1
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Active Opioid Antinociceptive Principles for Medicinal Chemistry and Drug Design. Molecules 2023; 28:7089. [PMID: 37894567 PMCID: PMC10609244 DOI: 10.3390/molecules28207089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pain continues to be an enormous global health challenge, with millions of new untreated or inadequately treated patients reported annually. With respect to current clinical applications, opioids remain the mainstay for the treatment of pain, although they are often associated with serious side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery, and they hold potential for pain management. Traditional medicine has had a long history in clinical practice due to the fact that nature provides a rich source of active principles. For instance, opium had been used for pain management until the 19th century when its individual components, such as morphine, were purified and identified. In this review article, we conducted a literature survey aimed at identifying natural products interacting either directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor signaling, whose structures could be interesting from a drug design perspective.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, Via Santa Sofia n. 97, 95100 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
2
|
Karasawa Y, Miyano K, Yamaguchi M, Nonaka M, Yamaguchi K, Iseki M, Kawagoe I, Uezono Y. Therapeutic Potential of Orally Administered Rubiscolin-6. Int J Mol Sci 2023; 24:9959. [PMID: 37373107 DOI: 10.3390/ijms24129959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Rubiscolins are naturally occurring opioid peptides derived from the enzymatic digestion of the ribulose bisphosphate carboxylase/oxygenase protein in spinach leaves. They are classified into two subtypes based on amino acid sequence, namely rubiscolin-5 and rubiscolin-6. In vitro studies have determined rubiscolins as G protein-biased delta-opioid receptor agonists, and in vivo studies have demonstrated that they exert several beneficial effects via the central nervous system. The most unique and attractive advantage of rubiscolin-6 over other oligopeptides is its oral availability. Therefore, it can be considered a promising candidate for the development of a novel and safe drug. In this review, we show the therapeutic potential of rubiscolin-6, mainly focusing on its effects when orally administered based on available evidence. Additionally, we present a hypothesis for the pharmacokinetics of rubiscolin-6, focusing on its absorption in the intestinal tract and ability to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Yusuke Karasawa
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., Tokyo 105-0001, Japan
| | - Kanako Miyano
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Masahiro Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Medical Affairs, Pfizer Japan Inc., Tokyo 151-8589, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Masako Iseki
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Izumi Kawagoe
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yasuhito Uezono
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Supportive and Palliative Care Research Support Office, National Cancer Center Hospital East, Chiba 277-8577, Japan
| |
Collapse
|
3
|
Marinaccio L, Zengin G, Pieretti S, Minosi P, Szucs E, Benyhe S, Novellino E, Masci D, Stefanucci A, Mollica A. Food-inspired peptides from spinach Rubisco endowed with antioxidant, antinociceptive and anti-inflammatory properties. Food Chem X 2023; 18:100640. [PMID: 37008720 PMCID: PMC10064441 DOI: 10.1016/j.fochx.2023.100640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Rubiscolin-6 (amino acid sequence: YPLDLF) is a selective δ-opioid receptor peptide isolated from spinach Rubisco. Its synthetic analogue, peptide YPMDIV is the most potent described so far for its increased opioid activity, thus in this work it was considered as lead compound for the design of twelve new analogues e.g. LMAS1-12. Firstly all the novel compounds have been tested for their antinociceptive and anti-inflammatory capacity in vitro and in vivo in order to evaluate their ability to maintain or loss the original activity. Among them peptides LMAS5-8 gave the best results, thus their antioxidant properties have been investigated along with their enzymatic inhibitory ability. Peptide LMAS6 shows a strong antioxidant (154.25 mg TE/g CUPRAC) and inhibitor activity on tyrosinase (84.49 mg KAE/g), indicating a potential role in food industry as anti-browning agent, while peptides LMAS5 and LMAS7 possess a modest cholinesterase inhibitory activity suggesting a conceivable use for nutraceuticals production.
Collapse
Affiliation(s)
- Lorenza Marinaccio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, Chieti 66100, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Stefano Pieretti
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Paola Minosi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Edina Szucs
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Sandor Benyhe
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Ettore Novellino
- NGN Healthcare, Mercogliano, 207, Via Nazionale Torrette 83013, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, Chieti 66100, Italy
- Corresponding author.
| | - Adriano Mollica
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
4
|
Mizushige T. Neuromodulatory peptides: Orally active anxiolytic-like and antidepressant-like peptides derived from dietary plant proteins. Peptides 2021; 142:170569. [PMID: 33984426 DOI: 10.1016/j.peptides.2021.170569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Mental disorders are a severe health problem, and the number of patients is growing worldwide. Increased anxiety and decreased motivation due to excessive mental stress further accelerated the severity of the problem. Enzymatic digestion of food proteins produces bioactive peptides with various physiological functions, some of which exhibit neuromodulatory effects with oral administration. Recently, studies reported that some peptides produced from plant proteins such as soybeans, leaves, and grains exhibit emotional regulatory functions such as strong anxiolytic-like and antidepressant-like effects comparable to pharmaceuticals. Conventionally, researchers investigated bioactive peptides by fractionation of protein hydrolysates and structure-activity relationship. As a novel methodology for analyzing bioactive peptides, the information obtained by peptidomics simultaneous analysis of the digested fractions of proteins using mass spectrometry has been effectively utilized. Some small-sized peptides such as dipeptides and tripeptides released food-derived proteins show emotional regulating effects. Moreover, some middle-sized peptides produced after intestinal digestion may exhibit the emotional regulating effect via the vagus nerve, and the importance of the gut-brain axis is also focused. As the central mechanism of emotional regulation, it has been found that these plant-derived peptides regulated monoamine neurotransmitter signaling and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Takafumi Mizushige
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
5
|
Hafeez Z, Benoit S, Cakir-Kiefer C, Dary A, Miclo L. Food protein-derived anxiolytic peptides: their potential role in anxiety management. Food Funct 2021; 12:1415-1431. [DOI: 10.1039/d0fo02432e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Could bioactive peptides from food proteins be used as prophylactic in the management of anxiety disorders?
Collapse
Affiliation(s)
| | - Simon Benoit
- Université de Lorraine
- CALBINOTOX
- F-54000 Nancy
- France
| | | | - Annie Dary
- Université de Lorraine
- CALBINOTOX
- F-54000 Nancy
- France
| | | |
Collapse
|
6
|
Plant-derived peptides rubiscolin-6, soymorphin-6 and their c-terminal amide derivatives: Pharmacokinetic properties and biological activity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Cassell RJ, Mores KL, Zerfas BL, Mahmoud AH, Lill MA, Trader DJ, van Rijn RM. Rubiscolins are naturally occurring G protein-biased delta opioid receptor peptides. Eur Neuropsychopharmacol 2019; 29:450-456. [PMID: 30591345 PMCID: PMC6421079 DOI: 10.1016/j.euroneuro.2018.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/19/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
Abstract
The impact that β-arrestin proteins have on G protein-coupled receptor trafficking, signaling and physiological behavior has gained much appreciation over the past decade. A number of studies have attributed the side effects associated with the use of naturally occurring and synthetic opioids, such as respiratory depression and constipation, to excessive recruitment of β-arrestin. These findings have led to the development of biased opioid small molecule agonists that do not recruit β-arrestin, activating only the canonical G protein pathway. Similar G protein-biased small molecule opioids have been found to occur in nature, particularly within kratom, and opioids within salvia have served as a template for the synthesis of other G protein-biased opioids. Here, we present the first report of naturally occurring peptides that selectively activate G protein signaling pathways at δ opioid receptors, but with minimal β-arrestin recruitment. Specifically, we find that rubiscolin peptides, which are produced as cleavage products of the plant protein rubisco, bind to and activate G protein signaling at δ opioid receptors. However, unlike the naturally occurring δ opioid peptides leu-enkephalin and deltorphin II, the rubiscolin peptides only very weakly recruit β-arrestin 2 and have undetectable recruitment of β-arrestin 1 at the δ opioid receptor.
Collapse
Affiliation(s)
- Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Amr H Mahmoud
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Markus A Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Kairupan TS, Cheng KC, Asakawa A, Amitani H, Yagi T, Ataka K, Rokot NT, Kapantow NH, Kato I, Inui A. Rubiscolin-6 activates opioid receptors to enhance glucose uptake in skeletal muscle. J Food Drug Anal 2019; 27:266-274. [PMID: 30648580 PMCID: PMC9298623 DOI: 10.1016/j.jfda.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Rubiscolin-6 is an opioid peptide derived from plant ribulose bisphosphate carboxylase/oxygenase (Rubisco). It has been demonstrated that opioid receptors could control glucose homeostasis in skeletal muscle independent of insulin action. Therefore, Rubiscolin-6 may be involved in the control of glucose metabolism. In the present study, we investigated the effect of rubiscolin-6 on glucose uptake in skeletal muscle. Rubiscolin-6-induced glucose uptake was measured using the fluorescent indicator 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose (2-NBDG) in L6 and C2C12 cell lines. The protein expressions of glucose transporter 4 (GLUT4) and AMP-activated protein kinase (AMPK) in L6 cells were observed by Western blotting. The in vivo effects of rubiscolin-6 were characterized in streptozotocin (STZ)-induced diabetic rats. Rubiscolin-6 induced a concentration-dependent increase in glucose uptake levels. The increase of phospho-AMPK (pAMPK) and GLUT4 expressions were also observed in L6 and C2C12 cells. Effects of rubiscolin-6 were blocked by opioid receptor antagonists and/or associated signals inhibitors. Moreover, Rubiscolin-6 produced a dose-dependent reduction of blood glucose and increased GLUT4 expression in STZ-induced diabetic rats. In conclusion, rubiscolin-6 increases glucose uptake, potentially via an activation of AMPK to enhance GLUT4 translocation after binding to opioid receptors in skeletal muscle.
Collapse
Affiliation(s)
- Timothy Sean Kairupan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruka Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takakazu Yagi
- Department of Orthodontics and Dentofacial Orthopedics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Koji Ataka
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Natasya Trivena Rokot
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Akio Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
9
|
Liu Z, Udenigwe CC. Role of food-derived opioid peptides in the central nervous and gastrointestinal systems. J Food Biochem 2019; 43:e12629. [PMID: 31353498 DOI: 10.1111/jfbc.12629] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
Opioid receptors are widely distributed in central nervous system and peripheral tissues. Endogenous opioid receptor ligands are involved in many physiological processes. Exogenous peptides, derived from food proteins with gastrointestinal proteases, also exert opioid-like activities, and they include gluten exorphins (wheat), casomorphins (milk), rubiscolins (spinach), and soymorphins (soybean). Milk-derived opioid peptides play both agonistic and antagonistic roles, and most of the opioid peptides exert regulatory functions in the central nervous system, related to nociception, emotion and memory after oral, intracerebroventricular, or intraperitoneal administration. This indicates that the peptides may have crossed the blood-brain barrier or acted peripherally. Furthermore, some food-derived opioid peptides influence gastrointestinal functions such as gut motility, hormone release, appetite, mucus production, and local immunity. In healthy states, food-derived opioid peptides could benefit both the nervous and digestive systems, whereas in pathological conditions, the gastrointestinal permeability change and opioid excess may contribute to pathogenesis of some disorders. PRACTICAL APPLICATIONS: Opioid receptors are important biological targets for the treatment of multiple diseases. Traditional opiate compounds, such as alkaloids, are demonstrated to exert numerous side effects, thereby limiting their clinical effectiveness. It is thought that food-derived opioid peptides may be safer than the alkaloids, and therefore can be applied in functional food development. In this review, we summarized the already discovered food opioid peptides from different sources, and elaborated their physiological functions on the central nervous and gastrointestinal systems. These effects support further exploration of the opioid peptides as therapeutic agents or as functional food ingredient for human health promotion.
Collapse
Affiliation(s)
- Zhenze Liu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Di Stefano E, Agyei D, Njoku EN, Udenigwe CC. Plant RuBisCo: An Underutilized Protein for Food Applications. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12104] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Elisa Di Stefano
- School of Nutrition Sciences; University of Ottawa; 451 Smyth Road, Ottawa ON K1H 8L1 Canada
| | - Dominic Agyei
- Department of Food Science; University of Otago; 276 Leith Walk, Dunedin 9054 New Zealand
| | - Emmanuel N. Njoku
- National Agency for Food and Drug Administration and Control Zonal Laboratory; Awka-Okigwe Road, Agulu 422102, Anambra State Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences; University of Ottawa; 451 Smyth Road, Ottawa ON K1H 8L1 Canada
- Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie Curie, Ottawa ON K1N 6N5 Canada
| |
Collapse
|
11
|
Udenigwe CC, Okolie CL, Qian H, Ohanenye IC, Agyei D, Aluko RE. Ribulose-1,5-bisphosphate carboxylase as a sustainable and promising plant source of bioactive peptides for food applications. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Yoshikawa M. Bioactive peptides derived from natural proteins with respect to diversity of their receptors and physiological effects. Peptides 2015; 72:208-25. [PMID: 26297549 DOI: 10.1016/j.peptides.2015.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
We have found various bioactive peptides derived from animal and plant proteins, which interact with receptors for endogenous bioactive peptides such as opioids, neurotensin, complements C3a and C5a, oxytocin, and formyl peptides etc. Among them, rubiscolin, a δ opioid peptide derived from plant RuBisCO, showed memory-consolidating, anxiolytic-like, and food intake-modulating effects. Soymorphin, a μ opioid peptide derived from β-conglycinin showed anxiolytic-like, anorexigenic, hypoglycemic, and hypotriglyceridemic effects. β-Lactotensin derived from β-lactoglobulin, the first natural ligand for the NTS2 receptor, showed memory-consolidating, anxiolytic-like, and hypocholesterolemic effects. Weak agonist peptides for the complements C3a and C5a receptors were released from many proteins and exerted various central effects. Peptides showing anxiolytic-like antihypertensive and anti-alopecia effects via different types of receptors such as OT, FPR and AT2 were also obtained. Based on these study, new functions and post-receptor mechanisms of receptor commom to endogenous and exogenous bioactive peptides have been clarified.
Collapse
|
13
|
Behavioral effects of food-derived opioid-like peptides in rodents: Implications for schizophrenia? Pharmacol Biochem Behav 2015; 134:70-8. [PMID: 25661529 DOI: 10.1016/j.pbb.2015.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 01/08/2023]
Abstract
Dohan proposed that an overload of dietary peptides, such as those derived from wheat gluten and milk casein, could be a factor relevant to the development or maintenance of schizophrenia (SZ) symptoms in at least a subset of vulnerable individuals. Rodent behavioral models may offer insight into the plausibility of Dohan's exorphin hypothesis by providing a means to directly study the effects of such peptides. Accordingly, a review of the literature on the behavioral effects of food-derived opioid-like peptides in rodents was undertaken. Studies using a variety of behavioral tests to examine the effects of several classes of food-derived opioid-like peptides were identified and reviewed. Peptides derived from casein (β-casomorphins; BCMs, n=19), spinach (rubiscolins; RCs, n=4), and soy (soymorphins; SMs, n=1) were behaviorally active in various paradigms assessing nociception, spontaneous behavior, and memory. Surprisingly, only a single study evaluating a gluten-derived peptide (gliadorphin-7; GD-7, n=1) was identified and included in this review. In conclusion, food-derived peptides can affect rodent behavior, but more studies of GDs using diverse behavioral batteries are warranted. Assuming they occur in sufficient quantities during protein digestion and can access central opioid receptors (which entails crossing both the gastrointestinal and blood-brain barriers intact), these peptides may affect human behavior. Although BCMs and GDs may not be directly pathogenic in SZ, documented associations of casein and gluten sensitivity with SZ justify increased patient screening and dietary intervention where necessary.
Collapse
|
14
|
Kaneko K, Lazarus M, Miyamoto C, Oishi Y, Nagata N, Yang S, Yoshikawa M, Aritake K, Furuyashiki T, Narumiya S, Urade Y, Ohinata K. Orally administered rubiscolin-6, a δ opioid peptide derived from Rubisco, stimulates food intake via leptomeningeal lipocallin-type prostaglandin D synthase in mice. Mol Nutr Food Res 2012; 56:1315-23. [DOI: 10.1002/mnfr.201200155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Kentaro Kaneko
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Gokasho Uji; Kyoto Japan
| | - Michael Lazarus
- Department of Molecular Behavioral Biology; Osaka Bioscience Institute; Suita; Osaka Japan
| | - Chihiro Miyamoto
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Gokasho Uji; Kyoto Japan
| | - Yo Oishi
- Department of Molecular Behavioral Biology; Osaka Bioscience Institute; Suita; Osaka Japan
| | - Nanae Nagata
- Department of Molecular Behavioral Biology; Osaka Bioscience Institute; Suita; Osaka Japan
| | - Shuzhang Yang
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Gokasho Uji; Kyoto Japan
| | - Masaaki Yoshikawa
- Research Institute for Production Development; Sakyo-ku; Kyoto Japan
| | - Kosuke Aritake
- Department of Molecular Behavioral Biology; Osaka Bioscience Institute; Suita; Osaka Japan
| | - Tomoyuki Furuyashiki
- Department of Pharmacology; Kyoto University; Graduate School of Medicine; Sakyo-ku; Kyoto Japan
- CREST, Japan Science and Technology Agency; Tokyo Japan
| | - Shuh Narumiya
- Department of Pharmacology; Kyoto University; Graduate School of Medicine; Sakyo-ku; Kyoto Japan
- CREST, Japan Science and Technology Agency; Tokyo Japan
| | - Yoshihiro Urade
- Department of Molecular Behavioral Biology; Osaka Bioscience Institute; Suita; Osaka Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Gokasho Uji; Kyoto Japan
| |
Collapse
|
15
|
Caballero J, Saavedra M, Fernández M, González-Nilo FD. Quantitative structure-activity relationship of rubiscolin analogues as delta opioid peptides using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8101-4. [PMID: 17803260 DOI: 10.1021/jf071031h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on a series of 38 rubiscolins as delta opioid peptides using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Quantitative information on structure-activity relationships is provided for further rational development and direction of selective synthesis. All models were carried out over a training set including 30 peptides. The best CoMFA model included electrostatic and steric fields and had a moderate Q (2) = 0.503. CoMSIA analysis surpassed the CoMFA results: the best CoMSIA model included only the hydrophobic field and had a Q (2) = 0.661. In addition, this model predicted adequately the peptides contained in the test set. Our model identified that the potency of delta opioid activity of rubiscolin analogues essentially exhibited a significant relationship with local hydrophobic and hydrophilic characteristics of amino acids at positions 3, 4, 5, and 6.
Collapse
Affiliation(s)
- Julio Caballero
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile.
| | | | | | | |
Collapse
|
16
|
Hirata H, Sonoda S, Agui S, Yoshida M, Ohinata K, Yoshikawa M. Rubiscolin-6, a delta opioid peptide derived from spinach Rubisco, has anxiolytic effect via activating sigma1 and dopamine D1 receptors. Peptides 2007; 28:1998-2003. [PMID: 17766012 DOI: 10.1016/j.peptides.2007.07.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 07/21/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
Rubiscolin-6 (Tyr-Pro-Leu-Asp-Leu-Phe) is a delta opioid peptide derived from the large subunit of spinach d-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). We previously reported that rubiscolin-6 had an analgesic effect and stimulated memory consolidation. Here we show that intraperitoneally (i.p.) or orally administered rubiscolin-6 has an anxiolytic effect at a dose of 10 mg/kg or 100 mg/kg, respectively, in the elevated plus-maze test in mice. The anxiolytic effects of rubscolin-6 after i.p. (10 mg/kg) and oral (100 mg/kg) administration were blocked by a delta opioid receptor antagonist, naltrindole (1 mg/kg, s.c.), suggesting that the anxiolytic activity of rubiscolin-6 is mediated by delta opioid receptor. The anxiolytic effect of rubiscolin-6 (10 mg/kg, i.p.) was also blocked by a dopamine D(1) antagonist, SCH23390 (30 microg/kg, i.p.), but not by a dopamine D(2) antagonist, raclopride (15 microg/kg, i.p.). The anxiolytic effect of rubiscolin-6 (10 mg/kg, i.p.) was blocked by sigma(1) receptor antagonist, BMY14802 (0.5 mg/kg, i.p.) or BD1047 (10 mg/kg, i.p.). Taken together, the anxiolytic effect of rubiscolin-6 is mediated by sigma(1) and dopamine D(1) receptors downstream of delta opioid receptor.
Collapse
Affiliation(s)
- Hajime Hirata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|