1
|
Wang L, Zhang L. Involvement of Secretin in the Control of Cell Survival and Synaptic Plasticity in the Central Nervous System. Front Neurosci 2020; 14:387. [PMID: 32435180 PMCID: PMC7218122 DOI: 10.3389/fnins.2020.00387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/30/2020] [Indexed: 01/30/2023] Open
Abstract
With emerging evidence showing a wide distribution of secretin (SCT) and its receptor (SCTR) in the central nervous system (CNS), the putative neuropeptide role of SCT has become more appreciated since the disruption of SCT/SCTR axis affects various neural functions. This mini review thus focuses on the effects of SCT on cell survival and synaptic plasticity, both of which play critical roles in constructing and maintaining neural circuits with optimal output of behavioral phenotypes. Specifically, SCT-dependent cellular and molecular mechanisms that may regulate these two aspects will be discussed. The potential complementary or synergistical mechanisms between SCT and other peptides of the SCT superfamily will also be discussed for bridging their actions in the brain. A full understanding of functional SCT/SCTR in the brain may lead to future perspectives regarding therapeutic implications of SCT in relieving neural symptoms.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Cardoso JCR, Félix RC, Trindade M, Power DM. Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand. Gen Comp Endocrinol 2014; 209:82-92. [PMID: 24906176 DOI: 10.1016/j.ygcen.2014.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 01/21/2023]
Abstract
The secretin receptor (SCTR) is a member of Class 2 subfamily B1 GPCRs and part of the PAC1/VPAC receptor subfamily. This receptor has long been known in mammals but has only recently been identified in other vertebrates including teleosts, from which it was previously considered to be absent. The ligand for SCTR in mammals is secretin (SCT), an important gastrointestinal peptide, which in teleosts has not yet been isolated, or the gene identified. This study revises the evolutionary model previously proposed for the secretin-GPCRs in metazoan by analysing in detail the fishes, the most successful of the extant vertebrates. All the Actinopterygii genomes analysed and the Chondrichthyes and Sarcopterygii fish possess a SCTR gene that shares conserved sequence, structure and synteny with the tetrapod homologue. Phylogenetic clustering and gene environment comparisons revealed that fish and tetrapod SCTR shared a common origin and diverged early from the PAC1/VPAC subfamily group. In teleosts SCTR duplicated as a result of the fish specific whole genome duplication but in all the teleost genomes analysed, with the exception of tilapia (Oreochromis niloticus), one of the duplicates was lost. The function of SCTR in teleosts is unknown but quantitative PCR revealed that in both sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) transcript abundance is high in the gastrointestinal tract suggesting it may intervene in similar processes to those in mammals. In contrast, no gene encoding the ligand SCT was identified in the ray-finned fishes (Actinopterygii) although it was present in the coelacanth (lobe finned fish, Sarcopterygii) and in the elephant shark (holocephalian). The genes in linkage with SCT in tetrapods and coelacanth were also identified in ray-finned fishes supporting the idea that it was lost from their genome. At present SCTR remains an orphan receptor in ray-finned fishes and it will be of interest in the future to establish why SCT was lost and which ligand substitutes for it so that full characterization of the receptor can occur.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
3
|
Tam JKV, Lau KW, Lee LTO, Chu JYS, Ng KM, Fournier A, Vaudry H, Chow BKC. Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin. PLoS One 2011; 6:e19384. [PMID: 21559418 PMCID: PMC3084839 DOI: 10.1371/journal.pone.0019384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022] Open
Abstract
At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa) secretins, we provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin, orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins early in the vertebrate lineage.
Collapse
Affiliation(s)
- Janice K. V. Tam
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwan-Wa Lau
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Leo T. O. Lee
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jessica Y. S. Chu
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwong-Man Ng
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alain Fournier
- INRS – Institut Armand-Frappier, Université du Quebec, Laval, Québec, Canada
| | - Hubert Vaudry
- INSERM U982, European Institute for Peptide Research, University of Rouen, Mont-Saint-Aignan, France
| | - Billy K. C. Chow
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
4
|
Meuth-Metzinger VL, Philouze-Rome V, Metzinger L, Gespach C, Guilloteau P. Differential activation of adenylate cyclase by secretin and VIP receptors in the calf pancreas. Pancreas 2005; 31:174-81. [PMID: 16025005 DOI: 10.1097/01.mpa.0000174938.89815.e9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Secretin is a key regulator of pancreatic secretion, but the molecular basis of its action is not well understood, especially in the calf pancreas. Our study investigated the expression and functional competence of secretin receptors (SEC-R) in calf pancreatic membranes. METHODS We used reverse transcriptase-polymerase chain reaction, sequencing, and Northern blot to assess the expression of the SEC-R gene. The functional characterization of SEC-R was accomplished using adenylate cyclase (AC) assay. RESULTS We successfully amplified, by reverse transcriptase-polymerase chain reaction, a fragment of the SEC-R gene from 119-day-old calf pancreas. This sequence shows higher homology with SEC-R than with vasoactive intestinal polypeptide (VIP)-1 and VIP-2 receptors from other species. Northern blot analysis detected a 1.8-kb transcript. Accordingly, secretin stimulates AC activity in calf pancreatic membranes isolated from 28- and 119-day-old animals with a potency (Ka) of 1.9 to 2.7 nmol/L. Maximal AC stimulation induced by secretin represented a 3- to 4-fold increase of basal activity. AC activation by secretin was inhibited by the 2 SEC-R antagonists, [psi4,5] secretin (l micromol/L) and [5-27] secretin (10 micromol/L). Interestingly, [psi4,5] secretin was ineffective against VIP-induced AC stimulation. CONCLUSION Our data indicate that secretin exerts a direct action on pancreatic secretion through specific SEC-R coupled to the AC system. Calf pancreatic SEC-Rs are coexpressed with VIP-2 receptors that we previously identified by ligand binding and cross-linking experiments.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Base Sequence
- Cattle
- Gene Expression/physiology
- Molecular Sequence Data
- Pancreas/growth & development
- Pancreas/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Secretin/analogs & derivatives
- Secretin/metabolism
- Secretin/pharmacology
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- Valérie Le Meuth-Metzinger
- Université Paris 13, Faculté de Médecine, Laboratoire de Pharmacologie Expérimentale et Clinique, Bobigny CEDEX, France
| | | | | | | | | |
Collapse
|
5
|
Solomon TE, Keire DA, Gong P, Zong Y, Reeve JR. Receptor subtypes: species variations in secretin affect potency for pancreatic but not gastric secretion. Pancreas 2003; 26:300-5. [PMID: 12657958 DOI: 10.1097/00006676-200304000-00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION Receptor subtypes can be distinguished by different actions of agonists on physiologic responses. In this study, we compared effects of four species variants of secretin (rat, porcine, canine, and human) on pancreatic secretion and gastrin-induced acid secretion in urethane-anesthetized rats. These secretins differ by one to three residues in position 14, 15, or 16 and were used to probe for the presence of different secretin receptor subtypes in the rat. METHODOLOGY Pancreatic responses were measured in a two-point parallel line bioassay with porcine secretin (3 and 30 pmol/kg IV bolus) as standard. Inhibition of gastric acid secretion by each secretin (100 pmol/[kg x h]) was quantitated against a threshold dosage of gastrin-17 (200 pmol/[kg x h]), and percent inhibition of incremental acid responses was determined. RESULTS Rat secretin was significantly more potent than other secretins for pancreatic secretion, in the order of rat > porcine > canine > human. The four secretins significantly inhibited gastrin-induced acid secretion by 37% to 49%, with no statistically significant differences among the forms. CONCLUSIONS Stimulation of pancreatic secretion was influenced by species variations in secretin structure, but inhibition of gastric acid secretion was not. This finding suggests that secretin receptor subtypes with different recognition patterns mediate these responses.
Collapse
Affiliation(s)
- Travis E Solomon
- CURE Digestive Diseases Research Center, VA Greater Los Angeles Healthcare System, and Digestive Diseases Division, UCLA School of Medicine, Los Angeles, California 90073, USA
| | | | | | | | | |
Collapse
|
6
|
Mayo KE, Miller LJ, Bataille D, Dalle S, Göke B, Thorens B, Drucker DJ. International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 2003; 55:167-94. [PMID: 12615957 DOI: 10.1124/pr.55.1.6] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peptide hormones within the secretin-glucagon family are expressed in endocrine cells of the pancreas and gastrointestinal epithelium and in specialized neurons in the brain, and subserve multiple biological functions, including regulation of growth, nutrient intake, and transit within the gut, and digestion, energy absorption, and energy assimilation. Glucagon, glucagon-like peptide-1, glucagon-like peptide-2, glucose-dependent insulinotropic peptide, growth hormone-releasing hormone and secretin are structurally related peptides that exert their actions through unique members of a structurally related G protein-coupled receptor class 2 family. This review discusses advances in our understanding of how these peptides exert their biological activities, with a focus on the biological actions and structural features of the cognate receptors. The receptors have been named after their parent and only physiologically relevant ligand, in line with the recommendations of the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR).
Collapse
Affiliation(s)
- Kelly E Mayo
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The objective of this review article is to discuss the role of secretin and its receptor in the regulation of the secretory activity of intrahepatic bile duct epithelial cells (i.e., cholangiocytes). After a brief overview of cholangiocyte functions, we provide an historical background for the role of secretin and its receptor in the regulation of ductal secretion. We review the newly developed experimental in vivo and in vitro tools, which lead to understanding of the mechanisms of secretin regulation of cholangiocyte functions. After a description of the intracellular mechanisms by which secretin stimulates ductal secretion, we discuss the heterogeneous responses of different-sized intrahepatic bile ducts to gastrointestinal hormones. Furthermore, we outline the role of a number of cooperative factors (e.g., nerves, alkaline phosphatase, gastrointestinal hormones, neuropeptides, and bile acids) in the regulation of secretin-stimulated ductal secretion. Finally, we discuss other factors that may also play an important role in the regulation of secretin-stimulated ductal secretion.
Collapse
Affiliation(s)
- N Kanno
- Department of Internal Medicine, Scott & White Hospital and Texas A&M University System Health Science Center, College of Medicine, TX 76504, USA
| | | | | | | |
Collapse
|
8
|
Chan KY, Pang RT, Chow BK. Functional segregation of the highly conserved basic motifs within the third endoloop of the human secretin receptor. Endocrinology 2001; 142:3926-34. [PMID: 11517171 DOI: 10.1210/endo.142.9.8389] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, a mutagenesis-based strategy was employed to assess the roles of two highly conserved motifs (KLR and RLAR) within the third endoloop of the human secretin receptor. Block deletion of KLRT and mutation of Lys323 (K(323)I) significantly reduced cAMP accumulation, and these mutations did not affect ligand interaction and receptor number expressed on the cell surface. Thus, the KLRT region at the N terminus of the third endoloop, particularly Lys323, is important for G protein coupling. For the RLAR motif, receptors with substitutions at positions 339 and 342 from Arg to Ala (R(339, 342)A), Glu (R(339, 342)E), or Ile (R(339, 342)I) as well as block deletion of the RLAR motif were all found to be defective in both secretin-binding and cAMP production. Interestingly, a single mutation at the corresponding positions of Arg339 or Arg342 responded as the wild-type human secretin receptor in all functional assays, indicating that the presence of one Arg at either position within the RLAR motif is sufficient for a normal receptor function. Immunofluorescent staining of these mutant receptors showed that these Arg residues are responsible for surface presentation and/or receptor stability.
Collapse
Affiliation(s)
- K Y Chan
- Department of Zoology, University of Hong Kong, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
9
|
Abstract
Immunocytochemistry and in situ hybridization revealed abundant secretin expressing cells on duodenal villi with a gradual decrease throughout the small intestines of the rat. They were absent in pancreas, stomach and colon. Secretin caused relaxation of rat intestinal longitudinal muscle in vitro. Studies on colon revealed that the secretin-evoked response was unaffected by apamin, tetrodotoxin, L-NAME, VIP or PACAP pretreatment; secretin itself caused desensitization. Addition of VIP or PACAP when the secretin-evoked relaxation was maximal evoked a further relaxation suggesting the presence of distinct receptors. Secretin causes relaxation via activation of secretin receptors located on the smooth muscle and not via any of the related VIP/PACAP receptors.
Collapse
Affiliation(s)
- A Andersson
- Department of Physiological Sciences, Section for Neuroendocrine Cell Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
10
|
Solomon TE, Walsh JH, Bussjaeger L, Zong Y, Hamilton JW, Ho FJ, Lee TD, Reeve JR. COOH-terminally extended secretins are potent stimulants of pancreatic secretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G808-16. [PMID: 10198322 DOI: 10.1152/ajpgi.1999.276.4.g808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Posttranslational processing of preprosecretin generates several COOH-terminally extended forms of secretin and alpha-carboxyl amidated secretin. We used synthetic canine secretin analogs with COOH-terminal -amide, -Gly, or -Gly-Lys-Arg to examine the effects of COOH-terminal extensions of secretin on bioactivity and detection in RIA. Synthetic products were purified by reverse-phase and ion-exchange HPLC and characterized by reverse-phase isocratic HPLC and amino acid, sequence, and mass spectral analyses. Secretin and secretin-Gly were noted to coelute during reverse-phase HPLC. In RIA using eight different antisera raised against amidated secretin, COOH-terminally extended secretins had little or no cross-reactivity. Bioactivity was assessed by measuring pancreatic responses in anesthetized rats. Amidated canine and porcine secretins were equipotent. Secretin-Gly and secretin-Gly-Lys-Arg had potencies of 81 +/- 9% (P > 0.05) and 176 +/- 13% (P < 0.01), respectively, compared with amidated secretin, and the response to secretin-Gly-Lys-Arg lasted significantly longer. These data demonstrate that 1) amidated secretin and secretin-Gly are not separable under some chromatographic conditions, 2) current RIA may not detect bioactive COOH-terminally extended forms of secretin in tissue extracts or blood, and 3) the secretin receptor mediating stimulation of pancreatic secretion recognizes both amidated and COOH-terminally extended secretins.
Collapse
Affiliation(s)
- T E Solomon
- CURE: Digestive Diseases Research Center, Greater Los Angeles Department of Veterans Affairs Health Care System, Los Angeles 90073, USA.
| | | | | | | | | | | | | | | |
Collapse
|