1
|
Zhang XM, Shi XQ, Wang YZ, Gong S, Tang J, Tang M, Liu LX, Sun W, Yi Y. Comparative study on metabolites, nutrients, and antioxidant capacity of endosperm in Gymnocladus chinensis, Gleditsia sinensis, and Gleditsia japonica var. delavayi. Food Chem 2024; 463:141384. [PMID: 39340903 DOI: 10.1016/j.foodchem.2024.141384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
'Zaojiaomi' is a traditional food derived from Gleditsia sinensis or Gleditsia japonica var. delavayi endosperm. However, metabolite profile of Gymnocladus chinensis endosperm and its comparison to the aforementioned species remains understudied. This research employed a UPLC-MS based metabolomics approach to investigate and compare metabolite composition of G. chinensis endosperm with that of G. sinensis and G. japonica endosperm. A total of 1177 metabolites were identified, with 579 and 577 differentially abundant metabolites found between G. chinensis vs. G. japonica and G. chinensis vs. G. sinensis, respectively. They were mainly enriched in pathways related to flavonoid biosynthesis, suggesting potential for enhanced antioxidant activity, compared to G. japonica and G. sinensis. Additionally, G. chinensis endosperm was found to be rich in L-arginine, L-aspartic acid, and zinc elements, which have various health benefits. These findings provide valuable insights into metabolic composition of G. chinensis endosperm and its potential as a functional food source.
Collapse
Affiliation(s)
- Xi-Min Zhang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China,; School of Life Sciences, Guizhou Normal University, Guiyang 550025, China,; Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China,.
| | - Xiao-Qian Shi
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Yi-Zhen Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Su Gong
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Jing Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China,; School of Life Sciences, Guizhou Normal University, Guiyang 550025, China,; Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Ming Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China,; School of Life Sciences, Guizhou Normal University, Guiyang 550025, China,; Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Lun-Xian Liu
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China,; School of Life Sciences, Guizhou Normal University, Guiyang 550025, China,; Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Wei Sun
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China,; School of Life Sciences, Guizhou Normal University, Guiyang 550025, China,; Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
2
|
Wani SS, Qadri H, Shah AH, Dar TA. Dual Antifungal and Antiproliferative Activities of a Novel Protein Fraction from a Medicinally Important Herb Trillium govanianum Wall. ex. D. Don. Appl Biochem Biotechnol 2024; 196:5080-5098. [PMID: 38038807 DOI: 10.1007/s12010-023-04786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Antimicrobial resistance of microorganisms and the unwanted side effects of chemoradiation therapy in cancer are major issues in healthcare. In recent times, protein-based drugs have emerged as promising candidates due to their high specificity, less side effects, etc. In this context, the rhizome of Trillium govanianum was first explored for biologically active proteins/peptides. For this, three protein fractions namely Aqueous protein fraction (APF), Hexane-Methanol-treated aqueous protein fraction (HMAPF), and Methanol-treated aqueous protein fraction (MAPF) were prepared and evaluated for antimicrobial and antiproliferative activities. In antifungal activity, HMAPF showed the lowest MIC90 values of 1.56 µg/ml against Candida parapsilosis and Candida glabrata and 3.12 µg/ml against Candida albicans and Candida auris. The antifungal activity was further confirmed by a chitinase assay, a growth kinetics and a proteinase inhibitory assay. Surprisingly, none of the three protein fractions exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. Moreover, APF exhibited potent antiproliferative and antioxidant activities with IC50 values of 18 µg/ml and 227 µg /ml, respectively. For HMAPF, an IC50 value of 70 µg/ml against the MDA-MB-231 cell line was observed. The present results demonstrate that the protein fractions, particularly HMAPF and APF, might serve as potential sources of a dual antifungal and antiproliferative protein-based drug.
Collapse
Affiliation(s)
- Snober S Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006
| | - Hafsa Qadri
- Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006
| | - Abdul H Shah
- Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006.
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006.
| |
Collapse
|
3
|
Flores-Alvarez LJ, Jiménez-Alcántar P, Ochoa-Zarzosa A, López-Meza JE. The Antimicrobial Peptide γ-Thionin from Habanero Chile ( Capsicum chinense) Induces Caspase-Independent Apoptosis on Human K562 Chronic Myeloid Leukemia Cells and Regulates Epigenetic Marks. Molecules 2023; 28:molecules28093661. [PMID: 37175071 PMCID: PMC10180109 DOI: 10.3390/molecules28093661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is a relevant health problem worldwide. In 2020, leukemias represented the 13th most commonly reported cancer cases worldwide but the 10th most likely to cause deaths. There has been a progressive increase in the efficacy of treatments for leukemias; however, these still generate important side effects, so it is imperative to search for new alternatives. Defensins are a group of antimicrobial peptides with activity against cancer cells. However, the cytotoxic mechanism of these peptides has been described mainly for animal defensins. This study shows that defensin γ-thionin (Capsicum chinense) is cytotoxic to the K562 leukemia cells with an IC50 = 290 μg/mL (50.26 μM) but not for human peripheral blood mononuclear cells. Results showed that γ-thionin did not affect the membrane potential; however, the peptide modified the mitochondrial membrane potential (ΔΨm) and the intracellular calcium release. In addition, γ-thionin induced apoptosis in K562 cells, but the activation of caspases 8 and 9 was not detected. Moreover, the activation of calpains was detected at one hour of treatment, suggesting that γ-thionin activates the caspase-independent apoptosis. Furthermore, the γ-thionin induced epigenetic modifications on histone 3 in K562 cells, increased global acetylation (~2-fold), and specific acetylation marks at lysine 9 (H3K9Ac) (~1.5-fold). In addition, γ-thionin increased the lysine 9 methylation (H3K9me) and dimethylation marks (H3K9me2) (~2-fold), as well as the trimethylation mark (H3K9me3) (~2-fold). To our knowledge, this is the first report of a defensin that triggers caspase-independent apoptosis in cancer cells via calpains and regulating chromatin remodelation, a novel property for a plant defensin.
Collapse
Affiliation(s)
- Luis José Flores-Alvarez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| | - Paola Jiménez-Alcántar
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| |
Collapse
|
4
|
A Proteomics Data Mining Strategy for the Identification of Quinoa Grain Proteins with Potential Immunonutritional Bioactivities. Foods 2023; 12:foods12020390. [PMID: 36673481 PMCID: PMC9858122 DOI: 10.3390/foods12020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Quinoa proteins are attracting global interest for their wide amino acid profile and as a promising source for the development of biomedical treatments, including those against immune-mediated diseases. However, information about the bioactivity of quinoa proteins is scarce. In this study, a quinoa grain proteome map obtained by label-free mass spectrometry-based shotgun proteomics was investigated for the identification of quinoa grain proteins with potential immunonutritional bioactivities, including those related to cancer. After carefully examining the sequence similarities of the 1211 identified quinoa grain proteins against already described bioactive proteins from other plant organisms, 71, 48, and 3 of them were classified as antimicrobial peptides (AMPs), oxidative stress induced peptides (OSIPs), and serine-type protease inhibitors (STPIs), respectively, suggesting their potential as immunomodulatory, anti-inflammatory, and anticancer agents. In addition, data interpretation using Venn diagrams, heat maps, and scatterplots revealed proteome similarities and differences with respect to the AMPs, OSIPs, and STPIs, and the most relevant bioactive proteins in the predominant commercial quinoa grains (i.e., black, red, white (from Peru), and royal (white from Bolivia)). The presented proteomics data mining strategy allows easy screening for potentially relevant quinoa grain proteins and commercial classes for immunonutrition, as a basis for future bioactivity testing.
Collapse
|
5
|
The potential of antifungal peptide Sesquin as natural food preservative. Biochimie 2022; 203:51-64. [PMID: 35395327 DOI: 10.1016/j.biochi.2022.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Sesquin is a wide spectrum antimicrobial peptide displaying a remarkable activity on fungi. Contrarily to most antimicrobial peptides, it presents an overall negative charge. In the present study, we elucidate the molecular basis of its mode of action towards biomimetic membranes by NMR and MD experiments. While a specific recognition of phosphatidylethanolamine (PE) might explain its activity in a variety of different organisms (including bacteria), a further interaction with ergosterol accounts for its strong antifungal activity. NMR data reveal a charge gradient along its amide protons allowing the peptide to reach the membrane phosphate groups despite its negative charge. Subsequently, the peptide gets structured inside the bilayer, reducing its order. MD simulations predict that its activity is retained in conditions commonly used for food preservation: low temperatures, high pressure, or the presence of electric field pulses, making Sesquin a good candidate as food preservative.
Collapse
|
6
|
Attah FA, Lawal BA, Yusuf AB, Adedeji OJ, Folahan JT, Akhigbe KO, Roy T, Lawal AA, Ogah NB, Olorundare OE, Chamcheu JC. Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines. PLANTS (BASEL, SWITZERLAND) 2022; 11:3271. [PMID: 36501311 PMCID: PMC9737898 DOI: 10.3390/plants11233271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional roles, biological targets and mechanism(s) of activity of these knotted peptides are largely unknown. Meanwhile, knottins have recently been unveiled as emerging peptide therapeutics and nutraceuticals of primary choice due to their broad spectrum of bioactivity, hyper stability, selective toxicity, impressive selectivity for biomolecular targets, and their bioengineering applications. In addition to their potential dietary benefits, some knottins have displayed desirable limited toxicity to human erythrocytes. In an effort to appraise what has been accomplished, unveil knowledge gaps and explore the future prospects of knottins, an elaborate review of the nutritional and pharmaceutical application of phytomedicines rich in knottins was carried out. Herein, we provide comprehensive data on common dietary and therapeutic knottins, the majority of which are poorly investigated in many food-grade phytomedicines used in different cultures and localities. Findings from this review should stimulate scientific interest to unveil novel dietary knottins and knottin-rich nutraceutical peptide drug candidates/leads with potential for future clinical application.
Collapse
Affiliation(s)
- Francis Alfred Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Bilqis Abiola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Abdulmalik Babatunde Yusuf
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Oluwakorede Joshua Adedeji
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Joy Temiloluwa Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Kelvin Oluwafemi Akhigbe
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Azeemat Adeola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Ngozi Blessing Ogah
- Department of Biotechnology, Ebonyi State University, Abakaliki 480101, Nigeria
| | | | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| |
Collapse
|
7
|
The Updated Review on Plant Peptides and Their Applications in Human Health. Int J Pept Res Ther 2022; 28:135. [PMID: 35911180 PMCID: PMC9326430 DOI: 10.1007/s10989-022-10437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Biologically active plant peptides, consisting of secondary metabolites, are compounds (amino acids) utilized by plants in their defense arsenal. Enzymatic processes and metabolic pathways secrete these plant peptides. They are also known for their medicinal value and have been incorporated in therapeutics of major human diseases. Nevertheless, its limitations (low bioavailability, high cytotoxicity, poor absorption, low abundance, improper metabolism, etc.) have demanded a need to explore further and discover other new plant compounds that overcome these limitations. Keeping this in mind, therapeutic plant proteins can be excellent remedial substitutes for bodily affliction. A multitude of these peptides demonstrates anti-carcinogenic, anti-microbial, anti-HIV, and neuro-regulating properties. This article's main aim is to list out and report the status of various therapeutic plant peptides and their prospective status as peptide-based drugs for multiple diseases (infectious and non-infectious). The feasibility of these compounds in the imminent future has also been discussed.
Collapse
|
8
|
Leannec-Rialland V, Atanasova V, Chereau S, Tonk-Rügen M, Cabezas-Cruz A, Richard-Forget F. Use of Defensins to Develop Eco-Friendly Alternatives to Synthetic Fungicides to Control Phytopathogenic Fungi and Their Mycotoxins. J Fungi (Basel) 2022; 8:229. [PMID: 35330231 PMCID: PMC8950385 DOI: 10.3390/jof8030229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
Abstract
Crops are threatened by numerous fungal diseases that can adversely affect the availability and quality of agricultural commodities. In addition, some of these fungal phytopathogens have the capacity to produce mycotoxins that pose a serious health threat to humans and livestock. To facilitate the transition towards sustainable environmentally friendly agriculture, there is an urgent need to develop innovative methods allowing a reduced use of synthetic fungicides while guaranteeing optimal yields and the safety of the harvests. Several defensins have been reported to display antifungal and even-despite being under-studied-antimycotoxin activities and could be promising natural molecules for the development of control strategies. This review analyses pioneering and recent work addressing the bioactivity of defensins towards fungal phytopathogens; the details of approximately 100 active defensins and defensin-like peptides occurring in plants, mammals, fungi and invertebrates are listed. Moreover, the multi-faceted mechanism of action employed by defensins, the opportunity to optimize large-scale production procedures such as their solubility, stability and toxicity to plants and mammals are discussed. Overall, the knowledge gathered within the present review strongly supports the bright future held by defensin-based plant protection solutions while pointing out the obstacles that still need to be overcome to translate defensin-based in vitro research findings into commercial products.
Collapse
Affiliation(s)
- Valentin Leannec-Rialland
- Université de Bordeaux, UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France;
| | - Vessela Atanasova
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Sylvain Chereau
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Miray Tonk-Rügen
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- Institute of Nutritional Sciences, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| | - Alejandro Cabezas-Cruz
- Anses, Ecole Nationale Vétérinaire d’Alfort, UMR Parasitic Molecular Biology and Immunology (BIPAR), Laboratoire de Santé Animale, INRAE, 94700 Maison-Alfort, France
| | - Florence Richard-Forget
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| |
Collapse
|
9
|
Hawamda AIM, Reichert S, Ali MA, Nawaz MA, Austerlitz T, Schekahn P, Abbas A, Tenhaken R, Bohlmann H. Characterization of an Arabidopsis Defensin-like Gene Conferring Resistance against Nematodes. PLANTS 2022; 11:plants11030280. [PMID: 35161268 PMCID: PMC8838067 DOI: 10.3390/plants11030280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Arabidopsis contains 317 genes for defensin-like (DEFL) peptides. DEFLs have been grouped into different families based mainly on cysteine motifs. The DEFL0770 group contains seven genes, of which four are strongly expressed in roots. We found that the expression of these genes is downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii as revealed by RNAseq analysis. We have studied one gene of this group, At3g59930, in detail. A promoter::GUS line revealed that the gene is only expressed in roots but not in other plant organs. Infection of the GUS line with larvae of H. schachtii showed a strong downregulation of GUS expression in infection sites as early as 1 dpi, confirming the RNAseq data. The At3g59930 peptide had only weak antimicrobial activity against Botrytis cinerea. Overexpression lines had no enhanced resistance against this fungus but were more resistant to H. schachtii infection. Our data indicate that At3g59930 is involved in resistance to nematodes which is probably not due to direct nematicidal activity.
Collapse
Affiliation(s)
- Abdalmenem I. M. Hawamda
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Agricultural Biotechnology, Faculty of Agricultural Science and Technology, Palestine Technical University-Kadoorie (PTUK), Tulkarm P.O. Box 7, Palestine
| | - Susanne Reichert
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Muhammad Amjad Ali
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Amjad Nawaz
- Siberian Federal Scientific Centre of Agrobiotechnology, Russian Academy of Sciences, 630501 Krasnoobsk, Russia;
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| | - Tina Austerlitz
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Patricia Schekahn
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Amjad Abbas
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Raimund Tenhaken
- Plant Physiology, University of Salzburg, 5020 Salzburg, Austria;
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Correspondence:
| |
Collapse
|
10
|
Wani MA, Garg P, Roy KK. Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides. Med Biol Eng Comput 2021; 59:2397-2408. [PMID: 34632545 DOI: 10.1007/s11517-021-02443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
The ubiquitous antimicrobial peptides (AMPs), with a broad range of antimicrobial activities, represent a great promise for combating the multi-drug resistant infections. In this study, using a large and diverse set of AMPs (2638) and non-AMPs (3700), we have explored a variety of machine learning classifiers to build in silico models for AMP prediction, including Random Forest (RF), k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), Quadratic Discriminant Analysis (QDA), and ensemble learning. Among the various models generated, the RF classifier-based model top-performed in both the internal [Accuracy: 91.40%, Precision: 89.37%, Sensitivity: 90.05%, and Specificity: 92.36%] and external validations [Accuracy: 89.43%, Precision: 88.92%, Sensitivity: 85.21%, and Specificity: 92.43%]. In addition, the RF classifier-based model correctly predicted the known AMPs and non-AMPs; those kept aside as an additional external validation set. The performance assessment revealed three features viz. ChargeD2001, PAAC12 (pseudo amino acid composition), and polarity T13 that are likely to play vital roles in the antimicrobial activity of AMPs. The developed RF-based classification model may further be useful in the design and prediction of the novel potential AMPs.
Collapse
Affiliation(s)
- Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Mohali, 160062, Punjab, India
| | - Kuldeep K Roy
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India. .,Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies (UPES), P.O. Bidholi, Dehradun, 248007, Uttarakhand, India.
| |
Collapse
|
11
|
Mammari N, Krier Y, Albert Q, Devocelle M, Varbanov M. Plant-Derived Antimicrobial Peptides as Potential Antiviral Agents in Systemic Viral Infections. Pharmaceuticals (Basel) 2021; 14:ph14080774. [PMID: 34451871 PMCID: PMC8400714 DOI: 10.3390/ph14080774] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have led to a better understanding of the mechanisms of action of viruses in systemic infections for the development of prevention strategies and very promising antiviral therapies. Viruses still remain one of the main causes of human diseases, mainly because the development of new vaccines is usually challenging and drug resistance has become an increasing concern in recent decades. Therefore, the development of potential antiviral agents remains crucial and is an unmet clinical need. One abundant source of potential therapeutic molecules are plants: they biosynthesize a myriad of compounds, including peptides which can have antimicrobial activity. Our objective is to summarize the literature on peptides with antiviral properties derived from plants and to identify key features of these peptides and their application in systemic viral infections. This literature review highlights studies including clinical trials which demonstrated that plant cyclotides have the ability to inhibit the growth of viruses causing human diseases, defensin-like peptides possess anti-HIV-1 activity, and lipid transfer proteins and some lectins exhibit a varied antimicrobial profile. To conclude, plant peptides remain interesting to explore in the context of emerging and re-emerging infectious diseases.
Collapse
Affiliation(s)
- Nour Mammari
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France;
| | - Ysaline Krier
- Faculté de Pharmacie, 7 Avenue de la Foret de Haye, 54505 Vandoeuvre-Les-Nancy, France;
| | - Quentin Albert
- Fungal Biodiversity and Biotechnology, INRAE/Aix-Marseille University, UMR1163, 13009 Marseille, France;
- CIRM-CF, INRAE/Aix Marseille University, UMR1163, 13009 Marseille, France
| | - Marc Devocelle
- SSPC (SFI Research Centre for Pharmaceuticals), V94T9PX Limerick, Ireland;
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, 123, St. Stephen’s Green, D02 YN77 Dublin 2, Ireland
| | - Mihayl Varbanov
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France;
- Correspondence:
| | | |
Collapse
|
12
|
Mani-López E, Palou E, López-Malo A. Legume proteins, peptides, water extracts, and crude protein extracts as antifungals for food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Wani SS, Dar PA, Zargar SM, Dar TA. Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives. Curr Protein Pept Sci 2021; 21:443-487. [PMID: 31746291 DOI: 10.2174/1389203720666191119095624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.
Collapse
Affiliation(s)
- Snober Shabeer Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Parvaiz A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, S. K. University of Agricultural Sciences and Technology of Srinagar, Shalimar-190025, Srinagar, Jammu and Kashmir, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| |
Collapse
|
14
|
Gupta S, Mao AA, Sarma S. Effects of Thidiazuron (TDZ) on Direct Shoot Organogenesis of Gymnocladus assamicus: A Threatened and Critically Endangered Species from Northeast India. NATIONAL ACADEMY SCIENCE LETTERS 2019. [DOI: 10.1007/s40009-019-00801-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Flores-Alvarez LJ, Guzmán-Rodríguez JJ, López-Gómez R, Salgado-Garciglia R, Ochoa-Zarzosa A, López-Meza JE. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis. Int J Biochem Cell Biol 2018; 99:10-18. [PMID: 29559362 DOI: 10.1016/j.biocel.2018.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/03/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Abstract
Plant defensins, a group of antimicrobial peptides, show selective cytotoxicity toward cancer cells. However, their mechanisms of action remain poorly understood. Here, we evaluated the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on K562 chronic myeloid leukemia cells and analyzed the pathway involved in the induction of cell death. The defensin PaDef was not cytotoxic against human PBMCs; however, it was cytotoxic for K562 cell line (IC50 = 97.3 μg/ml) activating apoptosis at 12 h. PaDef did not affect the mitochondrial membrane potential (ΔΨm), neither the transmembranal potential or the release of intracellular calcium. Also, PaDef induced gene expression of caspase 8 (∼2 fold), TNF-α (∼4 fold) and TNFR1 (∼10 fold). In addition, the activation of caspase 8 was detected at 24 h, whereas caspase 9 activity was not modified, suggesting that the extrinsic apoptosis pathway could be activated. In conclusion, PaDef induces apoptosis on K562 cells, which is related to the activation of caspase 8 and involves the participation of TNF-α, which is a novel property for a plant defensin.
Collapse
Affiliation(s)
- Luis José Flores-Alvarez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, México
| | - Jaquelina Julia Guzmán-Rodríguez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, México
| | - Rodolfo López-Gómez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, México
| | - Rafael Salgado-Garciglia
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, México
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, México
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, México.
| |
Collapse
|
16
|
Bah CSF, Bekhit AEDA, Fang EF, Ng TB, McConnell MA, Bekhit AA, Morton JD. Physicochemical Properties and Bioactivity of Extracts from the Roe of New Zealand Hoki and Southern Blue Whiting. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2016. [DOI: 10.1080/10498850.2015.1052604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | - Evandro Fei Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Michelle A. McConnell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Adnan A. Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - James D. Morton
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Canterbury, New Zealand
| |
Collapse
|
17
|
Vieira Bard GC, Nascimento VV, Ribeiro SFF, Rodrigues R, Perales J, Teixeira-Ferreira A, Carvalho AO, Fernandes KVS, Gomes VM. Characterization of Peptides from Capsicum annuum Hybrid Seeds with Inhibitory Activity Against α-Amylase, Serine Proteinases and Fungi. Protein J 2015; 34:122-9. [DOI: 10.1007/s10930-015-9604-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Plant antimicrobial peptides as potential anticancer agents. BIOMED RESEARCH INTERNATIONAL 2015; 2015:735087. [PMID: 25815333 PMCID: PMC4359852 DOI: 10.1155/2015/735087] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy.
Collapse
|
19
|
Jiang N, Zhang S, Zhu J, Shang J, Gao X. Hypoglycemic, Hypolipidemic and Antioxidant Effects of Peptides from Red Deer Antlers in Streptozotocin-Induced Diabetic Mice. TOHOKU J EXP MED 2015; 236:71-9. [DOI: 10.1620/tjem.236.71] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ning Jiang
- Department of Biological Science and Technology, Hubei University for Nationalities
- School of Life Science and Technology, China Pharmaceutical University
| | - Shuangjian Zhang
- School of Life Science and Technology, China Pharmaceutical University
| | - Jing Zhu
- School of Life Science and Technology, China Pharmaceutical University
| | - Jing Shang
- New Drug Screening Center, China Pharmaceutical University
| | - Xiangdong Gao
- School of Life Science and Technology, China Pharmaceutical University
| |
Collapse
|
20
|
Tian GT, Zhu MJ, Wu YY, Liu Q, Wang HX, Ng TB. Purification and characterization of a protein with antifungal, antiproliferative, and HIV-1 reverse transcriptase inhibitory activities from small brown-eyed cowpea seeds. Biotechnol Appl Biochem 2014; 60:393-8. [PMID: 24033593 DOI: 10.1002/bab.1102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/21/2013] [Indexed: 11/10/2022]
Abstract
A 36-kDa protein, with an N-terminal sequence highly homologous to polygalacturonase (PG) inhibiting proteins, was isolated from small brown-eyed cowpea seeds. The protein was unadsorbed on diethylaminoethyl cellulose but adsorbed on both Affi-gel blue gel and SP-sepharose. It inhibited mycelial growth in the fungus Mycosphaerella arachidicola with an half-maximal (50%) inhibitory concentration (IC50 ) of 3.3 µM. It reduced [methyl-(3) H] thymidine incorporation into MBL2 lymphoma and L1210 leukemia cells with an IC50 of 7.4 and 5.4 µM, respectively. It inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase with an IC50 of 12.9 µM. However, it did not inhibit PG. The potent antifungal and antitumor activities of the protein suggest that it can be developed into an antifungal agent for combating M. arachidicola invasion in crops and an agent for cancer therapy in humans.
Collapse
Affiliation(s)
- Guo-Ting Tian
- Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science, Kunming, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Chan YS, Ng TB. Northeast red beans produce a thermostable and pH-stable defensin-like peptide with potent antifungal activity. Cell Biochem Biophys 2014; 66:637-48. [PMID: 23292358 DOI: 10.1007/s12013-012-9508-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A 5.4-kDa antifungal peptide was purified from Phaseolus vulgaris L. cv. "northeast red bean" using a protocol that entailed affinity chromatography, ion exchange chromatography, and gel filtration. The molecular mass was determined by matrix-assisted laser desorption ionization time-of-flight. The N-terminal amino acid sequence of the peptide was highly homologous to defensins and defensin-like peptides from several plant species. The peptide impeded the growth of a number of pathogenic fungi, including Mycosphaerella arachidicola Khokhr. (IC50 = 1.7 μM), Setosphaeria turcica Luttr., Fusarium oxysporum Schltdl., and Valsa mali Miyabe & G. Yamada. Antifungal activity of the peptide was fully preserved at temperatures up to 100 °C and pH values from 0 to 12. Congo red deposition at the hyphal tip of M. arachidicola was detected after exposure to the peptide, signifying that the peptide had suppressed hyphal growth. The antifungal peptide did not manifest antiproliferative activity toward human breast cancer MCF7 cells and hepatoma HepG2 cells, in contradiction to the bulk of previously reported plant defensins. The data suggest distinct structural requirements for antifungal and antiproliferative activities.
Collapse
Affiliation(s)
- Yau Sang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
22
|
Lin P, Wong JH, Ng TB, Ho VSM, Xia L. A sorghum xylanase inhibitor-like protein with highly potent antifungal, antitumor and HIV-1 reverse transcriptase inhibitory activities. Food Chem 2013; 141:2916-22. [PMID: 23871041 PMCID: PMC7115760 DOI: 10.1016/j.foodchem.2013.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 05/21/2012] [Accepted: 04/04/2013] [Indexed: 01/15/2023]
Abstract
The antifungal protein purified in this study is a pH stable and thermostable xylanase inhibitor. Sorghum antifungal protein is inhibitory toward various fungal species. The sorghum antifungal protein exerts suppressive action on the proliferating hepatoma (HepG2) cells and breast cancer (MCF7) cells. Sorghum antifungal protein exerts a highly potent inhibitory activity against HIV-1 reverse transcriptase.
A 25-kDa protein, with an N-terminal amino acid sequence homologous to that of xylanase inhibitor and designated as xylanase inbibitor-like protein (XILP) was purified from sorghum seeds. The isolation protocol consisted of affinity chromatography, ion exchange chromatography, and gel filtration. XILP inhibited mycelial growth in various phytopathogenic fungi. The antifungal activity was thermostable and pH-stable. XILP inhibited proliferation of various cancer cell lines but did not do so in human embryonic liver (WRL 68) cells. There was no mitogenic activity toward mouse splenocytes. XILP reduced the activity of HIV-1 reverse transcriptase with an IC50 of 11.1 μM, but lacked inhibitory activity toward HIV-1 integrase and SARS coronavirus proteinase. In conclusion, sorghum XILP is thermostable and pH stable and exhibits potent antifungal, antiproliferative, and HIV-1 reverse transcriptase inhibitory activities.
Collapse
Affiliation(s)
- Peng Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
23
|
Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment. Appl Microbiol Biotechnol 2013; 97:10381-90. [PMID: 23474616 DOI: 10.1007/s00253-013-4800-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 02/16/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
A fungal strain, Penicillium chrysogenum A096, was isolated from an Arctic sediment sample. Its culture supernatant inhibited mycelial growth of some plant pathogenic fungi. After saturation of P. chrysogenum A096 culture supernatant with ammonium sulfate and ion exchange chromatography, a novel antifungal protein (Pc-Arctin) was purified and identified by matrix assisted laser desorption ionization-time of flight-time of flight-mass spectrometry (MALDI-TOF-TOF-MS). The gene encoding for Pc-Arctin consisting of 195 nucleotides was cloned from P. chrysogenum A096 to confirm the mass spectrometry result. Pc-Arctin displays antifungal activity against Paecilomyces variotii, Alternaria longipes, and Trichoderma viride at minimum inhibitory concentrations (MIC) of 24, 48, and 192 ng/disc, respectively. Pc-Arctin was most sensitive to proteinase K and then to trypsin but insensitive to papain. Pc-Arctin possesses high thermostability and cannot be antagonized by common surfactants, except for sodium dodecyl sulfate (SDS). Divalent ions, such as Mn(2+), Mg(2+), and Zn(2+), inhibited the antifungal activity of Pc-Arctin. Hemagglutination assays showed that Pc-Arctin had no hemagglutinating or hemolytic activity against red blood cells (RBC) from rabbits, rats, and guinea pigs. Therefore, Pc-Arctin from Arctic P. chrysogenum may represent a novel antifungal protein with potential for application in controlling plant pathogenic fungal infection.
Collapse
|
24
|
A Calcium Ion-Dependent Dimeric Bean Lectin with Antiproliferative Activity Toward Human Breast Cancer MCF-7 Cells. Protein J 2013; 32:208-15. [DOI: 10.1007/s10930-013-9477-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Wong JH, Ip DCW, Ng TB, Chan YS, Fang F, Pan WL. A defensin-like peptide from Phaseolus vulgaris cv. 'King Pole Bean'. Food Chem 2012; 135:408-14. [PMID: 22868107 DOI: 10.1016/j.foodchem.2012.04.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 03/22/2012] [Accepted: 04/23/2012] [Indexed: 11/16/2022]
Abstract
A 5447 Da antifungal peptide with an N-terminal sequence highly homologous to plant defensins was purified from Phaseolus vulgaris cv. 'King Pole Bean' by anion-exchange chromatography on Q Sepharose and FPLC-gel filtration on Superdex 75. The isolated peptide inhibited growth of a number of fungal species, including Mycosphaerella arachidicola, Saccharomyces cerevisiae and Candida albicans, with IC(50) values of 3.9, 4.0 and 8.4 μM, respectively. Using the membrane non-permeable DNA-binding dye SYTOX green, it was found that the peptide increased the cell membrane permeability of M. arachidicola, S. cerevisiae and C. albicans.
Collapse
Affiliation(s)
- Jack H Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| | | | | | | | | | | |
Collapse
|
26
|
Yili A, Ling MQ, Bo Z, Asrorov AS, Oshchepkova YI, Salikhov SI, Aisa HA. New peptide from seeds of Cicer arietinum. Chem Nat Compd 2012. [DOI: 10.1007/s10600-012-0113-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
de Beer A, Vivier MA. Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Res Notes 2011; 4:459. [PMID: 22032337 PMCID: PMC3213222 DOI: 10.1186/1756-0500-4-459] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/28/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Plant defensins are an important component of the innate defence system of plants where they form protective antimicrobial barriers between tissue types of plant organs as well as around seeds. These peptides also have other activities that are important for agricultural applications as well as the medical sector. Amongst the numerous plant peptides isolated from a variety of plant species, a significant number of promising defensins have been isolated from Brassicaceae species. Here we report on the isolation and characterization of four defensins from Heliophila coronopifolia, a native South African Brassicaceae species. RESULTS Four defensin genes (Hc-AFP1-4) were isolated with a homology based PCR strategy. Analysis of the deduced amino acid sequences showed that the peptides were 72% similar and grouped closest to defensins isolated from other Brassicaceae species. The Hc-AFP1 and 3 peptides shared high homology (94%) and formed a unique grouping in the Brassicaceae defensins, whereas Hc-AFP2 and 4 formed a second homology grouping with defensins from Arabidopsis and Raphanus. Homology modelling showed that the few amino acids that differed between the four peptides had an effect on the surface properties of the defensins, specifically in the alpha-helix and the loop connecting the second and third beta-strands. These areas are implicated in determining differential activities of defensins. Comparing the activities after recombinant production of the peptides, Hc-AFP2 and 4 had IC50 values of 5-20 μg ml-1 against two test pathogens, whereas Hc-AFP1 and 3 were less active. The activity against Botrytis cinerea was associated with membrane permeabilization, hyper-branching, biomass reduction and even lytic activity. In contrast, only Hc-AFP2 and 4 caused membrane permeabilization and severe hyper-branching against the wilting pathogen Fusarium solani, while Hc-AFP1 and 3 had a mild morphogenetic effect on the fungus, without any indication of membrane activity. The peptides have a tissue-specific expression pattern since differential gene expression was observed in the native host. Hc-AFP1 and 3 expressed in mature leaves, stems and flowers, whereas Hc-AFP2 and 4 exclusively expressed in seedpods and seeds. CONCLUSIONS Two novel Brassicaceae defensin sequences were isolated amongst a group of four defensin encoding genes from the indigenous South African plant H. coronopifolia. All four peptides were active against two test pathogens, but displayed differential activities and modes of action. The expression patterns of the peptide encoding genes suggest a role in protecting either vegetative or reproductive structures in the native host against pathogen attack, or roles in unknown developmental and physiological processes in these tissues, as was shown with other defensins.
Collapse
Affiliation(s)
- Abré de Beer
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Melané A Vivier
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
28
|
Ye XJ, Ng TB, Wu ZJ, Xie LH, Fang EF, Wong JH, Pan WL, Wing SSC, Zhang YB. Protein from red cabbage (Brassica oleracea) seeds with antifungal, antibacterial, and anticancer activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10232-10238. [PMID: 21830763 DOI: 10.1021/jf201874j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A 30 kDa antifungal protein was purified from red cabbage ( Brassica oleracea ) seeds. It exhibited a molecular mass and N-terminal amino acid sequence disinct from those of previously isolated Brassica antifungal proteins. The protocol used entailed ion exchange chromatography on Q-Sepharose and SP-Sepharose followed by fast protein liquid chromatography on Mono S. The protein hindered mycelial growth in Mycosphaerella arachidicola (with an IC50=5 μM), Setospaeria turcica, and Bipolaris maydis. It also inhibited the yeast Candida albicans with an IC50=96 μM. It exerted its antifungal action by permeabilizing the fungal membrane as evidenced by staining with Sytox green. The antifungal activity was stable from pH 3 to 11 and from 0 to 65 °C. It manifested antibacterial activity against Pseudomonas aeruginosa (IC50=53 μM). Furthermore, after 48 h of culture, it suppressed proliferation of nasopharyngeal cancer and hepatoma cells with IC50=50 and 90 μM, respectively.
Collapse
Affiliation(s)
- Xiu-Juan Ye
- Institute of Plant Virology, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Isolation and characterization of a Kunitz-type trypsin inhibitor with antiproliferative activity from Gymnocladus chinensis (Yunnan bean) seeds. Protein J 2011; 30:240-6. [PMID: 21468674 PMCID: PMC7088384 DOI: 10.1007/s10930-011-9325-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A 20-kDa Kunitz-type trypsin inhibitor was isolated from Gymnocladus chinensis (Yunnan bean) seeds. The isolation procedure involved ion exchange chromatography on diethylaminoethyl cellulose (DEAE-cellulose), affinity chromatography on Affi-gel blue gel, ion exchange chromatography on sulfopropyl sepharose (SP-sepharose), and gel filtration by FPLC on Superdex 75. The trypsin inhibitor was adsorbed on DEAE-cellulose, unadsorbed on Affi-gel blue gel, and adsorbed on SP-Sepharose. It dose-dependently inhibited trypsin with an IC50 value of 0.4 μM. Dithiothreitol reduced its trypsin inhibitory activity, suggesting that an intact disulfide bond is indispensable to the activity. It suppressed [methyl-3H] thymidine incorporation by leukemia L1210 cells and lymphoma MBL2 cells with an IC50 value of 4.7 and 9.4 μM, respectively. There was no effect on human immunodeficiency virus4-1 reverse transcriptase activity and fungal growth when the trypsin inhibitor was tested up to 100 μM.
Collapse
|
30
|
Wen Q, Yuan D, Xie KH, Cai TZ, Fu HZ. Three triterpenoid saponins acylated with monoterpenic acid from Gymnocladus chinensis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2011; 13:869-878. [PMID: 21830893 DOI: 10.1080/10286020.2011.589839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new triterpenoid saponin acylated with monoterpenic acid, together with two known triterpenoid saponins, has been isolated from the fruit of Gymnocladus chinensis Baill. Their structures were elucidated as 2β,23-dihydroxy-3-O-α-L-rhamnopyranosyl-21-O-{(6S)-2-trans-2,6-dimethyl-6-O-[3-O-(β-D-glucopyranosyl)-4-O-((6S)-2-trans-2,6-dimethyl-6-hydroxy-2,7-octadienoyl)-β-L-arabinopyranosyl]-2,7-octadienoyl}-acacic acid 28-O-β-D-xylopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-[α-L-rhamnopyranosyl-(1 → 6)]-β-D-glucopyranosyl ester (1), gymnocladus saponin E (2), and gymnocladus saponin F(2) (3).
Collapse
Affiliation(s)
- Qi Wen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijng 100191, China
| | | | | | | | | |
Collapse
|
31
|
Qi W, Yuan D, Yang LM, Xie KH, Cai TZ, Yang R, Fu HZ. Structural determination of two new triterpenoid saponins acylated with monoterpenic acid from Gymnocladus chinensis Baill. Nat Prod Res 2011; 26:1436-41. [DOI: 10.1080/14786419.2011.602020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Wen Qi
- a State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
- b School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Dan Yuan
- b School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Lian-Mei Yang
- c Medical Academy, Yangzhou University , Yangzhou 225009 , China
| | - Ke-Hui Xie
- a State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Tian-Zhi Cai
- a State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Rong Yang
- a State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Hong-Zheng Fu
- a State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| |
Collapse
|
32
|
Xu W, Wei L, Qu W, Liang Z, Wang J, Peng X, Zhang Y, Huang K. A novel antifungal peptide from foxtail millet seeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:1630-1637. [PMID: 21445868 DOI: 10.1002/jsfa.4359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 11/28/2010] [Accepted: 01/25/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND Antifungal proteins (AFP) help plants to combat phytopathogenic fungi and thus protect plants from the devastating damage caused by fungal infections and prevent massive economic losses. To date, several proteins with antibacterial and/or antifungal properties have been isolated and characterized from different plant species and tissues; however, there are no reports concerning the antifungal peptide from foxtail millet seeds. RESULTS An antifungal peptide with a molecular mass of 26.9 kDa was isolated from dry seeds of the foxtail millet (Setaria italica (L.) Beauv.), using a procedure that involved four chromatographic steps. The antifungal peptide was adsorbed on CM-Sepharose, Affi-gel blue gel and Superdex 75. It was further purified by C(18) reverse-phase high-performance liquid chromatography and submitted for analysis of peptide mass fingerprint. The Mascot peptide mass fingerprint of the isolated protein hit no existing protein (score >60), and it was proved to be a novel antifungal peptide. It inhibited mycelial growth in Alternaria alternate with an IC(50) of 1.3 µmol L(-1) , and it also exhibited antifungal activity against Trichoderma viride, Botrytis cinerea and Fusarium oxysporum. Transmission electron microscopy of mold forms of Alternaria alternate after incubation with 20 µg mL(-1) of the antifungal protein for 48 h revealed marked ultrastructural changes in the fungus. CONCLUSION A novel antifungal peptide with high potency was isolated from foxtail millet seeds.
Collapse
Affiliation(s)
- Wentao Xu
- Laboratory of Food safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bah CSF, Fang EF, Ng TB, Mros S, McConnell M, Bekhit AEDA. Purification and characterization of a rhamnose-binding chinook salmon roe lectin with antiproliferative activity toward tumor cells and nitric oxide-inducing activity toward murine macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5720-5728. [PMID: 21456624 DOI: 10.1021/jf2004578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this study, a rhamnose-binding lectin from the roe of chinook salmon (Oncorhynchus tshawytscha) was purified and characterized, and its biological activities were examined in several model systems. Chinook salmon roe lectin had a molecular mass of 30 kDa and agglutinated rabbit and bovine erythrocytes. The hemagglutination activity of the lectin was not affected by metal ions. The lectin was stable up to 70 °C and between pH 4 and pH 11. Chinook salmon roe lectin did not exert antifungal activity toward the fungal species tested and did not exhibit mitogenic response toward mouse splenocytes up to a concentration of 5 mg/mL. The lectin had selective antiproliferative activity toward human breast cancer MCF-7 cells and hepatoma Hep G2 cells. It also induced the production of nitric oxide from mouse peritoneal macrophages. This is the first report that demonstrates these biological activities from chinook salmon roe lectin.
Collapse
|
34
|
Rogozhin EA, Oshchepkova YI, Odintsova TI, Khadeeva NV, Veshkurova ON, Egorov TA, Grishin EV, Salikhov SI. Novel antifungal defensins from Nigella sativa L. seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:131-7. [PMID: 21144761 DOI: 10.1016/j.plaphy.2010.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/18/2010] [Accepted: 10/23/2010] [Indexed: 05/22/2023]
Abstract
From seeds of Nigella sativa L. (Ranunculaceae), an endemic plant of Uzbekistan, two novel defensins named Ns-D1 and Ns-D2, were isolated and sequenced. The peptides differ by a single amino acid residue and show high sequence similarity to Raphanus sativus L. defensins Rs-AFP1 and Rs-AFP2. The Ns-D1 and Ns-D2 defensins display strong although divergent antifungal activity towards a number of phytopathogenic fungi. High antifungal activity of N. sativa defensins makes them promising candidates for engineering pathogen-resistant plants.
Collapse
Affiliation(s)
- Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wu X, Sun J, Zhang G, Wang H, Ng TB. An antifungal defensin from Phaseolus vulgaris cv. 'Cloud Bean'. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:104-109. [PMID: 20729048 PMCID: PMC7126286 DOI: 10.1016/j.phymed.2010.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/27/2010] [Accepted: 06/08/2010] [Indexed: 05/29/2023]
Abstract
An antifungal peptide with a defensin-like sequence and exhibiting a molecular mass of 7.3kDa was purified from dried seeds of Phaseolus vulgaris 'Cloud Bean'. The isolation procedure entailed anion exchange chromatography on DEAE-cellulose, affinity chromatography an Affi-gel blue gel, cation exchange chromatography on SP-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. Although the antifungal peptide was unadsorbed on DEAE-cellulose, it was adsorbed on both Affi-gel blue gel and SP-Sepharose. The antifungal peptide exerted antifungal activity against Mycosphaerella arachidicola with an IC(50) value of 1.8 μM. It was also active against Fusarium oxysporum with an IC(50) value of 2.2 μM. It had no inhibitory effect on HIV-1 reverse transcriptase when tested up to 100 μM. Proliferation of L1210 mouse leukemia cells and MBL2 lymphoma cells was inhibited by the antifungal peptide with an IC(50) of 10 μM and 40 μM, respectively.
Collapse
Affiliation(s)
- Xiangli Wu
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Jian Sun
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Guoqing Zhang
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
36
|
Trypsin isoinhibitors with antiproliferative activity toward leukemia cells from Phaseolus vulgaris cv "White Cloud Bean". J Biomed Biotechnol 2010; 2010:219793. [PMID: 20617140 PMCID: PMC2896657 DOI: 10.1155/2010/219793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/21/2010] [Indexed: 11/17/2022] Open
Abstract
A purification protocol that comprised ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75 was complied to isolate two trypsin inhibitors from Phaseolus vulgaris cv “White Cloud Bean”. Both trypsin inhibitors exhibited a molecular mass of 16 kDa and reduced the activity of trypsin with an IC50 value of about 0.6 μM. Dithiothreitol attenuated the trypsin inhibitory activity, signifying that an intact disulfide bond is indispensable to the activity. [Methyl-3H] thymidine incorporation by leukemia L1210 cells was inhibited with an IC50 value of 28.8 μM and 21.5 μM, respectively. They were lacking in activity toward lymphoma MBL2 cells and inhibitory effect on HIV-1 reverse transcriptase and fungal growth when tested up to 100 μM.
Collapse
|
37
|
Wong JH, Ng TB, Cheung RCF, Ye XJ, Wang HX, Lam SK, Lin P, Chan YS, Fang EF, Ngai PHK, Xia LX, Ye XY, Jiang Y, Liu F. Proteins with antifungal properties and other medicinal applications from plants and mushrooms. Appl Microbiol Biotechnol 2010; 87:1221-35. [DOI: 10.1007/s00253-010-2690-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
38
|
Inhibition of endogenous α-amylase and protease of Aspergillus flavus by trypsin inhibitor from cultivated and wild-type soybean. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0056-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
39
|
Abstract
Aims: To isolate and characterize an antifungal peptide from the seeds of Brassica parachinensis L.H.Bailey. Methods and Results: An antifungal peptide designated as brassiparin was isolated. It exhibited a molecular mass of 5716 Da. It potently inhibited mycelial growth in a number of fungal species including Fusarium oxysporum, Helminthosporium maydis, Mycosphaerella arachidicola and Valsa mali. The antifungal activity of brassiparin toward M. arachidicola exhibited pronounced thermostability and pH stability. It inhibited proliferation of hepatoma (HepG2) and breast cancer (MCF7) cells and the activity of HIV‐1 reverse transcriptase. Its N‐terminal sequence differed from those of antifungal proteins which have been reported to date. Conclusions: Brassiparin can be purified by using a protocol involving ion exchange chromatography, affinity chromatography and gel filtration. It manifests potent, thermostable and pH‐stable antifungal activity. It demonstrates antiproliferative activity toward tumour cells, and inhibitory activity toward HIV‐1 reverse transcriptase. Thus, brassiparin is a defense protein. Significance and Impact of the Study: Brassiparin represents one of the few antifungal proteins reported to date from Brassica species. Its antifungal activity has pronounced pH stability and thermostability. Brassiparin exhibits other exploitable activities such as antiproliferative activity toward hepatoma and breast cancer cells and inhibitory activity toward HIV‐reverse transcriptase.
Collapse
Affiliation(s)
- P Lin
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
40
|
Ma DZ, Wang HX, Ng TB. A peptide with potent antifungal and antiproliferative activities from Nepalese large red beans. Peptides 2009; 30:2089-94. [PMID: 19720103 DOI: 10.1016/j.peptides.2009.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/23/2009] [Accepted: 08/23/2009] [Indexed: 10/20/2022]
Abstract
An antifungal defensin-like peptide with a molecular mass of 7.1kDa was isolated from dried Nepalese large red beans (Phaseolus angularis). The purification protocol employed included ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. The antifungal peptide was unadsorbed on DEAE-cellulose, and adsorbed on Affi-gel blue gel and SP-Sepharose. The antifungal peptide inhibited mycelial growth in Fusarium oxysporum and Mycosphaerella arachidicola with an IC(50) value of 1.4 and 1.8 microM, respectively. It did not inhibit HIV-1 reverse transcriptase when tested up to 200 microM. It exerted an antiproliferative action on L1210 leukemia cells and MBL2 lymphoma cells with an IC(50) of 15 and 60 microM, respectively.
Collapse
Affiliation(s)
- D Z Ma
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
41
|
A defensin with highly potent antipathogenic activities from the seeds of purple pole bean. Biosci Rep 2009; 30:101-9. [PMID: 19335335 DOI: 10.1042/bsr20090004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 5443 Da peptide with sequence homology to defensins was purified from purple pole beans (Phaseolus vulgaris cv. 'Extra-long Purple Pole bean'). This peptide was isolated by adsorption on an affinity chromatographic medium Affi-Gel Blue gel and ion-exchange chromatographic media SP-Sepharose (sulfopropyl-Sepharose) and Mono S and by gel filtration on Superdex peptide. The peptide inhibited mycelial growth in Mycosphaerella arachidicola, Helminthosporium maydis, Fusarium oxysporum, Verticillium dahliae, Rhizoctonia solani, Candida albicans and Setosphaeria turcica with an IC50 of 0.8, 0.9, 2.3, 3.2, 4.3, 4.8 and 9.8 microM respectively. Its antifungal potency was higher than that of the plant defensin coccinin (IC50>50 microM). It induced membrane permeabilization in C. albicans as evidenced by SYTOX Green uptake, but did not affect erythrocyte membrane permeability. It inhibited growth in M. arachidicola by inducing chitin accumulation at hyphal tips as was shown by Congo Red staining. The antifungal activity was pH stable and thermostable. The peptide inhibited the proliferation of hepatoma (HepG2), breast cancer (MCF7), colon cancer (HT29) and cervical cancer (SiHa) cells but not that of human embryonic liver (WRL68) cells. Its anti-HepG2 activity (IC50=4.1+/-0.8 microM, n=3) was higher than that of another plant defensin, gymnin (IC50>50 microM). Its anti-MCF7 activity (IC50=8.3+/-0.3 microM, n=3) was similar to that of other plant defensins. It reduced the activity of HIV-1 reverse transcriptase with an IC50 of 0.5+/-0.1 microM, n=3, much more potently than other plant defensins (IC50>40 microM). There is the possibility of using the purple pole bean defensin for producing antifungal drugs and/or transgenic plants with fungal resistance.
Collapse
|
42
|
Lin P, Wong JH, Xia L, Ng TB. Campesin, a thermostable antifungal peptide with highly potent antipathogenic activities. J Biosci Bioeng 2009; 108:259-65. [PMID: 19664563 PMCID: PMC7106469 DOI: 10.1016/j.jbiosc.2009.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 11/17/2022]
Abstract
An 9.4-kDa antifungal peptide designated as campesin was isolated from seeds of the cabbage Brassica campestris. The isolation procedure involved affinity chromatography on Affi-gel blue gel, ion exchange chromatography on Q-Sepharose and Mono S, and gel filtration on Superdex 75 and Superdex Peptide. The peptide was adsorbed on the first three chromatographic media. It exerted an inhibitory action on mycelial growth including Fusarium oxysporum and Mycosphaerella arachidicola, with an IC(50) of 5.1 microM and 4.4 microM, respectively. The peptide was characterized by remarkable thermostability and pH stability. It inhibited proliferation of HepG2 and MCF cancer cells with an IC(50) of 6.4 microM and 1.8 microM, and the activity of HIV-1 reverse transcriptase with an IC(50) of 3.2 microM. It demonstrated lysolecithin binding activity.
Collapse
Affiliation(s)
- Peng Lin
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jack Ho Wong
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Lixin Xia
- College of Life Science, Shenzhen University, Shenzhen, China
| | - Tzi Bun Ng
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
43
|
Cheung AHK, Wong JH, Ng TB. Musa acuminata (Del Monte banana) lectin is a fructose-binding lectin with cytokine-inducing activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:594-600. [PMID: 19195858 DOI: 10.1016/j.phymed.2008.12.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/31/2008] [Accepted: 12/12/2008] [Indexed: 05/11/2023]
Abstract
A homodimeric, fructose-binding lectin was isolated from Del Monte bananas by using a protocol that involved ion-exchange chromatography on DEAE-cellulose and SP-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. Not only fructose, but also glucose, mannose, rhamnose and glucosamine could inhibit the lectin. The N-terminal amino acid sequence of its identical 15-kDa subunits was similar to lectins from other Musa species except for the deletion of the N-terminal glycine residue in Del Monte banana lectin. The hemagglutinating activity was stable up to 80 degrees C and also stable in the range pH 1-13. However, the hemagglutinating activity dwindled to an undetectable level at 90 degrees C. The lectin was capable of eliciting a mitogenic response in murine splenocytes and inducing the expression of the cytokines interferon-gamma, tumor necrosis factor-alpha, and interleukin-2 in splenocytes. The lectin also inhibited proliferation of leukemia (L1210) cells and hepatoma (HepG2) cells and the activity of HIV-1 reverse transcriptase. The additional information obtained in the present study includes demonstration of fructose-binding activity and cytokine-inducing activity of Del Monte banana lectin. Fructose binding is an unusual characteristic of plant lectins. It is possible that the banana lectin can be developed into a useful anti-HIV, immunopotentiating and antitumor agent in view of its trypsin stability and thermostability.
Collapse
Affiliation(s)
- Allen H K Cheung
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
44
|
Ajesh K, Sreejith K. Peptide antibiotics: an alternative and effective antimicrobial strategy to circumvent fungal infections. Peptides 2009; 30:999-1006. [PMID: 19428779 DOI: 10.1016/j.peptides.2009.01.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Mycosis, caused by both filamentous fungi and pathogenic yeasts is a major concern nowadays especially in the immunocompromised patient population. The emergence of pathogenic fungi resistant to current therapies in the last few decades has intensified the search for new antifungals like cationic peptides, which are the key components of innate defense mechanism. The review provides an inventory of different peptides from a diverse array of organisms from bacteria to mammals with proven antifungal activity, their therapeutic options and also about those which are in various stages of preclinical development. Literature, on the total and semi-synthetic variants of the parent peptides that exhibit an improved antifungal activity is also reviewed.
Collapse
Affiliation(s)
- K Ajesh
- Department of Biotechnology and Microbiology, Kannur University, Kerala, India
| | | |
Collapse
|
45
|
Zhang B, Wang DF, Fan Y, Zhang L, Luo Y. Affinity purification of trypsin inhibitor with anti-Aspergillus flavus activity from cultivated and wild soybean. Mycopathologia 2009; 167:163-71. [PMID: 18830687 DOI: 10.1007/s11046-008-9160-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
Trypsin inhibitors (TI) from wild-type soybean (Glycine soya) (WBTI) and domesticated soybean (Glycine max) (SBTI) were purified using prepared chitosan resin-trypsin as filler on the affinity chromatography column. The SBTI/WBTI purification fold by affinity chromatography was 718- and 279-fold, with the activity recovery of 62% and 59%, respectively. It was found that SBTI and WBTI exerted a strong inhibition of Aspergillus. flavus growth, with IC(50) of 1.6 and 1.0 micromol/l. This growth inhibition was possibly the result of the inhibition on alpha-amylase activity of A. flavus by both the SBTI and WBTI. This was further supported by the fact that in the presence of SBTI and WBTI at 9.0 and 6.0 microg/g (peanut) on peanuts inhibited the germination and growth of A. flavus. Accordingly, characterization of the mode of action of SBTI and WBTI could constitute a first step leading to resistance to A. flavus invasion.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Food Chemistry and Nutrition, College of Food Science and Technology, Ocean University of China, Yu Shan Road 5, Qingdao, 266003, People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
Wong J, Hao J, Cao Z, Qiao M, Xu H, Bai Y, Ng T. An antifungal protein fromBacillus amyloliquefaciens. J Appl Microbiol 2008; 105:1888-98. [DOI: 10.1111/j.1365-2672.2008.03917.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Lin P, Ng TB. Preparation and biological properties of a melibiose binding lectin from Bauhinia variegata seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:10481-10486. [PMID: 18942841 DOI: 10.1021/jf8016332] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A dimeric 64-kDa melibiose-binding lectin was isolated from the seeds of Bauhinia variegata. The isolation procedure comprised affinity chromatography on Affi-gel blue gel, ion exchange chromatography on Mono Q, and gel filtration on Superdex 75. The lectin was adsorbed on the first two chromatographic media. Its hemagglutinating activity was stable after 30-min exposure to temperatures up to 70 degrees C. Since lectins may demonstrate biological activities such as antiproliferative, immunomodulatory, antifungal, antiviral, and HIV-1 reverse transcriptase inhibitory activities, the isolated lectin was tested for these activities. It was found that the lectin inhibited proliferation in hepatoma HepG2 cells and breast cancer MCF7 cells with an IC(50) of 1.4 microM and 0.18 microM, respectively. HIV-1 reverse transcriptase activity was inhibited with an IC(50) of 1.02 microM. The lectin and concanavalin A (Con A) evoked maximal mitogenic response from mouse splenocytes at similar concentrations, but the maximal response to B. variegata lectin was only 1/5 of that induced by Con A in magnitude. B. variegata lectin was devoid of antifungal activity.
Collapse
Affiliation(s)
- Peng Lin
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
48
|
Lin P, Ng TB. A novel and exploitable antifungal peptide from kale (Brassica alboglabra) seeds. Peptides 2008; 29:1664-71. [PMID: 18597893 PMCID: PMC7115674 DOI: 10.1016/j.peptides.2008.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 11/22/2022]
Abstract
The aim of this study was to purify and characterize antifungal peptides from kale seeds in view of the paucity of information on antifungal peptides from the family Brassicaceae, and to compare its characteristics with those of published Brassica antifungal peptides. A 5907-Da antifungal peptide was isolated from kale seeds. The isolation procedure comprised affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose and Mono S, and gel filtration on Superdex Peptide. The peptide was adsorbed on the first three chromatographic media. It inhibited mycelial growth in a number of fungal species including Fusarium oxysporum, Helminthosporium maydis, Mycosphaerella arachidicola and Valsa mali, with an IC(50) of 4.3microM, 2.1microM, 2.4microM, and 0.15microM, respectively and exhibited pronounced thermostability and pH stability. It inhibited proliferation of hepatoma (HepG2) and breast cancer (MCF7) cells with an IC(50) of 2.7microM and 3.4microM, and the activity of HIV-1 reverse transcriptase with an IC(50) of 4.9microM. Its N-terminal sequence differed from those of antifungal proteins which have been reported to date.
Collapse
Affiliation(s)
- Peng Lin
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
49
|
de Beer A, Vivier MA. Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. BMC PLANT BIOLOGY 2008; 8:75. [PMID: 18611251 PMCID: PMC2492866 DOI: 10.1186/1471-2229-8-75] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 07/08/2008] [Indexed: 05/23/2023]
Abstract
BACKGROUND Latest research shows that small antimicrobial peptides play a role in the innate defense system of plants. These peptides typically contribute to preformed defense by developing protective barriers around germinating seeds or between different tissue layers within plant organs. The encoding genes could also be upregulated by abiotic and biotic stimuli during active defense processes. The peptides display a broad spectrum of antimicrobial activities. Their potent anti-pathogenic characteristics have ensured that they are promising targets in the medical and agricultural biotechnology sectors. RESULTS A berry specific cDNA sequence designated Vv-AMP1, Vitis vinifera antimicrobial peptide 1, was isolated from Vitis vinifera. Vv-AMP1 encodes for a 77 amino acid peptide that shows sequence homology to the family of plant defensins. Vv-AMP1 is expressed in a tissue specific, developmentally regulated manner, being only expressed in berry tissue at the onset of berry ripening and onwards. Treatment of leaf and berry tissue with biotic or abiotic factors did not lead to increased expression of Vv-AMP1 under the conditions tested. The predicted signal peptide of Vv-AMP1, fused to the green fluorescent protein (GFP), showed that the signal peptide allowed accumulation of its product in the apoplast. Vv-AMP1 peptide, produced in Escherichia coli, had a molecular mass of 5.495 kDa as determined by mass spectrometry. Recombinant Vv-AMP1 was extremely heat-stable and showed strong antifungal activity against a broad spectrum of plant pathogenic fungi, with very high levels of activity against the wilting disease causing pathogens Fusarium oxysporum and Verticillium dahliae. The Vv-AMP1 peptide did not induce morphological changes on the treated fungal hyphae, but instead strongly inhibited hyphal elongation. A propidium iodide uptake assay suggested that the inhibitory activity of Vv-AMP1 might be associated with altering the membrane permeability of the fungal membranes. CONCLUSION A berry specific cDNA clone, Vv-AMP1, was isolated and characterized and shown to encode a plant defensin. Recombinant Vv-AMP1 displayed non-morphogenic antifungal activity against a broad spectrum of fungi, probably altering the membrane permeability of the fungal pathogens. The expression of this peptide is highly regulated in Vitis vinifera, hinting at an important defense role during berry-ripening.
Collapse
Affiliation(s)
- Abré de Beer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Melané A Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
50
|
A novel defensin from the lentil Lens culinaris seeds. Biochem Biophys Res Commun 2008; 371:860-5. [DOI: 10.1016/j.bbrc.2008.04.161] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 11/23/2022]
|