1
|
Faria HA, Farnese M, Rocha LP, Olegário JGP, Cavellani CL, de Oliveira Guimarães CS, dos Reis MA, Miranda Corrêa RR. Analysis of the scalp of women with AIDS subjected to autopsy: epithelial, follicular, and immunologic aspects. Ann Diagn Pathol 2012; 17:67-71. [PMID: 22921727 DOI: 10.1016/j.anndiagpath.2012.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
Hair keeps the scalp warmer and slightly moister than the rest of the skin, which contributes to a favorable environment for mycotic, bacterial, and parasitic infections. It is well established that AIDS makes the patient more susceptible to opportunistic infections and cutaneous manifestations. Because of this, the aim of this study was to analyze scalp fragments of autopsied women with AIDS. Twenty-eight scalp samples of women aged between 18 and 46 years were observed. These women were divided into 2 groups: with AIDS (n = 14) and without AIDS (n = 14). We conducted histochemical (hematoxylin-eosin, Picrosirius, and Verhoeff), morphometric (Image J; National Institutes of Health, Hamilton, ON, Canada and KS-300 Kontron-Zeiss; Kontron Elektronik, Carl-Zeiss, Germany), and immunohistochemical (S-100) analyses of the scalp. In patients with AIDS, epithelial thickness, number of epithelial cell layers, number of immature Langerhans cells in the epidermis, and percentages of elastic fibers in the dermis were significantly lower, whereas telogen hair follicles were significantly higher. The percentage of collagen fibers in the dermis and the diameter of the epithelial cells were smaller in patients with AIDS, without significant difference. AIDS possibly causes immunologic and morphologic alterations in the scalp. This study may establish parameters for better clinical and morphologic diagnostic in patients with AIDS.
Collapse
|
2
|
Jiang CG, Gao X, Ma J, Lin YZ, Wang XF, Zhao LP, Hua YP, Liu D, Zhou JH. C-terminal truncation of the transmembrane protein of an attenuated lentiviral vaccine alters its in vitro but not in vivo replication and weakens its potential pathogenicity. Virus Res 2011; 158:235-45. [PMID: 21539871 DOI: 10.1016/j.virusres.2011.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/09/2011] [Accepted: 04/14/2011] [Indexed: 01/24/2023]
Abstract
Preliminary studies revealed that the gene of the gp45 transmembrane protein (TM) of the attenuated equine infectious anemia virus (EIAV) vaccine strain EIAV(FDDV13) had a high frequency of a premature stop codon at position 261W, which generated a 154-residue truncation at the C-terminus. EIAV(FDDV-TM36), a recombinant virus with the TM truncated at the intracytoplasmic (CT) domain due to the presence of a stop codon, was constructed based on EIAV(FDDV)3-8, which is a proviral derivative of the vaccine. EIAV(FDDV-TM36) had a significantly reduced replication capability compared to EIAV(FDDV)3-8 in equine or donkey monocyte-derived macrophages and a decreased ability to induce apoptosis. However, both viruses raised a similar plasma viral load in inoculated horses and did not induce clinical symptoms of EIA. To further compare the in vivo behavior between EIAV(FDDV-TM36) and EIAV(FDDV)3-8, inoculated horses were transiently immunosuppressed with dexamethasone. While three of the four horses inoculated with EIAV(FDDV)3-8 demonstrated significant increases in viral loads after the drug treatment, none of the four horses inoculated with EIAV(FDDV-TM36) showed a statistically increased plasma viral load. Significantly increased neutralizing antibody levels were also observed in the group of horses inoculated with EIAV(FDDV)3-8, but not EIAV(FDDV-TM36), after immunosuppression. Our results indicate that although the CT truncation of TM decreased viral replication in cultivated equine and donkey macrophages, the primary target cell of EIAV, and did not influence the plasma viral load of inoculated hosts, it weakened the potential pathogenicity of the vaccine. The host immunity is presumably responsible for the equal in vivo replication levels of viruses with either the CT-truncated or prototype TM.
Collapse
Affiliation(s)
- Cheng-Gang Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Choi B, Fermin CD, Comardelle AM, Haislip AM, Voss TG, Garry RF. Alterations in intracellular potassium concentration by HIV-1 and SIV Nef. Virol J 2008; 5:60. [PMID: 18489774 PMCID: PMC2396157 DOI: 10.1186/1743-422x-5-60] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/19/2008] [Indexed: 11/20/2022] Open
Abstract
Background HIV-1 mediated perturbation of the plasma membrane can produce an alteration in the transmembrane gradients of cations and other small molecules leading to cell death. Several HIV-1 proteins have been shown to perturb membrane permeability and ion transport. Xenopus laevis oocytes have few functional endogenous ion channels, and have proven useful as a system to examine direct effects of exogenously added proteins on ion transport. Results HIV-1 Nef induces alterations in the intracellular potassium concentration in CD4+ T-lymphoblastoid cells, but not intracellular pH. Two electrode voltage-clamp recording was used to determine that Nef did not form ion channel-like pores in Xenopus oocytes. Conclusion These results suggest that HIV-1 Nef regulates intracellular ion concentrations indirectly, and may interact with membrane proteins such as ion channels to modify their electrical properties.
Collapse
Affiliation(s)
- Bongkun Choi
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Costin JM, Rausch JM, Garry RF, Wimley WC. Viroporin potential of the lentivirus lytic peptide (LLP) domains of the HIV-1 gp41 protein. Virol J 2007; 4:123. [PMID: 18028545 PMCID: PMC2211469 DOI: 10.1186/1743-422x-4-123] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 11/20/2007] [Indexed: 11/10/2022] Open
Abstract
Background Mechanisms by which HIV-1 mediates reductions in CD4+ cell levels in infected persons are being intensely investigated, and have broad implications for AIDS drug and vaccine development. Virally induced changes in membrane ionic permeability induced by lytic viruses of many families contribute to cytopathogenesis. HIV-1 induces disturbances in plasma membrane ion transport. The carboxyl terminus of TM (gp41) contains potential amphipathic α-helical motifs identified through their structural similarities to naturally occurring cytolytic peptides. These sequences have been dubbed lentiviral lytic peptides (LLP) -1, -2, and -3. Results Peptides corresponding to the LLP domains (from a clade B virus) partition into lipid membranes, fold into α-helices and disrupt model membrane permeability. A peptide corresponding to the LLP-1 domain of a clade D HIV-1 virus, LLP-1D displayed similar activity to the LLP-1 domain of the clade B virus in all assays, despite a lack of amino acid sequence identity. Conclusion These results suggest that the C-terminal domains of HIV-1 Env proteins may form an ion channel, or viroporin. Increased understanding of the function of LLP domains and their role in the viral replication cycle could allow for the development of novel HIV drugs.
Collapse
Affiliation(s)
- Joshua M Costin
- Biotechnology Research Group, Department of Biology, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA.
| | | | | | | |
Collapse
|
5
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) has been intensely investigated since its discovery in 1983 as the cause of acquired immune deficiency syndrome (AIDS). With relatively few proteins made by the virus, it is able to accomplish many tasks, with each protein serving multiple functions. The Envelope glycoprotein, composed of the two noncovalently linked subunits, SU (surface glycoprotein) and TM (transmembrane glycoprotein) is largely responsible for host cell recognition and entry respectively. While the roles of the N-terminal residues of TM is well established as a fusion pore and anchor for Env into cell membranes, the role of the C-terminus of the protein is not well understood and is fiercely debated. This review gathers information on TM in an attempt to shed some light on the functional regions of this protein.
Collapse
Affiliation(s)
- Joshua M Costin
- Biotechnology Research Group, Department of Biology, Florida Gulf Coast University, 10501 FGCU Blvd, S., Fort Myers, Fl 33965, USA.
| |
Collapse
|
6
|
Mora R, Maldonado A, Valverde B, Gutiérrez JM. Calcium plays a key role in the effects induced by a snake venom Lys49 phospholipase A2 homologue on a lymphoblastoid cell line. Toxicon 2006; 47:75-86. [PMID: 16303159 DOI: 10.1016/j.toxicon.2005.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/07/2005] [Accepted: 10/08/2005] [Indexed: 10/25/2022]
Abstract
A catalytically-inactive Lys49 phospholipase A2 homologue from the venom of the snake Bothrops asper induces diverse effects (necrosis, apoptosis and proliferation) in a lymphoblastoid cell line, depending on the toxin concentration. The increments in cytosolic Ca2+ levels induced by this toxin in this cell line were assessed. At high toxin concentration (100 microg/mL) the toxin induces drastic disruption of the plasma membrane, associated with a prominent Ca2+ influx and necrosis. Previous incubation of the cells with the chelating agent EGTA or with ruthenium red, an inhibitor of the uniporter mitochondrial Ca2+ transport, greatly reduced necrosis. At a toxin concentration of 12.5 microg/mL, apoptosis is the predominant response, being associated with lower increments in cytosolic Ca2+. This effect was inhibited by preincubation with ruthenium red and the cytosolic Ca2+ chelator BAPTA-AM. The proliferative response, which occurs at a low toxin concentration (0.5 microg/mL), is associated with a small and oscillatory increment in cytosolic Ca2+. It was inhibited by EGTA, ruthenium red and BAPTA-AM, by inhibitors of the endoplasmic reticulum Ca2+ -ATPase (SERCA) and by blockade of the ryanodine receptor. It is concluded that necrosis and apoptosis induced by this toxin are associated with increments in cytosolic Ca2+ levels following plasma membrane perturbation, together with the involvement of mitochondria. The cellular proliferative response depends on a limited Ca2+ influx through the plasma membrane, being associated with a concerted functional unit constituted by SERCA, the ryanodine receptor and mitochondria, which regulate the observed oscillations in cytosolic Ca2+ concentration.
Collapse
Affiliation(s)
- Rodrigo Mora
- Departamento de Microbiología e Inmunología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | |
Collapse
|
7
|
Fermin C, Garry R. Alterations of lymphocyte membranes during HIV-1 infection via multiple and simultaneous entry strategies. Microsc Res Tech 2005; 68:149-67. [PMID: 16276509 DOI: 10.1002/jemt.20228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) must bind to and enter lymphocytes to replicate and cause the acquired immunodeficiency syndrome. The association of viral particles with the lymphocyte plasma membrane may vary according to a multitude of unknown variables, including lymphocyte membrane receptor mobilization, lipid raft aggregation, clathrin, caveolin, endosomes, microendosome-mediated penetration or penetration through a hole in the membrane. The time course of this delivery appears to be short. Fusion of the virion membrane and lymphocyte plasma membrane leads to destabilization of the lymphocyte membrane. Five morphological stages of membrane alteration were observed in the infected lymphocytes: (1) swelling, (2) splitting, (3) fusion, (4) breaking, and (5) thinning of the lipid bilayer. These plasma membrane alterations were not contributed by fixation artifacts, because the dimensions and distance between the subunits of the surface glycoprotein (SU, gp120) and the transmembrane glycoprotein (gp41) of the viral particles adjacent to the infected cells and processed at the same time remained unchanged. Destabilization of lipid raft patches in the lymphocyte plasma membrane by unknown variables may facilitate HIV-1 penetration of lymphocyte, and other cell types. This a combined review of the pertinent literature with our data showing that HIV-1 may take advantage of multiple penetration approaches simultaneously in the same cell type (H9) to overwhelm the infected cells. The ultrastructural details of H9 cultured cells infected in vitro with HIV-1 contribute to our understanding of viral particle association with the plasma membrane of infected cells.
Collapse
Affiliation(s)
- Cesar Fermin
- Ultrastructural Pathology Unit, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| | | |
Collapse
|
8
|
Law PTW, Wong CH, Au TCC, Chuck CP, Kong SK, Chan PKS, To KF, Lo AWI, Chan JYW, Suen YK, Chan HYE, Fung KP, Waye MMY, Sung JJY, Lo YMD, Tsui SKW. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol 2005; 86:1921-1930. [PMID: 15958670 DOI: 10.1099/vir.0.80813-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An outbreak of severe acute respiratory syndrome (SARS) occurred in China and the first case emerged in mid-November 2002. The aetiological agent of this disease was found to be a previously unknown coronavirus, SARS-associated coronavirus (SARS-CoV). The detailed pathology of SARS-CoV infection and the host response to the viral infection are still not known. The 3a gene encodes a non-structural viral protein, which is predicted to be a transmembrane protein. In this study, it was shown that the 3a protein was expressed in the lungs and intestinal tissues of SARS patients and that the protein localized to the endoplasmic reticulum in 3a-transfected monkey kidney Vero E6 cells. In vitro experiments of chromatin condensation and DNA fragmentation suggested that the 3a protein may trigger apoptosis. These data showed that overexpression of a single SARS-CoV protein can induce apoptosis in vitro.
Collapse
Affiliation(s)
- Patrick T W Law
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Chi-Hang Wong
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Thomas C C Au
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Chi-Pang Chuck
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Siu-Kai Kong
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Paul K S Chan
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Anthony W I Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Judy Y W Chan
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yick-Keung Suen
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - H Y Edwin Chan
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Kwok-Pui Fung
- The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Mary M Y Waye
- The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Joseph J Y Sung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Y M Dennis Lo
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Stephen K W Tsui
- The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| |
Collapse
|
9
|
Mora R, Valverde B, Díaz C, Lomonte B, Gutiérrez JM. A Lys49 phospholipase A(2) homologue from Bothrops asper snake venom induces proliferation, apoptosis and necrosis in a lymphoblastoid cell line. Toxicon 2005; 45:651-60. [PMID: 15777961 DOI: 10.1016/j.toxicon.2005.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/04/2005] [Accepted: 01/10/2005] [Indexed: 11/27/2022]
Abstract
Lys49 phospholipase A(2) homologues are abundant in viperid snake venoms. These proteins have substitutions at the calcium-binding loop and catalytic center which render them enzymatically inactive; however, they display a series of toxic activities, particularly cytotoxicity upon various cell lines in vitro. In this study we explored whether myotoxin II (MT-II), a Lys49 phospholipase A(2) homologue from the venom of the snake Bothrops asper, is capable of inducing various effects in a single cell type, using the lymphoblastoid B cell line CRL-8062 as a model. Cells were incubated with varying concentrations of MT-II for 24 and 48 h, time intervals that are more prolonged than the usual incubation times previously used in the characterization of this toxin. Results indicate that MT-II induces proliferation at low concentrations (0.5-5.0 microg/mL). Apoptosis was predominant at higher toxin levels (5-25 microg/mL), whereas necrosis, associated with overt plasma membrane disruption, occurred at concentrations > or =25 microg/mL, and was the predominant effect at higher MT-II concentrations (50 microg/mL). It is concluded that a single phospholipase A(2) homologue can induce markedly different effects on a single cell line, depending on the concentration used, an observation that may have implications for the action of this type of venom component in vivo.
Collapse
Affiliation(s)
- Rodrigo Mora
- Departamento de Microbiología e Inmunología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | |
Collapse
|
10
|
Abstract
Despite numerous studies examining the possible induction of apoptosis in porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, it remains unclear if PRRSV infection results in direct apoptotic induction. There is clear evidence that apoptotic cells are present in tissues from PRRSV-infected pigs. However, many of these studies have failed to show that the apoptotic cells are infected with PRRSV. This has led some investigators to propose that "bystander" cells, not infected cells, become apoptotic during PRRSV infection by a yet undetermined mechanism. Studies examining the induction of the apoptotic gene expression response to PRRSV infection are needed to determine if PRRSV replication triggers an apoptotic response. We have utilized microarray and semi-quantitative reverse-transcription polymerase chain reaction (sqRT-PCR) to evaluate apoptotic gene expression in PRRSV-infected MARC-145 cells. Twenty-six apoptosis-related genes were examined during the first 24 h of infection and found to be unaltered, indicating that apoptotic induction was not occurring in PRRSV-infected cells. Additionally, using detection of free nucleosomal complexes, we examined cells for both apoptotic and necrotic death resulting from PRRSV infection at varying multiplicities of infection. This study indicates that PRRSV-infected MARC-145 cells undergo necrosis at a much higher level than apoptosis, and increases with virus levels used to infect the cells.
Collapse
Affiliation(s)
- Laura C Miller
- Roman L. Hruska U.S. Meat Animal Research Center (MARC), ARS, USDA, State Spur 18D, P.O. Box 166, Clay Center, NE 68933-0166, USA
| | | |
Collapse
|
11
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
12
|
Sung JH, Shin SA, Park HK, Montelaro RC, Chong YH. Protective effect of glutathione in HIV-1 lytic peptide 1-induced cell death in human neuronal cells. J Neurovirol 2001; 7:454-65. [PMID: 11582518 DOI: 10.1080/135502801753170318] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
To elucidate the pathogenic mechanisms involved in neurodegeneration in AIDS patients with cognitive deficits, we have examined the toxic effect of the lentivirus lytic peptide 1 (LLP-1) corresponding to the carboxyl terminus of HIV-1 transmembrane glycoprotein gp41 on human neuronal and glial cell lines. LLP-1 induced a significant lactate dehydrogenase (LDH, a marker of cell death) release from these cells in a concentration- and time-dependent manner, while the noncytolytic LLP-1 analog 2 had little effect. Application of LLP-1 to SH-SY5Y, a well-characterized human neuronal cell line, caused the decline of intracellular glutathione (GSH) content that appeared to occur before a significant LDH release. Furthermore, LLP-1 elicited a significant loss of mitochondrial function as measured by mitochondrial transmembrane potential (MTP). Among the reducing agents and antioxidants tested, GSH and a GSH prodrug N-acetylcysteine (NAC) provided protection against LLP-1-induced neuronal cell death, evidently by restoring the intracellular GSH levels and blocking the disruption of mitochondrial integrity. Thus, gp41-derived LLP-1 may be a potential neurotoxic agent capable of causing the intracellular GSH depletion and disturbing the mitochondrial function, possibly contributing to the neurodegenerative cascade as seen in HIV-1-associated dementia. Our data indicate that restoring both GSH concentration and mitochondrial function may hold promise as possible therapeutic strategies for slowing disease progression of dementia in AIDS patients.
Collapse
Affiliation(s)
- J H Sung
- Department of Microbiology, College of Medicine, Division of Molecular Biology and Neuroscience, Medical Research Center, Ewha Womans University, Yangcheonku, Seoul, Korea
| | | | | | | | | |
Collapse
|