1
|
Johnson SM, Gumnit MG, Johnson SM, Baker TL, Watters JJ. Disinhibition does not play a role in endomorphin-2-induced changes in inspiratory motoneuron output produced by in vitro neonatal rat preparations. Respir Physiol Neurobiol 2024; 320:104186. [PMID: 37944625 PMCID: PMC10843717 DOI: 10.1016/j.resp.2023.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Low level activation of mu-opioid receptors (MORs) in neonatal rat brainstem-spinal cord preparations increases inspiratory burst amplitude recorded on cervical spinal roots. We tested whether: (1) MOR activation with an endogenous ligand, such as endomorphin-2, increases inspiratory burst amplitude, (2) disinhibition of GABAergic or glycinergic inhibitory synaptic transmission is involved, and (3) inflammation alters endomorphin-2 effects. Using neonatal rat (P0-P3) brainstem-spinal cord preparations, bath-applied endomorphin-2 (10-200 nM) increased inspiratory burst amplitude and decreased burst frequency. Blockade of GABAA receptors (picrotoxin), glycine receptors (strychnine), or both (picrotoxin and strychnine) did not abolish endomorphin-2-induced effects. In preparations isolated from neonatal rats injected 3 h previously with lipopolysaccharide (LPS, 0.1 mg/kg), endomorphin-2 continued to decrease burst frequency but abolished the burst amplitude increase. Collectively, these data indicate that disinhibition of inhibitory synaptic transmission is unlikely to play a role in endomorphin-2-induced changes in inspiratory motor output, and that different mechanisms underlie the endomorphin-2-induced increases in inspiratory burst amplitude and decreases in burst frequency.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Maia G Gumnit
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
A Novel Multi-Target Mu/Delta Opioid Receptor Agonist, HAGD, Produced Potent Peripheral Antinociception with Limited Side Effects in Mice and Minimal Impact on Human Sperm Motility In Vitro. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010427. [PMID: 36615612 PMCID: PMC9824695 DOI: 10.3390/molecules28010427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Pain is a common clinical symptom among patients. Although various opioid analgesics have been developed, their side effects hinder their application. This study aimed to develop a novel opioid analgesic, HAGD (H-Tyr-D-AIa-GIy-Phe-NH2), with limited side effects. In vivo studies on mouse models as well as in vitro studies on Chinese hamster ovary (CHO) cells expressing human mu, delta, or kappa opioid receptors (CHOhMOP, CHOhDOP, and CHOhKOP, respectively) and human sperm were conducted. Compared with subcutaneous morphine (10 mg/kg), subcutaneous HAGD (10 mg/kg) produced equipotent or even greater antinociception with a prolonged duration by activating mu/delta opioid receptors in preclinical mouse pain models. The analgesic tolerance, rewarding effects (i.e., conditioned place preference and acute hyperlocomotion), and gastrointestinal transit inhibition of HAGD were significantly reduced compared with those of morphine. Both HAGD and morphine exhibited a withdrawal response and had no impacts on motor coordination. In CHOhMOP and CHOhDOP, HAGD showed specific and efficient intracellular Ca2+ stimulation. HAGD had minimal impact on human sperm motility in vitro, whereas 1 × 10-7 and 1 × 10-8 mol/L of morphine significantly declined sperm motility at 3.5 h. Overall, HAGD may serve as a promising antinociceptive compound.
Collapse
|
3
|
Zhang YZ, Wang MM, Wang SY, Wang XF, Yang WJ, Zhao YN, Han FT, Zhang Y, Gu N, Wang CL. Novel Cyclic Endomorphin Analogues with Multiple Modifications and Oligoarginine Vector Exhibit Potent Antinociception with Reduced Opioid-like Side Effects. J Med Chem 2021; 64:16801-16819. [PMID: 34781680 DOI: 10.1021/acs.jmedchem.1c01631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endomorphins (EMs) are potent pharmaceuticals for the treatment of pain. Herein, we investigated several novel EM analogues with multiple modifications and oligoarginine conjugation. Our results showed that analogues 1-6 behaved as potent μ-opioid agonists and enhanced stability and lipophilicity. Analogues 5 and 6 administered centrally and peripherally induced significant and prolonged antinociceptive effects in acute pain. Both analogues also produced long-acting antiallodynic effects against neuropathic and inflammatory pain. Furthermore, they showed a reduced acute antinociceptive tolerance. Analogue 6 decreased the extent of chronic antinociceptive tolerance, and analogue 5 exhibited no tolerance at the supraspinal level. Particularly, they displayed nontolerance-forming antinociception at the peripheral level. In addition, analogues 5 and 6 exhibited reduced or no opioid-like side effects on gastrointestinal transit, conditioned place preference (CPP), and motor impairment. The present investigation established that multiple modifications and oligoarginine-vector conjugation of EMs would be helpful in developing novel analgesics with fewer side effects.
Collapse
Affiliation(s)
- Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Meng-Meng Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xiao-Fang Wang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jiao Yang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ya-Nan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.,Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Komiya E, Tominaga M, Hatano R, Kamikubo Y, Toyama S, Sakairi H, Honda K, Itoh T, Kamata Y, Tsurumachi M, Kishi R, Ohnuma K, Sakurai T, Morimoto C, Takamori K. Peripheral endomorphins drive mechanical alloknesis under the enzymatic control of CD26/DPPIV. J Allergy Clin Immunol 2021; 149:1085-1096. [PMID: 34411589 DOI: 10.1016/j.jaci.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Mechanical alloknesis (or innocuous mechanical stimuli-evoked itch) often occurs in dry skin-based disorders such as atopic dermatitis and psoriasis. However, the molecular and cellular mechanisms underlying mechanical alloknesis remain unclear. We recently reported the involvement of CD26 in the regulation of psoriatic itch. This molecule exhibits dipeptidyl peptidase IV (DPPIV) enzyme activity and exerts its biologic effects by processing various substances, including neuropeptides. OBJECTIVE The aim of the present study was to investigate the peripheral mechanisms of mechanical alloknesis by using CD26/DPPIV knockout (CD26KO) mice. METHODS We applied innocuous mechanical stimuli to CD26KO or wild-type mice. The total number of scratching responses was counted as the alloknesis score. Immunohistochemical and behavioral pharmacologic analyses were then performed to examine the physiologic activities of CD26/DPPIV or endomorphins (EMs), endogenous agonists of μ-opioid receptors. RESULTS Mechanical alloknesis was more frequent in CD26KO mice than in wild-type mice. The alloknesis score in CD26KO mice was significantly reduced by the intradermal administration of recombinant DPPIV or naloxone methiodide, a peripheral μ-opioid receptor antagonist, but not by that of mutant DPPIV without enzyme activity. EMs (EM-1 and EM-2), selective ligands for μ-opioid receptors, are substrates for DPPIV. Immunohistochemically, EMs were located in keratinocytes, fibroblasts, and peripheral sensory nerves. Behavioral analyses revealed that EMs preferentially provoked mechanical alloknesis over chemical itch. DPPIV-digested forms of EMs did not induce mechanical alloknesis. CONCLUSION The present results suggest that EMs induce mechanical alloknesis at the periphery under the enzymatic control of CD26/DPPIV.
Collapse
Affiliation(s)
- Eriko Komiya
- Juntendo Itch Research Center, Institute for Environmental and Gender-Specific Medicine, Graduate School of Medicine, Juntendo University, Chiba, Japan
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center, Institute for Environmental and Gender-Specific Medicine, Graduate School of Medicine, Juntendo University, Chiba, Japan; Anti-Aging Skin Research Laboratory, Graduate School of Medicine, Juntendo University, Chiba, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sumika Toyama
- Juntendo Itch Research Center, Institute for Environmental and Gender-Specific Medicine, Graduate School of Medicine, Juntendo University, Chiba, Japan
| | - Hakushun Sakairi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kotaro Honda
- Juntendo Itch Research Center, Institute for Environmental and Gender-Specific Medicine, Graduate School of Medicine, Juntendo University, Chiba, Japan
| | - Takumi Itoh
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yayoi Kamata
- Juntendo Itch Research Center, Institute for Environmental and Gender-Specific Medicine, Graduate School of Medicine, Juntendo University, Chiba, Japan; Anti-Aging Skin Research Laboratory, Graduate School of Medicine, Juntendo University, Chiba, Japan
| | - Munehiro Tsurumachi
- Juntendo Itch Research Center, Institute for Environmental and Gender-Specific Medicine, Graduate School of Medicine, Juntendo University, Chiba, Japan; Department of Dermatology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Ryoma Kishi
- Juntendo Itch Research Center, Institute for Environmental and Gender-Specific Medicine, Graduate School of Medicine, Juntendo University, Chiba, Japan; Department of Dermatology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center, Institute for Environmental and Gender-Specific Medicine, Graduate School of Medicine, Juntendo University, Chiba, Japan; Anti-Aging Skin Research Laboratory, Graduate School of Medicine, Juntendo University, Chiba, Japan; Department of Dermatology, Juntendo University Urayasu Hospital, Chiba, Japan.
| |
Collapse
|
5
|
Wojciechowski P, Kleczkowska P, Mollica A, Stefanucci A, Kaczyńska K. Vagal apnea and hypotension evoked by systemic injection of an antinociceptive analogue of endomorphin-2. Eur J Pharmacol 2020; 885:173514. [PMID: 32860810 DOI: 10.1016/j.ejphar.2020.173514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/03/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
Abstract
PK20M (Dmt-D-Lys-Phe-Phe-OH) is a novel modified endomorphin-2 (EM-2) peptide producing strong dose- and time-dependent antinociceptive activity. Yet its prototype, endogenous EM-2, has been reported to trigger respiratory and vascular effects such as apnea and hypotension. The purpose of this study was to investigate the potency of the PK20M to evoke respiratory and cardiovascular responses in comparison to endogenous endomorphins. The engagement of the vagal pathway and μ opioid receptors in mediation of these responses was investigated. The effects of intravenous injections of PK20M, EM-1, and EM-2 were studied in anaesthetized, spontaneously breathing rats. The main dose-dependent effect of all endomorphins in the intact rats was immediate apnea, blood pressure and heart rate decrease. PK20M produced apnea in at least half of the intact animals in a much smaller dose than EM-1 and EM-2. The effects of all compounds were abrogated by pre-treatment with MNLX, a peripherally acting μ receptor antagonist. Cervical vagotomy eliminated arrest of breathing in the case of each tested compound. Hypotension was reduced by vagi section only after EM-1 and EM-2 administration. Our results demonstrated that apnea and bradycardia caused by systemic injection of all endomorphins were mediated via activation of μ vagal opioid receptors. The hypotension depended on intact vagi nerves only in the case of EM-1 and EM-2, whereas PK20M decreased blood pressure via other mechanisms outside vagal innervation. Modified opioid agonist is more potent in evoking extended hypotension; at the same time, it produces an arrest of breathing less frequently than its prototype EM-2.
Collapse
Affiliation(s)
- Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Kleczkowska
- Department of Pharmacodynamics, The Centre for Preclinical Research (CBP), Medical University of Warsaw, Poland
| | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
6
|
Adamska-Bartłomiejczyk A, Lipiński PFJ, Piekielna-Ciesielska J, Kluczyk A, Janecka A. Pharmacological Profile and Molecular Modeling of Cyclic Opioid Analogues Incorporating Various Phenylalanine Derivatives. ChemMedChem 2020; 15:1322-1329. [PMID: 32412162 DOI: 10.1002/cmdc.202000248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Indexed: 12/16/2022]
Abstract
Peptide-based agonists of the μ opioid receptor (μOR) are promising therapeutic candidates for pain relief with reduced side effects compared to morphine. A deep understanding of μOR-ligand interactions is necessary for future design of peptide-based opioid analgesics. To explore the requirements of the μOR binding pocket, eight new analogues of our cyclic peptide Tyr-c[d-Lys-Phe-Phe-Asp]NH2 displaying high μOR affinity were synthesized, in which Phe in either the third or fourth position was replaced by various derivatives of this amino acid (β3 -Phe, homoPhe, β3 -homoPhe and PhGly). The aim of this research was to examine the structural effects of such modifications on the bioactivity, and both experimental and theoretical methods were used. The binding of the cyclic analogues to all three OR types (μ, δ, κ) was assessed by radioligand competitive binding assay, and their functional activity was determined in a calcium mobilization assay. In order to provide structural hypotheses explaining the obtained experimental affinities, the complexes of the cyclic peptides with μOR were subjected to molecular modeling.
Collapse
Affiliation(s)
- Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Piotr F J Lipiński
- Department of Neuropeptides Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Justyna Piekielna-Ciesielska
- Department of Biomolecular Chemistry Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
7
|
Zhao L, Luo K, Wang Z, Wang Y, Zhang X, Yang D, Ma M, Zhou J, Cui J, Wang J, Han CZY, Liu X, Wang R. Design, synthesis, and biological activity of new endomorphin analogs with multi-site modifications. Bioorg Med Chem 2020; 28:115438. [PMID: 32199689 DOI: 10.1016/j.bmc.2020.115438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Endomorphin (EM)-1 and EM-2 are the most effective endogenous analgesics with efficient separation of analgesia from the risk of adverse effects. Poor metabolic stability and ineffective analgesia after peripheral administration were detrimental for the use of EMs as novel clinical analgesics. Therefore, here, we aimed to establish new EM analogs via introducing different bifunctional d-amino acids at position 2 of [(2-furyl)Map4]EMs. The combination of [(2-furyl)Map4]EMs with D-Arg2 or D-Cit2 yielded analogs with enhanced binding affinity to the μ-opioid receptor (MOR) and increased stability against enzymatic degradation (t1/2 > 300 min). However, the agonistic activities of these analogs toward MOR were slightly reduced. Similar to morphine, peripheral administration of the analog [D-Cit2, (2-furyl)Map4]EM-1 (10) significantly inhibited the pain behavior of mice in multiple pain models. In addition, this EM-1 analog was associated with reduced tolerance, less effect on gastrointestinal mobility, and no significant motor impairment. Compared to natural EMs, the EM analogs synthesized herein had enhanced metabolic stability, bioavailability, and analgesic properties.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Keyao Luo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhaojuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Xianghui Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Mengtao Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jiaming Cui
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Chao-Zhen-Yi Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xin Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
8
|
Dvorácskó S, Keresztes A, Mollica A, Stefanucci A, Macedonio G, Pieretti S, Zádor F, Walter FR, Deli MA, Kékesi G, Bánki L, Tuboly G, Horváth G, Tömböly C. Preparation of bivalent agonists for targeting the mu opioid and cannabinoid receptors. Eur J Med Chem 2019; 178:571-588. [PMID: 31220675 DOI: 10.1016/j.ejmech.2019.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 11/17/2022]
Abstract
In order to obtain novel pharmacological tools and to investigate a multitargeting analgesic strategy, the CB1 and CB2 cannabinoid receptor agonist JWH-018 was conjugated with the opiate analgesic oxycodone or with an enkephalin related tetrapeptide. The opioid and cannabinoid pharmacophores were coupled via spacers of different length and chemical structure. In vitro radioligand binding experiments confirmed that the resulting bivalent compounds bound both to the opioid and to the cannabinoid receptors with moderate to high affinity. The highest affinity bivalent derivatives 11 and 19 exhibited agonist properties in [35S]GTPγS binding assays. These compounds activated MOR and CB (11 mainly CB2, whereas 19 mainly CB1) receptor-mediated signaling, as it was revealed by experiments using receptor specific antagonists. In rats both 11 and 19 exhibited antiallodynic effect similar to the parent drugs in 20 μg dose at spinal level. These results support the strategy of multitargeting G-protein coupled receptors to develop lead compounds with antinociceptive properties.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Enkephalins/chemistry
- Enkephalins/pharmacology
- Indoles/chemistry
- Indoles/pharmacology
- Mice
- Molecular Structure
- Naphthalenes/chemistry
- Naphthalenes/pharmacology
- Oxycodone/chemistry
- Oxycodone/pharmacology
- Rats
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Attila Keresztes
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Giorgia Macedonio
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Stefano Pieretti
- Istituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei Farmaci, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ferenc Zádor
- Laboratory of Opioid Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Gabriella Kékesi
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720, Szeged, Dóm tér 10., Hungary
| | - László Bánki
- Department of Traumatology, Faculty of Medicine, University of Szeged, 6725, Szeged, Semmelweis u. 6., Hungary
| | - Gábor Tuboly
- Department of Neurology, Faculty of Medicine, University of Szeged, 6725, Szeged, Semmelweis u. 6., Hungary
| | - Gyöngyi Horváth
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720, Szeged, Dóm tér 10., Hungary
| | - Csaba Tömböly
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary.
| |
Collapse
|
9
|
Balogh M, Varga BK, Karádi DÁ, Riba P, Puskár Z, Kozsurek M, Al-Khrasani M, Király K. Similarity and dissimilarity in antinociceptive effects of dipeptidyl-peptidase 4 inhibitors, Diprotin A and vildagliptin in rat inflammatory pain models following spinal administration. Brain Res Bull 2019; 147:78-85. [PMID: 30738866 DOI: 10.1016/j.brainresbull.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/05/2019] [Indexed: 12/31/2022]
Abstract
Dipeptidyl-peptidase 4 (DPP4) enzyme is involved in the degradation of many biologically active peptides including opioids. Its role in pain transmission is poorly elucidated. Recently we reported on the spinal antihyperalgesic effects of DPP4 inhibitors, Ile-Pro-Ile (Diprotin A) and vildagliptin in carrageenan-evoked acute inflammatory pain in rats. The present study investigated the effects of intrathecal (it.) diprotin A and vildagliptin in Complete Freund's Adjuvant- (CFA) and formalin induced pain in rats. The former assay can model the subchronic inflammatory pain condition and the later one reflects both acute tonic and inflammatory pain conditions. The involvement of opioid receptor (OR) subtypes, Y1-, and GLP1 receptors were also investigated. In CFA pain model it. diprotin A or vildagliptin dose-dependently inhibits hyperalgesia in ipsilateral while has no effect in contralateral paws. The peak effect was achieved 30 min following drug administration which was used for further analysis. Both compounds showed naltrexone reversible antihyperalgesia. Co-administration of OR-subtype-selective antagonists with diprotin A and vildagliptin revealed involvement of μ and δ > μ opioid receptors, respectively. Co-administered Y1 but not GLP1 receptor antagonists reversed the antihyperalgesic action of both DPP4 inhibitors. In touch-hypersensitivity both compounds were ineffective. In formalin test only diprotin A showed μ and δ OR-mediated antinociception and only in the 2nd phase. This effect was Y1 or GLP-1 receptor antagonist insensitive. In conclusion, diprotin A and vildagliptin display antinociception of different mechanisms of action in subchronic inflammatory pain. Furthermore, the spinal pain relay points of inflammatory pain of acute or subchronic conditions were more effectively affected by diprotin A than vildagliptin which needs future elucidation.
Collapse
Affiliation(s)
- Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary
| | - Bence Kálmán Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary
| | - Dávid Árpád Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, P.O.Box 2, H-1428, Budapest, Hungary
| | - Márk Kozsurek
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, P.O.Box 2, H-1428, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445, Budapest, Hungary.
| |
Collapse
|
10
|
Yuan BY, Liu WZ, Wang XF, Zhang YZ, Yang DJ, Wang CL. Endomorphin-1 analogs with oligoarginine-conjugation at C-terminus produce potent antinociception with reduced opioid tolerance in paw withdrawal test. Peptides 2018; 106:96-101. [PMID: 30016700 DOI: 10.1016/j.peptides.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/01/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022]
Abstract
For clinical use, it is essential to develop potent endomorphin (EM) analogs with reduced antinociceptive tolerance. In the present study, the antinociceptive activities and tolerance development of four potent EM-1 analogs with C-terminal oligoarginine-conjugation was evaluated and compared in the radiant heat paw withdrawal test. Following intracerebroventricular (i.c.v.) administration, all analogs 1-4 produced potent and prolonged antinociceptive effects. Notably, analogs 2 and 4 with the introduction of D-Ala in position 2 exhibited relatively higher analgesic potencies than those of analogs 1 and 3 with β-Pro substitution, consistent with their μ-opioid binding characteristic. In addition, at a dose of 50 μmol/kg, endomorphin-1 (EM-1) failed to produce any significant antinociceptive activity after peripheral administration, whereas analogs 1-4 induced potent antinociceptive effects with an increased duration of action. Herein, our results indicated the development of antinociceptive tolerance to EM-1 and morphine at the supraspinal level on day 7. By contrast, analogs 1-4 decreased the antinociceptive tolerance. Furthermore, subcutaneous (s.c.) administration of morphine at 50 μmol/kg also developed the antinociceptive tolerance, whereas the extent of tolerance developed to analogs 1-4 was largely reduced. Especially, analog 4 exhibited non-tolerance-forming antinociception after peripheral administration. The present investigation gave the evidence that C-terminal conjugation of EM-1 with oligoarginine vector will facilitate the development of novel opioid analgesics with reduced opioid tolerance.
Collapse
Affiliation(s)
- Bi-Yu Yuan
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Wei-Zhe Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xiao-Fang Wang
- Jiangxi University of traditional Chinese Medicine, Nanchang, China
| | - Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Dai-Jun Yang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
11
|
Enzymatic clickable functionalization of peptides via computationally engineered peptide amidase. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Adamska-Bartłomiejczyk A, Borics A, Tömböly C, Dvorácskó S, Lisowski M, Kluczyk A, Wołczański G, Piekielna-Ciesielska J, Janecka A. Synthesis, receptor binding studies, optical spectroscopic and in silico structural characterization of morphiceptin analogs with cis-4-amino-L-proline residues. J Pept Sci 2017; 23:864-870. [PMID: 29110363 DOI: 10.1002/psc.3050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023]
Abstract
Three novel morphiceptin analogs, in which Pro in position 2 and/or 4 was replaced by cis-4-aminoproline connected with the preceding amino acid through the primary amino group, were synthesized. The opioid receptor affinities, functional assay results, enzymatic degradation studies and experimental and in silico structural analysis of such analogs are presented. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Attila Borics
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Marek Lisowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Grzegorz Wołczański
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Justyna Piekielna-Ciesielska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
13
|
Wang Y, Zhou J, Liu X, Zhao L, Wang Z, Zhang X, Wang K, Wang L, Wang R. Structure-constrained endomorphin analogs display differential antinociceptive mechanisms in mice after spinal administration. Peptides 2017; 91:40-48. [PMID: 28363796 DOI: 10.1016/j.peptides.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
We previously reported a series of novel endomorphin analogs with unnatural amino acid modifications. These analogs display good binding affinity and functional activity toward the μ opioid receptor (MOP). In the present study, we further investigated the spinal antinociceptive activity of these compounds. The analogs were potent in several nociceptive models. Opioid antagonists and antibodies against several endogenous opioid peptides were used to determine the mechanisms of action of these peptides. Intrathecal pretreatment with naloxone and β-funaltrexamine (β-FNA) effectively inhibited analog-induced analgesia, demonstrating that activity of the analogs is regulated primarily through MOP. Antinociception induced by analog 2 through 4 was not reversed by δ opioid receptor (DOP) or κ opioid receptor (KOP) antagonist; antibodies against dynorphin-A (1-17), dynorphin-B (1-13), and Leu5/Met5-enkephalin had no impact on the antinociceptive effects of these analogs. In contrast, antinociceptive effects induced by a spinal injection of the fluorine substituted analog 1 were significantly reversed by KOP antagonism. Furthermore, intrathecal pretreatment with antibodies against dynorphin-B (1-13) attenuated the antinociceptive effect of analog 1. These results indicate that the antinociceptive activity exerted by intrathecally-administered analog 1 is mediated, in part, through KOP with increased release of dynorphin-B (1-13). The chemical modifications used in the present study may serve as a useful tool to gain insight into the mechanisms of endomorphins activity.
Collapse
MESH Headings
- Analgesia
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/antagonists & inhibitors
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Analysis of Variance
- Animals
- Antibodies/immunology
- Dynorphins/administration & dosage
- Dynorphins/antagonists & inhibitors
- Dynorphins/chemistry
- Dynorphins/pharmacology
- Enkephalin, Leucine/administration & dosage
- Enkephalin, Leucine/antagonists & inhibitors
- Enkephalin, Leucine/chemistry
- Enkephalin, Leucine/pharmacology
- Enkephalin, Methionine/administration & dosage
- Enkephalin, Methionine/antagonists & inhibitors
- Enkephalin, Methionine/chemistry
- Enkephalin, Methionine/pharmacology
- Fluorine/chemistry
- Injections, Spinal
- Male
- Mice
- Naloxone/administration & dosage
- Naloxone/pharmacology
- Naltrexone/administration & dosage
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligopeptides/administration & dosage
- Oligopeptides/antagonists & inhibitors
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Opioid Peptides/administration & dosage
- Opioid Peptides/antagonists & inhibitors
- Opioid Peptides/chemistry
- Opioid Peptides/pharmacology
- Pain/drug therapy
- Pain/metabolism
- Pain Measurement
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, sigma/antagonists & inhibitors
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xin Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Long Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhaojuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xianghui Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Kezhou Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
14
|
Original endomorphin-1 analogues exhibit good analgesic effects. Bioorg Med Chem Lett 2017; 27:1557-1560. [DOI: 10.1016/j.bmcl.2017.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 01/21/2023]
|
15
|
Endomorphin-2 analogs with C-terminal esterification produce potent systemic antinociception with reduced tolerance and gastrointestinal side effects. Neuropharmacology 2017; 116:98-109. [DOI: 10.1016/j.neuropharm.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 01/28/2023]
|
16
|
Liu Z, Zhao H, Shu L, Zhang Y, Okeke C, Zhang L, Li J, Li N. Preparation and evaluation of Baicalin-loaded cationic solid lipid nanoparticles conjugated with OX26 for improved delivery across the BBB. Drug Dev Ind Pharm 2016; 41:353-61. [PMID: 25784073 DOI: 10.3109/03639045.2013.861478] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE A novel brain targeting drug delivery system based on OX26 antibody conjugation on PEGylated cationic solid lipid nanoparticles (OX26-PEG-CSLN) was prepared. METHODS The Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody (OX26-PEG-CSLN) were prepared by emulsion evaporation-solidification at low temperature method. The immune-gold labeled OX26-PEG-CSLN was visualized by transmission electron microscopy. The mean diameter and zeta potential of OX26-PEG-CSLN, PEG-CSLN and CSLN were determined using a Zetasizer. The entrapment efficiency of OX26-PEG-CSLN, PEG-CSLN and CSLN was determined by ultrafiltration centrifugation method. And the solid-state characterization of OX26-PEG-CSLN and CSLN were analyzed by X-ray. Pharmacokinetics studies were conducted by in vivo microdialysis in rat cerebrospinal fluid. RESULTS The results showed that the OX26-PEG-CSLN, PEG-CSLN and CSLN had average diameters of 47.68 ± 1.65, 27.20 ± 1.70 and 33.89 ± 5.74 nm, Zeta potentials of -0.533 ± 0.115 mV, 11.200 ± 0.500 mV and 11.080 ± 1.170 mV and entrapment efficiencies of 83.03 ± 0.01%, 92.90 ± 3.50% and 97.83 ± 0.19%, respectively. In the pharmacokinetics studies, the AUC value of OX26-PEG-CSLN was11.08-fold higher than that of the Baicalin solution (SOL) (p<0.01), and 1.12-fold higher than that of the CSLN (p>0.05); the Cmax value of OX26-PEG-CSLN was 7.88-fold higher than that of SOL (p<0.01) and 1.12-fold (p<0.01) higher than that of the CSLN, respectively. CONCLUSION These results demonstrated OX26-PEG-CSLN could be a promising carrier to deliver drugs across the BBB for the treatment of brain diseases.
Collapse
Affiliation(s)
- Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin , P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu X, Zhao L, Wang Y, Mou L, Yang J, Zhang Y, Wang D, Wang R. Design, synthesis, and evaluation of new endomorphin analogs with enhanced central antinociception after peripheral administration. Bioorg Med Chem Lett 2015; 25:5393-7. [DOI: 10.1016/j.bmcl.2015.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023]
|
18
|
Wang Y, Liu X, Wang D, Yang J, Zhao L, Yu J, Wang R. Endomorphin-1 analogues (MELs) penetrate the blood–brain barrier and exhibit good analgesic effects with minimal side effects. Neuropharmacology 2015; 97:312-21. [DOI: 10.1016/j.neuropharm.2015.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
|
19
|
Bocsik A, Darula Z, Tóth G, Deli MA, Wollemann M. Transfer of opiorphin through a blood-brain barrier culture model. Arch Med Res 2015; 46:502-6. [PMID: 26143971 DOI: 10.1016/j.arcmed.2015.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/23/2015] [Indexed: 11/16/2022]
Abstract
Opioid peptides are potent analgesics with therapeutic potential in the treatment of acute and chronic pain. Their efficacy is limited by peptidases (enkephalinases). Opiorphin pentapeptide (QRFSR) is the first characterized human endogenous inhibitor of enkephalinases. The peptide is able to increase the binding and affinity of endogenous opiates to mu opioid receptors; thus, the mechanism of opiorphin may provide a new therapeutic approach in pain management. The analgesic effect of opiorphin was proven in several earlier published in vitro and in vivo studies. Our aim was to test the transfer of opiorphin through a blood-brain barrier model for the first time. The flux of opiorphin was tested on a blood-brain barrier culture model consisting of rat brain endothelial, glial and pericyte cells. Brain endothelial cells in this triple co-culture model form tight monolayers characterized by transendothelial electrical resistance measurement. Relative quantity of the peptide was estimated by mass spectrometry. The transfer of opiorphin through the blood-brain barrier model was estimated to be ∼3%, whereas the permeability coefficient was 0.53 ± 1.36 × 10(-6) cm/s (n = 4). We also observed rapid conversion of N-terminal glutamine into pyroglutamic acid during the transfer experiments. Our results indicate that opiorphin crosses cultured brain endothelial cells in the absence of serum factors in a significant amount. This is in agreement with previous in vivo data showing potentiation of enkephalin-mediated antinociception. We suggest that opiorphin may have a potential as a centrally acting novel drug to treat pain.
Collapse
Affiliation(s)
- Alexandra Bocsik
- Institute of Biophysics, Biologial Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Darula
- Institute of Biochemistry, Biologial Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Géza Tóth
- Institute of Biochemistry, Biologial Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biologial Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Mária Wollemann
- Institute of Biochemistry, Biologial Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
20
|
Wang CL, Qiu TT, Diao YX, Zhang Y, Gu N. Novel endomorphin-1 analogs with C-terminal oligoarginine-conjugation display systemic antinociceptive activity with less gastrointestinal side effects. Biochimie 2015; 116:24-33. [PMID: 26115815 DOI: 10.1016/j.biochi.2015.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
In recent study, in order to improve the bioavailability of endomorphin-1 (EM-1), we designed and synthesized a series of novel EM-1 analogs by replacement of L-Pro(2) by β-Pro, D-Ala or Sar, together with C-terminal oligoarginine-conjugation. Our results indicated that the introduction of D-Ala and β-Pro in position 2, along with oligoarginine-conjugation, didn't significantly decrease the μ-affinity and in vitro bioactivity, and the enhancement of arginine residues did not markedly influence the μ-affinity of these analogs. All analogs displayed a significant enhancement of stability, which may be due to increased resistance to proline-specific enzymatic degradation. Moreover, following intracerebroventricular (i.c.v.) administration, analogs 1, 2, 4 and 5 produced significant antinociception and increased duration of action, with the ED50 values being about 1.8- to 4.2-fold less potent than that of EM-1. In addition, our results indicated that no significant antinociceptive activity of EM-1 was seen following subcutaneous (s.c.) injection, whereas analogs 1, 2, 4 and 5 with equimolar dose induced significant and prolonged antinociception by an opioid and central mechanism. Herein, we further examined the gastrointestinal transit and colonic propulsive latencies of EM-1 and its four analogs administered centrally and peripherally. I.c.v. administration of EM-1 and analogs 1, 2, 4 and 5 significantly delayed gastrointestinal transit and colonic bead propulsion in mice, but the inhibitory effects induced by these analogs were largely attenuated. It is noteworthy that no significant gastrointestinal side effects induced by these four analogs were observed after s.c. administration. Our results demonstrated that combined modifications of EM-1 with unnatural amino acid substitutions and oligoarginine-conjugation gave an efficient strategy to improve the analgesic profile of EM-1 analogs but with less gastrointestinal side effects when administered peripherally.
Collapse
Affiliation(s)
- Chang-lin Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.
| | - Ting-ting Qiu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yu-xiang Diao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yao Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| |
Collapse
|
21
|
Synthesis and biological evaluations of novel endomorphin analogues containing α-hydroxy-β-phenylalanine (AHPBA) displaying mixed μ/δ opioid receptor agonist and δ opioid receptor antagonist activities. Eur J Med Chem 2015; 92:270-81. [DOI: 10.1016/j.ejmech.2014.12.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 12/28/2014] [Indexed: 12/29/2022]
|
22
|
Schäfer B, Orbán E, Kele Z, Tömböly C. Tritium labelling of a cholesterol amphiphile designed for cell membrane anchoring of proteins. J Labelled Comp Radiopharm 2015; 58:7-13. [DOI: 10.1002/jlcr.3254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/10/2014] [Accepted: 12/04/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Balázs Schäfer
- Laboratory of Chemical Biology, Institute of Biochemistry; Biological Research Centre of the Hungarian Academy of Sciences; Temesvári krt. 62. 6726 Szeged Hungary
| | - Erika Orbán
- Research Group of Peptide Chemistry; Hungarian Academy of Sciences; Pázmány Péter sétány 1/a 1117 Budapest Hungary
| | - Zoltán Kele
- Department of Medicinal Chemistry; Szeged University; Dóm tér 8. 6720 Szeged Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry; Biological Research Centre of the Hungarian Academy of Sciences; Temesvári krt. 62. 6726 Szeged Hungary
| |
Collapse
|
23
|
Mollica A, Carotenuto A, Novellino E, Limatola A, Costante R, Pinnen F, Stefanucci A, Pieretti S, Borsodi A, Samavati R, Zador F, Benyhe S, Davis P, Porreca F, Hruby VJ. Novel cyclic biphalin analogue with improved antinociceptive properties. ACS Med Chem Lett 2014; 5:1032-6. [PMID: 25221662 DOI: 10.1021/ml500241n] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/14/2014] [Indexed: 11/28/2022] Open
Abstract
Two novel opioid analogues have been designed by substituting the native d-Ala residues in position 2,2' of biphalin with two residues of d-penicillamine or l-penicillamine and by forming a disulfide bond between the thiol groups. The so-obtained compound 9 containing d-penicillamines showed excellent μ/δ mixed receptor affinities (K i (δ) = 5.2 nM; K i (μ) = 1.9 nM), together with an efficacious capacity to trigger the second messenger and a very good in vivo antinociceptive activity, whereas product 10 was scarcely active. An explanation of the two different pharmacological behaviors of products 9 and 10 was found by studying their conformational properties.
Collapse
Affiliation(s)
- Adriano Mollica
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Alfonso Carotenuto
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Antonio Limatola
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Roberto Costante
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesco Pinnen
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Azzurra Stefanucci
- Dipartimento
di Chimica, Sapienza, Università di Roma, P.le A. Moro,
5, 00187 Rome, Italy
| | - Stefano Pieretti
- Department
of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Anna Borsodi
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Reza Samavati
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Ferenc Zador
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Sándor Benyhe
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | | | | | | |
Collapse
|
24
|
Perlikowska R, Piekielna J, Mazur M, Koralewski R, Olczak J, do Rego JC, Fichna J, Modranka J, Janecki T, Janecka A. Antinociceptive and antidepressant-like action of endomorphin-2 analogs with proline surrogates in position 2. Bioorg Med Chem 2014; 22:4803-9. [DOI: 10.1016/j.bmc.2014.06.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
|
25
|
De Marco R, Bedini A, Spampinato S, Gentilucci L. Synthesis of tripeptides containing D-Trp substituted at the indole ring, assessment of opioid receptor binding and in vivo central antinociception. J Med Chem 2014; 57:6861-6. [PMID: 25051243 DOI: 10.1021/jm5002925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The noncationizable tripeptide Ac-D-Trp-Phe-GlyNH2 was recently proposed as a novel minimal recognition motif for μ-opioid receptor. The introduction of different substituents (methyl, halogens, nitro, etc.) at the indole of D-Trp significantly influenced receptor affinities and resulted in serum stability and in a measurable effect on central antinociception in mice after ip administration.
Collapse
Affiliation(s)
- Rossella De Marco
- Department of Chemistry "G. Ciamician", University of Bologna , via Selmi 2, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
26
|
Ligand-specific regulation of the endogenous mu-opioid receptor by chronic treatment with mu-opioid peptide agonists. BIOMED RESEARCH INTERNATIONAL 2013; 2013:501086. [PMID: 24350273 PMCID: PMC3857906 DOI: 10.1155/2013/501086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/22/2013] [Accepted: 09/06/2013] [Indexed: 11/17/2022]
Abstract
Since the discovery of the endomorphins (EM), the postulated endogenous peptide agonists of the mu-opioid receptors, several analogues have been synthesized to improve their binding and pharmacological profiles. We have shown previously that a new analogue, cis-1S,2R-aminocyclohexanecarboxylic acid2-endomorphin-2 (ACHC-EM2), had elevated mu-receptor affinity, selectivity, and proteolytic stability over the parent compound. In the present work, we have studied its antinociceptive effects and receptor regulatory processes. ACHC-EM2 displayed a somewhat higher (60%) acute antinociceptive response than the parent peptide, EM2 (45%), which peaked at 10 min after intracerebroventricular (icv) administration in the rat tail-flick test. Analgesic tolerance developed to the antinociceptive effect of ACHC-EM2 upon its repeated icv injection that was complete by a 10-day treatment. This was accompanied by attenuated coupling of mu-sites to G-proteins in subcellular fractions of rat brain. Also, the density of mu-receptors was upregulated by about 40% in the light membrane fraction, with no detectable changes in surface binding. Distinct receptor regulatory processes were noted in subcellular fractions of rat brains made tolerant by the prototypic full mu-agonist peptide, DAMGO, and its chloromethyl ketone derivative, DAMCK. These results are discussed in light of the recently discovered phenomenon, that is, the “so-called biased agonism” or “functional selectivity”.
Collapse
|
27
|
Mollica A, Costante R, Stefanucci A, Pinnen F, Luisi G, Pieretti S, Borsodi A, Bojnik E, Benyhe S. Hybrid peptides endomorphin-2/DAMGO: Design, synthesis and biological evaluation. Eur J Med Chem 2013; 68:167-77. [DOI: 10.1016/j.ejmech.2013.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 02/07/2023]
|
28
|
Eskandari S, Varamini P, Toth I. Formulation, characterization and permeability study of nano particles of lipo-endomorphin-1 for oral delivery. J Liposome Res 2013; 23:311-7. [DOI: 10.3109/08982104.2013.805339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Mollica A, Pinnen F, Costante R, Locatelli M, Stefanucci A, Pieretti S, Davis P, Lai J, Rankin D, Porreca F, Hruby VJ. Biological active analogues of the opioid peptide biphalin: mixed α/β(3)-peptides. J Med Chem 2013; 56:3419-23. [PMID: 23547584 DOI: 10.1021/jm301456c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural residues of the dimeric opioid peptide Biphalin were replaced by the corresponding homo-β(3) amino acids. The derivative 1 containing hβ(3) Phe in place of Phe showed good μ- and δ-receptor affinities (Ki(δ) = 0.72 nM; Ki(μ) = 1.1 nM) and antinociceptive activity in vivo together with an increased enzymatic stability in human plasma.
Collapse
Affiliation(s)
- Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Peripherally acting novel lipo-endomorphin-1 peptides in neuropathic pain without producing constipation. Bioorg Med Chem 2013; 21:1898-904. [DOI: 10.1016/j.bmc.2013.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
|
31
|
Liu X, Wang Y, Xing Y, Yu J, Ji H, Kai M, Wang Z, Wang D, Zhang Y, Zhao D, Wang R. Design, synthesis, and pharmacological characterization of novel endomorphin-1 analogues as extremely potent μ-opioid agonists. J Med Chem 2013; 56:3102-14. [PMID: 23477419 DOI: 10.1021/jm400195y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recently we reported the synthesis and structure-activity study of endomorphin-1 (EM-1) analogues containing novel, unnatural α-methylene-β-aminopropanoic acids (Map). In the present study, we describe new EM-1 analogues containing Dmt(1), (R/S)-βPro(2), and (ph)Map(4)/(2-furyl)Map(4). All of the analogues showed a high affinity for the μ-opioid receptor (MOR) and increased stability in mouse brain homogenates. Of the new compounds, Dmt(1)-(R)-βPro(2)-Trp(3)-(2-furyl)Map(4) (analogue 12) displayed the highest affinity toward MOR, in the picomolar range (Ki(μ) = 3.72 pM). Forskolin-induced cAMP accumulation assays indicated that this analogue displayed an extremely high agonistic potency, in the subpicomolar range (EC50 = 0.0421 pM, Emax = 99.5%). This compound also displayed stronger in vivo antinociceptive activity after iv administration when compared to morphine in the tail-flick test, which indicates that this analogue was able to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Németh K, Mallareddy JR, Domonkos C, Visy J, Tóth G, Péter A. Stereoselective analysis of endomorphin diastereomers: Resolution of biologically active analogues by capillary electrophoresis applying cyclodextrins as mobile phase additives. J Pharm Biomed Anal 2012; 70:32-9. [DOI: 10.1016/j.jpba.2012.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/27/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
|
33
|
Borics A, Mallareddy JR, Timári I, Kövér KE, Keresztes A, Tóth G. The Effect of Pro2 Modifications on the Structural and Pharmacological Properties of Endomorphin-2. J Med Chem 2012; 55:8418-28. [DOI: 10.1021/jm300836n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Attila Borics
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - Jayapal R. Mallareddy
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - István Timári
- Department of Chemistry, University
of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Katalin E. Kövér
- Department of Chemistry, University
of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Attila Keresztes
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - Géza Tóth
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| |
Collapse
|
34
|
Kovács G, Petrovszki Z, Mallareddy J, Tóth G, Benedek G, Horváth G. Characterization of antinociceptive potency of endomorphin-2 derivatives with unnatural amino acids in rats. ACTA ACUST UNITED AC 2012; 99:353-63. [DOI: 10.1556/aphysiol.99.2012.3.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Bao H, Jin X, Li L, Lv F, Liu T. OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles: synthesis, characterization and evaluation of its brain delivery ability. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1891-1901. [PMID: 22569733 DOI: 10.1007/s10856-012-4658-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 04/21/2012] [Indexed: 05/31/2023]
Abstract
A novel nanoparticles-based brain drug delivery system made of hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) which was surface functionalized with transferrin antibody (OX26) was prepared. Hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) was synthesized, characterized and applied to prepare nanoparticles by means of double emulsion solvent evaporation technique. Transmission electron micrograph and dynamic light scattering showed that nanoparticles had a round and regular shape with a mean diameter of 170 ± 20 nm. Surface chemical composition was detected by X-ray photoelectron spectroscopy. Endomorphins, as a model drug, was encapsulated in the nanoparticles. In vitro drug release study showed that endomorphins was released continuously for 72 h. Cellular uptake study showed that the uptake of nanoparticles by the brain microvascular endothelial cells was both time- and concentration-dependant. Further uptake inhibition study indicated that the uptake of nanoparticles was via a caveolae-mediated endocytic pathway. In vivo endomorphins brain delivery ability was evaluated based upon the rat model of chronic constriction injury of sciatic nerve. OX26 modified nanoparticles had achieved better analgesic effects, compared with other groups. Thus, OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles may be a promising brain drug delivery carrier.
Collapse
Affiliation(s)
- Hanmei Bao
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
Opiorphin highly improves the specific binding and affinity of MERF and MEGY to rat brain opioid receptors. ACTA ACUST UNITED AC 2012; 178:71-5. [PMID: 22771829 DOI: 10.1016/j.regpep.2012.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/09/2012] [Accepted: 06/22/2012] [Indexed: 11/21/2022]
Abstract
Endogenously occurring opioid peptides are rapidly metabolized by different ectopeptidases. Human opiorphin is a recently discovered natural inhibitor of the enkephalin-inactivating neutral endopeptidase (NEP) and aminopeptidase-N (AP-N) (Wisner et al., 2006). To date, in vitro receptor binding experiments must be performed either in the presence of a mixture of peptidase inhibitors and/or at low temperatures, to block peptidase activity. Here we demonstrate that, compared to classic inhibitor cocktails, opiorphin dramatically increases the binding of [(3)H]MERF and [(3)H]MEGY ligands to rat brain membrane preparations. We found that at 0 °C the increase in specific binding is as high as 40-60% and at 24 °C this rise was even higher. In contrast, the binding of the control [(3)H]endomorphin-1, which is relatively slowly degraded in rat brain membrane preparations, was not enhanced by opiorphin compared to other inhibitors. In addition, in homologous binding displacement experiments, the IC(50) affinity values measured at 24 °C were also significantly improved using opiorphin compared to the inhibitor cocktail. In heterologous binding experiments the differences were less obvious, but still pronounced using [(3)H]MERF and MEGY compared to dynorphin(1-11), or naloxone and DAGO competitor ligands.
Collapse
|
37
|
Wang Y, Xing Y, Liu X, Ji H, Kai M, Chen Z, Yu J, Zhao D, Ren H, Wang R. A new class of highly potent and selective endomorphin-1 analogues containing α-methylene-β-aminopropanoic acids (map). J Med Chem 2012; 55:6224-36. [PMID: 22724433 DOI: 10.1021/jm300664y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new class of endomorphin-1 (EM-1) analogues were synthesized by introduction of novel unnatural α-methylene-β-amino acids (Map) at position 3 or/and position 4. Their binding and functional activity, metabolic stability, and antinociceptive activity were determined and compared. Most of these analogues showed high affinities for the μ-opioid receptor and an increased stability in mouse brain homogenates compared with EM-1. Examination of cAMP accumulation and ERK1/2 phosphorylation in HEK293 cells confirmed the agonist properties of these analogues. Among these new analogues, H-Tyr-Pro-Trp-(2-furyl)Map-NH(2) (analogue 12) exhibited the highest binding potency (K(i)(μ) = 0.221 nM) and efficacy (EC(50) = 0.0334 nM, E(max) = 97.14%). This analogue also displayed enhanced antinociceptive activity in vivo in comparison to EM-1. Molecular modeling approaches were then carried out to demonstrate the interaction pattern of these analogues with the opioid receptors. We found that, compared to EM-1, the incorporation of our synthesized Map at position 4 would bring the analogue to a closer binding mode with the μ-opioid receptor.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Varamini P, Mansfeld FM, Blanchfield JT, Wyse BD, Smith MT, Toth I. Synthesis and Biological Evaluation of an Orally Active Glycosylated Endomorphin-1. J Med Chem 2012; 55:5859-67. [DOI: 10.1021/jm300418d] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Bruce D. Wyse
- School of Pharmacy, The University
of Queensland, Brisbane, QLD 4102, Australia
| | - Maree T. Smith
- School of Pharmacy, The University
of Queensland, Brisbane, QLD 4102, Australia
| | - Istvan Toth
- School of Pharmacy, The University
of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
39
|
Mollica A, Pinnen F, Stefanucci A, Feliciani F, Campestre C, Mannina L, Sobolev AP, Lucente G, Davis P, Lai J, Ma SW, Porreca F, Hruby VJ. The cis-4-amino-L-proline residue as a scaffold for the synthesis of cyclic and linear endomorphin-2 analogues. J Med Chem 2012; 55:3027-35. [PMID: 22394120 DOI: 10.1021/jm201402v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endomorphin-2 (EM-2: Tyr-Pro-Phe-Phe-NH(2)) is an endogenous tetrapeptide that combines potency and efficacy with high affinity and selectivity toward the μ opioid receptor, the most responsible for analgesic effects in the central nervous system. The presence of the Pro(2) represents a crucial factor for the ligand structural and conformational properties. Proline is in fact an efficient stereochemical spacer, capable of inducing favorable spatial orientation of aromatic rings, a key factor for ligand recognition and interaction with receptors. Here the Pro(2) has been replaced by 4(S)-NH(2)-2(S)-proline (cAmp), a proline/GABA cis-chimera residue. This bivalent amino acid maintains the capacity to influenc the tetrapeptide conformation and offers the opportunity to generate new linear models and unusually constrained cyclic analogues characterized by an N-terminal Tyr bearing a free α-amino group. The results indicate that the new analogues do not show affinity for both δ and κ opioid receptors and bind only poorly to the μ receptors (for cyclopeptide 9: K(i)(μ) = 660 nM; GPI (IC(50)) = 1.4% at 1 μM; for linear tetrapeptide acid 13: K(i)(μ) = 2000 nM; GPI (IC(50)) = 0% at 1 μM; for linear tetrapeptide amide 15: K(i)(μ) = 310 nM; GPI (IC(50)) = 894 nM).
Collapse
Affiliation(s)
- Adriano Mollica
- Dipartimento di Scienze del Farmaco, Università di Chieti-Pescara G. d'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mallareddy JR, Tóth G, Fazakas C, Molnár J, Nagyőszi P, Lipkowski AW, Krizbai IA, Wilhelm I. Transport Characteristics of Endomorphin-2 Analogues in Brain Capillary Endothelial Cells. Chem Biol Drug Des 2012; 79:507-13. [DOI: 10.1111/j.1747-0285.2011.01306.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Cravezic A, Fichna J, Gach K, Wyrebska A, Perlikowska R, Costentin J, Bonnet JJ, Janecka A, do Rego JC. Effect of potent endomorphin degradation blockers on analgesic and antidepressant-like responses in mice. Neuropharmacology 2011; 61:1229-38. [DOI: 10.1016/j.neuropharm.2011.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 11/16/2022]
|
42
|
Perlikowska R, Fichna J, do-Rego JC, Gach K, Janecka A. Kinetic studies of novel inhibitors of endomorphin degrading enzymes. Med Chem Res 2011; 21:1445-1450. [PMID: 22707871 PMCID: PMC3359464 DOI: 10.1007/s00044-011-9666-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 05/07/2011] [Indexed: 11/20/2022]
Abstract
Endomorphins (EMs), two endogenous μ-opioid receptor selective ligands, are attractive lead compounds for opioid-based pain management studies. However, these peptides are quickly degraded by peptidases, in particular by dipeptidylpeptidase IV (DPP IV) and aminopeptidase M (APM). Targeting enzymatic degradation is one approach to prolong endomorphin activity. In this study we characterized the action of two new inhibitors of similar to endomorphins structure, Tyr-Pro-Ala-NH2 (EMDB-2) and Tyr-Pro-Ala-OH (EMDB-3), which were designed earlier in our laboratory. The presented data give evidence that EMDB-2 and EMDB-3 are potent inhibitors of enzymes responsible for endomorphin cleavage. These compounds are stable and easily synthesized. EMDB-2 and EMDB-3 are competitive inhibitors of both, DPP IV and APM, with Ki values in micromolar range. They are less potent than diprotin A in protecting EMs against DPP IV but more potent than actinonin in protecting these peptides against APM.
Collapse
|
43
|
Mallareddy JR, Borics A, Keresztes A, Kövér KE, Tourwé D, Tóth G. Design, synthesis, pharmacological evaluation, and structure-activity study of novel endomorphin analogues with multiple structural modifications. J Med Chem 2011; 54:1462-72. [PMID: 21287991 DOI: 10.1021/jm101515v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study reports on new proteolytically stable, pharmacologically active endomorphin analogues, incorporating Dmt(1), Achc(2), pFPhe(4), or βMePhe(4) unnatural amino acids. Consistent with earlier results, it was found that the analogues carrying Dmt(1) and Achc(2) residues displayed the highest μ-opioid receptor affinities, depending upon the configuration of the incorporated Achc(2). Combination of such derivatives with pFPhe(4) or βMePhe(4) yielded further compounds with variable binding potencies. Combined application of Dmt(1), cis-(1S,2R)Achc(2), and pFPhe(4) (compound 16) resulted in the most potent analogue. Ligand stimulated [(35)S]GTPγS binding assays indicated that the analogues retained their agonist activities and opioid receptor specificities. NMR and molecular modeling studies of the analogues containing βMePhe(4) or pFPhe(4) confirmed the predominance of bent structures, however, it is apparent that bent structures are energetically more favored than random/extended structures for all studied compounds.
Collapse
Affiliation(s)
- Jayapal Reddy Mallareddy
- Institute of Biochemistry , Biological Research Center, Hungarian Academy of Sciences, PO Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
44
|
Liu WX, Wang R. Endomorphins: potential roles and therapeutic indications in the development of opioid peptide analgesic drugs. Med Res Rev 2011; 32:536-80. [DOI: 10.1002/med.20222] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Institute of Biochemistry and Molecular Biology; State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| |
Collapse
|
45
|
Davis MP. Opioid receptor targeting ligands for pain management: a review and update. Expert Opin Drug Discov 2010; 5:1007-22. [DOI: 10.1517/17460441.2010.511473] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
|
47
|
Fichna J, Perlikowska R, Gach K, Do-Rego JC, Cravezic A, Janecka A, Storr MA. The Novel Endomorphin Degradation Blockers Tyr-Pro-DClPhe-Phe-NH2 (EMDB-1) and Tyr-Pro-Ala-NH2 (EMDB-2) Prolong Endomorphin-2 Action in Rat Ileum In Vitro. Chem Biol Drug Des 2010; 76:77-81. [DOI: 10.1111/j.1747-0285.2010.00977.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
48
|
Perlikowska R, Fichna J, WyrÄbska A, Poels J, Vanden Broeck J, Toth G, Storr M, do Rego JC, Janecka A. Design, Synthesis and Pharmacological Characterization of Endomorphin Analogues with Non-Cyclic Amino Acid Residues in Position 2. Basic Clin Pharmacol Toxicol 2010; 106:106-13. [DOI: 10.1111/j.1742-7843.2009.00476.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Király K, Szalay B, Szalai J, Barna I, Gyires K, Verbeken M, Rónai AZ. Intrathecally injected Ile-Pro-Ile, an inhibitor of membrane ectoenzyme dipeptidyl peptidase IV, is antihyperalgesic in rats by switching the enzyme from hydrolase to synthase functional mode to generate endomorphin 2. Eur J Pharmacol 2009; 620:21-6. [PMID: 19695241 DOI: 10.1016/j.ejphar.2009.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/29/2009] [Accepted: 08/03/2009] [Indexed: 12/15/2022]
Abstract
We have found recently that membrane-bound dipeptidyl peptidase IV (DPP-IV) generated extracellularly immunoreactive endomorphin-2 from Tyr-Pro precursor in a depolarisation-sensitive manner in rat isolated L4,5 dorsal root ganglia when the enzyme was switched to synthase mode by the hydrolase inhibitor Ile-Pro-Ile. Presently, we induced hyperalgesia in rats by injecting carrageenan into the right hindpaw and measured the reduction in nociceptive threshold (hyperalgesia) to pressure (Randall-Selitto test). The hyperalgesia, peaking at 180 min after injection, was fully reversed by intrathecal administration of 30 nmol/rat Ile-Pro-Ile. The antihyperalgesic action was antagonized by s.c. naloxone (1 mg/kg) and intrathecally injected specific antiserum to endomorphin-2 indicating that the opioid receptor-mediated effect was produced by an endogenously generated endomorphin-2-like immunoreactive substance. Intrathecal Ile-Pro-Ile was ineffective as an analgesic in the acute nociceptive test such as the rat tail-flick, whereas endomorphin-2 (EC(50)=13.3 nmol/rat), endomorphin-1 (6.8 nmol/rat), morphine (0.11 nmol/rat) and DAMGO (0.0059 nmol/rat) exerted opioid receptor-mediated analgesia given by the same route. We concluded that carrageenan-induced C-fiber barrage (wind-up) may create ideal conditions for the de novo synthesis of endomorphin-2 in rat spinal cord dorsal horns if the DPP-IV enzyme is switched to the synthase functional mode by Ile-Pro-Ile.
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
50
|
Torino D, Mollica A, Pinnen F, Lucente G, Feliciani F, Davis P, Lai J, Ma SW, Porreca F, Hruby VJ. Synthesis and evaluation of new endomorphin analogues modified at the Pro(2) residue. Bioorg Med Chem Lett 2009; 19:4115-8. [PMID: 19560919 PMCID: PMC2737817 DOI: 10.1016/j.bmcl.2009.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/27/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
Abstract
Six new endomorphin analogues, incorporating constrained amino acids in place of native proline have been synthesized. Residues of (S)-azetidine-2-carboxylic acid (Aze), 3,4-dehydro-(S)-proline (Delta(3)Pro), azetidine-3-carboxylic acid (3Aze) and dehydro-alanine (DeltaAla) have been used to prepare [Delta(3)Pro(2)]EM-2 (1), [Aze(2)]EM-1 (2), [Aze(2)]EM-2 (3), [3Aze(2)]EM-1 (4), [3Aze(2)]EM-2 (5) and [DeltaAla(2)]EM-2 (6). Binding assays and functional bioactivities for mu- and delta-receptors are reported. The highest affinity, bioactivity and selectivity are shown by peptides 2 and 3 containing the Aze residue.
Collapse
Affiliation(s)
- Domenica Torino
- Dipartimento di Chimica e Tecnologie del Farmaco e Istituto di Chimica Biomolecolare, CNR Sezione di Roma, “Sapienza”, Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - Adriano Mollica
- Dipartimento di Scienze del Farmaco, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Francesco Pinnen
- Dipartimento di Scienze del Farmaco, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Gino Lucente
- Dipartimento di Chimica e Tecnologie del Farmaco e Istituto di Chimica Biomolecolare, CNR Sezione di Roma, “Sapienza”, Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - Federica Feliciani
- Dipartimento di Scienze del Farmaco, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA 85721
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA 85721
| | - Shou-Wu Ma
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA 85721
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA 85721
| | - Victor J. Hruby
- Department of Chemistry, University of Arizona, Tucson, AZ, USA 85721
| |
Collapse
|