research, Department of Medicine, JHU, Baltimore, Maryland, USA
| | - Richard Gallo
- University of California at San Diego, La Jolla, California, USA
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, JHU, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
17
|
Lüthje P, Brauner A. Novel Strategies in the Prevention and Treatment of Urinary Tract Infections. Pathogens 2016; 5:E13. [PMID: 26828523 PMCID: PMC4810134 DOI: 10.3390/pathogens5010013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/05/2015] [Accepted: 01/21/2016] [Indexed: 01/15/2023] Open
Abstract
Urinary tract infections are one of the most common bacterial infections, especially in women and children, frequently treated with antibiotics. The alarming increase in antibiotic resistance is a global threat to future treatment of infections. Therefore, alternative strategies are urgently needed. The innate immune system plays a fundamental role in protecting the urinary tract from infections. Antimicrobial peptides form an important part of the innate immunity. They are produced by epithelial cells and neutrophils and defend the urinary tract against invading bacteria. Since efficient resistance mechanisms have not evolved among bacterial pathogens, much effort has been put into exploring the role of antimicrobial peptides and possibilities to utilize them in clinical practice. Here, we describe the impact of antimicrobial peptides in the urinary tract and ways to enhance the production by hormones like vitamin D and estrogen. We also discuss the potential of medicinal herbs to be used in the prophylaxis and the treatment of urinary tract infections.
Collapse
Affiliation(s)
- Petra Lüthje
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm SE-171 76, Sweden.
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm SE-171 76, Sweden.
| |
Collapse
|
18
|
Sun J, Xu M, Ortsäter H, Lundeberg E, Juntti-Berggren L, Chen YQ, Haeggström JZ, Gudmundsson GH, Diana J, Agerberth B. Cathelicidins positively regulate pancreatic β-cell functions. FASEB J 2015; 30:884-94. [PMID: 26527065 DOI: 10.1096/fj.15-275826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022]
Abstract
Cathelicidins are pleiotropic antimicrobial peptides largely described for innate antimicrobial defenses and, more recently, immunomodulation. They are shown to modulate a variety of immune or nonimmune host cell responses. However, how cathelicidins are expressed by β cells and modulate β-cell functions under steady-state or proinflammatory conditions are unknown. We find that cathelicidin-related antimicrobial peptide (CRAMP) is constitutively expressed by rat insulinoma β-cell clone INS-1 832/13. CRAMP expression is inducible by butyrate or phenylbutyric acid and its secretion triggered upon inflammatory challenges by IL-1β or LPS. CRAMP promotes β-cell survival in vitro via the epidermal growth factor receptor (EGFR) and by modulating expression of antiapoptotic Bcl-2 family proteins: p-Bad, Bcl-2, and Bcl-xL. Also via EGFR, CRAMP stimulates glucose-stimulated insulin secretion ex vivo by rat islets. A similar effect is observed in diabetes-prone nonobese diabetic (NOD) mice. Additional investigation under inflammatory conditions reveals that CRAMP modulates inflammatory responses and β-cell apoptosis, as measured by prostaglandin E2 production, cyclooxygenases (COXs), and caspase activation. Finally, CRAMP-deficient cnlp(-/-) mice exhibit defective insulin secretion, and administration of CRAMP to prediabetic NOD mice improves blood glucose clearance upon glucose challenge. Our finding suggests that cathelicidins positively regulate β-cell functions and may be potentially used for intervening β-cell dysfunction-associated diseases.
Collapse
Affiliation(s)
- Jia Sun
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Meng Xu
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Henrik Ortsäter
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Erik Lundeberg
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lisa Juntti-Berggren
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yong Q Chen
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jesper Z Haeggström
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gudmundur H Gudmundsson
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Julien Diana
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Birgitta Agerberth
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
19
|
Henkel A, Tausch L, Pillong M, Jauch J, Karas M, Schneider G, Werz O. Boswellic acids target the human immune system-modulating antimicrobial peptide LL-37. Pharmacol Res 2015; 102:53-60. [PMID: 26361729 DOI: 10.1016/j.phrs.2015.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 12/27/2022]
Abstract
The antimicrobial peptide LL-37 is the sole member of the human cathelicidin family with immune system-modulating properties and roles in autoimmune disease development. Small molecules able to interact with LL-37 and to modulate its functions have not been described yet. Boswellic acids (BAs) are pentacyclic triterpene acids that are bioactive principles of frankincense extracts used as anti-inflammatory remedies. Although various anti-inflammatory modes of action have been proposed for BAs, the pharmacological profile of these compounds is still incompletely understood. Here, we describe the identification of human LL-37 as functional target of BAs. In unbiased target fishing experiments using immobilized BAs as bait and human neutrophils as target source, LL-37 was identified as binding partner assisted by MALDI-TOF mass spectrometry. Thermal stability experiments using circular dichroism spectroscopy confirm direct interaction between BAs and LL-37. Of interest, this binding of BAs resulted in an inhibition of the functionality of LL-37. Thus, the LPS-neutralizing properties of isolated LL-37 were inhibited by 3-O-acetyl-β-BA (Aβ-BA) and 3-O-acetyl-11-keto-β-BA (AKβ-BA) in a cell-free limulus amoebocyte lysate assay with EC50=0.2 and 0.8 μM, respectively. Also, LL-37 activity was inhibited by these BAs in LL-37-enriched supernatants of stimulated neutrophils or human plasma derived from stimulated human whole blood. Together, we reveal BAs as inhibitors of LL-37, which might be a relevant mechanism underlying the anti-inflammatory properties of BAs and suggests BAs as suitable chemical tools or potential agents for intervention with LL-37 and related disorders.
Collapse
Affiliation(s)
- Arne Henkel
- Department for Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany.
| | - Lars Tausch
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, D-60439 Frankfurt, Germany.
| | - Max Pillong
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| | - Johann Jauch
- Organic Chemistry II, University of Saarland, Campus C 4.2, D-66123 Saarbrücken, Germany.
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, D-60439 Frankfurt, Germany.
| | - Gisbert Schneider
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany.
| |
Collapse
|
20
|
Nakagawa Y, Gallo RL. Endogenous intracellular cathelicidin enhances TLR9 activation in dendritic cells and macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1274-84. [PMID: 25548223 PMCID: PMC4297737 DOI: 10.4049/jimmunol.1402388] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cathelicidins are a gene family best known for their antimicrobial action, but the diverse mature peptides they encode also have other host defense functions. The human cathelicidin peptide LL-37 enhances recognition of nucleic acids, an action whose significance is seen in human diseases such as psoriasis where it is associated with increased type 1 IFN production. This function has been attributed to the extracellular action of the peptide to facilitate uptake of nucleic acids. In this study, we demonstrate that the murine mature cathelicidin peptide (CRAMP), encoded by the mouse gene (Camp), is functionally distinct from the human mature peptide (LL-37), as it does not facilitate CpG entry. However, mouse cathelicidin does influence recognition of CpG as bone marrow-derived dendritic cells from Camp(-/-) mice have impaired CpG responses and Camp(-/-) mice had impaired response to CpG given i.v. or s.c. We show that cathelicidin concentrates in Lamp1 positive compartments, is colocalized with CpG in the endolysosome, can be immunoprecipitated with TLR9, and binds to CpG intracellulary. Collectively, these results indicate that the functions of cathelicidin in control of TLR9 activation may include both intracellular and extracellular effects.
Collapse
Affiliation(s)
- Yukinobu Nakagawa
- Division of Dermatology, University of California, San Diego, San Diego, CA 92161
| | - Richard L Gallo
- Division of Dermatology, University of California, San Diego, San Diego, CA 92161
| |
Collapse
|
21
|
Nienhouse V, Gao X, Dong Q, Nelson DE, Toh E, McKinley K, Schreckenberger P, Shibata N, Fok CS, Mueller ER, Brubaker L, Wolfe AJ, Radek KA. Interplay between bladder microbiota and urinary antimicrobial peptides: mechanisms for human urinary tract infection risk and symptom severity. PLoS One 2014; 9:e114185. [PMID: 25486068 PMCID: PMC4259481 DOI: 10.1371/journal.pone.0114185] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/05/2014] [Indexed: 12/11/2022] Open
Abstract
Resident bacterial communities (microbiota) and host antimicrobial peptides (AMPs) are both essential components of normal host innate immune responses that limit infection and pathogen induced inflammation. However, their interdependence has not been investigated in the context of urinary tract infection (UTI) susceptibility. Here, we explored the interrelationship between the urinary microbiota and host AMP responses as mechanisms for UTI risk. Using prospectively collected day of surgery (DOS) urine specimens from female pelvic floor surgery participants, we report that the relative abundance and/or frequency of specific urinary microbiota distinguished between participants who did or did not develop a post-operative UTI. Furthermore, UTI risk significantly correlated with both specific urinary microbiota and β-defensin AMP levels. Finally, urinary AMP hydrophobicity and protease activity were greater in participants who developed UTI, and correlated positively with both UTI risk and pelvic floor symptoms. These data demonstrate an interdependency between the urinary microbiota, AMP responses and symptoms, and identify a potential mechanism for UTI risk. Assessment of bacterial microbiota and host innate immune AMP responses in parallel may identify increased risk of UTI in certain populations.
Collapse
Affiliation(s)
- Vanessa Nienhouse
- The Burn and Shock Trauma Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Microbiology and Immunology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Xiang Gao
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- Department of Computer Science and Engineering, University of North Texas, Denton, Texas, United States of America
| | - Qunfeng Dong
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- Department of Computer Science and Engineering, University of North Texas, Denton, Texas, United States of America
| | - David E. Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kathleen McKinley
- Department of Pathology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Paul Schreckenberger
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Pathology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Noriko Shibata
- Department of Microbiology and Immunology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Cynthia S. Fok
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Obstetrics/Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Urology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Elizabeth R. Mueller
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Obstetrics/Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Urology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Linda Brubaker
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Obstetrics/Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Urology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Alan J. Wolfe
- Department of Microbiology and Immunology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Katherine A. Radek
- The Burn and Shock Trauma Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Microbiology and Immunology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Surgery at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- * E-mail:
| |
Collapse
|
22
|
Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo. PLoS One 2014; 9:e99029. [PMID: 24887410 PMCID: PMC4041793 DOI: 10.1371/journal.pone.0099029] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/09/2014] [Indexed: 01/13/2023] Open
Abstract
Cathelicidins are multifunctional cationic host-defence peptides (CHDP; also known as antimicrobial peptides) and an important component of innate host defence against infection. In addition to microbicidal potential, these peptides have properties with the capacity to modulate inflammation and immunity. However, the extent to which such properties play a significant role during infection in vivo has remained unclear. A murine model of acute P. aeruginosa lung infection was utilised, demonstrating cathelicidin-mediated enhancement of bacterial clearance in vivo. The delivery of exogenous synthetic human cathelicidin LL-37 was found to enhance a protective pro-inflammatory response to infection, effectively promoting bacterial clearance from the lung in the absence of direct microbicidal activity, with an enhanced early neutrophil response that required both infection and peptide exposure and was independent of native cathelicidin production. Furthermore, although cathelicidin-deficient mice had an intact early cellular inflammatory response, later phase neutrophil response to infection was absent in these animals, with significantly impaired clearance of P. aeruginosa. These findings demonstrate the importance of the modulatory properties of cathelicidins in pulmonary infection in vivo and highlight a key role for cathelicidins in the induction of protective pulmonary neutrophil responses, specific to the infectious milieu. In additional to their physiological roles, CHDP have been proposed as future antimicrobial therapeutics. Elucidating and utilising the modulatory properties of cathelicidins has the potential to inform the development of synthetic peptide analogues and novel therapeutic approaches based on enhancing innate host defence against infection with or without direct microbicidal targeting of pathogens.
Collapse
|
23
|
Otto M. Staphylococcus colonization of the skin and antimicrobial peptides. ACTA ACUST UNITED AC 2014; 5:183-195. [PMID: 20473345 DOI: 10.1586/edm.10.6] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Staphylococci are the most abundant skin-colonizing bacteria and the most important causes of nosocomial infections and community-associated skin infections. Molecular determinants of staphylococcal skin colonization include surface polymers and proteins that promote adhesion and aggregation, and a wide variety of mechanisms to evade acquired and innate host defenses. Antimicrobial peptides (AMPs) likely play a central role in providing immunity to bacterial colonization on human epithelia. Recent research has shown that staphylococci have a broad arsenal to combat AMP activity, and can regulate expression of AMP-resistance mechanisms depending on the presence of AMPs. While direct in vivo evidence is still lacking, this suggests that the interplay between AMPs and AMP resistance mechanisms during evolution had a crucial role in rendering staphylococci efficient colonizers of human skin.
Collapse
Affiliation(s)
- Michael Otto
- National Institute of Allergy and Infectious Diseases, NIH, 9000 Rockville Pike, Building 33 1W10, Bethesda, MD 20892, USA, Tel.: +1 301 443 5209
| |
Collapse
|
24
|
Barlow PG, Findlay EG, Currie SM, Davidson DJ. Antiviral potential of cathelicidins. Future Microbiol 2014; 9:55-73. [DOI: 10.2217/fmb.13.135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT: The global burden of morbidity and mortality arising from viral infections is high; however, the development of effective therapeutics has been slow. As our understanding of innate immunity has expanded over recent years, knowledge of natural host defenses against viral infections has started to offer potential for novel therapeutic strategies. An area of current research interest is in understanding the roles played by naturally occurring cationic host defense peptides, such as the cathelicidins, in these innate antiviral host defenses across different species. This research also has the potential to inform the design of novel synthetic antiviral peptide analogs and/or provide rationale for therapies aimed at boosting the natural production of these peptides. In this review, we will discuss our knowledge of the antiviral activities of cathelicidins, an important family of cationic host defense peptides, and consider the implications for novel antiviral therapeutic approaches.
Collapse
Affiliation(s)
- Peter G Barlow
- Health, Life & Social Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Emily Gwyer Findlay
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Silke M Currie
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Donald J Davidson
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
25
|
Santos JC, Silva-Gomes S, Silva JP, Gama M, Rosa G, Gallo RL, Appelberg R. Endogenous cathelicidin production limits inflammation and protective immunity to Mycobacterium avium in mice. IMMUNITY INFLAMMATION AND DISEASE 2013; 2:1-12. [PMID: 25400920 PMCID: PMC4220664 DOI: 10.1002/iid3.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 01/29/2023]
Abstract
The production of antimicrobial peptides, such as the cathelicidins, plays a prominent role in the innate immune response against microbial pathogens. Cathelicidins are widely distributed amongst living organisms, and the antimicrobial peptides generated by proteolysis of the precursor forms are typically cationic and α-helical, a structure that facilitates their interaction and insertion into anionic bacterial cell walls and membranes, causing damage and promoting microbial death. Here, we found that mouse cathelicidin (Camp) expression was induced in bone marrow-derived macrophages by infection with Mycobacterium avium in a TLR2- and TNF-dependent manner. However, the endogenous production of the cathelin-related antimicrobial peptide (CRAMP) was not required for the bacteriostasis of M. avium either in primary cultures of macrophages or in vivo, as shown by the use of CRAMP-null mice. In contrast, the lack of Camp led to a transient improvement of M. avium growth control in the spleens of infected mice while at the same time causing an exacerbation of the inflammatory response to infection. Our data highlight the anti-inflammatory effects of CRAMP and suggests that virulent mycobacteria may possess strategies to escape its antimicrobial activity.
Collapse
Affiliation(s)
- José Carlos Santos
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| | - Sandro Silva-Gomes
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| | - João Pedro Silva
- Centre of Biological Engineering, Universidade do Minho Braga, Portugal
| | - Miguel Gama
- Centre of Biological Engineering, Universidade do Minho Braga, Portugal
| | - Gustavo Rosa
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| | - Richard L Gallo
- Department of Medicine, Division of Dermatology, University of California 9500 Gilman Drive, San Diego, CA, 92093-0612, USA
| | - Rui Appelberg
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| |
Collapse
|
26
|
Expression of the antimicrobial peptide cathelicidin in myeloid cells is required for lung tumor growth. Oncogene 2013; 33:2709-16. [PMID: 23812430 DOI: 10.1038/onc.2013.248] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/09/2013] [Accepted: 05/16/2013] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides, such as the cathelicidin LL-37/hCAP-18 and its mouse homolog cathelicidin-related antimicrobial peptide (CRAMP), are important effectors of the innate immune system with direct anti-bacterial activity. Cathelicidin is possibly involved in the regulation of tumor cell growth. The aim of this study was to characterize the role of cathelicidin expressed in non-tumorous cells in a preclinical mouse model of tumor growth. Wild-type and CRAMP-deficient animals were exposed to cigarette smoke (CS) and Lewis lung carcinoma cells were injected to initiate the growth of tumors in the lung. CS exposure significantly increased the proliferation of lung tumors in wild-type mice, but not in CRAMP-deficient mice. CS exposure induced the recruitment of myeloid cell into tumor tissue in a CRAMP-dependent manner. Mice lacking RelA/p65 specifically in myeloid cells showed impaired recruitment of CRAMP-positive cells into the lung. In vitro studies with human cells showed that LL-37/hCAP-18 in macrophages is induced by soluble factors derived from cancer cells. Taken together, these data indicate that cathelicidin expressed from myeloid cells promotes CS-induced lung tumor growth by further recruitment of inflammatory cells. The regulation of cathelicidin expression involves myeloid p65/RelA and soluble factor from tumor cells.
Collapse
|
27
|
Marr AK, McGwire BS, McMaster WR. Modes of action of Leishmanicidal antimicrobial peptides. Future Microbiol 2013; 7:1047-59. [PMID: 22953706 DOI: 10.2217/fmb.12.85] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is one of the major neglected tropical diseases of the world. It is present in 88 countries with an estimated number of 500,000 cases of visceral leishmaniasis and 1.5 million cases of cutaneous disease. No effective vaccinations are available against leishmaniasis and the efficacy of existing treatments is compromised due to the emergence of drug resistance. Thus, there is an urgent need to develop new compounds with antileishmanial activity. Antimicrobial peptides have potential as novel antileishmanial therapy, either for use alone or in combination with current drug regimens. The modes of action of these peptides against Leishmania includes: membrane disruption leading to necrotic cell death; induction of apoptosis; binding to intracellular target(s); and indirect effects via immunomodulation of host immune cells. This article reviews the mechanisms of action of antimicrobial peptides with leishmanicidal activity.
Collapse
Affiliation(s)
- Alexandra K Marr
- Immunity & Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | | | | |
Collapse
|
28
|
Rico-Mata R, De Leon-Rodriguez LM, Avila EE. Effect of antimicrobial peptides derived from human cathelicidin LL-37 on Entamoeba histolytica trophozoites. Exp Parasitol 2012; 133:300-6. [PMID: 23274811 DOI: 10.1016/j.exppara.2012.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
Abstract
The human cathelicidin hCAP18/LL-37 is an antimicrobial protein consisting of a conserved N-terminal prosequence called the cathelin-like domain and a C-terminal peptide called LL-37. This peptide contains 37 amino acid residues, and several truncated variants obtained from natural sources or by chemical synthesis differ in their capability to damage Gram positive and Gram negative bacteria as well as Candida albicans. KR-12 is the shortest peptide (12 amino acids) of LL-37 that has conserved antibacterial activity. In addition to LL-37, other active cathelicidin-derived peptides have been reported; for instance, the peptides KR-20, a 20-aa derivative of LL-37, and KS-30, a 30-aa derivative of LL-37, have been found in human sweat. Both peptides exhibit an overall increased antibacterial and antifungal activity when compared with LL-37. We investigated the effect of LL-37 and three peptides derived from this antimicrobial molecule, KR-12, KR-20 and KS-30, on the integrity of Entamoeba histolytica trophozoites. The four peptides showed effects on E. histolytica integrity and viability in the concentration range of 10-50 μM. The peptides KR-12, KR-20, KS-30 and LL-37 differed in their capability to damage the parasite integrity, with KR-20 being the most effective and with KR-12 and LL-37 being less active. These results demonstrate the ability of antimicrobial peptides derived from human cathelicidin to damage Entamoeba trophozoites. Moreover, it was shown that the integrity of the peptides is altered in the presence of an ameba soluble fraction with cysteine protease activity.
Collapse
Affiliation(s)
- Rosa Rico-Mata
- Division de Ciencias Naturales y Exactas, Departamento de Biologia, Universidad de Guanajuato, Colonia Noria Alta, Guanajuato, Gto, CP 36050, Mexico.
| | | | | |
Collapse
|
29
|
Woloszynek JC, Hu Y, Pham CTN. Cathepsin G-regulated release of formyl peptide receptor agonists modulate neutrophil effector functions. J Biol Chem 2012; 287:34101-9. [PMID: 22879591 DOI: 10.1074/jbc.m112.394452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neutrophil serine proteases play an important role in inflammation by modulating neutrophil effector functions. We have previously shown that neutrophils deficient in the serine proteases cathepsin G and neutrophil elastase (CG/NE neutrophils) exhibit severe defects in chemokine CXCL2 release and reactive oxygen species (ROS) production when activated on immobilized immune complex. Exogenously added active CG rescues these defects, but the mechanism remains undefined. Using a protease-based proteomic approach, we found that, in vitro, the addition of exogenous CG to immune complex-stimulated CG/NE neutrophils led to a decrease in the level of cell-associated annexin A1 (AnxA1) and cathelin-related antimicrobial peptide (CRAMP), both known inflammatory mediators. We further confirmed that, in vivo, CG was required for the extracellular release of AnxA1 and CRAMP in a subcutaneous air pouch model. In vitro, CG efficiently cleaved AnxA1, releasing the active N-terminal peptide Ac2-26, and processed CRAMP in limited fashion. Ac2-26 and CRAMP peptides enhanced the release of CXCL2 by CG/NE neutrophils in a dose-dependent manner via formyl peptide receptor (FPR) stimulation. Blockade of FPRs by an antagonist, Boc2 (t-Boc-Phe-d-Leu-Phe-d-Leu-Phe), abrogates CXCL2 release, whereas addition of FPR agonists, fMLF and F2L, relieves Boc2 inhibition. Furthermore, the addition of active CG, but not inactive CG, also relieves Boc2 inhibition. These findings suggest that CG modulates neutrophil effector functions partly by controlling the release (and proteolysis) of FPR agonists. Unexpectedly, we found that mature CRAMP, but not Ac2-26, induced ROS production through an FPR-independent pathway.
Collapse
Affiliation(s)
- Josh C Woloszynek
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
30
|
Kovach MA, Ballinger MN, Newstead MW, Zeng X, Bhan U, Yu FS, Moore BB, Gallo RL, Standiford TJ. Cathelicidin-related antimicrobial peptide is required for effective lung mucosal immunity in Gram-negative bacterial pneumonia. THE JOURNAL OF IMMUNOLOGY 2012; 189:304-11. [PMID: 22634613 DOI: 10.4049/jimmunol.1103196] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cathelicidins are a family of endogenous antimicrobial peptides that exert diverse immune functions, including both direct bacterial killing and immunomodulatory effects. In this study, we examined the contribution of the murine cathelicidin, cathelicidin-related antimicrobial peptide (CRAMP), to innate mucosal immunity in a mouse model of Gram-negative pneumonia. CRAMP expression is induced in the lung in response to infection with Klebsiella pneumoniae. Mice deficient in the gene encoding CRAMP (Cnlp(-/-)) demonstrate impaired lung bacterial clearance, increased bacterial dissemination, and reduced survival in response to intratracheal K. pneumoniae administration. Neutrophil influx into the alveolar space during K. pneumoniae infection was delayed early but increased by 48 h in CRAMP-deficient mice, which was associated with enhanced expression of inflammatory cytokines and increased lung injury. Bone marrow chimera experiments indicated that CRAMP derived from bone marrow cells rather than structural cells was responsible for antimicrobial effects in the lung. Additionally, CRAMP exerted bactericidal activity against K. pneumoniae in vitro. Similar defects in lung bacterial clearance and delayed early neutrophil influx were observed in CRAMP-deficient mice infected with Pseudomonas aeruginosa, although this did not result in increased bacterial dissemination, increased lung injury, or changes in lethality. Taken together, our findings demonstrate that CRAMP is an important contributor to effective host mucosal immunity in the lung in response to Gram-negative bacterial pneumonia.
Collapse
Affiliation(s)
- Melissa A Kovach
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kin NW, Chen Y, Stefanov EK, Gallo RL, Kearney JF. Cathelin-related antimicrobial peptide differentially regulates T- and B-cell function. Eur J Immunol 2011; 41:3006-16. [PMID: 21773974 PMCID: PMC3234162 DOI: 10.1002/eji.201141606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/22/2011] [Accepted: 07/07/2011] [Indexed: 01/30/2023]
Abstract
Mammalian antimicrobial peptides (AMPs) play an important role in host defense via direct antimicrobial activity as well as immune regulation. The mouse cathelin-related antimicrobial peptide (mCRAMP), produced from the mouse gene Camp, is the only mouse cathelicidin identified and the ortholog of the human gene encoding the peptide LL-37. This study tested the hypothesis that mouse B and T cells produce and respond to mCRAMP. We show that all mature mouse B-cell subsets, including follicular (FO), marginal zone (MZ), B1a, and B1b cells, as well as CD4(+) and CD8(+) T cells produce Camp mRNA and mCRAMP protein. Camp(-/-) B cells produced equivalent levels of IgM, IgG3, and IgG2c but less IgG1 and IgE, while Camp(-/-) CD4(+) T cells cultured in Th2-inducing conditions produced more IL-4-expressing cells when compared with WT cells, effects that were reversed upon addition of mCRAMP. In vivo, Camp(-/-) mice immunized with TNP-OVA absorbed in alum produced an enhanced TNP-specific IgG1 response when compared with WT mice. ELISpot analysis revealed increased numbers of TNP-specific IgG1-secreting splenic B cells and FACS analysis revealed increased CD4(+) T-cell IL-4 expression. Our results suggest that mCRAMP differentially regulates B- and T-cell function and implicate mCRAMP in the regulation of adaptive immune responses.
Collapse
Affiliation(s)
- Nicholas W. Kin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yao Chen
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily K. Stefanov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard L. Gallo
- Division of Dermatology, University of California San Diego, La Jolla, CA, USA
- VA Healthcare System, San Diego, CA, USA
| | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
32
|
Hensel JA, Chanda D, Kumar S, Sawant A, Grizzle WE, Siegal GP, Ponnazhagan S. LL-37 as a therapeutic target for late stage prostate cancer. Prostate 2011; 71:659-70. [PMID: 20957672 PMCID: PMC3025071 DOI: 10.1002/pros.21282] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/31/2010] [Indexed: 11/12/2022]
Abstract
BACKGROUND The antimicrobial peptide, leucine-leucine-37 (LL-37), stimulates proliferation, angiogenesis, and cellular migration, inhibits apoptosis and is associated with inflammation. Since these functional processes are often exaggerated in cancer, the aim of the present study was to investigate the expression and role of LL-37 in prostate cancer (PCa) and establish its value as a therapeutic target. METHODS We evaluated the expression of LL-37 and the murine orthologue, cathelicidin-related antimicrobial peptide (CRAMP) in human and murine prostate tumors, respectively. Compared to normal/benign prostate tissue, both LL-37 and CRAMP were increasingly over-expressed with advancing grades of primary PCa and its metastasis in human tissues and in the transgenic adenocarcinoma mouse prostate (TRAMP) model, correspondingly. We subsequently knocked-down CRAMP in the highly tumorigenic TRAMP-C1 cell line via a RNA interference strategy to examine the importance of CRAMP on cellular proliferation, angiogenesis, invasion, apoptosis, activation of signaling pathways and tumor kinetics. RESULTS Abrogation of CRAMP expression led to decreased proliferation, invasion, type IV collagenase, and the amount of phosphorylated Erk1/2 and Akt signaling in vitro. These results were paralleled in vivo. Syngenic implantation of TRAMP-C1 cells subjected to CRAMP knock-down resulted in a decreased tumor incidence and size, and the down-regulation of pro-tumorigenic mechanisms. CONCLUSIONS CRAMP knock-down in a murine PCa model analogously demonstrated the tumorigenic contributions of LL-37 in PCa and its potential as a novel therapeutic target for the treatment of PCa and potentially, other cancers over-expressing the peptide.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Antimicrobial Cationic Peptides/biosynthesis
- Antimicrobial Cationic Peptides/metabolism
- Cathelicidins/biosynthesis
- Cathelicidins/deficiency
- Cathelicidins/genetics
- Cathelicidins/metabolism
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Gene Knockdown Techniques
- Humans
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Targeted Therapy/methods
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA Interference
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
| | | | | | | | | | | | - Selvarangan Ponnazhagan
- Corresponding author, Selvarangan Ponnazhagan, Ph.D., Department of Pathology, 701 19 Street South, LHRB 513, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, Phone: (205) 934-6731; Fax: (205) 975-9927,
| |
Collapse
|
33
|
Kulkarni MM, Barbi J, McMaster WR, Gallo RL, Satoskar AR, McGwire BS. Mammalian antimicrobial peptide influences control of cutaneous Leishmania infection. Cell Microbiol 2011; 13:913-23. [PMID: 21501359 DOI: 10.1111/j.1462-5822.2011.01589.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cathelicidin-type antimicrobial peptides (CAMP) are important mediators of innate immunity against microbial pathogens acting through direct interaction with and disruption of microbial membranes and indirectly through modulation of host cell migration and activation. Using a mouse knock-out model in CAMP we studied the role of this host peptide in control of dissemination of cutaneous infection by the parasitic protozoan Leishmania. The presence of pronounced host inflammatory infiltration in lesions and lymph nodes of infected animals was CAMP-dependent. Lack of CAMP expression was associated with higher levels of IL-10 receptor expression in bone marrow, splenic and lymph node macrophages as well as higher anti-inflammatory IL-10 production by bone marrow macrophages and spleen cells but reduced production of the pro-inflammatory cytokines IL-12 and IFN-γ by lymph nodes. Unlike wild-type mice, local lesions were exacerbated and parasites were found largely disseminated in CAMP knockouts. Infection of CAMP knockouts with parasite mutants lacking the surface metalloprotease virulence determinant resulted in more robust disseminated infection than in control animals suggesting that CAMP activity is negatively regulated by parasite surface proteolytic activity. This correlated with the ability of the protease to degrade CAMP in vitro and co-localization of CAMP with parasites within macrophages. Our results highlight the interplay of antimicrobial peptides and Leishmania that influence the host immune response and the outcome of infection.
Collapse
Affiliation(s)
- Manjusha M Kulkarni
- Center for Microbial Interface Biology, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
34
|
Castañeda-Delgado J, Hernández-Pando R, Serrano CJ, Aguilar-León D, León-Contreras J, Rivas-Santiago C, Méndez R, González-Curiel I, Enciso-Moreno A, Rivas-Santiago B. Kinetics and cellular sources of cathelicidin during the course of experimental latent tuberculous infection and progressive pulmonary tuberculosis. Clin Exp Immunol 2010; 161:542-50. [PMID: 20636399 PMCID: PMC2962973 DOI: 10.1111/j.1365-2249.2010.04199.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2010] [Indexed: 11/27/2022] Open
Abstract
In spite of advances in immunology on mycobacterial infection, there are few studies on the role of anti-microbial peptides in tuberculosis. The cathelin-related anti-microbial peptide (CRAMP) is the only cathelicidin isolated from mice. In this work we investigated the cellular sources and the production kinetics of this molecule during experimental tuberculosis, using two well-characterized models of latent or chronic infection and progressive disease. The lung of non-infected control mice expressed CRAMP at very low levels. In both models of experimental tuberculosis the main cells immunolabelled for CRAMP were bronchial epithelial cells, macrophages and pneumocytes types II and I. After intratracheal infection with a high bacilli dose (H37Rv strain) in Balb/c mice to produce progressive disease, a high CRAMP gene expression was induced showing three peaks: very early after 1 day of infection, at day 21 when the peak of protective immunity in this model is raised, and at day 28 when the progressive phase starts and the immunoelectronmicroscopy study showed intense immunolabelling in the cell wall and cytoplasm of intracellular bacilli, as well as in cytoplasmic vacuoles. Interestingly, at day 60 post-infection, when advanced progressive disease is well established, characterized by high bacillary loads and extensive tissue damage, CRAMP gene expression decreased but strong CRAMP immunostaining was detected in vacuolated macrophages filled with bacilli. Thus, cathelicidin is highly produced during experimental pulmonary tuberculosis from diverse cellular sources and could have significant participation in its pathogenesis.
Collapse
Affiliation(s)
- J Castañeda-Delgado
- Medical Research Unit-Zacatecas, Mexican Institute of Social Security (IMSS), Zacatecas, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Antimicrobial peptides in the brain. Arch Immunol Ther Exp (Warsz) 2010; 58:365-77. [PMID: 20668978 DOI: 10.1007/s00005-010-0089-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/04/2010] [Indexed: 12/19/2022]
Abstract
Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune system of many species. The brain is an immunologically privileged organ but can produce a robust immune response against pathogens and cell debris, promoting rapid and efficient clearance. AMPs may be critically involved in the innate immune system of the brain. Though the mechanisms of AMPs' action in the brain still need further elucidation, many studies have shown that AMPs are multifunctional molecules in the brain. In addition to antimicrobial action, they take part in congenital and adaptive immune reactions (immunoregulation), function as signaling molecules in tissue repair, inflammation and other important processes through different mechanisms, and they might, in addition, become diagnostic markers of brain disease.
Collapse
|
36
|
Yu FS, Cornicelli MD, Kovach MA, Newstead MW, Zeng X, Kumar A, Gao N, Yoon SG, Gallo RL, Standiford TJ. Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide. THE JOURNAL OF IMMUNOLOGY 2010; 185:1142-9. [PMID: 20566829 DOI: 10.4049/jimmunol.1000509] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TLRs are required for generation of protective lung mucosal immune responses against microbial pathogens. In this study, we evaluated the effect of the TLR5 ligand flagellin on stimulation of antibacterial mucosal immunity in a lethal murine Pseudomonas aeruginosa pneumonia model. The intranasal pretreatment of mice with purified P. aeruginosa flagellin induced strong protection against intratracheal P. aeruginosa-induced lethality, which was attributable to markedly improved bacterial clearance, reduced dissemination, and decreased alveolar permeability. The protective effects of flagellin on survival required TLR5 and were observed even in the absence of neutrophils. Flagellin induced strong induction of innate genes, most notably the antimicrobial peptide cathelicidin-related antimicrobial peptide. Finally, flagellin-induced protection was partially abrogated in cathelicidin-related antimicrobial peptide-deficient mice. Our findings illustrate the profound stimulatory effect of flagellin on lung mucosal innate immunity, a response that might be exploited therapeutically to prevent the development of gram-negative bacterial infection of the respiratory tract.
Collapse
Affiliation(s)
- Fu-shin Yu
- Department of Ophthalmology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Polymyxin B resistance in El Tor Vibrio cholerae requires lipid acylation catalyzed by MsbB. J Bacteriol 2010; 192:2044-52. [PMID: 20154134 DOI: 10.1128/jb.00023-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial peptides are critical for innate antibacterial defense. Both Gram-negative and Gram-positive microbes have mechanisms to alter their surfaces and resist killing by antimicrobial peptides. In Vibrio cholerae, two natural epidemic biotypes, classical and El Tor, exhibit distinct phenotypes with respect to sensitivity to the peptide antibiotic polymyxin B: classical strains are sensitive and El Tor strains are relatively resistant. We carried out mutant screens of both biotypes, aiming to identify classical V. cholerae mutants resistant to polymyxin B and El Tor V. cholerae mutants sensitive to polymyxin B. Insertions in a gene annotated msbB (encoding a predicted lipid A secondary acyltransferase) answered both screens, implicating its activity in antimicrobial peptide resistance of V. cholerae. Analysis of a defined mutation in the El Tor biotype demonstrated that msbB is required for resistance to all antimicrobial peptides tested. Mutation of msbB in a classical strain resulted in reduced resistance to several antimicrobial peptides but in no significant change in resistance to polymyxin B. msbB mutants of both biotypes showed decreased colonization of infant mice, with a more pronounced defect observed for the El Tor mutant. Mass spectrometry analysis showed that lipid A of the msbB mutant for both biotypes was underacylated compared to lipid A of the wild-type isolates, confirming that MsbB is a functional acyltransferase in V. cholerae.
Collapse
|
38
|
Seil M, Kabré E, Nagant C, Vandenbranden M, Fontanils U, Marino A, Pochet S, Dehaye JP. Regulation by CRAMP of the responses of murine peritoneal macrophages to extracellular ATP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:569-78. [PMID: 19913495 DOI: 10.1016/j.bbamem.2009.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/27/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Peritoneal macrophages were isolated from wild type (WT) mice and from mice invalidated for the P2X(7) receptor (KO) which had been pretreated with thioglycolate. In cells from WT mice, 1 mM ATP increased the intracellular concentration of calcium ([Ca(2+)](i)), the uptake of ethidium bromide, the production of reactive oxygen species (ROS), the secretion of IL-1beta, the release of oleic acid and of lactate dehydrogenase; it decreased the intracellular concentration of potassium ([K(+)](i)). In KO mice, ATP transiently increased the [Ca(2+)](i) confirming that the P2X(7) receptor is a major receptor of peritoneal macrophages. WKYMVm, an agonist of receptors for formylated peptides (FPR) also increased the [Ca(2+)](i) in murine macrophages. The slight increase of the [Ca(2+)](i) was strongly potentiated by ivermectin confirming the expression of functional P2X(4) receptors by murine peritoneal macrophages. CRAMP, the unique antimicrobial peptide derived from cathelin in mouse inhibited all the responses coupled to P2X(7) receptors in macrophages from WT mice. Agonists for FPR had no effect on the increase of the [Ca(2+)](i) in response to ATP. CRAMP had no effect on the increase of the [Ca(2+)](i) evoked by a combination of ATP and ivermectin in macrophages from P2X(7)-KO mice. In summary CRAMP inhibits the responses secondary to the activation of the murine P2X(7) receptors expressed by peritoneal macrophages. This inhibition is not mediated by FPR receptors and is specific since CRAMP has no effect on the response coupled to P2X(4) receptors. It can thus be concluded that the interaction between P2X(7) receptors and cathelin-derived antimicrobial peptides is species-specific, in some cases (man) positive in others (mouse) negative.
Collapse
Affiliation(s)
- Michèle Seil
- Laboratoire de Chimie biologique et médicale et de Microbiologie pharmaceutique, Institut de Pharmacie C.P. 205/3, Université libre de Bruxelles, Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sarkar A, Tilly K, Stewart P, Bestor A, Battisti JM, Rosa PA. Borrelia burgdorferi resistance to a major skin antimicrobial peptide is independent of outer surface lipoprotein content. Antimicrob Agents Chemother 2009; 53:4490-4. [PMID: 19651916 PMCID: PMC2764146 DOI: 10.1128/aac.00558-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 06/19/2009] [Accepted: 07/23/2009] [Indexed: 11/20/2022] Open
Abstract
We hypothesize a potential role for Borrelia burgdorferi OspC in innate immune evasion at the initial stage of mammalian infection. We demonstrate that B. burgdorferi is resistant to high levels (>200 microg/ml) of cathelicidin and that this antimicrobial peptide exhibits limited binding to the spirochetal outer membrane, irrespective of OspC or other abundant surface lipoproteins. We conclude that the essential role of OspC is unrelated to resistance to this component of innate immunity.
Collapse
Affiliation(s)
- Amit Sarkar
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, 903 S. 4th Street, Hamilton, MT 59840, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Lisanby MW, Swiecki MK, Dizon BLP, Pflughoeft KJ, Koehler TM, Kearney JF. Cathelicidin administration protects mice from Bacillus anthracis spore challenge. THE JOURNAL OF IMMUNOLOGY 2008; 181:4989-5000. [PMID: 18802102 DOI: 10.4049/jimmunol.181.7.4989] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cathelicidins are a family of cationic peptides expressed in mammals that possess numerous bactericidal and immunomodulatory properties. In vitro analyses showed that human, mouse, and pig cathelicidins inhibited Bacillus anthracis bacterial growth at micromolar concentrations in the presence or absence of capsule. Combined in vitro analyses of the effects of each peptide on spore germination and vegetative outgrowth by time lapse phase contrast microscopy, transmission electron microscopy, and flow cytometric analysis showed that only the pig cathelicidin was capable of directly arresting vegetative outgrowth and killing the developing bacilli within the confines of the exosporium. C57BL/6 mice were protected from spore-induced death by each cathelicidin in a time- and dose-dependent manner. Protection afforded by the porcine cathelicidin was due to its bactericidal effects, whereas the human and mouse cathelicidins appeared to mediate protection through increased recruitment of neutrophils to the site of infection. These findings suggest that cathelicidins might be utilized to augment the initial innate immune response to B. anthracis spore exposure and prevent the development of anthrax.
Collapse
Affiliation(s)
- Mark W Lisanby
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
41
|
Pimecrolimus enhances TLR2/6-induced expression of antimicrobial peptides in keratinocytes. J Invest Dermatol 2008; 128:2646-2654. [PMID: 18496569 DOI: 10.1038/jid.2008.135] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calcineurin inhibitors are potent inhibitors of T-cell-receptor mediated activation of the adaptive immune system. The effects of this class of drug on the innate immune response system are not known. Keratinocytes are essential to innate immunity in skin and rely on toll-like receptors (TLRs) and antimicrobial peptides to appropriately recognize and respond to injury or microbes. In this study we examined the response of cultured human keratinocytes to pimecrolimus. We observed that pimecrolimus enhances distinct expression of cathelicidin, CD14, and human beta-defensin-2 and beta-defensin-3 in response to TLR2/6 ligands. Some of these responses were further enhanced by 1,25 vitamin D3. Pimecrolimus also increased the functional capacity of keratinocytes to inhibit growth of Staphylococcus aureus and decreased TLR2/6-induced expression of IL-10 and IL-1beta. Furthermore, pimecrolimus inhibited nuclear translocation of NFAT and NF-kappaB in keratinocytes. These observations uncover a previously unreported function for pimecrolimus in cutaneous innate host defense.
Collapse
|
42
|
Huang LC, Reins RY, Gallo RL, McDermott AM. Cathelicidin-deficient (Cnlp -/- ) mice show increased susceptibility to Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 2007; 48:4498-508. [PMID: 17898271 PMCID: PMC4234056 DOI: 10.1167/iovs.07-0274] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To examine the clinical progression and innate immune responses during Pseudomonas aeruginosa (PA) keratitis in cathelicidin-deficient (KO) mice. METHODS PA (ATCC 19660) keratitis was induced in KO mice and wild-type (WT) littermates generated on a 129/SVJ background. Clinical score and histopathology were used to monitor the progression of infection at postinfection (PI) days 1, 3, 7, 14, and 21. Mouse corneas were harvested for viable bacteria quantitation, and myeloperoxidase (MPO) assays were performed to determine the number of infiltrating neutrophils. ELISA was used to quantitate interleukin (IL)-1beta, IL-6, macrophage inflammatory peptide (MIP)-2, keratinocyte-derived chemokine (KC), tumor necrosis factor (TNF)-alpha, and vascular endothelial growth factor (VEGF) levels in the corneas. RESULTS WT mice were resistant (cornea healed), whereas KO mice showed increased susceptibility (corneas failed to recover by 21 days or perforated) to PA infection. Clinical scores were significantly elevated in the infected corneas of KO mice versus WT mice at 7, 14, and 21 days PI. Absence of cathelicidin resulted in significantly delayed clearance of PA in the cornea and an increased number of infiltrating neutrophils at 1, 3, 7, and 14 days PI. KO mice also exhibited differential expression of protein levels for IL-1beta, IL-6, MIP-2, KC, TNF-alpha, and VEGF up to day 21 PI compared with the WT mice. CONCLUSIONS Cathelicidin-deficient mice showed considerable susceptibility to PA keratitis. The present study demonstrates direct in vivo evidence that endogenous expression of cathelicidin provides defense against corneal PA infection indicating its importance in host innate immunity at the ocular surface.
Collapse
Affiliation(s)
- Ling C. Huang
- University of Houston, College of Optometry, Houston, Texas
| | - Rose Y. Reins
- University of Houston, College of Optometry, Houston, Texas
| | - Richard L. Gallo
- Department of Medicine, University of California-San Diego, San Diego, California
| | | |
Collapse
|
43
|
Elloumi HZ, Holland SM. Complex regulation of human cathelicidin gene expression: novel splice variants and 5'UTR negative regulatory element. Mol Immunol 2007; 45:204-17. [PMID: 17709140 PMCID: PMC2121615 DOI: 10.1016/j.molimm.2007.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/06/2007] [Accepted: 04/12/2007] [Indexed: 01/11/2023]
Abstract
Cationic antimicrobial peptides play important roles in host defense, linking innate and adaptive immunity. hCAP18, the only human antimicrobial cathelicidin, consists of a conserved N-terminal cathelin-like domain and a C-terminal peptide, LL-37. Expression is regulated during myeloid differentiation, and tightly controlled during infection and inflammation, suggesting active regulation. Using 5' RACE (rapid amplification of cDNA ends), multiple transcription initiation sites were identified, as well as new splice variants leading to novel augmentations of hCAP18 amino acid composition in bone marrow but not peripheral blood neutrophils. Having expressed hCAP18 promoter constructs in cell lines, we found that full-length (-1739) and truncated (-978) promoter constructs had lower luciferase activities than 5'UTR deletion constructs. Transient transfection of progressively deleted constructs in the non-permissive K562 cell line led us to identify a negative regulatory element within the 53 bp immediately upstream of the ATG of hCAP18. Additionally, transient transfection of 5' deletion constructs identified a positive regulatory element within the 101 bases 5' of promoter sequence containing two GT-boxes. Negative and positive regulatory elements within the hCAP18 gene promoter provide new insights into the possible molecular basis of myeloid gene expression.
Collapse
Affiliation(s)
- Houda Zghal Elloumi
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, CRC B3-4141, MSC 1684, Bethesda, MD 20892, USA
| | | |
Collapse
|
44
|
Meredith JM, Munks RJL, Grail W, Hurd H, Eggleston P, Lehane MJ. A novel association between clustered NF-kappaB and C/EBP binding sites is required for immune regulation of mosquito Defensin genes. INSECT MOLECULAR BIOLOGY 2006; 15:393-401. [PMID: 16907826 PMCID: PMC1602061 DOI: 10.1111/j.1365-2583.2006.00635.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A comparative analysis identified key cis-acting regulatory elements responsible for the temporal control of mosquito Defensin gene expression. The promoters of Anopheles gambiae Defensin 1 and two isoforms of Aedes aegypti Defensin A are up-regulated by immune challenge. This stimulated activity depends upon a cluster of three NF-kappaB binding sites and closely associated C/EBP-like motifs, which function as a unit for optimal promoter activity. Binding of NF-kappaB and C/EBP like transcription factors is confirmed by electrophoretic mobility shift assay, including supershifts with antibodies to C/EBP. KappaB-like motifs are abundant within antimicrobial peptide gene promoters and most are very closely associated with putative C/EBP binding sites. This novel association between NF-kappaB and C/EBP binding sites may, therefore, be of widespread significance.
Collapse
Affiliation(s)
- J M Meredith
- School of Life Sciences, Huxley Building, Keele University, Staffordshire, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Chromek M, Slamová Z, Bergman P, Kovács L, Podracká L, Ehrén I, Hökfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 2006; 12:636-41. [PMID: 16751768 DOI: 10.1038/nm1407] [Citation(s) in RCA: 457] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 04/07/2006] [Indexed: 11/09/2022]
Abstract
The urinary tract functions in close proximity to the outside environment, yet must remain free of microbial colonization to avoid disease. The mechanisms for establishing an antimicrobial barrier in this area are not completely understood. Here, we describe the production and function of the cathelicidin antimicrobial peptides LL-37, its precursor hCAP-18 and its ortholog CRAMP in epithelial cells of human and mouse urinary tract, respectively. Bacterial contact with epithelial cells resulted in rapid production and secretion of the respective peptides, and in humans LL-37/hCAP-18 was released into urine. Epithelium-derived cathelicidin substantially contributed to the protection of the urinary tract against infection, as shown using CRAMP-deficient and neutrophil-depleted mice. In addition, clinical E. coli strains that were more resistant to LL-37 caused more severe urinary tract infections than did susceptible strains. Thus, cathelicidin seems to be a key factor in mucosal immunity of the urinary tract.
Collapse
Affiliation(s)
- Milan Chromek
- Department of Clinical Microbiology, Microbiology and Tumorbiology Center, Karolinska University Hospital and Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C, Streib JE, Leung DYM. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 2006; 24:341-8. [PMID: 16546102 DOI: 10.1016/j.immuni.2006.02.006] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 01/03/2006] [Accepted: 02/01/2006] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is associated with eczema vaccinatum (EV), a disseminated viral skin infection that follows inoculation with vaccinia virus (VV). This study examined whether AD skin can control VV replication, and the role of IL-4 and IL-13 in modulating the human cathelicidin LL-37, an antimicrobial peptide that kills VV. AD skin exhibited increased VV replication and decreased LL-37 expression compared to normal or psoriasis skin. IL-4/IL-13 enhanced VV replication while downregulating LL-37 in VV-stimulated keratinocytes. Neutralizing IL-4/IL-13 in AD skin augmented LL-37 and inhibited VV replication. Cathelicidins were induced via toll-like receptor-3 and were inhibited by IL-4/IL-13 through STAT-6. Skin from cathelicidin-deficient mice exhibited reduced ability to control VV replication. Exogenous LL-37 controlled vaccinia viral replication in infected keratinocytes and AD skin explants. The current study demonstrates that Th2 cytokines enhance VV replication in AD skin by subverting the innate immune response against VV in a STAT-6-dependent manner.
Collapse
Affiliation(s)
- Michael D Howell
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Medical and Research Center, University of Colorado Health Sciences Center, Denver, Colorado 80206, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Patients with atopic dermatitis (AD) have an increased risk of infection with several viruses compared to patients with other inflammatory skin disorders such as psoriasis. In this issue of Immunity, it is found that the cytokine milieu in the skin of AD patients profoundly affects the innate response to vaccinia virus (VV) by blocking production of the antimicrobial peptide LL-37.
Collapse
Affiliation(s)
- Jodie M Harrison
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | |
Collapse
|
48
|
Pochet S, Tandel S, Querriére S, Tre-Hardy M, Garcia-Marcos M, De Lorenzi M, Vandenbranden M, Marino A, Devleeschouwer M, Dehaye JP. Modulation by LL-37 of the responses of salivary glands to purinergic agonists. Mol Pharmacol 2006; 69:2037-46. [PMID: 16514052 DOI: 10.1124/mol.105.021444] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interaction of mice submandibular gland cells with LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES), a cationic peptide with immunomodulatory properties, was investigated. LL-37 at a concentration that did not affect the integrity of the cells increased the uptake of calcium and activated a calcium-insensitive phospholipase A(2) (PLA(2)). The small release of ATP induced by LL-37 could not account for this stimulation because apyrase did not significantly block the response to LL-37. The divalent cation magnesium inhibited the response to LL-37, but this inhibition was probably nonspecific because it also inhibited the in vitro bacteriostatic effect of the peptide. The increase of calcium uptake by LL-37 was not affected by 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a rather specific inhibitor of P2X(7) receptors in mice. LL-37 also increased [Ca(2+)](i) in cells from mice invalidated for these receptors. LL-37 had no effect on the response to carbachol. It inhibited the increase of [Ca(2+)](i) and the activation of phospholipase D by ATP. It potentiated the activation of the PLA(2) by the nucleotide. Finally, LL-37 increased the fluidity of the plasma membrane of submandibular gland cells. In conclusion, our results suggest that LL-37 is an autocrine regulator of submandibular gland cells. It does not stimulate mouse P2X(7) receptors but modulates their responses.
Collapse
Affiliation(s)
- Stéphanie Pochet
- Laboratoire de Biochimie et de Biologie Cellulaire, Université libre de Bruxelles-Institut de Pharmacie C.P. 205/3, Boulevard du Triomphe, B1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF. Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. THE JOURNAL OF IMMUNOLOGY 2005; 174:4901-7. [PMID: 15814717 DOI: 10.4049/jimmunol.174.8.4901] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cathelicidin-related antimicrobial peptide (mCRAMP), the sole murine cathelicidin, is encoded by the gene Cnlp. We show that mCRAMP expression in the intestinal tract is largely restricted to surface epithelial cells in the colon. Synthetic mCRAMP had antimicrobial activity against the murine enteric pathogen Citrobacter rodentium, which like the related clinically important human pathogens enteropathogenic Escherichia coli and enterohemorrhagic E. coli, adheres to the apical membrane of intestinal epithelial cells. Colon epithelial cell extracts from Cnlp+/+ mice had significantly greater antimicrobial activity against C. rodentium than those of mutant Cnlp-/- mice that lack mCRAMP. Cnlp-/- mice developed significantly greater colon surface and crypt epithelial cell colonization, surface epithelial cell damage, and systemic dissemination of infection than Cnlp+/+ mice after oral infection with C. rodentium. Moreover, Cnlp+/+ mice were protected from oral infections with C. rodentium inocula that infected the majority of Cnlp-/- mice. These results establish cathelicidin as an important component of innate antimicrobial defense in the colon.
Collapse
Affiliation(s)
- Mitsutoshi Iimura
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0623, USA
| | | | | | | | | | | |
Collapse
|
50
|
Dorschner RA, Lopez-Garcia B, Massie J, Kim C, Gallo RL. Innate immune defense of the nail unit by antimicrobial peptides. J Am Acad Dermatol 2004; 50:343-8. [PMID: 14988673 DOI: 10.1016/j.jaad.2003.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The nail is susceptible to microbial invasion, yet is usually able to defend itself from infection. This occurs despite isolation from cell-mediated immunity. OBJECTIVE The aim of this study was to determine whether soluble innate immune molecules are present in the nail environment that can protect against microbial colonization. METHODS Chromatographic techniques were used to purify cationic antimicrobial molecules from porcine hoof extracts. Sections of human and mouse digits were immunostained with antibodies to each species' cathelicidin antimicrobial peptide. Liquid antimicrobial assays were used to determine the activity of these molecules against relevant pathogens. RESULTS Human, porcine, and murine nails contain antimicrobial molecules, and the human cathelicidin LL-37 can kill Candida albicans. CONCLUSION The presence of antimicrobial peptides in nails with activity against relevant nail pathogens may account for the ability of the nail unit to resist infection in the absence of direct access to the cellular immune system.
Collapse
Affiliation(s)
- Robert A Dorschner
- Division of Dermatology, University of California-San Diego, 33550 La Jolla Village Drive, San Diego, CA 92161, USA
| | | | | | | | | |
Collapse
|