1
|
Auricular Vagus Nerve Stimulation Ameliorates Functional Dyspepsia with Depressive-Like Behavior and Inhibits the Hypothalamus-Pituitary-Adrenal Axis in a Rat Model. Dig Dis Sci 2022; 67:4719-4731. [PMID: 35064375 DOI: 10.1007/s10620-021-07332-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The hypothalamus-pituitary-adrenal axis is the most important endocrine system to control irritability response. Functional dyspepsia (FD) is closely related to irritability. This study aimed to preliminarily explore the corticotropin-releasing factor (CRF) mechanism of auricular vagus nerve stimulation (aVNS) for FD model rats. METHODS Sprague-Dawley adult male rats were randomly divided into normal group, model group, aVNS group, and sham-aVNS group. Except for the normal rats, all other rats were induced into the FD model through tail-clamping stimulation for 3 weeks. Once the rat model was developed successfully, rats in the aVNS group and sham-aVNS group were intervened with aVNS or sham-aVNS for 2 weeks. No intervention was given to rats in the normal and model groups. The effect of aVNS was assessed. The expressions of hippocampal corticotropin-releasing hormone receptor 1 (CRHR1), hypothalamus CRF, adrenocorticotropic hormone (ACTH), and corticosterone in serum were assessed. RESULTS 1. Compared with normal rats, model-developing rats showed FD-like behavior. 2. Compared with model rats, rats in the aVNS group showed an improved general condition score and gastric motility, and increased horizontal and vertical motion scores. 3. The release of corticosterone, ACTH in serum, and CRF in the hypothalamus all increased in model rats but decreased with aVNS instead of sham-aVNS. 4. The expression of hippocampus CRHR1 was lower in model rats but higher in the aVNS group. CONCLUSION aVNS ameliorates gastric motility and improves the mental state in the FD-like rat, probably via inhibiting the CRF pathway.
Collapse
|
2
|
Li H, Page AJ. Altered Vagal Signaling and Its Pathophysiological Roles in Functional Dyspepsia. Front Neurosci 2022; 16:858612. [PMID: 35527812 PMCID: PMC9072791 DOI: 10.3389/fnins.2022.858612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
The vagus nerve is crucial in the bidirectional communication between the gut and the brain. It is involved in the modulation of a variety of gut and brain functions. Human studies indicate that the descending vagal signaling from the brain is impaired in functional dyspepsia. Growing evidence indicate that the vagal signaling from gut to brain may also be altered, due to the alteration of a variety of gut signals identified in this disorder. The pathophysiological roles of vagal signaling in functional dyspepsia is still largely unknown, although some studies suggested it may contribute to reduced food intake and gastric motility, increased psychological disorders and pain sensation, nausea and vomiting. Understanding the alteration in vagal signaling and its pathophysiological roles in functional dyspepsia may provide information for new potential therapeutic treatments of this disorder. In this review, we summarize and speculate possible alterations in vagal gut-to-brain and brain-to-gut signaling and the potential pathophysiological roles in functional dyspepsia.
Collapse
Affiliation(s)
- Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Hui Li,
| | - Amanda J. Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
3
|
Zhao YX, Cui CX, Gao JH, Liu J, Liu Q, Lu FY, Xin JJ, Yu XC, Zhu B. Electroacupuncture ameliorates corticotrophin-releasing factor-induced jejunal dysmotility in a rat model of stress. Acupunct Med 2020; 39:135-145. [PMID: 32605385 DOI: 10.1177/0964528420920288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Central injection of corticotrophin-releasing factor (CRF) mimics the effect of stress on gastrointestinal (GI) responses, including inhibition of GI motility. This study was designed to explore the effects of electroacupuncture (EA) on disordered jejunal motility in a rat model of stress induced by intracisternal (IC) injection of CRF. METHODS A stress model was established by IC injection of CRF in Sprague-Dawley rats. GI motility was evaluated by assessing gastric emptying (GE), gastrointestinal transit (GIT) and jejunal motility in vivo. EA was performed at ST36. The functional roles of CRF receptor subtype 1 and subtype 2 (CRFr1 and CRFr2) were examined by IC administration of the corresponding selective CRF antagonists. Protein expression of CRFr1 and CRFr2 in the hypothalamus and jejunum was detected by Western blotting. RESULTS IC injection of CRF significantly inhibited GE, GIT and jejunal motility. EA treatment remarkably improved the disturbed GI motility. Intriguingly, the disordered jejunal motility induced by central CRF was abolished by IC injection of a selective CRFr2 antagonist, indicating the essential role of central CRFr2 in mediating the stress-induced jejunal motor disorder. EA at ST36 decreased central and peripheral expression of CRFr2, which might be one of the potential mechanisms underlying the beneficial effect of EA on jejunal dysmotility in this rat model of stress. CONCLUSION This study suggested that EA at ST36 could ameliorate disordered jejunal motility induced by stress, and that this might be associated with the down-regulation of CRFr2.
Collapse
Affiliation(s)
- Yu-Xue Zhao
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang-Xiang Cui
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun-Hong Gao
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Liu
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Qun Liu
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Yan Lu
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan-Juan Xin
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Chun Yu
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Zhu
- Institute of Acupuncture and Moxibustion, 71046China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Tache Y, Larauche M, Yuan PQ, Million M. Brain and Gut CRF Signaling: Biological Actions and Role in the Gastrointestinal Tract. Curr Mol Pharmacol 2018; 11:51-71. [PMID: 28240194 DOI: 10.2174/1874467210666170224095741] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/16/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) pathways coordinate behavioral, endocrine, autonomic and visceral responses to stress. Convergent anatomical, molecular, pharmacological and functional experimental evidence supports a key role of brain CRF receptor (CRF-R) signaling in stress-related alterations of gastrointestinal functions. These include the inhibition of gastric acid secretion and gastric-small intestinal transit, stimulation of colonic enteric nervous system and secretorymotor function, increase intestinal permeability, and visceral hypersensitivity. Brain sites of CRF actions to alter gut motility encompass the paraventricular nucleus of the hypothalamus, locus coeruleus complex and the dorsal motor nucleus while those modulating visceral pain are localized in the hippocampus and central amygdala. Brain CRF actions are mediated through the autonomic nervous system (decreased gastric vagal and increased sacral parasympathetic and sympathetic activities). The activation of brain CRF-R2 subtype inhibits gastric motor function while CRF-R1 stimulates colonic secretomotor function and induces visceral hypersensitivity. CRF signaling is also located within the gut where CRF-R1 activates colonic myenteric neurons, mucosal cells secreting serotonin, mucus, prostaglandin E2, induces mast cell degranulation, enhances mucosal permeability and propulsive motor functions and induces visceral hyperalgesia in animals and humans. CRF-R1 antagonists prevent CRF- and stressrelated gut alterations in rodents while not influencing basal state. DISCUSSION These preclinical studies contrast with the limited clinical positive outcome of CRF-R1 antagonists to alleviate stress-sensitive functional bowel diseases such as irritable bowel syndrome. CONCLUSION The translational potential of CRF-R1 antagonists in gut diseases will require additional studies directed to novel anti-CRF therapies and the neurobiology of brain-gut interactions under chronic stress.
Collapse
Affiliation(s)
- Yvette Tache
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| |
Collapse
|
5
|
Akiba Y, Kaunitz JD, Million M. Peripheral corticotropin-releasing factor receptor type 2 activation increases colonic blood flow through nitric oxide pathway in rats. Dig Dis Sci 2015; 60:858-67. [PMID: 25701320 PMCID: PMC4501405 DOI: 10.1007/s10620-015-3579-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/04/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) peptides exert profound effects on the secretomotor function of the gastrointestinal tract. Nevertheless, despite the presence of CRF peptides and receptors in colonic tissue, their influence on colonic blood flow (CBF) is unknown. AIM To determine the effect and mechanism of members of the CRF peptide family on CBF in isoflurane-anesthetized rats. METHODS Proximal CBF was measured with laser-Doppler flowmetry simultaneously with mean arterial blood pressure (MABP) measurement. Rats were injected with intravenous human/rat CRF (CRF1 > CRF2 affinity), mouse urocortin 2 (mUcn2, selective CRF2 agonist), or sauvagine (SVG, CRF2 > CRF1 affinity) at 1-30 µg/kg. The nitric oxide (NO) synthase inhibitor, L-NAME (3 mg/kg, iv), the cyclooxygenase inhibitor, indomethacin (Indo, 5 mg/kg, ip), or selective CRF2 antagonist, astressin2-B (Ast2B, 50 µg/kg, iv) was given before SVG injection (10 µg/kg, iv). RESULTS SVG and mUcn2 dose-dependently increased CBF while decreasing MABP and colonic vascular resistance (CVR). CRF had no effect on CBF, but increased CVR. The hyperemic effect of SVG was inhibited by L-NAME but not by Indo, whereas hypotension was partially reduced by L-NAME. Sensory denervation had no effect on SVG-induced changes. Ast2B inhibited SVG-induced hyperemia and decreased CVR, and partially reduced the hypotension. CONCLUSIONS Peripheral CRF2 activation induces colonic hyperemia through NO synthesis, without involving prostaglandin synthesis or sensory nerve activation, suggesting a direct action on the endothelium and myenteric neurons. Members of the CRF peptide family may protect the colonic mucosa via the activation of the CRF2 receptor.
Collapse
Affiliation(s)
- Yasutada Akiba
- CURE: Digestive Diseases Research Center; Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA,
| | | | | |
Collapse
|
6
|
STENGEL A, GOEBEL-STENGEL M, WANG L, LUCKEY A, HU E, RIVIER J, TACHÉ Y. Central administration of pan-somatostatin agonist ODT8-SST prevents abdominal surgery-induced inhibition of circulating ghrelin, food intake and gastric emptying in rats. Neurogastroenterol Motil 2011; 23:e294-308. [PMID: 21569179 PMCID: PMC3117963 DOI: 10.1111/j.1365-2982.2011.01721.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Activation of brain somatostatin receptors (sst(1-5) ) with the stable pan-sst(1-5) somatostatin agonist, ODT8-SST blocks acute stress and central corticotropin-releasing factor (CRF)-mediated activation of endocrine and adrenal sympathetic responses. Brain CRF signaling is involved in delaying gastric emptying (GE) immediately post surgery. We investigated whether activation of brain sst signaling pathways modulates surgical stress-induced inhibition of gastric emptying and food intake. METHODS Fasted rats were injected intracisternally (i.c.) with somatostatin agonists and underwent laparotomy and 1-min cecal palpation. Gastric emptying of a non-nutrient solution and circulating acyl and desacyl ghrelin levels were assessed 50min post surgery. Food intake was monitored for 24 h. KEY RESULTS The abdominal surgery-induced inhibition of GE (65%), food intake (73% at 2h) and plasma acyl ghrelin levels (67%) was completely prevented by ODT8-SST (1μg per rat, i.c.). The selective sst(5) agonist, BIM-23052 prevented surgery-induced delayed GE, whereas selective sst(1) , sst(2) , or sst(4) agonists had no effect. However, the selective sst(2) agonist, S-346-011 (1μg per rat, i.c.) counteracted the abdominal surgery-induced inhibition of acyl ghrelin and food intake but not the delayed GE. The ghrelin receptor antagonist, [D-Lys(3) ]-GHRP-6 (0.93mg kg(-1) , intraperitoneal, i.p.) blocked i.p. ghrelin-induced increased GE, while not influencing i.c. ODT8-SST-induced prevention of delayed GE and reduced food intake after surgery. CONCLUSIONS & INFERENCES ODT8-SST acts in the brain to prevent surgery-induced delayed GE likely via activating sst(5) . ODT8-SST and the sst(2) agonist prevent the abdominal surgery-induced decrease in food intake and plasma acyl ghrelin indicating dissociation between brain somatostatin signaling involved in preventing surgery-induced suppression of GE and feeding response.
Collapse
Affiliation(s)
- A. STENGEL
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - M. GOEBEL-STENGEL
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - L. WANG
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - A. LUCKEY
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - E. HU
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - J. RIVIER
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA
| | - Y. TACHÉ
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| |
Collapse
|
7
|
Larauche M, Mulak A, Taché Y. Stress-related alterations of visceral sensation: animal models for irritable bowel syndrome study. J Neurogastroenterol Motil 2011; 17:213-34. [PMID: 21860814 PMCID: PMC3155058 DOI: 10.5056/jnm.2011.17.3.213] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/12/2011] [Indexed: 12/11/2022] Open
Abstract
Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syndrome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models applying a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face validity of experimental models developed with respect to animals' age, sex, strain differences and specific methodological aspects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identification and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitization based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission or stress-related analgesic response.
Collapse
Affiliation(s)
- Muriel Larauche
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Agata Mulak
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Yvette Taché
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
8
|
Miampamba M, Million M, Taché Y. Brain-gut interactions between central vagal activation and abdominal surgery to influence gastric myenteric ganglia Fos expression in rats. Peptides 2011; 32:1078-82. [PMID: 21376096 PMCID: PMC3085485 DOI: 10.1016/j.peptides.2011.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 01/15/2023]
Abstract
We previously showed that medullary thyrotropin-releasing hormone (TRH) or the stable TRH agonist, RX-77368 administered intracisternally induces vagal-dependent activation of gastric myenteric neurons and prevents post surgery-induced delayed gastric emptying in rats. We investigated whether abdominal surgery alters intracisternal (ic) RX-77368 (50 ng)-induced gastric myenteric neuron activation. Under 10 min enflurane anesthesia, rats underwent an ic injection of saline or RX-77368 followed by a laparotomy and a 1-min cecal palpation, or no surgery and were euthanized 90 min later. Longitudinal muscle/myenteric plexus whole-mount preparations of gastric corpus and antrum were processed for immunohistochemical detection of Fos alone or double labeled with protein gene-product 9.5 (PGP 9.5) and vesicular acetylcholine transporter (VAChT). In the non surgery groups, ic RX-77368 induced a 17 fold increase in Fos-expression in both gastric antrum and corpus myenteric neurons compared to saline injected rats. PGP 9.5 ascertained the neuronal identity of myenteric cells expressing Fos. In the abdominal surgery groups, ic RX-77368 induced a significant increase in Fos-expression in both the corpus and antrum myenteric ganglia compared with ic saline injected rats which has no Fos in the gastric myenteric ganglia. However, the response was reduced by 73-78% compared with that induced by ic RX 77368 without surgery. Abundant VAChT positive nerve fibers were present around Fos positive neurons. These results indicate a bidirectional interaction between central vagal stimulation of gastric myenteric neurons and abdominal surgery. The modulation of gastric vagus-myenteric neuron activity could play an important role in the recovery phase of postoperative gastric ileus.
Collapse
Affiliation(s)
- Marcel Miampamba
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | | | | |
Collapse
|
9
|
Yin Y, Dong L, Yin D. Peripheral and central administration of exogenous urocortin 1 disrupts the fasted motility pattern of the small intestine in rats via the corticotrophin releasing factor receptor 2 and a cholinergic mechanism. J Gastroenterol Hepatol 2008; 23:e79-87. [PMID: 17944898 DOI: 10.1111/j.1440-1746.2007.05142.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM The action of the corticotrophin releasing factor (CRF) receptor on the small intestinal motility has been rarely investigated. The present study aimed to determine the effects of urocortin 1 on small intestinal motility in rats and the CRF receptor subtypes and autonomic pathways mediating the effects. METHODS Fasted or fed rats were used to investigate the effect of intravenous or intracerebroventricular urocortin 1 on duodenum and jejunum motility. NBI-27914 and astressin(2)-B (CRF receptor 1 and 2 antagonists, respectively), atropine (an M-receptor antagonist), phentolamine (an alpha-receptor antagonist), propranolol (a beta-receptor antagonist) and N(omega)-Nitro-L-arginine (a nitric oxide synthase [NOS] inhibitor) were applied to determine the involved CRF receptor subtypes and autonomic pathways. RESULTS In fasted rats, intravenous or intracerebroventricular injection of urocortin 1 disrupted duodenal and jejunal migrating myoelectric complex pattern, leading to an irregular spiking activity similar to the fed motility pattern. When urocortin 1 was given in the fed state, the fed motility pattern remained unchanged. In addition, urocortin 1 also inhibited small intestinal transit function. Astressin(2)-B injected intraperitoneally or intracerebroventricularly blocked urocortin 1-induced change, while NBI-27914 had no effect. The disruption of migrating myoelectric complex induced by urocortin 1 was abolished by atropine, but not affected by phentolamine, propranolol and N(omega)-Nitro-L-arginine. CONCLUSION Intravenous or intracerebroventricular injection of urocortin 1 acts, respectively, on peripheral and central CRF receptor 2 to disrupt the intestinal migrating myoelectric complex through an M-receptor-dependent mechanism, and such change has an inhibitory effect as proved by measuring the small intestinal transit function.
Collapse
Affiliation(s)
- Yan Yin
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | | |
Collapse
|
10
|
Wood SK, Verhoeven RE, Savit AZ, Rice KC, Fischbach PS, Woods JH. Facilitation of cardiac vagal activity by CRF-R1 antagonists during swim stress in rats. Neuropsychopharmacology 2006; 31:2580-90. [PMID: 16710322 PMCID: PMC1780169 DOI: 10.1038/sj.npp.1301085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exposure to stressors that elicit fear and feelings of hopelessness can cause severe vagal activation leading to bradycardia, syncope, and sudden death. These phenomena though documented, are difficult to diagnose, treat clinically, and prevent. Therefore, an animal model incorporating these cardiovascular conditions could be useful. The present study examined 'sinking' during a 2-h swim stress, a phenomenon that occurs in 50% of rats during 25 degrees C water exposure. Concurrent measurements of body temperature, immobility, heart rate (HR), and PR interval (a measure of vagal activity) were made. Neither decreases in immobility nor variations in hypothermia during swim were correlated with sinking. Bradycardia was more severe in sinking rats (average minimum HR+/-SEM; 143+/-13 vs 247+/-14; p<0.01), and PR interval was elevated (p<0.0001). To examine potential modulation of vagal activity during stress, corticotropin-relasing factor (CRF) receptor antagonists (antalarmin, R121919 and astressin B), a glucocorticoid receptor antagonist (RU486), and a peripherally acting cholinergic antagonist (methylatropine nitrate) were administered. The centrally acting CRF antagonist, antalarmin (32 mg/kg), produced elongation of the PR interval (p<0.0001), robust bradycardia (135+/-18; p<0.001), and increased sinking (92%; p<0.05), and methylatropine nitrate (3.2 mg/kg) blocked these effects. Corroborating these data, two different CRF antagonists, R121919 (30 mg/kg) and astressin B (intracerebroventricular (i.c.v.), 0.03 mug/rat) increased sinking to 100%. RU486 (20 mg/kg) blocked HPA axis negative feedback and decreased percent sinking to 25%. From these studies, we concluded that sinking during a 2-h water exposure was a result of extreme vagal hyperactivity. Furthermore, stress-induced CRF release may serve to protect against elevated cardiac vagal activity.
Collapse
Affiliation(s)
- Susan K Wood
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Martínez V, Wang L, Taché Y. Proximal colon distension induces Fos expression in the brain and inhibits gastric emptying through capsaicin-sensitive pathways in conscious rats. Brain Res 2006; 1086:168-80. [PMID: 16626641 DOI: 10.1016/j.brainres.2006.02.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 02/15/2006] [Accepted: 02/19/2006] [Indexed: 01/26/2023]
Abstract
We assessed brain nuclei activated during noxious mechanical distension of the proximal colon in conscious rats, using Fos as a marker of neuronal activation, and functional reflex changes in gastric emptying associated to colon distension. The role of capsaicin-sensitive afferents in Fos and gastric responses to distension was also investigated. Compared with sham distension, isovolumetric phasic distension of the proximal colon (10 ml, 30 s on/off for 10 min) increased significantly Fos expression 1 h after distension in selective brain areas, most prominently, the paraventricular and supraoptic nuclei of the hypothalamus (13-fold and 80-fold, respectively), the locus coeruleus-Barrington's nucleus complex (2-fold), area postrema (7-fold) and the nucleus tractus solitarius (4-fold). Increased Fos expression was also observed in the cingulate cortex, posterior paraventricular nucleus of the thalamus, periaqueductal gray and ventrolateral medulla. Distension of the proximal colon significantly inhibited gastric emptying by 82% and 34%, as measured 30 and 60 min after the distension respectively, compared with control. Pretreatment with systemic capsaicin prevented both the brain increase in Fos expression and the inhibition of gastric emptying induced by the colon distension. These results show that visceral pain arising from the proximal colon activates a complex neuronal network that includes specific brain nuclei involved in the integration of autonomic, neuroendocrine and behavioral responses to pain and an inhibitory motor reflex in other gut areas (delayed gastric emptying). Capsaicin-sensitive afferent pathways are involved in mediating brain neuronal activation and functional changes associated with noxious visceral stimulation.
Collapse
Affiliation(s)
- Vicente Martínez
- CURE: Digestive Diseases Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, and VA Greater Los Angeles Healthcare System, 90073, USA
| | | | | |
Collapse
|
12
|
Czimmer J, Million M, Taché Y. Urocortin 2 acts centrally to delay gastric emptying through sympathetic pathways while CRF and urocortin 1 inhibitory actions are vagal dependent in rats. Am J Physiol Gastrointest Liver Physiol 2006; 290:G511-8. [PMID: 16223946 DOI: 10.1152/ajpgi.00289.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We characterized the influence of the selective corticotropin-releasing factor 2 (CRF(2)) receptor agonist human urocortin 2 (Ucn 2), injected intracisternally, on gastric emptying and its mechanism of action compared with intracisternal CRF or urocortin (Ucn 1) in conscious rats. The methylcellulose phenol red solution was gavaged 20 min after peptide injection, and gastric emptying was measured 20 min later. The intracisternal injection of Ucn 2 (0.1 and 1 microg) and Ucn 1 (1 microg) decreased gastric emptying to 37.8 +/- 6.9%, 23.1 +/- 8.6%, and 21.6 +/- 5.9%, respectively, compared with 58.4 +/- 3.8% after intracisternal vehicle. At lower doses, Ucn 2 (0.03 microg) and Ucn 1 (0.1 microg) had no effect. The CRF(2) antagonist astressin(2)-B (3 microg ic) antagonized intracisternal Ucn 2 (0.1 microg) and CRF (0.3 microg)-induced inhibition of gastric emptying. Vagotomy enhanced intracisternal Ucn 2 (0.1 or 1 microg)-induced inhibition of gastric emptying compared with sham-operated group, whereas it blocked intracisternal CRF (1 microg) inhibitory action (45.5 +/- 8.4% vs. 9.7 +/- 9.7%). Sympathetic blockade by bretylium prevented intracisternal and intracerebroventricular Ucn 2-induced delayed gastric emptying, whereas it did not influence intravenous Ucn 2-, intracisternal CRF-, and intracisternal Ucn 1-induced inhibition of gastric emptying. Prazosin abolished the intracisternal Ucn 2 inhibitory effect, whereas yohimbine and propranolol did not. None of the pretreatments modified basal gastric emptying. These data indicate that intracisternal Ucn 2 induced a central CRF(2)-mediated inhibition of gastric emptying involving sympathetic alpha(1)-adrenergic mechanisms independent from the vagus contrasting with the vagal-dependent inhibitory actions of CRF and Ucn 1.
Collapse
Affiliation(s)
- József Czimmer
- CURE/Digestive Diseases Research Center and Center for Neurovisceral Sciences and Women's Health, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
13
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
14
|
Martinez V, Wang L, Million M, Rivier J, Taché Y. Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides 2004; 25:1733-44. [PMID: 15476940 DOI: 10.1016/j.peptides.2004.05.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Accepted: 05/08/2004] [Indexed: 12/13/2022]
Abstract
Urocortin (Ucn) 1, 2 and 3 are corticotropin-releasing factor (CRF)-related peptides recently characterized in mammals. Urocortin 1 binds with high affinity to CRF type 1 (CRF1) and type 2 (CRF2) receptors while Ucn 2 and Ucn 3 are selective CRF2 ligands. They also have a distinct pattern of distribution, both in the brain and the gastrointestinal tract, compatible with a role mediating, with CRF, the response to stress. In rats and mice, Ucn 1 injected centrally or peripherally inhibited gastric emptying and stimulated colonic propulsive motor function, mimicking the effects of stress or exogenous CRF. Centrally administered Ucn 2 inhibited gastric emptying with similar potency as CRF, while Ucn 1 and Ucn 3 were less potent. However, after peripheral administration, Ucn 1 and Ucn 2 were more potent than CRF. In mice, centrally administered Ucn 1 and 2 stimulated colonic motility with lower potency than CRF, and Ucn 3 was inactive. Studies with selective CRF1 and CRF2 antagonists demonstrated that the gastric-inhibitory and colonic-stimulatory effects of exogenously administered Ucns are mediated through CRF2 and CRF1 receptors, respectively. In addition, Ucn 2 showed visceral anti-nociceptive activity associated with the selective activation of CRF2 receptors. These observations suggest that, acting centrally and peripherally, Ucns might play a significant role in the modulation of gastrointestinal motor and pain responses during stress and stress-related pathophysiological conditions.
Collapse
Affiliation(s)
- Vicente Martinez
- Department of Medicine, CURE/Digestive Diseases Research Center, Center for Neurovisceral Sciences and Women's Health, University of California, Los Angeles, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
15
|
Nakade Y, Tsuchida D, Fukuda H, Iwa M, Pappas TN, Takahashi T. Restraint stress delays solid gastric emptying via a central CRF and peripheral sympathetic neuron in rats. Am J Physiol Regul Integr Comp Physiol 2004; 288:R427-32. [PMID: 15458973 DOI: 10.1152/ajpregu.00499.2004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central corticotropin-releasing factor (CRF) delays gastric emptying through the autonomic nervous system. CRF plays an important role in mediating delayed gastric emptying induced by stress. However, it is not clear whether a sympathetic or parasympathetic pathway is involved in the mechanism of central CRF-induced inhibition of solid gastric emptying. The purpose of this study was to investigate whether 1) CRF inhibits solid gastric emptying via a peripheral sympathetic pathway and 2) stress-induced inhibition of solid gastric emptying is mediated via a central CRF and peripheral sympathetic pathways. Using male Sprague-Dawley rats, CRF was injected intracisternally with or without various adrenergic-blocking agents. To investigate whether central CRF-induced inhibition of solid gastric emptying is mediated via a peripheral sympathetic pathway, rats underwent celiac ganglionectomy 1 wk before the gastric emptying study. After solid meal ingestion (90 min), gastric emptying was calculated. To investigate the role of endogenous CRF in stress-induced delayed gastric emptying, a CRF type2 receptor antagonist, astressin2-B, was intracisternally administered. Rats were subjected to a restraint stress immediately after the feeding. Intracisternal injection of CRF (0.1-1.0 microg) dose-dependently inhibited solid gastric emptying. The inhibitory effect of CRF on solid gastric emptying was significantly blocked by guanethidine, propranolol, and celiac ganglionectomy but not by phentolamine. Restraint stress significantly delayed solid gastric emptying, which was improved by astressin2-B, guanethidine, and celiac ganglionectomy. Our research suggests that restraint stress inhibits solid gastric emptying via a central CRF type2 receptor and peripheral sympathetic neural pathway in rats.
Collapse
Affiliation(s)
- Yukiomi Nakade
- Department of Surgery, Duke University Medical Center, Durham Veterans Affairs Medical Center, Durham, NC 27705, USA
| | | | | | | | | | | |
Collapse
|
16
|
MacNeil BJ, Jansen AH, Greenberg AH, Nance DM. Neuropeptide specificity of prostaglandin E2-induced activation of splenic and renal sympathetic nerves in the rat. Brain Behav Immun 2003; 17:442-52. [PMID: 14583236 DOI: 10.1016/s0889-1591(03)00050-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sympathetic activation occurs rapidly following intracerebroventricular (icv) injection of prostaglandin E2(PGE2). This study examined whether neuropeptides mediate PGE2-induced sympathetic nerve activation in urethane/chloralose-anesthetized Sprague-Dawley rats. Animals were pretreated (20.0 microg, icv) with the following receptor antagonists; CRF ([D-Phe12,Nle21,38,Calpha-MeLeu37]CRF12-41), AVP-V1 (Des-Gly-[Phaa1, D-Tyr(Et)2,Lys6,Arg8]-vasopressin), or OT (OT+V1, [d(CH2)5,Tyr(Me)2,Orn8]-vasotocin) followed 20 min later by PGE2 (2.0 microg, icv). Pretreatment with the CRF antagonist attenuated the increase in renal nerve activity induced by PGE2 when measured 10 and 30 min post-injection. PGE2-induced renal nerve activity was also inhibited at both time points by the AVP antagonist and, to a similar extent, the OT antagonist. The AVP antagonist did not effect splenic nerve responses to PGE2 whereas the CRF antagonist produced an incomplete and transient reduction in PGE2-induced activation of the splenic nerve. However, the OT antagonist completely blocked the activation of the splenic nerve after central injection of PGE2. ICV injections of AVP and OT produced immediate changes in splenic and renal nerve activity whereas CRF failed to alter the activity of either nerve in anesthetized or conscious animals. Thus, PGE2 acts through neuropeptide-specific pathways to initiate sympathetic outflow and OT is a specific component of the sympathetic pathway innervating the spleen.
Collapse
Affiliation(s)
- Brian J MacNeil
- School of Medical Rehabilitation, University of Manitoba, R106-771 McDermot Avenue, Winnipeg, Man., Canada R3E 0T6.
| | | | | | | |
Collapse
|
17
|
Lewis MW, Hermann GE, Rogers RC, Travagli RA. In vitro and in vivo analysis of the effects of corticotropin releasing factor on rat dorsal vagal complex. J Physiol 2002; 543:135-46. [PMID: 12181286 PMCID: PMC2290483 DOI: 10.1113/jphysiol.2002.019281] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Accepted: 05/29/2002] [Indexed: 12/16/2022] Open
Abstract
In vivo and in vitro electrophysiological experiments were performed on the rat dorsal vagal complex (DVC, i.e. nucleus of the tractus solitarius, NTS, and dorsal motor nucleus of the vagus, DMV) to examine the effects of corticotropin releasing hormone (CRF) on the central components of the vago-vagal reflex control of gastric function. When applied to gastrointestinal projecting DMV neurones, CRF (10-300 nM) induced a concentration-dependent membrane depolarization, an increase in action potential firing rate and decrease in amplitude of the action potential afterhyperpolarization (P < 0.05). Pretreatment with the non-selective CRF antagonist, astressin (0.5-1 microM) or the selective CRF(2) receptor antagonist, astressin 2B (500 nM) attenuated the CRF-induced increase in firing rate but did not alter basal discharge rate. CRF (30-300 nM) increased the amplitude of excitatory postsynaptic currents (EPSCs) evoked by stimulation of the NTS (P < 0.05). An alteration in the paired pulse ratio indicated the EPSC's increase occurred due to actions at presynaptic sites. In the in vivo anaesthetized rat preparation, bilateral microinjections (20 fmol in 20 nl for each site) of CRF in the DVC decreased gastric motility in rats pretreated with the muscarinic agonist, bethanecol (P < 0.05). The effects of CRF were abolished by systemic administration of the NOS inhibitor, L-NAME, or by bilateral vagotomy. We concluded that CRF had both a direct and an indirect excitatory effect on DMV neurones via activation of CRF(2) receptors and the decrease in gastric motility observed following microinjection of CRF in the DVC is due to the activation of an inhibitory non-adrenergic non-cholinergic input to the gastrointestinal tract.
Collapse
Affiliation(s)
- Mark W Lewis
- Department of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
18
|
Chen CY, Million M, Adelson DW, Martínez V, Rivier J, Taché Y. Intracisternal urocortin inhibits vagally stimulated gastric motility in rats: role of CRF(2). Br J Pharmacol 2002; 136:237-47. [PMID: 12010772 PMCID: PMC1573349 DOI: 10.1038/sj.bjp.0704713] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Corticotropin-releasing factor (CRF) acts in the brain to inhibit thyrotropin-releasing hormone (TRH) analogue, RX-77368-induced vagal stimulation of gastric motility. We investigated CRF receptor-mediated actions of rat urocortin (rUcn) injected intracisternally (ic) on gastric motor function. 2. Urethane-anaesthetized rats with strain gauges on the gastric corpus were injected i.c. with rUcn and 20 min later, with i.c. RX-77368. CRF antagonists were injected i.c. 10 min before rUcn. 3. RX-77368 (1.5, 3, 10, 30 and 100 ng, i.c.) dose-dependently increased corpus contractions, expressed as total area under the curve (AUC, mV min(-1)) to 2.6+/-2.5, 6.1+/-5.9, 9.8+/-2.6, 69.7+/-21.7 and 74.9+/-28.7 respectively vs 0.2+/-0.1 after i.c. saline. Ucn (1, 3 or 10 microg) inhibited RX-77368 (30 ng)-induced increase in total AUC by 28, 62 and 93% respectively vs i.c. saline+RX-77368. 4. The CRF(1)/CRF(2) antagonist, astressin-B (60 microg, i.c.) completely blocked i.c. rUcn (3 microg, i.c.)-induced inhibition of gastric motility stimulated by RX-77368 (30 ng). 5. The selective CRF(2) antagonist, astressin(2)-B (30, 60 or 100 microg, i.c. ) dose-dependently prevented i.c. rUCn action while the CRF(1) antagonist, NBI-27914 did not. 6. In conscious rats, rUcn (0.6 or 1 microg, i.c.) inhibited gastric emptying of an ingested chow meal by 61 and 92% respectively. rUcn action was antagonized by astressin(2)-B. 7. These data show that i.c. rUcn acts through CRF(2) receptors to inhibit central vagal gastric contractile response and postoprandial emptying.
Collapse
Affiliation(s)
- C -Y Chen
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California, U.S.A
| | - M Million
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California, U.S.A
| | - D W Adelson
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California, U.S.A
| | - V Martínez
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California, U.S.A
| | | | - Y Taché
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California, U.S.A
- Author for correspondence:
| |
Collapse
|
19
|
Richard D, Lin Q, Timofeeva E. The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. Eur J Pharmacol 2002; 440:189-97. [PMID: 12007535 DOI: 10.1016/s0014-2999(02)01428-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The corticotropin-releasing factor (CRF) system could play a significant role in the regulation of energy balance. This system, which includes CRF, CRF-related peptides and CRF receptors, is part of a huge network of cells connected to central and peripheral pathways modulating energy metabolism. CRF and CRF-related peptides, which elicit their effects through G-protein-coupled receptors known in mammals as CRF(1) receptor and CRF(2) receptor, are capable of strong anorectic and thermogenic effects. Also supporting a role for the CRF system in the regulation of energy balance are findings demonstrating alterations in this system in obese and food-deprived animals that concur to facilitate energy deposition. In recent years, great progress has been made in understanding the specific physiological roles of the CRF system. In that respect, the discovery of urocortins II and III, two endogenous ligands of the CRF(2) receptor, and the development of selective and long-acting antagonists for the CRF receptors, have led to a better comprehension of the role of the CRF system in the regulation of energy balance. Although there are still important unresolved issues in the field of CRF research, the progress made recently warrants investigations aimed at evaluating the CRF system as a potential target for anti-obesity drugs.
Collapse
Affiliation(s)
- Denis Richard
- D.B. Brown Chair on Obesity Research and Laval Hospital Research Center, Laval University, Quebec (Qué), Canada G1K 7P4.
| | | | | |
Collapse
|
20
|
Heinrichs SC, Taché Y. Therapeutic potential of CRF receptor antagonists: a gut-brain perspective. Expert Opin Investig Drugs 2001; 10:647-59. [PMID: 11281815 DOI: 10.1517/13543784.10.4.647] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Activation of the corticotropin-releasing factor (CRF) family of neuropeptide receptors in the brain and periphery appears to mediate stress-related changes in a variety of physiological and functional domains. Comparative pharmacology of CRF receptor agonists suggests that CRF, urocortin, sauvagine and urotensin consistently mimic, and conversely peptide CRF receptor antagonists lessen, the functional consequences of stressor exposure. Together with the development of novel non-peptide CRF receptor antagonists, a growing number of CRF receptor selective ligands are available to elucidate the neurobiology and physiological role of CRF systems. The present review considers available preclinical evidence as well as results from one Phase II clinical trial which address the hypothesis that CRF receptor antagonists may represent a new option for pharmacotherapy of stress-related disorders.
Collapse
Affiliation(s)
- S C Heinrichs
- Boston College, Psychology Department, McGuinn Hall, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA. stephen.heinrichs@bc
| | | |
Collapse
|
21
|
Million M, Wang L, Martinez V, Taché Y. Differential Fos expression in the paraventricular nucleus of the hypothalamus, sacral parasympathetic nucleus and colonic motor response to water avoidance stress in Fischer and Lewis rats. Brain Res 2000; 877:345-53. [PMID: 10986349 DOI: 10.1016/s0006-8993(00)02719-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The responsiveness of hypothalamic CRF to various stressors is reduced in the young female Lewis relative to the histocompatible Fischer rat. Whether such a difference impacts the brain-gut response to water avoidance stress was investigated by monitoring Fos immunoreactivity in the brain and sacral spinal cord and fecal pellet output. Exposure for 60 min to water avoidance stress increased the number of Fos positive cells in the paraventricular nucleus of the hypothalamus (PVN), nucleus tractus solitarius (NTS), and the parasympathetic nucleus of the lumbo-sacral spinal cord (L6-S1) in both Lewis and Fischer rats compared with non stress groups. The Fos response was lower by 32.0% in the PVN, and 63% in sacral parasympathetic nucleus in Lewis compared with Fischer rats while similar Fos expression was observed in the NTS. Stress-induced defecation was reduced by 52% in Lewis compared with Fischer rats while colonic motor response to CRF injected intracisternally resulted in a similar pattern and magnitude of defecation in both strains. The CRF receptor antagonist [D-Phe12,Nle(21,38)C(a)MeLeu(37)]-CRF(12-41) injected intracisternally antagonized partly the defecation response in Lewis and Fischer rats. These data indicate that a lower activation of PVN and sacral parasympathetic nuclei in Lewis compared with Fisher rats may contribute to the differential colonic motor response and that the blunted CRF hypothalamic response to stress, unlike responsiveness to central CRF plays a role.
Collapse
Affiliation(s)
- M Million
- CURE/Digestive Diseases Research Center, VA Greater Los Angeles Healthcare System and Digestive Diseases Division, Department of Medicine, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90073, USA.
| | | | | | | |
Collapse
|