1
|
Roychaudhuri R, Snyder SH. Mammalian D-cysteine: A novel regulator of neural progenitor cell proliferation: Endogenous D-cysteine, the stereoisomer with rapid spontaneous in vitro racemization rate, has major neural roles: Endogenous D-cysteine, the stereoisomer with rapid spontaneous in vitro racemization rate, has major neural roles. Bioessays 2022; 44:e2200002. [PMID: 35484375 DOI: 10.1002/bies.202200002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
D-amino acids are being recognized as functionally important molecules in mammals. We recently identified endogenous D-cysteine in mammalian brain. D-cysteine is present in neonatal brain in substantial amounts (mM) and decreases with postnatal development. D-cysteine binds to MARCKS and a host of proteins implicated in cell division and neurodevelopmental disorders. D-cysteine decreases phosphorylation of MARCKS in neural progenitor cells (NPCs) affecting its translocation. D-cysteine controls NPC proliferation by inhibiting AKT signaling. Exogenous D-cysteine inhibits AKT phosphorylation at Thr 308 and Ser 473 in NPCs. D-cysteine treatment of NPCs led to 50% reduction in phosphorylation of Foxo1 at Ser 256 and Foxo3a at Ser 253. We hypothesize that in the developing brain endogenous D-cysteine is as a physiologic regulator of NPC proliferation by inhibiting AKT signaling mediated by Foxo1 and Foxo3a. Endogenous D-cysteine may regulate mammalian neurodevelopment with roles in schizophrenia and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Waindok P, Janecek-Erfurth E, Lindenwald DL, Wilk E, Schughart K, Geffers R, Strube C. Toxocara canis- and Toxocara cati-Induced Neurotoxocarosis Is Associated with Comprehensive Brain Transcriptomic Alterations. Microorganisms 2022; 10:microorganisms10010177. [PMID: 35056627 PMCID: PMC8779660 DOI: 10.3390/microorganisms10010177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Toxocara canis and Toxocara cati are globally occurring zoonotic roundworms of dogs and cats. Migration and persistence of Toxocara larvae in the central nervous system of paratenic hosts including humans may cause clinical signs of neurotoxocarosis (NT). As pathomechanisms of NT and host responses against Toxocara larvae are mostly unknown, whole-genome microarray transcription analysis was performed in cerebra and cerebella of experimentally infected C57Bl/6J mice as paratenic host model at days 14, 28, 70, 98, and 120 post-infection. Neuroinvasion of T. cati evoked 220 cerebral and 215 cerebellar differentially transcribed genes (DTGs), but no particular PANTHER (Protein ANalysis THrough Evolutionary Relationships) pathway was affected. In T. canis-infected mice, 1039 cerebral and 2073 cerebellar DTGs were identified. Statistically significant dysregulations occurred in various pathways, including cholesterol biosynthesis, apoptosis signaling, and the Slit/Robo mediated axon guidance as well as different pathways associated with the immune and defense response. Observed dysregulations of the cholesterol biosynthesis, as well as the Alzheimer disease-amyloid secretase pathway in conjunction with previous histopathological neurodegenerative findings, may promote the discussion of T. canis as a causative agent for dementia and/or Alzheimer’s disease. Furthermore, results contribute to a deeper understanding of the largely unknown pathogenesis and host-parasite interactions during NT, and may provide the basis for prospective investigations evaluating pathogenic mechanisms or designing novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Patrick Waindok
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Elisabeth Janecek-Erfurth
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Dimitri L. Lindenwald
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (E.W.); (K.S.)
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (E.W.); (K.S.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Centre, Memphis, TN 38163, USA
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Robert Geffers
- Research Group Genome Analytics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
- Correspondence: ; Tel.: +49-511-953-8711
| |
Collapse
|
3
|
Lai CC, Lo H, Lin HG, Lin HH. Potentiation of NMDA-Mediated Responses by Amyloid-β Peptide 1-40 in Rat Sympathetic Preganglionic Neurons. J Alzheimers Dis 2020; 67:1291-1303. [PMID: 30714959 DOI: 10.3233/jad-180886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The abnormal accumulation of amyloid-β peptides (Aβ) is one of the main characteristics of Alzheimer's disease (AD). Cerebro- and cardiovascular diseases may be the risk factors for developing AD. The effect of Aβ on central sympathetic control of cardiovascular function remains unclear. The present study examines the acute effects of Aβ oligomers on the function of NMDA receptors, a subtype of ionotropic glutamate receptors, in rat sympathetic preganglionic neurons (SPNs). In the in vitro electrophysiological study, Aβ1-40 but not Aβ1-42 applied by superfusion for 5 min significantly potentiated NMDA-induced depolarizations in SPNs of neonatal rat spinal cord slice preparation. Application of Aβ1-40 had little effects on AMPA-induced depolarizations or GABA-induced hyperpolarizations. Treatment with a selective protein kinase C (PKC) inhibitor applied together with Aβ1-40 blocked the augmentation by Aβ1-40 of NMDA-induced depolarizations. Western blot analysis showed an increase in the levels of phosphoserine 896, selectively regulated by PKC, without significant changes in phosphoserine 897 on GluN1 subunits in lateral horn areas of spinal cord slices following treatment with Aβ1-40. In the in vivo study, intrathecal injection of Aβ1-40 (0.2 nmol) potentiated the pressor effects induced by NMDA (2 nmol) injected intrathecally in urethane-anesthetized rats. These results suggest that different fragments of Aβ may have differential effects on the NMDA receptor function and the selective augmentation of NMDA receptor function by Aβ1-40 may involve PKC-dependent mechanisms in sympathetic preganglionic neurons.
Collapse
Affiliation(s)
- Chih-Chia Lai
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsuan Lo
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hong-Guo Lin
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsun-Hsun Lin
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Park YH, Hodges A, Risacher SL, Lin K, Jang JW, Ahn S, Kim S, Lovestone S, Simmons A, Weiner MW, Saykin AJ, Nho K. Dysregulated Fc gamma receptor-mediated phagocytosis pathway in Alzheimer's disease: network-based gene expression analysis. Neurobiol Aging 2019; 88:24-32. [PMID: 31901293 DOI: 10.1016/j.neurobiolaging.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Transcriptomics has become an important tool for identification of biological pathways dysregulated in Alzheimer's disease (AD). We performed a network-based gene expression analysis of blood-based microarray gene expression profiles using 2 independent cohorts, Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 661) and AddNeuroMed (N = 674). Weighted gene coexpression network analysis identified 17 modules from ADNI and 13 from AddNeuroMed. Four of the modules derived in ADNI were significantly related to AD; 5 modules in AddNeuroMed were significant. Gene-set enrichment analysis of the AD-related modules identified and replicated 3 biological pathways including the Fc gamma receptor-mediated phagocytosis pathway. Module-based association analysis showed the AD-related module, which has the 3 pathways, to be associated with cognitive function and neuroimaging biomarkers. Gene-based association analysis identified PRKCD in the Fc gamma receptor-mediated phagocytosis pathway as being significantly associated with cognitive function and cerebrospinal fluid biomarkers. The identification of the Fc gamma receptor-mediated phagocytosis pathway implicates the peripheral innate immune system in the pathophysiology of AD. PRKCD is known to be related to neurodegeneration induced by amyloid-β.
Collapse
Affiliation(s)
- Young Ho Park
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Angela Hodges
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kuang Lin
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Soyeon Ahn
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | | | - Andrew Simmons
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Michael W Weiner
- Departments of Radiology, Medicine, and Psychiatry, University of California-San Francisco, San Francisco, CA, USA; Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
5
|
Mulcahy MJ, Paulo JA, Hawrot E. Proteomic Investigation of Murine Neuronal α7-Nicotinic Acetylcholine Receptor Interacting Proteins. J Proteome Res 2018; 17:3959-3975. [PMID: 30285449 DOI: 10.1021/acs.jproteome.8b00618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel that is expressed widely in vertebrates and is the principal high-affinity α-bungarotoxin (α-bgtx) binding protein in the mammalian CNS. α7-nAChRs associate with proteins that can modulate its properties. The α7-nAChR interactome is the summation of proteins interacting or associating with α7-nAChRs in a protein complex. To identify an α7-nAChR interactome in neural tissue, we isolated α-bgtx-affinity protein complexes from wild-type and α7-nAChR knockout (α7 KO) mouse whole brain tissue homogenates using α-bgtx-affinity beads. Affinity precipitated proteins were trypsinized and analyzed with an Orbitrap Fusion mass spectrometer. Proteins isolated with the α7-nAChR specific ligand, α-bgtx, were determined to be α7-nAChR associated proteins. The α7-nAChR subunit and 120 additional proteins were identified. Additionally, 369 proteins were identified as binding to α-bgtx in the absence of α7-nAChR expression, thereby identifying nonspecific proteins for α7-nAChR investigations using α-bgtx enrichment. These results expand on our previous investigations of α7-nAChR interacting proteins using α-bgtx-affinity bead isolation by controlling for differences between α7-nAChR and α-bgtx-specific proteins, developing an improved protein isolation methodology, and incorporating the latest technology in mass spectrometry. The α7-nAChR interactome identified in this study includes proteins associated with the expression, localization, function, or modulation of α7-nAChRs, and it provides a foundation for future studies to elucidate how these interactions contribute to human disease.
Collapse
Affiliation(s)
- Matthew J Mulcahy
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States.,Department of Molecular Pharmacology, Physiology and Biotechnology , Brown University , Providence , Rhode Island 02912 , United States
| | - Joao A Paulo
- Department of Cell Biology , Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology and Biotechnology , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
6
|
Sejimo S, Hossain MS, Akashi K. Scallop-derived plasmalogens attenuate the activation of PKCδ associated with the brain inflammation. Biochem Biophys Res Commun 2018; 503:837-842. [DOI: 10.1016/j.bbrc.2018.06.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/16/2018] [Indexed: 12/20/2022]
|
7
|
HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Sci Rep 2016; 6:31895. [PMID: 27557632 PMCID: PMC4997258 DOI: 10.1038/srep31895] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/28/2016] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease, but it remains an intractable condition. Its pathogenesis is predominantly attributed to the aggregation and transmission of two molecules, Aβ and tau; however, other pathological mechanisms are possible. Here, we reveal that phosphorylation of MARCKS, a submembrane protein that regulates the stability of the actin network, occurs at Ser46 prior to aggregation of Aβ and is sustained throughout the course of AD in human and mouse brains. Furthermore, HMGB1 released from necrotic or hyperexcitatory neurons binds to TLR4, triggers the specific phosphorylation of MARCKS via MAP kinases, and induces neurite degeneration, the classical hallmark of AD pathology. Subcutaneous injection of a newly developed monoclonal antibody against HMGB1 strongly inhibits neurite degeneration even in the presence of Aβ plaques and completely recovers cognitive impairment in a mouse model. HMGB1 and Aβ mutually affect polymerization of the other molecule, and the therapeutic effects of the anti-HMGB1 monoclonal antibody are mediated by Aβ-dependent and Aβ-independent mechanisms. We propose that HMGB1 is a critical pathogenic molecule promoting AD pathology in parallel with Aβ and tau and a new key molecular target of preclinical antibody therapy to delay the onset of AD.
Collapse
|
8
|
Li XH, Huang J, Yuan DM, Cheng C, Shen AG, Zhang DM, Tao T, Liu YH, Lu JJ, Guo YB, Zhu H, Chen J, Lu X. HSPA12B regulates SSeCKS-mediated astrocyte inflammatory activation in neuroinflammation. Exp Cell Res 2015; 339:310-9. [PMID: 26428665 DOI: 10.1016/j.yexcr.2015.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 11/26/2022]
Abstract
Reactive astrocytosis has been considered either beneficial or detrimental effection in neuroinflammatory disease. HSPA12B, a new member belongs to the 70-kDa family of heat shock proteins (HSP70) which could modulate inflammatory response, also shows an connection with the astrocyte activation. Recently, it was reported that Src-Suppressed-C Kinase Substrate (SSeCKS) was detected in heat shock protein A12B (HSPA12B) interacting proteins using a yeast 2-hybrid system. SSeCKS, a major Lipopolysaccharide (LPS) response protein, has been involved in regulating astrocyte activation via production of proinflammatory factor in CNS inflammation. In this study, we found HSPA12B might regulate the expression and activity of SSeCKS to promote astrocyte inflammatory activation and release of inflammatory mediators, such as TNF-α and IL-1β in spinal cord primary astroglial cultures exposed to LPS treatment. The promoting mechanism of interaction between HSPA12B and SSeCKS on LPS-induced astrocyte activation was mediated via the activation of JNK and p38 signaling pathways but not ERK1/2 MAPK signaling pathway. HSPA12B binded to SSeCKS via its both N terminus consisted of amino acids 1-330 and C terminus consisted of amino acids 1278-1596. And, in vivo, we confirmed the interaction between HSPA12B and SSeCKS of astrocyte activation in the pathogenesis of EAE. The regulatory mechanisms of HSPA12B-SSeCKS interaction may possibly be the key therapeutic strategy of neuroinflammatory disease.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Surgical Comprehensive Laboratory and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China
| | - Jie Huang
- Surgical Comprehensive Laboratory and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China
| | - Da-Min Yuan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Chun Cheng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Ai-Guo Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Dong-Mei Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yong-Hua Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Jing-Jing Lu
- Surgical Comprehensive Laboratory and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China
| | - Yi-Bing Guo
- Surgical Comprehensive Laboratory and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China
| | - Hui Zhu
- Surgical Comprehensive Laboratory and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China
| | - Jian Chen
- Surgical Comprehensive Laboratory and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China.
| | - Xiang Lu
- Department of Geriatrics, Nanjing Second Hospital Affiliated to Nanjing Medical University, 121 Jiangjiayuan, Nanjing 210011, China.
| |
Collapse
|
9
|
Hornik TC, Neniskyte U, Brown GC. Inflammation induces multinucleation of Microglia via PKC inhibition of cytokinesis, generating highly phagocytic multinucleated giant cells. J Neurochem 2013; 128:650-61. [PMID: 24117490 DOI: 10.1111/jnc.12477] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/18/2013] [Accepted: 09/29/2013] [Indexed: 12/15/2022]
Abstract
Microglia are brain macrophages, which can undergo multinucleation to give rise to multinucleated giant cells that accumulate with ageing and some brain pathologies. However, the origin, regulation and function of multinucleate microglia remain unclear. We found that inflammatory stimuli, including lipopolysaccharide, amyloid β, α-synuclein, tumour necrosis factor-α and interferon γ, but not interleukin-4, induced multinucleation of cultured microglia: primary rat cortical microglia and the murine microglial cell line BV-2. Inflammation-induced multinucleation was prevented by a protein kinase C (PKC) inhibitor Gö6976 (100 nM) and replicated by a PKC activator phorbol myristate acetate (160 nM). Multinucleation was reversible and not because of cell fusion or phagocytosis, but rather failure of cytokinesis. Time-lapse imaging revealed that some dividing cells failed to abscise, even after formation of long cytoplasmic bridges, followed by retraction of bridge and reversal of cleavage furrow to form multinucleate cells. Multinucleate microglia were larger and 2-4 fold more likely to phagocytose large beads and both dead and live PC12 cells. We conclude that multinucleate microglia are reversibly generated by inflammation via PKC inhibition of cytokinesis, and may have specialized functions/dysfunctions including the phagocytosis of other cells. Inflammation resulted in the accumulation of multiple nuclei per cell in cultured microglia. This multinucleation was reversible and due to a PKC-dependent block of the last step of cell division. Multinucleate microglia were larger and had a greater capacity to phagocytose other cells, suggesting they might remove neurons in the brain.
Collapse
Affiliation(s)
- Tamara C Hornik
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
10
|
Ott LE, Sung EJ, Melvin AT, Sheats MK, Haugh JM, Adler KB, Jones SL. Fibroblast Migration Is Regulated by Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Protein. PLoS One 2013; 8:e66512. [PMID: 23840497 PMCID: PMC3686679 DOI: 10.1371/journal.pone.0066512] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/10/2013] [Indexed: 01/10/2023] Open
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a ubiquitously expressed substrate of protein kinase C (PKC) that is involved in reorganization of the actin cytoskeleton. We hypothesized that MARCKS is involved in regulation of fibroblast migration and addressed this hypothesis by utilizing a unique reagent developed in this laboratory, the MANS peptide. The MANS peptide is a myristoylated cell permeable peptide corresponding to the first 24-amino acids of MARCKS that inhibits MARCKS function. Treatment of NIH-3T3 fibroblasts with the MANS peptide attenuated cell migration in scratch wounding assays, while a myristoylated, missense control peptide (RNS) had no effect. Neither MANS nor RNS peptide treatment altered NIH-3T3 cell proliferation within the parameters of the scratch assay. MANS peptide treatment also resulted in inhibited NIH-3T3 chemotaxis towards the chemoattractant platelet-derived growth factor-BB (PDGF-BB), with no effect observed with RNS treatment. Live cell imaging of PDGF-BB induced chemotaxis demonstrated that MANS peptide treatment resulted in weak chemotactic fidelity compared to RNS treated cells. MANS and RNS peptides did not affect PDGF-BB induced phosphorylation of MARCKS or phosphoinositide 3-kinase (PI3K) signaling, as measured by Akt phosphorylation. Further, no difference in cell migration was observed in NIH-3T3 fibroblasts that were transfected with MARCKS siRNAs with or without MANS peptide treatment. Genetic structure-function analysis revealed that MANS peptide-mediated attenuation of NIH-3T3 cell migration does not require the presence of the myristic acid moiety on the amino-terminus. Expression of either MANS or unmyristoylated MANS (UMANS) C-terminal EGFP fusion proteins resulted in similar levels of attenuated cell migration as observed with MANS peptide treatment. These data demonstrate that MARCKS regulates cell migration and suggests that MARCKS-mediated regulation of fibroblast migration involves the MARCKS amino-terminus. Further, this data demonstrates that MANS peptide treatment inhibits MARCKS function during fibroblast migration and that MANS mediated inhibition occurs independent of myristoylation.
Collapse
Affiliation(s)
- Laura E. Ott
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Eui Jae Sung
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Adam T. Melvin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Mary K. Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jason M. Haugh
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kenneth B. Adler
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Samuel L. Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Zhou Z, Tao T, Ji Y, Yang H, Wang Y, Cheng C, Shen A, Lu X. SSeCKS promotes tumor necrosis factor-alpha autocrine via activating p38 and JNK pathways in Schwann cells. Cell Mol Neurobiol 2010; 30:701-7. [PMID: 20111901 DOI: 10.1007/s10571-009-9494-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/28/2009] [Indexed: 12/23/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) derived from activated Schwann cells (SCs) plays a critical role as an inflammatory mediator in the peripheral nervous system disease. TNF-alpha could act as an autocrine mediator in SC activation. In this study, we found knockdown Src-suppressed protein kinase C substrate (SSeCKS) expression suppressed TNF-alpha production induced by TNF-alpha, overexpression of SSeCKS could promoted TNF-alpha autocrine in SCs. Such effects might be resulted in SSeCKS promoted p38 and JNK activation in SCs treated by TNF-alpha. Thus present data show that while SCs activation, SSeCKS may plays an important role in the release of inflammatory mediators.
Collapse
Affiliation(s)
- Zhengming Zhou
- Department of Osteology, Affiliated Jiangyin Hospital of Nantong University, and The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Vintém APB, Henriques AG, da Cruz e Silva OA, da Cruz e Silva EF. PP1 inhibition by Aβ peptide as a potential pathological mechanism in Alzheimer's disease. Neurotoxicol Teratol 2009; 31:85-8. [DOI: 10.1016/j.ntt.2008.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/05/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
13
|
Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 2007; 22:246-60. [PMID: 17720802 DOI: 10.1096/fj.06-7703com] [Citation(s) in RCA: 419] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent studies have indicated an association between Alzheimer's disease (AD) and central nervous system (CNS) insulin resistance. However, the cellular mechanisms underlying the link between these two pathologies have not been elucidated. Here we show that signal transduction by neuronal insulin receptors (IR) is strikingly sensitive to disruption by soluble Abeta oligomers (also known as ADDLs). ADDLs are known to accumulate in AD brain and have recently been implicated as primary candidates for initiating deterioration of synapse function, composition, and structure. Using mature cultures of hippocampal neurons, a preferred model for studies of synaptic cell biology, we found that ADDLs caused a rapid and substantial loss of neuronal surface IRs specifically on dendrites bound by ADDLs. Removal of dendritic IRs was associated with increased receptor immunoreactivity in the cell body, indicating redistribution of the receptors. The neuronal response to insulin, measured by evoked IR tyrosine autophosphorylation, was greatly inhibited by ADDLs. Inhibition also was seen with added glutamate or potassium-induced depolarization. The effects on IR function were completely blocked by NMDA receptor antagonists, tetrodotoxin, and calcium chelator BAPTA-AM. Downstream from the IR, ADDLs induced a phosphorylation of Akt at serine473, a modification associated with neurodegenerative and insulin resistance diseases. These results identify novel factors that affect neuronal IR signaling and suggest that insulin resistance in AD brain is a response to ADDLs, which disrupt insulin signaling and may cause a brain-specific form of diabetes as part of an overall pathogenic impact on CNS synapses.
Collapse
Affiliation(s)
- Wei-Qin Zhao
- Department of Neurobiology and Physiology, Northwestern University, 2205 Tech Dr., Hogan 5-110, Evanston, IL 60280, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sun LL, Cheng C, Liu HO, Xiao F, Qin J, Shao XY, Shen AG. Changes of Src-suppressed C kinase substrate expression in cytokine induced reactive C6 glioma cells. Neurosci Bull 2007; 23:101-6. [PMID: 17592532 PMCID: PMC5550593 DOI: 10.1007/s12264-007-0014-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To investigate effect of tumor necrosis factor-alpha (TNF-alpha) on the Src-suppressed C kinase substrate (SSeCKS) in C6 glioma cells. METHODS Cultured C6 glioma cells were randomly divided into two groups. In time-dependent group, cells were cultured with TNF-alpha (2 ng/mL) for 0 h, 1 h, 3 h, 6 h, 12 or 24 h, respectively; in dose-dependent group, cells were cultured with TNF-alpha (0 ng/mL, 0.02 ng/mL, 0.2 ng/mL, or 2 ng/mL) for 6 h. The expression of SSeCKS was detected by Realtime PCR and Western blot analysis, and immunocytochemistry was used to investigate SSeCKS's subcellular localization. RESULTS TNF-alpha induced rapid phosphorylations of protein kinase C (PKC) substrates in C6 glioma cells, and upregulated SSeCKS expression in a time and concentration dependent manner. Immunocytochemistry suggested that SSeCKS was localized in the cyroplasm and the leading end of podosomal extensions in control groups, while TNF-alpha induced translocation of SSeCKS perinuclear. This effect could be partly reversed by PKC inhibitor Ro-31-8220. CONCLUSION TNF-alpha activates PKC and upregulates SSeCKS expression in C6 glioma cells. These effects are associated with PKC activity, suggesting that SSeCKS plays a role in response to glia activation in PKC mediated pathway.
Collapse
Affiliation(s)
- Lin-Lin Sun
- Department of immunology and microbiology, Medical College of Nantong University, Nantong, 226001 China
| | - Chun Cheng
- Department of immunology and microbiology, Medical College of Nantong University, Nantong, 226001 China
| | - Hai-Ou Liu
- Department of immunology and microbiology, Medical College of Nantong University, Nantong, 226001 China
| | - Feng Xiao
- Department of immunology and microbiology, Medical College of Nantong University, Nantong, 226001 China
| | - Jing Qin
- Department of Pathology, Medical College of Nantong University, Nantong, 226001 China
| | - Xiao-Yi Shao
- Department of immunology and microbiology, Medical College of Nantong University, Nantong, 226001 China
| | - Ai-Guo Shen
- Key Laboratory of Neuroregeneration of Jiangsu Province, Nantong University, Nantong, 226001 China
| |
Collapse
|
15
|
Sun LL, Cheng C, Liu HO, Shen CC, Xiao F, Qin J, Yang JL, Shen AG. Src suppressed C kinase substrate regulates the lipopolysaccharide-induced TNF-α biosynthesis in rat astrocytes. J Mol Neurosci 2007; 32:16-24. [PMID: 17873284 DOI: 10.1007/s12031-007-0003-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 11/30/1999] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
The protein kinase C (PKC) is known to be a critical component in the signaling cascades that lead to astrocyte-activation. To further understand the mechanism of PKC signaling in astrocyte-activation, we investigated the effect of SSeCKS, a PKC substrate, on LPS-induced cytokine expression in astrocytes by RT-PCR and enzyme-linked immunosorbent assay. Exposure of the cells to LPS induced rapid translocation of SSeCKS to the perinuclear sides, ERK activation and pronounced TNF-alpha production, which can be inhibited by the PKC inhibitor Gö6983. By using siRNA knockdown of SSeCKS expression, LPS-induced signaling events were partly inhibited, including ERK activation, inducible TNF-alpha biosynthesis and secretion. These results suggest that SSeCKS is involved in the LPS-induced TNF-alpha expression in astrocytes mediated by PKC.
Collapse
Affiliation(s)
- Lin-lin Sun
- Department of Immunology and Microbiology, Medical College of Nantong University, Nantong 226001, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hüll M, Müksch B, Akundi RS, Waschbisch A, Hoozemans JJM, Veerhuis R, Fiebich BL. Amyloid β peptide (25–35) activates protein kinase C leading to cyclooxygenase-2 induction and prostaglandin E2 release in primary midbrain astrocytes. Neurochem Int 2006; 48:663-72. [PMID: 16546299 DOI: 10.1016/j.neuint.2005.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 08/30/2005] [Indexed: 11/15/2022]
Abstract
Prostaglandins (PGs) are generated by the enzymatic activity of cyclooxygenase-1 and -2 (COX-1/2) and modulate several functions in the CNS such as the generation of fever, the sleep/wake cycle, and the perception of pain. Moreover, the induction of COX-2 and the generation of PGs has been linked to neuroinflammatory aspects of Alzheimer's disease (AD). Non-steroidal anti-inflammatory drugs (NSAIDs) that block COX enzymatic activity have been shown to reduce the incidence of AD in various epidemiological studies. While several reports investigated the expression of COX-2 in neurons and microglia, expression of COX-2 in astroglial cells has not been investigated in detail. Here we show that amyloid beta peptide 25-35 (Abeta(25-35)) induces COX-2 mRNA and protein synthesis and a subsequent release of prostaglandin E(2) (PGE(2)) in primary midbrain astrocytes. We further demonstrate that protein kinase C (PKC) is involved in Abeta(25-35)-induced COX-2/PGE(2) synthesis. PKC-inhibitors prevent Abeta(25-35)-induced COX-2 and PGE(2) synthesis. Furthermore Abeta(25-35) rapidly induces the phosphorylation and enzymatic activation of PKC in primary rat midbrain glial cells and in primary human astrocytes from post mortem tissue. Our data suggest that the PKC isoforms alpha and/or beta are most probably involved in Abeta(25-35)-induced expression of COX-2 in midbrain astrocytes. The potential role of astroglial cells in the phagocytosis of amyloid and the involvement of PGs in this process suggests that a modulation of PGs synthesis may be a putative target in the prevention of amyloid deposition.
Collapse
Affiliation(s)
- Michael Hüll
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, D-79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Milton NGN. Phosphorylated amyloid-beta: the toxic intermediate in alzheimer's disease neurodegeneration. Subcell Biochem 2005; 38:381-402. [PMID: 15709490 DOI: 10.1007/0-387-23226-5_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Phosphorylated Amyloid-beta (Abeta) was identified in Alzheimer's disease (AD) brain. Using an anti-sense peptide approach the human cyclin-dependent kinase-1 (CDK-1) was identified as being responsible for Abeta phosphorylation. The phosphorylated Abeta peptide showed increased neurotoxicity and reduced ability to form Congo red-positive fibrils. Mutation of the serine 26 residue and inhibition of Abeta phosphorylation by the CDK-1 inhibitor olomoucine prevented Abeta toxicity, suggesting that the phosphorylated Abeta peptide represents a toxic intermediate. Cannabinoids prevented phosphorylated Abeta toxicity. The results from this study suggest that Abeta phosphorylation could play a role in AD pathology and represent a novel therapeutic target.
Collapse
Affiliation(s)
- Nathaniel G N Milton
- Department of Clinical Neurosciences, Royal Free & University College Medical School, University College London, London, UK
| |
Collapse
|
18
|
Ehre C, Rossi AH, Abdullah LH, De Pestel K, Hill S, Olsen JC, Davis CW. Barrier role of actin filaments in regulated mucin secretion from airway goblet cells. Am J Physiol Cell Physiol 2004; 288:C46-56. [PMID: 15342343 DOI: 10.1152/ajpcell.00397.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/G(q)-coupled P2Y(2) receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of beta- and gamma-actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of beta- or gamma-actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca(2+)-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis.
Collapse
Affiliation(s)
- Camille Ehre
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599-7248, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Murphy A, Sunohara JR, Sundaram M, Ridgway ND, McMaster CR, Cook HW, Byers DM. Induction of protein kinase C substrates, Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP), by amyloid beta-protein in mouse BV-2 microglial cells. Neurosci Lett 2003; 347:9-12. [PMID: 12865129 DOI: 10.1016/s0304-3940(03)00648-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microglial activation by amyloid beta-protein in senile plaques contributes to neurodegeneration in Alzheimer disease. In BV-2 microglial cells, amyloid beta-protein 1-40 (Abeta 1-40) elicited a dose-dependent increase (3-4 fold) of Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP), two protein kinase C substrates implicated in membrane-cytoskeletal alterations underlying microglial adhesion, migration, secretion, and phagocytosis. Neither MARCKS nor MRP was induced by the amyloid fragment Abeta 25-35, although both Abeta 1-40 and Abeta 25-35 caused extensive aggregation of BV-2 cells. Interferon-gamma synergistically enhanced the induction by Abeta 1-40 of inducible nitric oxide synthase, but not MARCKS or MRP. Our results suggest that MARCKS and MRP may play important roles in microglia activated by amyloid peptides.
Collapse
Affiliation(s)
- Anne Murphy
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Room C-305 Clinical Research Centre, 5849 University Avenue, Halifax, NS B3H 4H7, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Kuperstein F, Yavin E. Pro-apoptotic signaling in neuronal cells following iron and amyloid beta peptide neurotoxicity. J Neurochem 2003; 86:114-25. [PMID: 12807431 DOI: 10.1046/j.1471-4159.2003.01831.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In a previous report, we characterized several oxidative stress parameters during the course of amyloid beta (Abeta) peptide/Fe2+-induced apoptotic death in neuronal cells. In extending these findings, we now report a marked decrease in protein kinase C (PKC) isoforms, reduced Akt serine/threonine kinase activity, Bcl 2-associated death promoter (BAD) phosphorylation and enhanced p38 mitogen-activated protein kinase (MAPK) and caspase-9 and -3 activation, 12 h after addition of both 5 micro m Abeta and 5 micro m Fe2+. These activities reminiscent for a pro-apoptotic cellular course were blocked in the presence of the iron chelator deferroxamine. Abeta alone, increased PKC isoform levels between three- and four-fold after 12 h, enhanced Akt activity approximately eight-fold and Ser136 BAD phosphorylation two-fold, suggesting that by itself is not toxic. Fe2+ alone transiently enhanced p38 MAPK and caspase-9 and -3 enzymes indicative for cell damage, but was not sufficient to cause cell death as previously indicated. GF, a PKC inhibitor or wortmannin, a blocker of the Akt pathway enhanced Abeta/Fe2+-induced toxicity, while SB, a p38 MAPK inhibitor, prevented cell damage and apoptosis. These findings further support the hypothesis that metal ion chelation and inhibitors of pro-apoptotic kinase cascades may be beneficial for Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Faina Kuperstein
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
21
|
Dobransky T, Brewer D, Lajoie G, Rylett RJ. Phosphorylation of 69-kDa choline acetyltransferase at threonine 456 in response to amyloid-beta peptide 1-42. J Biol Chem 2003; 278:5883-93. [PMID: 12486117 DOI: 10.1074/jbc.m212080200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Choline acetyltransferase synthesizes acetylcholine in cholinergic neurons. In the brain, these neurons are especially vulnerable to effects of beta-amyloid (A beta) peptides. Choline acetyltransferase is a substrate for several protein kinases. In the present study, we demonstrate that short term exposure of IMR32 neuroblastoma cells expressing human choline acetyltransferase to A beta-(1-42) changes phosphorylation of the enzyme, resulting in increased activity and alterations in its interaction with other cellular proteins. Using mass spectrometry, we identified threonine 456 as a new phosphorylation site in choline acetyltransferase from A beta-(1-42)-treated cells and in purified recombinant ChAT phosphorylated in vitro by calcium/calmodulin-dependent protein kinase II (CaM kinase II). Whereas phosphorylation of choline acetyltransferase by protein kinase C alone caused a 2-fold increase in enzyme activity, phosphorylation by CaM kinase II alone did not alter enzyme activity. A 3-fold increase in choline acetyltransferase activity was found with coordinate phosphorylation of threonine 456 by CaM kinase II and phosphorylation of serine 440 by protein kinase C. This phosphorylation combination was observed in choline acetyltransferase from A beta-(1-42)-treated cells. Treatment of cells with A beta-(1-42) resulted in two phases of activation of choline acetyltransferase, the first within 30 min and associated with phosphorylation by protein kinase C and the second by 10 h and associated with phosphorylation by both CaM kinase II and protein kinase C. We also show that choline acetyltransferase from A beta-(1-42)-treated cells co-immunoprecipitates with valosin-containing protein, and mutation of threonine 456 to alanine abolished the A beta-(1-42)-induced effects. These studies demonstrate that A beta-(1-42) can acutely regulate the function of choline acetyltransferase, thus potentially altering cholinergic neurotransmission.
Collapse
Affiliation(s)
- Tomas Dobransky
- Department of Physiology, University of Western Ontario, and Robarts Research Institute, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
22
|
Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 2002; 40:195-205. [PMID: 12379907 DOI: 10.1002/glia.10148] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Scavenger receptor class A (SR-A, CD204), scavenger receptor-BI (SR-BI), and CD36 are cell surface proteins that mediate cell adhesion to, and endocytosis of, various native and pathologically modified substances, and participate in intracellular signaling, lipid metabolism, and host defense against bacterial pathogens. Microglia, Mato cells, astrocytes, cerebral microvascular endothelial cells, cerebral arterial smooth muscle cells, and retinal pigment epithelial cells express one or more of these SR. Expression of SR-A and SR-BI by microglia is developmentally regulated. Neonatal microglia express SR-A and SR-BI, while microglia in normal mouse and human adult brain express neither. Astrocytes in adult brain express SR-BI. In Alzheimer's disease, microglial expression of SR-A is increased. Such findings, and evidence that SR-A and SR-BI mediate adhesion and endocytosis of fibrillar beta-amyloid by microglia and astrocytes, respectively, and that SR-A, SR-BI, and CD36 participate in secretion of reactive oxygen species by microglia, suggest roles for these receptors in homeostasis and neuropathology.
Collapse
Affiliation(s)
- Jens Husemann
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - John D Loike
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Roman Anankov
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Maria Febbraio
- Department of Medicine, Division of Hematology and Medical Oncology, Center of Vascular Biology, Weill Medical College of Cornell University, New York, New York
| | - Samuel C Silverstein
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| |
Collapse
|
23
|
Abstract
Growing evidence indicates a significant linkage between Abeta and cholesterol metabolism, although the exact role of cholesterol in brain aging and in the pathogenesis of AD is still unknown. Recently, in vitro and in vivo modification of cell cholesterol and its effect on Abeta-generation became a straight focus in the research of AD. In the present study, we discretely modulated the cholesterol contents of neuronal membranes from mice of different ages in vivo and in vitro using lovastatin and methyl-beta-cyclodextrin, respectively. The aim of the study was to investigate whether this modulation results in altered physico-chemical membrane properties. Therefore, we performed membrane fluidity measurements using three fluorescent dyes labeling different membrane regions. Furthermore, we evaluated the effects of cholesterol modulation on the membrane disturbing properties of Abeta. Modulation of membrane cholesterol content in vivo and in vitro was linked to changes in membrane properties. Very interestingly, cholesterol content of in vitro modulated neuronal membranes was negatively correlated with the membrane perturbing effects of Abeta.
Collapse
Affiliation(s)
- Christopher Kirsch
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Germany
| | | | | |
Collapse
|
24
|
Milton NGN. The amyloid-beta peptide binds to cyclin B1 and increases human cyclin-dependent kinase-1 activity. Neurosci Lett 2002; 322:131-3. [PMID: 11958860 DOI: 10.1016/s0304-3940(02)00081-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pathological features of Alzheimer's disease include deposition of amyloid-beta (Abeta) containing plaques and increases in the expression of cyclin-dependent kinase (CDK) enzymes. Chemical inhibition of CDKs prevents the neurotoxicity of the Abeta peptide. The activity of these kinases requires the binding of a cyclin component to the catalytic enzyme component. This study characterizes direct interactions between Abeta and cyclin B1. Abeta fragments containing the cytotoxic 31-35 region could inhibit biotinylated Abeta binding to cyclin B1. The same cytotoxic Abeta fragments all increased CDK-1 phosphorylation of known substrates in a cell free system. The CDK-1 inhibitor olomoucine prevented the cytotoxicity of Abeta 31-35 containing peptides in differentiated human teratocarcinoma cell line, Ntera 2/cl-D1 (NT-2) neurons. These direct interactions between cyclin B1 and Abeta provide potential mechanisms for the cytotoxicity of the Abeta peptide.
Collapse
Affiliation(s)
- Nathaniel G N Milton
- Department of Molecular Pathology and Clinical Biochemistry, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
25
|
Tanimukai S, Hasegawa H, Nakai M, Yagi K, Hirai M, Saito N, Taniguchi T, Terashima A, Yasuda M, Kawamata T, Tanaka C. Nanomolar amyloid beta protein activates a specific PKC isoform mediating phosphorylation of MARCKS in Neuro2A cells. Neuroreport 2002; 13:549-53. [PMID: 11930178 DOI: 10.1097/00001756-200203250-00037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS), a protein associated with cell growth, neurosecretion and macrophage activation, is activated by protein kinase C (PKC) phosphorylation. We reported that amyloid beta protein (Abeta) activated MARCKS through a tyrosine kinase and PKC-delta in rat cultured microglia. Here we report that Abeta signaling pathway through a specific PKC isoform is involved in the phosphorylation of MARCKS in Neuro2A cells. Selective PKC inhibitors but not tyrosine kinase inhibitors significantly inhibited the phosphorylation of MARCKS induced by Abeta. Abeta selectively activated PKC-alpha among the four PKC isoforms localized in Neuro2A cells. PKC-alpha activated by Abeta directly phosphorylated a recombinant MARCKS in vitro, Translocation of PKC-alpha from the cytoplasm to the membrane and accumulation of phospho-MARCKS in the cytoplasm were induced by Abeta. These results suggest involvement of a phosphoinositide signaling system through PKC-alpha in the phosphorylation of MARCKS in neurons, an event which may be associated with mechanisms underlying neurotrophic and neurotoxic effects of Abeta.
Collapse
Affiliation(s)
- Satoshi Tanimukai
- Hyogo Institute for Aging Brain and Cognitive Disorders, 520 Saisho-ko, Himeji 670-0981, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|