1
|
Liu Y, Liu T, Zhou Y, Li W, Wang M, Song N, Zhang W, Jiang J, Yuan S, Ding J, Hu G, Lu M. Impeding the combination of astrocytic ASCT2 and NLRP3 by talniflumate alleviates neuroinflammation in experimental models of Parkinson's disease. Acta Pharm Sin B 2023; 13:662-677. [PMID: 36873178 PMCID: PMC9978855 DOI: 10.1016/j.apsb.2022.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/27/2022] Open
Abstract
Alanine-serine-cysteine transporter 2 (ASCT2) is reported to participate in the progression of tumors and metabolic diseases. It is also considered to play a crucial role in the glutamate-glutamine shuttle of neuroglial network. However, it remains unclear the involvement of ASCT2 in neurological diseases such as Parkinson's disease (PD). In this study, we demonstrated that high expression of ASCT2 in the plasma samples of PD patients and the midbrain of MPTP mouse models is positively correlated with dyskinesia. We further illustrated that ASCT2 expressed in astrocytes rather than neurons significantly upregulated in response to either MPP+ or LPS/ATP challenge. Genetic ablation of astrocytic ASCT2 alleviated the neuroinflammation and rescued dopaminergic (DA) neuron damage in PD models in vitro and in vivo. Notably, the binding of ASCT2 to NLRP3 aggravates astrocytic inflammasome-triggered neuroinflammation. Then a panel of 2513 FDA-approved drugs were performed via virtual molecular screening based on the target ASCT2 and we succeed in getting the drug talniflumate. It is validated talniflumate impedes astrocytic inflammation and prevents degeneration of DA neurons in PD models. Collectively, these findings reveal the role of astrocytic ASCT2 in the pathogenesis of PD, broaden the therapeutic strategy and provide a promising candidate drug for PD treatment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Yuanzhang Zhou
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Wenjie Li
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Min Wang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Wenbin Zhang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 211198, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 211198, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China.,Department of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Differential Effects of Oligosaccharides, Antioxidants, Amino Acids and PUFAs on Heat/Hypoxia-Induced Epithelial Injury in a Caco-2/HT-29 Co-Culture Model. Int J Mol Sci 2023; 24:ijms24021111. [PMID: 36674626 PMCID: PMC9861987 DOI: 10.3390/ijms24021111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
(1) Exposure of intestinal epithelial cells to heat and hypoxia causes a (heat) stress response, resulting in the breakdown of epithelial integrity. There are indications that several categories of nutritional components have beneficial effects on maintaining the intestinal epithelial integrity under stress conditions. This study evaluated the effect of nine nutritional components, including non-digestible oligosaccharides (galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), chitosan oligosaccharides (COS)), antioxidants (α-lipoic acid (ALA), resveratrol (RES)), amino acids (l-glutamine (Glu), l-arginine (Arg)) and polyunsaturated fatty acids (PUFAs) (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)), on heat/hypoxia-induced epithelial injury. (2) Two human colonic cell lines, Caco-2 and HT-29, were co-cultured and pre-treated with the nutritional components for 48 h. After pre-treatment, the cells were exposed to heat/hypoxia (42 °C, 5% O2) for 2 h. Epithelial integrity was evaluated by measuring trans-epithelial electrical resistance (TEER), paracellular Lucifer Yellow (LY) permeability, and tight junction (TJ) protein expression. Heat stress and oxidative stress levels were evaluated by determining heat-shock protein-70 (HSP-70) expression and the concentration of the lipid peroxidation product malondialdehyde (MDA). (3) GOS, FOS, COS, ALA, RES, Arg, and EPA presented protective effects on epithelial damage in heat/hypoxia-exposed Caco-2/HT-29 cells by preventing the decrease in TEER, the increase in LY permeability, and/or decrease in TJ proteins zonula occludens-1 (ZO-1) and claudin-3 expression. COS, RES, and EPA demonstrated anti-oxidative stress effects by suppressing the heat/hypoxia-induced MDA production, while Arg further elevated the heat/hypoxia-induced increase in HSP-70 expression. (4) This study indicates that various nutritional components have the potential to counteract heat/hypoxia-induced intestinal injury and might be interesting candidates for future in vivo studies and clinical trials in gastrointestinal disorders related to heat stress and hypoxia.
Collapse
|
3
|
Impact of Inhibition of Glutamine and Alanine Transport on Cerebellar Glial and Neuronal Metabolism. Biomolecules 2022; 12:biom12091189. [PMID: 36139028 PMCID: PMC9496060 DOI: 10.3390/biom12091189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The cerebellum, or “little brain”, is often overlooked in studies of brain metabolism in favour of the cortex. Despite this, anomalies in cerebellar amino acid homeostasis in a range of disorders have been reported. Amino acid homeostasis is central to metabolism, providing recycling of carbon backbones and ammonia between cell types. Here, we examined the role of cerebellar amino acid transporters in the cycling of glutamine and alanine in guinea pig cerebellar slices by inhibiting amino acid transporters and examining the resultant metabolism of [1-13C]d-glucose and [1,2-13C]acetate by NMR spectroscopy and LCMS. While the lack of specific inhibitors of each transporter makes interpretation difficult, by viewing results from experiments with multiple inhibitors we can draw inferences about the major cell types and transporters involved. In cerebellum, glutamine and alanine transfer is dominated by system A, blockade of which has maximum effect on metabolism, with contributions from System N. Inhibition of neural system A isoform SNAT1 by MeAIB resulted in greatly decreased metabolite pools and reduced net fluxes but showed little effect on fluxes from [1,2-13C]acetate unlike inhibition of SNAT3 and other glutamine transporters by histidine where net fluxes from [1,2-13C]acetate are reduced by ~50%. We interpret the data as further evidence of not one but several glutamate/glutamine exchange pools. The impact of amino acid transport inhibition demonstrates that the cerebellum has tightly coupled cells and that glutamate/glutamine, as well as alanine cycling, play a major role in that part of the brain.
Collapse
|
4
|
Zielińska M, Albrecht J, Popek M. Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema. Front Neurosci 2022; 16:874750. [PMID: 35733937 PMCID: PMC9207324 DOI: 10.3389/fnins.2022.874750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute liver failure (ALF) impairs ammonia clearance from blood, which gives rise to acute hyperammonemia and increased ammonia accumulation in the brain. Since in brain glutamine synthesis is the only route of ammonia detoxification, hyperammonemia is as a rule associated with increased brain glutamine content (glutaminosis) which correlates with and contributes along with ammonia itself to hyperammonemic brain edema-associated with ALF. This review focuses on the effects of hyperammonemia on the two glutamine carriers located in the astrocytic membrane: Slc38a3 (SN1, SNAT3) and Slc7a6 (y + LAT2). We emphasize the contribution of the dysfunction of either of the two carriers to glutaminosis- related aspects of brain edema: retention of osmotically obligated water (Slc38a3) and induction of oxidative/nitrosative stress (Slc7a6). The changes in glutamine transport link glutaminosis- evoked mitochondrial dysfunction to oxidative-nitrosative stress as formulated in the “Trojan Horse” hypothesis.
Collapse
|
5
|
Errasti-Murugarren E, Palacín M. Heteromeric Amino Acid Transporters in Brain: from Physiology to Pathology. Neurochem Res 2021; 47:23-36. [PMID: 33606172 DOI: 10.1007/s11064-021-03261-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
In humans, more than 50 transporters are responsible for the traffic and balance of amino acids within and between cells and tissues, and half of them have been associated with disease [1]. Covering all common amino acids, Heteromeric Amino acid Transporters (HATs) are one class of such transporters. This review first highlights structural and functional studies that solved the atomic structure of HATs and revealed molecular clues on substrate interaction. Moreover, this review focuses on HATs that have a role in the central nervous system (CNS) and that are related to neurological diseases, including: (i) LAT1/CD98hc and its role in the uptake of branched chain amino acids trough the blood brain barrier and autism. (ii) LAT2/CD98hc and its potential role in the transport of glutamine between plasma and cerebrospinal fluid. (iii) y+LAT2/CD98hc that is emerging as a key player in hepatic encephalopathy. xCT/CD98hc as a potential therapeutic target in glioblastoma, and (iv) Asc-1/CD98hc as a potential therapeutic target in pathologies with alterations in NMDA glutamate receptors.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine. Institute of Science and Technology (BIST), 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028, Barcelona, Spain.
| | - Manuel Palacín
- Institute for Research in Biomedicine. Institute of Science and Technology (BIST), 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028, Barcelona, Spain. .,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
Popek M, Bobula B, Sowa J, Hess G, Frontczak-Baniewicz M, Albrecht J, Zielińska M. Physiology and Morphological Correlates of Excitatory Transmission are Preserved in Glutamine Transporter SN1-Depleted Mouse Frontal Cortex. Neuroscience 2020; 446:124-136. [DOI: 10.1016/j.neuroscience.2020.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/14/2020] [Indexed: 01/22/2023]
|
7
|
Yoneda Y, Kuramoto N, Kawada K. The role of glutamine in neurogenesis promoted by the green tea amino acid theanine in neural progenitor cells for brain health. Neurochem Int 2019; 129:104505. [PMID: 31310779 DOI: 10.1016/j.neuint.2019.104505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Abstract
The green tea amino acid theanine is abundant in green tea rather than black and oolong teas, which are all made of the identical tea plant "Chanoki" (Camellia sinensis). Theanine has a molecular structure close to glutamine (GLN) compared to glutamic acid (Glu), in terms of the absence of a free carboxylic acid moiety from the gamma carbon position. Theanine efficiently inhibits [3H]GLN uptake without affecting [3H]Glu uptake in rat brain synaptosomes. In contrast to GLN, however, theanine markedly stimulates the abilities to replicate and to commit to a neuronal lineage following prolonged exposure in cultured neural progenitor cells (NPCs) prepared from embryonic and adult rodent brains. Upregulation of transcript expression is found for one of the GLN transporter isoforms, Slc38a1, besides the promotion of both proliferation and neuronal commitment along with acceleration of the phosphorylation of mechanistic target of rapamycin (mTOR) and relevant downstream proteins, in murine NPCs cultured with theanine. Stable overexpression of Slc38a1 similarly facilitates both cellular replication and neuronal commitment in pluripotent embryonic carcinoma P19 cells. In P19 cells with stable overexpression of Slc38a1, marked phosphorylation is seen for mTOR and downstream proteins in a manner insensitive to further additional phosphorylation by theanine. Taken together, theanine would exhibit a novel pharmacological property to up-regulate Slc38a1 expression for activation of the intracellular mTOR signaling pathway required for neurogenesis after sustained exposure in undifferentiated NPCs in the brain. In this review, a novel neurogenic property of the green tea amino acid theanine is summarized for embryonic and adult neurogenesis with a focus on the endogenous amino acid GLN on the basis of our accumulating evidence to date.
Collapse
Affiliation(s)
- Yukio Yoneda
- Department of Pharmacology, Osaka University Graduate School of Dentistry, Suita, 565-0871, Japan; The Institute of Prophylactic Pharmacology, Kita-Shinagawa, Shinagawa, 140-0001, Tokyo, Japan.
| | - Nobuyuki Kuramoto
- The Institute of Prophylactic Pharmacology, Kita-Shinagawa, Shinagawa, 140-0001, Tokyo, Japan; Laboratory of Molecular Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, Hirakata, 573-0101, Japan
| | - Koichi Kawada
- The Institute of Prophylactic Pharmacology, Kita-Shinagawa, Shinagawa, 140-0001, Tokyo, Japan; Department of Pharmacology, Chiba Institute of Science Faculty of Pharmaceutical Sciences, Chiba, 288-0025, Japan
| |
Collapse
|
8
|
Exchange-mode glutamine transport across CNS cell membranes. Neuropharmacology 2019; 161:107560. [PMID: 30853601 DOI: 10.1016/j.neuropharm.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
CNS cell membranes possess four transporters capable of exchanging Lglutamine (Gln) for other amino acids: the large neutral amino acid (LNAA) transporters LAT1 and LAT2, the hybrid basic amino acid (L-arginine (Arg), L-leucine (Leu)/LNAA transporter y+LAT2, and the L-alanine/L-serine/L-cysteine transporter 2 (ASCT2). LAT1/LAT2 and y+LAT2 are present in astrocytes, neurons and the blood brain barrier (BBB) - forming cerebral vascular endothelial cells (CVEC), while the location of ASCT2 in the individual cell types is a matter of debate. In the healthy brain, contribution of the exchangers to Gln shuttling from astrocytes to neurons and thus their role in controlling the conversion of Gln to the amino acid neurotransmitters l-glutamate (Glu) and γ-aminobutyric acid (GABA) and Gln flux across the BBB appears negligible as compared to the system A and system N uniporters. Insofar, except for the contribution of LAT1 to the maintenance of Gln homeostasis in the interstitial fluid (ISF), no well-defined CNS-specific function has been established for either of the three transporters in the healthy brain. The Gln-accepting amino acid exchangers appear to gain significance under conditions of excessive brain Gln load (glutaminosis). Excess Gln efflux across the BBB enhances influx into the brain of L-tryptophan (Trp). Excess of Trp is responsible for overloading the brain with neuroactive compounds: serotonin, kynurenic acid, quinolinic acid and/or oxindole, which contribute to neurotransmission imbalance accompanying hyperammonemia. In turn, alterations of y+LAT2-mediated Gln/Arg exchange and Arg uptake in astrocyte, modulate astrocytic nitric oxide synthesis and oxidative/nitrosative stress in ammonia-overexposed brain. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
|
9
|
Verhoeven J, Hulpia F, Kersemans K, Bolcaen J, De Lombaerde S, Goeman J, Descamps B, Hallaert G, Van den Broecke C, Deblaere K, Vanhove C, Van der Eycken J, Van Calenbergh S, Goethals I, De Vos F. New fluoroethyl phenylalanine analogues as potential LAT1-targeting PET tracers for glioblastoma. Sci Rep 2019; 9:2878. [PMID: 30814660 PMCID: PMC6393465 DOI: 10.1038/s41598-019-40013-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
The use of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) as a positron emission tomography (PET) tracer for brain tumor imaging might have some limitations because of the relatively low affinity for the L-type amino acid transporter 1 (LAT1). To assess the stereospecificity and evaluate the influence of aromatic ring modification of phenylalanine LAT1 targeting tracers, six different fluoroalkylated phenylalanine analogues were synthesized. After in vitro Ki determination, the most promising compound, 2-[18F]-2-fluoroethyl-L-phenylalanine (2-[18F]FELP), was selected for further evaluation and in vitro comparison with [18F]FET. Subsequently, 2-[18F]FELP was assessed in vivo and compared with [18F]FET and [18F]FDG in a F98 glioblastoma rat model. 2-[18F]FELP showed improved in vitro characteristics over [18F]FET, especially when the affinity and specificity for system L is concerned. Based on our results, 2-[18F]FELP is a promising new PET tracer for brain tumor imaging.
Collapse
Affiliation(s)
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium
| | - Ken Kersemans
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Julie Bolcaen
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | | | - Jan Goeman
- Laboratory for Organic and Bio-organic synthesis, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- IBiTech-MEDISIP Ghent University, Department of Electronics and Information Systems, Ghent, Belgium
| | - Giorgio Hallaert
- Ghent University Hospital, Department of Neurosurgery, Ghent, Belgium
| | | | - Karel Deblaere
- Ghent University Hospital, Department of Radiology and Medical Imaging, Ghent, Belgium
| | - Christian Vanhove
- IBiTech-MEDISIP Ghent University, Department of Electronics and Information Systems, Ghent, Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bio-organic synthesis, Ghent University, Ghent, Belgium
| | | | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
An l-Glutamine Transporter Isoform for Neurogenesis Facilitated by l-Theanine. Neurochem Res 2017; 42:2686-2697. [DOI: 10.1007/s11064-017-2317-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
|
11
|
Brodnik ZD, Double M, España RA, Jaskiw GE. L-Tyrosine availability affects basal and stimulated catecholamine indices in prefrontal cortex and striatum of the rat. Neuropharmacology 2017; 123:159-174. [PMID: 28571714 DOI: 10.1016/j.neuropharm.2017.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022]
Abstract
We previously found that L-tyrosine (L-TYR) but not D-TYR administered by reverse dialysis elevated catecholamine synthesis in vivo in medial prefrontal cortex (MPFC) and striatum of the rat (Brodnik et al., 2012). We now report L-TYR effects on extracellular levels of catecholamines and their metabolites. In MPFC, reverse dialysis of L-TYR elevated in vivo levels of dihydroxyphenylacetic acid (DOPAC) (L-TYR 250-1000 μM), homovanillic acid (HVA) (L-TYR 1000 μM) and 3-methoxy-4-hydroxyphenylglycol (MHPG) (L-TYR 500-1000 μM). In striatum L-TYR 250 μM elevated DOPAC. We also examined L-TYR effects on extracellular dopamine (DA) and norepinephrine (NE) levels during two 30 min pulses (P2 and P1) of K+ (37.5 mM) separated by t = 2.0 h. L-TYR significantly elevated the ratio P2/P1 for DA (L-TYR 125 μM) and NE (L-TYR 125-250 μM) in MPFC but lowered P2/P1 for DA (L-TYR 250 μM) in striatum. Finally, we measured DA levels in brain slices using ex-vivo voltammetry. Perfusion with L-TYR (12.5-50 μM) dose-dependently elevated stimulated DA levels in striatum. In all the above studies, D-TYR had no effect. We conclude that acute increases within the physiological range of L-TYR levels can increase catecholamine metabolism and efflux in MPFC and striatum. Chronically, such repeated increases in L-TYR availability could induce adaptive changes in catecholamine transmission while amplifying the metabolic cost of catecholamine synthesis and degradation. This has implications for neuropsychiatric conditions in which neurotoxicity and/or disordered L-TYR transport have been implicated.
Collapse
Affiliation(s)
- Zachary D Brodnik
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - Manda Double
- Medical Research Service, Louis Stokes Cleveland DVAMC, 10701 East Blvd., Cleveland, OH 44106, United States
| | - Rodrigo A España
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - George E Jaskiw
- Medical Research Service, Louis Stokes Cleveland DVAMC, 10701 East Blvd., Cleveland, OH 44106, United States; Dept. of Psychiatry, Case Western University Medical Center at W.O. Walker 10524 Euclid Ave, Cleveland, OH 44133, United States.
| |
Collapse
|
12
|
Masle-Farquhar E, Bröer A, Yabas M, Enders A, Bröer S. ASCT2 (SLC1A5)-Deficient Mice Have Normal B-Cell Development, Proliferation, and Antibody Production. Front Immunol 2017; 8:549. [PMID: 28553292 PMCID: PMC5427077 DOI: 10.3389/fimmu.2017.00549] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
SLC1A5 (solute carrier family 1, member 5) is a small neutral amino acid exchanger that is upregulated in rapidly proliferating lymphocytes but also in many primary human cancers. Furthermore, cancer cell lines have been shown to require SLC1A5 for their survival in vitro. One of SLC1A5's primary substrates is the immunomodulatory amino acid glutamine, which plays an important role in multiple key processes, such as energy supply, macromolecular synthesis, nucleotide biosynthesis, redox homeostasis, and resistance against oxidative stress. These processes are also essential to immune cells, including neutrophils, macrophages, B and T lymphocytes. We show here that mice with a stop codon in Slc1a5 have reduced glutamine uptake in activated lymphocytes and primary fibroblasts. B and T cell populations and maturation in resting mice were not affected by absence of SLC1A5. Antibody production in resting and immunized mice and the germinal center response to immunization were also found to be normal. SLC1A5 has been recently described as a novel target for the treatment of a variety of cancers, and our results indicate that inhibition of SLC1A5 in cancer therapy may be tolerated well by the immune system of cancer patients.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Angelika Bröer
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Mehmet Yabas
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Anselm Enders
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
13
|
Todd AC, Marx MC, Hulme SR, Bröer S, Billups B. SNAT3-mediated glutamine transport in perisynaptic astrocytesin situis regulated by intracellular sodium. Glia 2017; 65:900-916. [DOI: 10.1002/glia.23133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/12/2017] [Accepted: 02/08/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Alison C. Todd
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research; The Australian National University; 131 Garran Road Canberra ACT 2601 Australia
- Centre for Integrative Physiology, School of Biomedical Sciences; University of Edinburgh; Edinburgh EH8 9XD United Kingdom
| | - Mari-Carmen Marx
- Department of Pharmacology; University of Cambridge; Tennis Court Road Cambridge CB2 1BT United Kingdom
| | - Sarah R. Hulme
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research; The Australian National University; 131 Garran Road Canberra ACT 2601 Australia
| | - Stefan Bröer
- Research School of Biology; The Australian National University; Linnaeus Way 134 Canberra ACT 2601 Australia
| | - Brian Billups
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research; The Australian National University; 131 Garran Road Canberra ACT 2601 Australia
| |
Collapse
|
14
|
Glia plasma membrane transporters: Key players in glutamatergic neurotransmission. Neurochem Int 2016; 98:46-55. [DOI: 10.1016/j.neuint.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/07/2016] [Accepted: 04/06/2016] [Indexed: 12/27/2022]
|
15
|
Rubio-Aliaga I, Wagner CA. Regulation and function of the SLC38A3/SNAT3 glutamine transporter. Channels (Austin) 2016; 10:440-52. [PMID: 27362266 DOI: 10.1080/19336950.2016.1207024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Isabel Rubio-Aliaga
- a Institute of Physiology, the National Center for Competence in Research NCCR Kidney, University of Zurich , Zurich , Switzerland
| | - Carsten A Wagner
- a Institute of Physiology, the National Center for Competence in Research NCCR Kidney, University of Zurich , Zurich , Switzerland
| |
Collapse
|
16
|
The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle. ADVANCES IN NEUROBIOLOGY 2016; 13:223-257. [PMID: 27885631 DOI: 10.1007/978-3-319-45096-4_8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glutamine is a key amino acid in the CNS, playing an important role in the glutamate/GABA-glutamine cycle (GGC). In the GGC, glutamine is transferred from astrocytes to neurons, where it will replenish the inhibitory and excitatory neurotransmitter pools. Different transporters participate in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y+LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from the astrocytic compartment, and SNAT1 and SNAT2 that are associated with glutamine uptake into the neuronal compartment. The isoforms SNAT7 and SNAT8 do not have their role completely understood, but they likely also participate in the GGC. The isoforms LAT2 and y+LAT2 facilitate the exchange of neutral amino acids and cationic amino acids (y+LAT2 isoform) and have been associated with glutamine efflux from astrocytes. ASCT2 is a Na+-dependent antiporter, the participation of which in the GGC also remains to be better characterized. All these isoforms are tightly regulated by transcriptional and translational mechanisms, which are induced by several determinants such as amino acid deprivation, hormones, pH, and the activity of different signaling pathways. Dysfunctional glutamine transporter activity has been associated with the pathophysiological mechanisms of certain neurologic diseases, such as Hepatic Encephalopathy and Manganism. However, there might also be other neuropathological conditions associated with an altered GGC, in which glutamine transporters are dysfunctional. Hence, it appears to be of critical importance that the physiological and pathological aspects of glutamine transporters are thoroughly investigated.
Collapse
|
17
|
Kirischuk S, Héja L, Kardos J, Billups B. Astrocyte sodium signaling and the regulation of neurotransmission. Glia 2015; 64:1655-66. [DOI: 10.1002/glia.22943] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Sergei Kirischuk
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Physiology; Mainz Germany
| | - László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Brian Billups
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University; Acton ACT Australia
| |
Collapse
|
18
|
Zielińska M, Dąbrowska K, Hadera MG, Sonnewald U, Albrecht J. System N transporters are critical for glutamine release and modulate metabolic fluxes of glucose and acetate in cultured cortical astrocytes: changes induced by ammonia. J Neurochem 2015; 136:329-38. [DOI: 10.1111/jnc.13376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/25/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Katarzyna Dąbrowska
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Mussie Ghezu Hadera
- Department of Neuroscience; Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - Ursula Sonnewald
- Department of Neuroscience; Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jan Albrecht
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
19
|
Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney. Pflugers Arch 2015; 468:213-27. [PMID: 26490457 DOI: 10.1007/s00424-015-1742-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 01/10/2023]
Abstract
Glutamine, the most abundant amino acid in mammals, is critical for cell and organ functions. Its metabolism depends on the ability of cells to take up or release glutamine by transporters located in the plasma membrane. Several solute carrier (SLC) families transport glutamine, but the SLC38 family has been thought to be mostly responsible for glutamine transport. We demonstrate that despite the large number of glutamine transporters, the loss of Snat3/Slc38a3 glutamine transporter has a major impact on the function of organs expressing it. Snat3 mutant mice were generated by N-ethyl-N-nitrosurea (ENU) mutagenesis and showed stunted growth, altered amino acid levels, hypoglycemia, and died around 20 days after birth. Hepatic concentrations of glutamine, glutamate, leucine, phenylalanine, and tryptophan were highly reduced paralleled by downregulation of the mTOR pathway possibly linking reduced amino acid availability to impaired growth and glucose homeostasis. Snat3-deficient mice had altered urea levels paralleled by dysregulation of the urea cycle, gluconeogenesis, and glutamine synthesis. Mice were ataxic with higher glutamine but reduced glutamate and gamma-aminobutyric acid (GABA) levels in brain consistent with a major role of Snat3 in the glutamine-glutamate cycle. Renal ammonium excretion was lower, and the expression of enzymes and amino acid transporters involved in ammoniagenesis were altered. Thus, SNAT3 is a glutamine transporter required for amino acid homeostasis and determines critical functions in various organs. Despite the large number of glutamine transporters, loss of Snat3 cannot be compensated, suggesting that this transporter is a major route of glutamine transport in the liver, brain, and kidney.
Collapse
|
20
|
The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch 2013; 466:155-72. [PMID: 24193407 DOI: 10.1007/s00424-013-1393-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/16/2013] [Accepted: 10/20/2013] [Indexed: 12/13/2022]
Abstract
Transporters of the SLC38 family are found in all cell types of the body. They mediate Na(+)-dependent net uptake and efflux of small neutral amino acids. As a result they are particularly expressed in cells that grow actively, or in cells that carry out significant amino acid metabolism, such as liver, kidney and brain. SLC38 transporters occur in membranes that face intercellular space or blood vessels, but do not occur in the apical membrane of absorptive epithelia. In the placenta, they play a significant role in the transfer of amino acids to the foetus. Members of the SLC38 family are highly regulated in response to amino acid depletion, hypertonicity and hormonal stimuli. SLC38 transporters play an important role in amino acid signalling and have been proposed to act as transceptors independent of their transport function. The structure of SLC38 transporters is characterised by the 5 + 5 inverted repeat fold, which is observed in a wide variety of transport proteins.
Collapse
|
21
|
Moral-Vico J, Carretero N, Pérez E, Suñol C, Lichtenstein M, Casañ-Pastor N. Dynamic electrodeposition of aminoacid-polypyrrole on aminoacid-PEDOT substrates: Conducting polymer bilayers as electrodes in neural systems. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Brodnik Z, Bongiovanni R, Double M, Jaskiw GE. Increased tyrosine availability increases brain regional DOPA levels in vivo. Neurochem Int 2012; 61:1001-6. [DOI: 10.1016/j.neuint.2012.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/30/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
|
23
|
Promotion of both proliferation and neuronal differentiation in pluripotent P19 cells with stable overexpression of the glutamine transporter slc38a1. PLoS One 2012; 7:e48270. [PMID: 23110224 PMCID: PMC3480496 DOI: 10.1371/journal.pone.0048270] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/21/2012] [Indexed: 11/19/2022] Open
Abstract
Background We previously demonstrated the functional expression in newborn rat neocortical astrocytes of glutamine transporter (GlnT = slc38a1) believed to predominate in neurons over astroglia in the brain. In order to evaluate the possible role of this transporter in neurogenesis, we attempted to establish stable transfectants of GlnT in mouse embryonal carcinoma P19 cells endowed to proliferate for self-renewal and differentiate into progeny cells such as neurons and astroglia, in addition to in vitro pharmacological profiling of the green tea ingredient theanine, which is shown to be a potent inhibitor of glutamine transport mediated by GlnT in cultured neurons and astroglia. Methodology/Principal Findings The full-length coding region of rat GlnT was inserted into a vector for gene transfection along with selection by G418, followed by culture with all-trans retinoic acid under floating conditions and subsequent dispersion for spontaneous differentiation under adherent conditions. Stable overexpression of GlnT led to marked increases in the size of round spheres formed during the culture for 4 days and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction, with concomitant promotion of subsequent differentiation into cells immunoreactive for a neuronal marker protein. In these stable GlnT transfectants before differentiation, drastic upregulation was seen for mRNA expression of several proneural genes with a basic helix-loop-helix domain such as NeuroD1. Although a drastic increase was seen in NeuroD1 promoter activity in stable GlnT transfectants, theanine doubled NeuroD1 promoter activity in stable transfectants of empty vector (EV), without affecting the promoter activity already elevated in GlnT transfectants. Similarly, theanine promoted cellular proliferation and neuronal differentiation in stable EV transfectants, but failed to further stimulate the acceleration of both proliferation and neuronal differentiation found in stable GlnT transfectants. Conclusions/Significance GlnT would promote both proliferation and neuronal differentiation through a mechanism relevant to the upregulation of particular proneural genes in undifferentiated P19 cells.
Collapse
|
24
|
Ho HTB, Dahlin A, Wang J. Expression Profiling of Solute Carrier Gene Families at the Blood-CSF Barrier. Front Pharmacol 2012; 3:154. [PMID: 22936914 PMCID: PMC3426838 DOI: 10.3389/fphar.2012.00154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022] Open
Abstract
The choroid plexus (CP) is a highly vascularized tissue in the brain ventricles and acts as the blood-cerebrospinal fluid (CSF) barrier (BCSFB). A main function of the CP is to secrete CSF, which is accomplished by active transport of small ions and water from the blood side to the CSF side. The CP also supplies the brain with certain nutrients, hormones, and metal ions, while removing metabolites and xenobiotics from the CSF. Numerous membrane transporters are expressed in the CP in order to facilitate the solute exchange between the blood and the CSF. The solute carrier (SLC) superfamily represents a major class of transporters in the CP that constitutes the molecular mechanisms for CP function. Recently, we systematically and quantitatively examined Slc gene expression in 20 anatomically comprehensive brain areas in the adult mouse brain using high-quality in situ hybridization data generated by the Allen Brain Atlas. Here we focus our analysis on Slc gene expression at the BCSFB using previously obtained data. Of the 252 Slc genes present in the mouse brain, 202 Slc genes were found at detectable levels in the CP. Unsupervised hierarchical cluster analysis showed that the CP Slc gene expression pattern is substantially different from the other 19 analyzed brain regions. The majority of the Slc genes in the CP are expressed at low to moderate levels, whereas 28 Slc genes are present in the CP at the highest levels. These highly expressed Slc genes encode transporters involved in CSF secretion, energy production, and transport of nutrients, hormones, neurotransmitters, sulfate, and metal ions. In this review, the functional characteristics and potential importance of these Slc transporters in the CP are discussed, with particular emphasis on their localization and physiological functions at the BCSFB.
Collapse
Affiliation(s)
- Horace T B Ho
- Department of Pharmaceutics, University of Washington Seattle, WA, USA
| | | | | |
Collapse
|
25
|
Uwechue NM, Marx MC, Chevy Q, Billups B. Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes. J Physiol 2012; 590:2317-31. [PMID: 22411007 DOI: 10.1113/jphysiol.2011.226605] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stimulation of astrocytes by neuronal activity and the subsequent release of neuromodulators is thought to be an important regulator of synaptic communication. In this study we show that astrocytes juxtaposed to the glutamatergic calyx of Held synapse in the rat medial nucleus of the trapezoid body (MNTB) are stimulated by the activation of glutamate transporters and consequently release glutamine on a very rapid timescale. MNTB principal neurones express electrogenic system A glutamine transporters, and were exploited as glutamine sensors in this study. By simultaneous whole-cell voltage clamping astrocytes and neighbouring MNTB neurones in brainstem slices, we show that application of the excitatory amino acid transporter (EAAT) substrate d-aspartate stimulates astrocytes to rapidly release glutamine, which is detected by nearby MNTB neurones. This release is significantly reduced by the toxins L-methionine sulfoximine and fluoroacetate, which reduce glutamine concentrations specifically in glial cells. Similarly, glutamine release was also inhibited by localised inactivation of EAATs in individual astrocytes, using internal DL-threo-β-benzyloxyaspartic acid (TBOA) or dissipating the driving force by modifying the patch-pipette solution. These results demonstrate that astrocytes adjacent to glutamatergic synapses can release glutamine in a temporally precise, controlled manner in response to glial glutamate transporter activation. Since glutamine can be used by neurones as a precursor for glutamate and GABA synthesis, this represents a potential feedback mechanism by which astrocytes can respond to synaptic activation and react in a way that sustains or enhances further communication. This would therefore represent an additional manifestation of the tripartite relationship between synapses and astrocytes.
Collapse
Affiliation(s)
- Nneka M Uwechue
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | | | |
Collapse
|
26
|
Zielińska M, Skowrońska M, Fręśko I, Albrecht J. Upregulation of the heteromeric y⁺LAT2 transporter contributes to ammonia-induced increase of arginine uptake in rat cerebral cortical astrocytes. Neurochem Int 2012; 61:531-5. [PMID: 22401943 DOI: 10.1016/j.neuint.2012.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/17/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
Abstract
Increased l-Arg (Arg) uptake to astrocytes and neurons is thought to contribute to enhanced nitric oxide (NO) synthesis and oxidative/nitrosative stress associated with hyperammonemia (HA). Recently we had shown that HA increases the expression in the brain of y(+)LAT2, an isoform of the y(+)L heteromeric transporter which promotes [(3)H]Arg efflux form brain cells in the presence of l-glutamine (Gln) (Zielińska et al., 2011). In this study, we demonstrate that a significant proportion of [(3)H]Arg uptake to cultured cortical astrocytes is likewise mediated by system y(+)L, in addition to the uptake showing characteristics of systems y(+), B(0+) and b(0+). However, stimulation of [(3)H]Arg uptake by treatment with 5mM ammonium chloride ("ammonia") for 48 h could be solely ascribed to the y(+)L-mediated component of the uptake. Ammonia treatment increased the expression of the brain specific y(+)L isoform, y(+)LAT2, both at the mRNA and protein level, and silencing of the Slc7a6 gene coding for y(+)LAT2 protein specifically reduced the ammonia-induced [(3)H]Arg uptake. This study suggests an important role of y(+)LAT2 in the modulation of NO synthesis in the ammonia-exposed astrocytes.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland.
| | | | | | | |
Collapse
|
27
|
Chan SY, Martín-Santos A, Loubière LS, González AM, Stieger B, Logan A, McCabe CJ, Franklyn JA, Kilby MD. The expression of thyroid hormone transporters in the human fetal cerebral cortex during early development and in N-Tera-2 neurodifferentiation. J Physiol 2011; 589:2827-45. [PMID: 21486766 DOI: 10.1113/jphysiol.2011.207290] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Associations of neurological impairment with mutations in the thyroid hormone (TH) transporter, MCT8, and with maternal hypothyroxinaemia, suggest that THs are crucial for human fetal brain development. It has been postulated that TH transporters regulate the cellular supply of THs within the fetal brain during development. This study describes the expression of TH transporters in the human fetal cerebral cortex (7–20 weeks gestation) and during retinoic acid induced neurodifferentiation of the human N-Tera-2 (NT2) cell line, in triiodothyronine (T3) replete and T3-depleted media. Compared with adult cortex, mRNAs encoding OATP1A2, OATP1C1, OATP3A1 variant 2, OATP4A1, LAT2 and CD98 were reduced in fetal cortex at different gestational ages, whilst mRNAs encoding MCT8, MCT10, OATP3A1 variant 1 and LAT1 were similar. From the early first trimester, immunohistochemistry localised MCT8 and MCT10 to the microvasculature and to undifferentiated CNS cells. With neurodifferentiation, NT2 cells demonstrated declining T3 uptake, accompanied by reduced expressions of MCT8, LAT1, CD98 and OATP4A1. T3 depletion significantly reduced MCT10 and LAT2 mRNA expression at specific time points during neurodifferentiation but there were no effects upon T3 uptake, neurodifferentiation marker expression or neurite lengths and branching. MCT8 repression also did not affect NT2 neurodifferentiation. In conclusion, many TH transporters are expressed in the human fetal cerebral cortex from the first trimester, which could regulate cellular TH supply during early development. However, human NT2 neurodifferentiation is not dependent upon T3 or MCT8 and there were no compensatory changes to promote T3 uptake in a T3-depleted environment.
Collapse
Affiliation(s)
- S-Y Chan
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Floor 3, Birmingham Women's Hospital, Edgbaston, Birmingham B15 2TG, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ogura M, Takarada T, Nakamichi N, Kawagoe H, Sako A, Nakazato R, Yoneda Y. Exacerbated vulnerability to oxidative stress in astrocytic C6 glioma cells with stable overexpression of the glutamine transporter slc38a1. Neurochem Int 2011; 58:504-11. [PMID: 21219957 DOI: 10.1016/j.neuint.2011.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/25/2010] [Accepted: 01/04/2011] [Indexed: 11/29/2022]
Abstract
We have previously demonstrated the functional expression of glutamine (Gln) transporter (GlnT) believed to predominate in neurons for the neurotransmitter glutamate pool by rat neocortical astrocytes devoid of neuronal marker expression, with exacerbated vulnerability to oxidative stress after transient overexpression. To evaluate molecular mechanisms underlying the exacerbation, we established stable GlnT transfectants in rat astrocytic C6 glioma cells. In two different clones of stable transfectants with increased intracellular Gln levels, exposure to hydrogen peroxide (H(2)O(2)) and A23187, but not to tunicamycin or 2,4-dinitrophenol, led to significant exacerbation of the cytotoxicity compared to cells with empty vector (EV). Stable GlnT overexpression led to a significant increase in heme oxygenase-1 protein levels in a manner sensitive to H(2)O(2), whereas H(2)O(2) was significantly more effective in increasing NO(2) accumulation and reactive oxygen species (ROS) generation in stable GlnT transfectants than in EV cells. Moreover, exposure to A23187 led to a more effective increase in the generation of ROS in stable GlnT transfectants than in stable EV transfectants. These results suggest that GlnT may play a role in the mechanisms underlying the determination of cellular viability in astrocytes through modulation of intracellular ROS generation.
Collapse
Affiliation(s)
- Masato Ogura
- Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Zielińska M, Ruszkiewicz J, Hilgier W, Fręśko I, Albrecht J. Hyperammonemia increases the expression and activity of the glutamine/arginine transporter y+ LAT2 in rat cerebral cortex: implications for the nitric oxide/cGMP pathway. Neurochem Int 2010; 58:190-5. [PMID: 21115085 DOI: 10.1016/j.neuint.2010.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 12/16/2022]
Abstract
The pathogenesis of hepatic encephalopathy (HE) is associated with hyperammonemia (HA) and subsequent exposure of the brain to excess of ammonia. Alterations of the NO/cGMP pathway and increased glutamine (Gln) content are collectively responsible for many HE symptoms, but how the two events influence each other is not clear. Previously we had shown that Gln administered intracerebrally inhibited the NO/cGMP pathway in control rats and even more so in rats with HA, and we speculated that this effect is due to inhibition by Gln of arginine (Arg) transport (Hilgier et al., 2009). In this study we demonstrate that a 3-day HA in the ammonium acetate model increases the expression in the brain of y(+)LAT2, the heteromeric transporter which preferentially stimulates Arg efflux from the cells in exchange for Gln. The expression of the basic amino acid transporter CAT1, transporting Arg but not Gln remained unaffected by HA. Multiple parameters of Arg or Gln uptake and/or efflux and their mutual dependence were altered in the cerebral cortical slices obtained from HA rats, in a manner indicating enhanced y(+)LAT2-mediated transport. HA elevated Gln content and decreased cGMP content as measured both in the cerebral cortical tissue and microdialysates. Intracortical administration of 6-diazo-5-oxo-L-norleucine (DON), which inhibits Gln fluxes between different cells of the CNS, attenuated the HA-induced decrease of cGMP in the microdialysates of HA rats, but not of control rats. The results suggest that, reduced delivery of Arg due to enhanced y(+)LAT2-mediated exchange of extracellular Gln for intracellular Arg may contribute to the decrease of NO/cGMP pathway activity evoked in the brain by HA.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
30
|
Balkrishna S, Bröer A, Kingsland A, Bröer S. Rapid downregulation of the rat glutamine transporter SNAT3 by a caveolin-dependent trafficking mechanism in Xenopus laevis oocytes. Am J Physiol Cell Physiol 2010; 299:C1047-57. [PMID: 20739622 DOI: 10.1152/ajpcell.00209.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glutamine transporter SNAT3 is involved in the uptake and release of glutamine in the brain, liver, and kidney. Substrate transport is accompanied by Na(+) cotransport and H(+) antiport. In this study, treatment of Xenopus laevis oocytes expressing rat SNAT3 with the phorbol ester PMA resulted in a rapid downregulation of glutamine uptake in less than 20 min. PMA treatment of oocytes coexpressing SNAT3 and the monocarboxylate transporter MCT1 reduced SNAT3 activity only, demonstrating the specificity of the regulatory mechanism. Single or combined mutations of seven putative phosphorylation sites in the SNAT3 sequence did not affect the regulation of SNAT3 by PMA. Expression of an EGFP-SNAT3 fusion protein in oocytes established that the downregulation was caused by the retrieval of the transporter from the plasma membrane. Coexpression of SNAT3 with dominant-negative mutants of dynamin or caveolin revealed that SNAT3 trafficking occurs in a dynamin-independent manner and is influenced by caveolin. Although system N activity was not affected by PMA in cultured astrocytes, a downregulation was observed in HepG2 cells.
Collapse
Affiliation(s)
- Sarojini Balkrishna
- Research School of Biology, Australian National Univ., Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
31
|
Sidoryk-Wegrzynowicz M, Lee E, Albrecht J, Aschner M. Manganese disrupts astrocyte glutamine transporter expression and function. J Neurochem 2009; 110:822-30. [PMID: 19457077 DOI: 10.1111/j.1471-4159.2009.06172.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutamine (Gln) plays an important role in brain energy metabolism and as a precursor for the synthesis of neurotransmitter glutamate and GABA. Previous studies have shown that astrocytic Gln transport is impaired following manganese (Mn) exposure. The present studies were performed to identify the transport routes and the respective Gln transporters contributing to the impairment. Rat neonatal cortical primary astrocytes treated with Mn displayed a significant decrease in Gln uptake mediated by the principle Gln transporting systems, N and ASC. Moreover, systems N, ASC and L were less efficient in Gln export after Mn treatment. Mn treatment caused a significant reduction of both in mRNA expression and protein levels of SNAT3 (system N), SNAT2 (system A) and LAT2 (system L), and lowered the protein but not mRNA expression of ASCT2 (system ASC). Mn exposure did not affect the expression of the less abundant systems N transporter SNAT5 and the system L transporter LAT1, at either the mRNA or protein level. Hence, Mn-induced decrease of inward and outward Gln transport can be largely ascribed to the loss of the specific Gln transporters. Consequently, deregulation of glutamate homeostasis and its diminished availability to neurons may lead to impairment in glutamatergic neurotransmission, a phenomenon characteristic of Mn-induced neurotoxicity.
Collapse
|
32
|
Gliddon CM, Shao Z, LeMaistre JL, Anderson CM. Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain. J Neurochem 2008; 108:372-83. [PMID: 19012749 DOI: 10.1111/j.1471-4159.2008.05767.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ASCT2 is an ASC (alanine-, serine-, cysteine-preferring) neutral amino acid exchanger that may regulate CNS function by transporting amino acid substrates including L-serine, L-cysteine, L-glutamine, L-glutamate and D-serine. Despite the potentially important role of ASCT2 in influencing metabolic and signaling functions of these amino acids in brain, there has been little description of its distribution in brain tissue. We employed a commercially available human ASCT2 antibody in immunohistochemistry studies in adult mouse brain and found a wide regional distribution for ASCT2 that was limited to dendrites labeled by anti-microtubule-associated protein-2 in cortex, hippocampus and striatum. No ASCT2 immunoreactivity was observed in areas labeled by antibodies against a neuronal cell body marker (NeuN), or either of the astrocyte markers, glial fibrillary acidic protein or S100beta. In cerebellum both Purkinje cell bodies and dendrites were positive for ASCT2 immunoreactivity. In support of a dendritic localization for ASCT2 in cortex, low affinity (K(T) > 1 mM), Na(+)-dependent D-serine and L-glutamine uptake characteristic of ASCT2-mediated transport was observed in P2 synaptosomal preparations. These results suggest that ASCT2 may be an important neuronal neutral amino acid transporter and highlight a discrepancy between findings of astrocyte ASCT2 function in tissue culture and brain in situ.
Collapse
Affiliation(s)
- Catherine M Gliddon
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
33
|
Jenstad M, Quazi AZ, Zilberter M, Haglerød C, Berghuis P, Saddique N, Goiny M, Buntup D, Davanger S, S Haug FM, Barnes CA, McNaughton BL, Ottersen OP, Storm-Mathisen J, Harkany T, Chaudhry FA. System A transporter SAT2 mediates replenishment of dendritic glutamate pools controlling retrograde signaling by glutamate. ACTA ACUST UNITED AC 2008; 19:1092-106. [PMID: 18832333 DOI: 10.1093/cercor/bhn151] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Glutamate mediates several modes of neurotransmission in the central nervous system including recently discovered retrograde signaling from neuronal dendrites. We have previously identified the system N transporter SN1 as being responsible for glutamine efflux from astroglia and proposed a system A transporter (SAT) in subsequent transport of glutamine into neurons for neurotransmitter regeneration. Here, we demonstrate that SAT2 expression is primarily confined to glutamatergic neurons in many brain regions with SAT2 being predominantly targeted to the somatodendritic compartments in these neurons. SAT2 containing dendrites accumulate high levels of glutamine. Upon electrical stimulation in vivo and depolarization in vitro, glutamine is readily converted to glutamate in activated dendritic subsegments, suggesting that glutamine sustains release of the excitatory neurotransmitter via exocytosis from dendrites. The system A inhibitor MeAIB (alpha-methylamino-iso-butyric acid) reduces neuronal uptake of glutamine with concomitant reduction in intracellular glutamate concentrations, indicating that SAT2-mediated glutamine uptake can be a prerequisite for the formation of glutamate. Furthermore, MeAIB inhibited retrograde signaling from pyramidal cells in layer 2/3 of the neocortex by suppressing inhibitory inputs from fast-spiking interneurons. In summary, we demonstrate that SAT2 maintains a key metabolic glutamine/glutamate balance underpinning retrograde signaling by dendritic release of the neurotransmitter glutamate.
Collapse
Affiliation(s)
- Monica Jenstad
- The Biotechnology Centre of Oslo, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kolbaev S, Draguhn A. Glutamine-induced membrane currents in cultured rat hippocampal neurons. Eur J Neurosci 2008; 28:535-45. [DOI: 10.1111/j.1460-9568.2008.06365.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Kakuda T, Hinoi E, Abe A, Nozawa A, Ogura M, Yoneda Y. Theanine, an ingredient of green tea, inhibits [3H]glutamine transport in neurons and astroglia in rat brain. J Neurosci Res 2008; 86:1846-56. [DOI: 10.1002/jnr.21637] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Ogura M, Taniura H, Nakamichi N, Yoneda Y. Upregulation of the glutamine transporter through transactivation mediated by cAMP/protein kinase A signals toward exacerbation of vulnerability to oxidative stress in rat neocortical astrocytes. J Cell Physiol 2007; 212:375-85. [PMID: 17323379 DOI: 10.1002/jcp.21031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the present study, we have evaluated the possible functionality in astrocytes of the glutamine (Gln) transporter (GlnT) known to predominate in neurons for the neurotransmitter pool of glutamate. Sustained exposure to the adenylyl cyclase activator forskolin for 24 h led to a significant increase in mRNA expression of GlnT among different membrane transporters capable of transporting Gln, with an increase in [(3)H]Gln accumulation sensitive to a system A transporter inhibitor, in cultured rat neocortical astrocytes, but not neurons. Forskolin drastically stimulated GlnT promoter activity in a manner sensitive to a protein kinase A (PKA) inhibitor in rat astrocytic C6 glioma cells, while deletion mutation analysis revealed that the stimulation was mediated by a cAMP responsive element (CRE)/activator protein-1 (AP-1) like site located on GlnT gene promoter. Forskolin drastically stimulated the promoter activity in a fashion sensitive to a PKA inhibitor in C6 glioma cells transfected with a CRE or AP-1 reporter plasmid, in association with the phosphorylation of CRE binding protein on serine133. Transient overexpression of GlnT significantly exacerbated the cytotoxicity of hydrogen peroxide in cultured astrocytes. These results suggest that GlnT expression is upregulated by cAMP/PKA signals for subsequent exacerbation of the vulnerability to oxidative stress in astrocytes.
Collapse
Affiliation(s)
- Masato Ogura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | |
Collapse
|
37
|
Bröer S, Bröer A, Hansen JT, Bubb WA, Balcar VJ, Nasrallah FA, Garner B, Rae C. Alanine metabolism, transport, and cycling in the brain. J Neurochem 2007; 102:1758-1770. [PMID: 17504263 DOI: 10.1111/j.1471-4159.2007.04654.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain glutamate/glutamine cycling is incomplete without return of ammonia to glial cells. Previous studies suggest that alanine is an important carrier for ammonia transfer. In this study, we investigated alanine transport and metabolism in Guinea pig brain cortical tissue slices and prisms, in primary cultures of neurons and astrocytes, and in synaptosomes. Alanine uptake into astrocytes was largely mediated by system L isoform LAT2, whereas alanine uptake into neurons was mediated by Na(+)-dependent transporters with properties similar to system B(0) isoform B(0)AT2. To investigate the role of alanine transport in metabolism, its uptake was inhibited in cortical tissue slices under depolarizing conditions using the system L transport inhibitors 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid and cycloleucine (1-aminocyclopentanecarboxylic acid; cLeu). The results indicated that alanine cycling occurs subsequent to glutamate/glutamine cycling and that a significant proportion of cycling occurs via amino acid transport system L. Our results show that system L isoform LAT2 is critical for alanine uptake into astrocytes. However, alanine does not provide any significant carbon for energy or neurotransmitter metabolism under the conditions studied.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Angelika Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Jonas T Hansen
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - William A Bubb
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir J Balcar
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Fatima A Nasrallah
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Brett Garner
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Caroline Rae
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Kanamori K, Ross BD. Kinetics of glial glutamine efflux and the mechanism of neuronal uptake studied in vivo in mildly hyperammonemic rat brain. J Neurochem 2007; 99:1103-13. [PMID: 17081141 DOI: 10.1111/j.1471-4159.2006.04152.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinetics of glial glutamine (GLN) transport to the extracellular fluid (ECF) and the mechanism of GLN(ECF) transport into the neuron--crucial pathways in the glutamine-glutamate cycle--were studied in vivo in mildly hyperammonemic rat brain, by NMR and microdialysis to monitor intra- and extracellular GLN. The minimum rate of glial GLN efflux, determined from the rate of GLN(ECF) increase during perfusion of alpha-(methylamino)isobutyrate (MeAIB), which inhibits neuronal GLN(ECF) uptake by sodium-coupled amino-acid transporter (SAT), was 2.88 +/- 0.22 micromol/g/h at steady-state brain [GLN] of 8.5 +/- 0.8 micromol/g. Our previous study showed that the rate of glutamine synthesis under identical experimental conditions was 3.3 +/- 0.3 micromol/g/h. At steady-state glial [GLN], this is equal to its efflux rate to the ECF. Comparison of the two rates suggests that SAT mediates at least 87 +/- 8% (= 2.88/3.3 x 100%) of neuronal GLN(ECF) uptake. While MeAIB induced > 2-fold elevation of GLN(ECF), no sustained elevation was observed during perfusion of the selective inhibitor of LAT, 2-amino-bicyclo[1,1,2]heptane-2-carboxylic acid (BCH), or of d-threonine, a putative selective inhibitor of ASCT2-mediated GLN uptake. The results strongly suggest that SAT is the predominant mediator of neuronal GLN(ECF) uptake in adult rat brain in vivo.
Collapse
Affiliation(s)
- Keiko Kanamori
- Magnetic Resonance Spectroscopy Laboratory, Huntington Medical Research Institutes, Pasadena, California 91105, USA.
| | | |
Collapse
|
39
|
Wu Q, Sidoryk M, Mutkus L, Zielińska M, Albrecht J, Aschner M. Acrylamide stimulates glutamine uptake in Fischer 344 rat astrocytes by a mechanism involving upregulation of the amino acid transport system N. Ann N Y Acad Sci 2006; 1053:435-43. [PMID: 16179550 DOI: 10.1111/j.1749-6632.2005.tb00052.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High demand of neoplastic tissues for glutamine (Gln) is met by its active transport across cell membranes. Chronic treatment with acrylamide in rodents is associated with an increased incidence of neoplasms, including astrocytomas. In this study, 24-h acrylamide treatment significantly increased the initial rate of l-[G-3H]glutamine uptake in astrocyte cultures derived from the acrylamide-sensitive Fischer 344 rat, and this effect could be fully inhibited by histidine, a model substrate for the amino acid transport system N. RT-PCR analysis revealed that acrylamide treatment caused a significant increase in the astrocytic expression of the mRNA coding for the major system N protein, SNAT3, which is specifically overexpressed in malignant gliomas in situ. The acrylamide-induced upregulation of astrocytic Gln transport via system N is likely to affect Gln homeostasis in these cells and may be causally related to the increased astrocytoma incidence observed in Fischer 344 rats.
Collapse
Affiliation(s)
- Qi Wu
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ogura M, Nakamichi N, Takano K, Oikawa H, Kambe Y, Ohno Y, Taniura H, Yoneda Y. Functional expression of A glutamine transporter responsive to down-regulation by lipopolysaccharide through reduced promoter activity in cultured rat neocortical astrocytes. J Neurosci Res 2006; 83:1447-60. [PMID: 16583402 DOI: 10.1002/jnr.20855] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevailing view is that the glutamine (Gln) transporter (GlnT/ATA1/SAT1/SNAT1) is a member of the system A transporter superfamily with the ability to fuel the glutamate/Gln cycle at nerve terminals in glutamatergic neurons. Semiquantitative reverse transcription-polymerase chain reaction revealed similarly high expression of mRNA for GlnT by rat brain neocortical astrocytes as well as neurons, with progressively lower expression by cerebellar astrocytes, hippocampal astrocytes, and whole-brain microglia in culture. [(3)H]Gln was accumulated in a temperature-dependent manner with a saturable profile in both cultured neocortical neurons and astrocytes, whereas biochemical and pharmacological analyses on [(3)H]Gln accumulation revealed the expression of both system A and system L transporters by cultured neocortical neurons and astrocytes. Exposure to lipopolysaccharide (LPS) for 24 hr resulted in a significant decrease in both GlnT mRNA expression and [(3)H]Gln accumulation, with a concomitant drastic increase in nitrite formation in cultured neocortical astrocytes. Moreover, LPS significantly inhibited the promoter activity of GlnT in the astrocytic cell line C6 glioma cells as well as primary rat neocortical astrocytes in culture. These results suggest that activation by LPS would lead to down-regulation of the expression of GlnT responsible for the incorporation of extracellular Gln into intracellular spaces across plasma membranes through the inhibition of its promoter activity in cultured rat neocortical astrocytes.
Collapse
Affiliation(s)
- Masato Ogura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Qin S, Colin C, Hinners I, Gervais A, Cheret C, Mallat M. System Xc- and apolipoprotein E expressed by microglia have opposite effects on the neurotoxicity of amyloid-beta peptide 1-40. J Neurosci 2006; 26:3345-56. [PMID: 16554485 PMCID: PMC6674113 DOI: 10.1523/jneurosci.5186-05.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Because senile plaques in Alzheimer's disease (AD) contain reactive microglia in addition to potentially neurotoxic aggregates of amyloid-beta (Abeta), we examined the influence of microglia on the viability of rodent neurons in culture exposed to aggregated Abeta 1-40. Microglia enhanced the toxicity of Abeta by releasing glutamate through the cystine-glutamate antiporter system Xc-. This may be relevant to Abeta toxicity in AD, because the system Xc(-)-specific xCT gene is expressed not only in cultured microglia but also in reactive microglia within or surrounding amyloid plaques in transgenic mice expressing mutant human amyloid precursor protein or in wild-type mice injected with Abeta. Inhibition of NMDA receptors or system Xc- prevented the microglia-enhanced neurotoxicity of Abeta but also unmasked a neuroprotective effect of microglia mediated by microglial secretion of apolipoprotein E (apoE) in the culture medium. Immunodepletion of apoE or targeted inactivation of the apoE gene in microglia abrogated neuroprotection by microglial conditioned medium, whereas supplementation by human apoE isoforms restored protection, which was potentiated by the presence of microglia-derived cofactors. These results suggest that inhibition of microglial system Xc- might be of therapeutic value in the treatment of AD. Its inhibition not only prevents glutamate excitotoxicity but also facilitates neuroprotection by apoE.
Collapse
|
42
|
Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Luhovyy B, Lazarow A, Nissim I. Brain amino acid requirements and toxicity: the example of leucine. J Nutr 2005; 135:1531S-8S. [PMID: 15930465 DOI: 10.1093/jn/135.6.1531s] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glutamic acid is an important excitatory neurotransmitter of the brain. Two key goals of brain amino acid handling are to maintain a very low intrasynaptic concentration of glutamic acid and also to provide the system with precursors from which to synthesize glutamate. The intrasynaptic glutamate level must be kept low to maximize the signal-to-noise ratio upon the release of glutamate from nerve terminals and to minimize the risk of excitotoxicity consequent to excessive glutamatergic stimulation of susceptible neurons. The brain must also provide neurons with a constant supply of glutamate, which both neurons and glia robustly oxidize. The branched-chain amino acids (BCAAs), particularly leucine, play an important role in this regard. Leucine enters the brain from the blood more rapidly than any other amino acid. Astrocytes, which are in close approximation to brain capillaries, probably are the initial site of metabolism of leucine. A mitochondrial branched-chain aminotransferase is very active in these cells. Indeed, from 30 to 50% of all alpha-amino groups of brain glutamate and glutamine are derived from leucine alone. Astrocytes release the cognate ketoacid [alpha-ketoisocaproate (KIC)] to neurons, which have a cytosolic branched-chain aminotransferase that reaminates the KIC to leucine, in the process consuming glutamate and providing a mechanism for the "buffering" of glutamate if concentrations become excessive. In maple syrup urine disease, or a congenital deficiency of branched-chain ketoacid dehydrogenase, the brain concentration of KIC and other branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis.
Collapse
Affiliation(s)
- Marc Yudkoff
- Children's Hospital of Philadelphia, Division of Child Development, Rehabilitation and Metabolic Disease, Department of Pediatrics, University of Pennsylvania School of Medicine, 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sáenz DA, Goldin AP, Minces L, Chianelli M, Sarmiento MIK, Rosenstein RE. Effect of melatonin on the retinal glutamate/glutamine cycle in the golden hamster retina. FASEB J 2004; 18:1912-3. [PMID: 15448109 DOI: 10.1096/fj.04-2062fje] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the retina, but it is neurotoxic when present in excessive amounts. The metabolic dependence of glutamatergic neurons upon glia via the glutamate/glutamine cycle to provide the precursor for neurotransmitter glutamate is well established. Since melatonin has been shown to be neuroprotective in several systems, in the present report, its effect on the glutamate/glutamine cycle activity was examined in the golden hamster retina. Melatonin (0.1-10 nM) significantly increased retinal glutamine synthetase activity but it did not affect L-glutamine release. A characterization of the hamster retinal L-glutamine uptake mechanism was performed. This mechanism was partly Na+-dependent, and it was significantly inhibited by 2-aminobicyclo (2, 2, 1) heptane 2-carboxylic acid (BCH, a selective antagonists for the L-type system) and by alpha-(methylamino)-isobutyric acid (MeAIB, substrate characteristic for the A -type transporter) suggesting the coexistence of these transport systems in the hamster retina. Melatonin (0.1-10 nM) significantly increased total glutamine uptake as well as the BCH and the MeAIB-insensitive transporters activity. On the other hand, melatonin significantly decreased retinal glutaminase activity. On the basis of these results, it might be presumed that hamster retinal glutamate/glutamine cycle activity is regulated by physiological concentrations of melatonin. Furthermore, these findings suggest that a treatment with melatonin could be considered as a new approach to handling glutamate-mediated neuronal degeneration.
Collapse
Affiliation(s)
- Daniel A Sáenz
- Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
44
|
Sidoryk M, Matyja E, Dybel A, Zielinska M, Bogucki J, Jaskólski DJ, Liberski PP, Kowalczyk P, Albrecht J. Increased expression of a glutamine transporter SNAT3 is a marker of malignant gliomas. Neuroreport 2004; 15:575-8. [PMID: 15094455 DOI: 10.1097/00001756-200403220-00001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glutamine (Gln) is a growth determinant in neoplastic tissues. We analysed by RT-PCR the expression of mRNAs coding for the human variants of Gln transporters: ASCT2 (system ASC), SNAT1 [ATA1] (system A), SNAT3 [SN1] and SNAT5 [SN2] (system N), in samples of human malignant gliomas WHO grades III/IV (anaplastic astrocytoma and glioblastoma), glioma-derived cell cultures, brain metastases from peripheral organs, and control brain tissue. SNAT3 mRNA showed a 3-5 times stronger expression in gliomas than in metastases or control tissue, and was virtually absent from glioma cultures. Native glioblastoma immunostained positively with anti-SNAT3 antibody. The expression of ASCT2 mRNA, but not SNAT5 or SNAT1 mRNAs, was increased in all neoplastic tissues studied. Hence, increased expression of SNAT3 is a marker of primary malignant gliomas in situ.
Collapse
Affiliation(s)
- Marta Sidoryk
- Department of Neurotoxicology, Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bröer A, Deitmer JW, Bröer S. Astroglial glutamine transport by system N is upregulated by glutamate. Glia 2004; 48:298-310. [PMID: 15390112 DOI: 10.1002/glia.20081] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Release of glutamine from astrocytes is an essential step of the glutamate-glutamine cycle, and hence for the maintenance of neuronal glutamate and gamma-aminobutyric acid (GABA) pools. The glutamine transporter SNAT3 (SN1) has recently been identified as one of the major mediators of glutamine efflux from astrocytes. We investigated the regulation of SNAT3 mediated glutamine transport in cultured astrocytes. Incubation of primary astrocyte cultures with physiological concentrations of glutamate resulted in a rapid, about twofold, upregulation of SNAT3-mediated transport activity. The effect was not mediated by glutamate receptors but required uptake of glutamate into astrocytes. Both net uptake and net efflux increased after treatment of cells with glutamate, excluding an acceleration of the transport by way of an exchange mechanism. Elevated intracellular glutamate most likely reduces the K(m) of SNAT3 for its substrate glutamine. The results suggest that astrocytes respond actively to the release of glutamate by increasing glutamine release and thereby may modulate glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Angelika Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
46
|
Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 2004; 447:784-95. [PMID: 12845534 DOI: 10.1007/s00424-003-1117-9] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Revised: 05/16/2003] [Accepted: 05/16/2003] [Indexed: 01/04/2023]
Abstract
The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.
Collapse
Affiliation(s)
- Bryan Mackenzie
- Membrane Biology Program and Renal Division, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | |
Collapse
|
47
|
Marcaggi P, Attwell D. Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 2004; 47:217-225. [PMID: 15252810 DOI: 10.1002/glia.20027] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article reviews how the uptake of neurotransmitter by glial amino acid transporters limits the spatial spread of transmitter to preserve the independent operation of nearby synapses, temporally shapes postsynaptic currents, and regulates the effects of tonic transmitter release. We demonstrate the importance of amino acid uptake and recycling mechanisms for preventing the loss of energetically costly neurotransmitter from the brain, and also examine the suggestion that glutamate uptake into glia plays a key role in regulating the energy production of the brain. Finally, we assess the role of glial amino acid transporters in transmitter recycling pathways.
Collapse
Affiliation(s)
- Païkan Marcaggi
- Department of Physiology, University College London, London, United Kingdom
| | - David Attwell
- Department of Physiology, University College London, London, United Kingdom
| |
Collapse
|
48
|
Abstract
The neurotransmitter glutamate, once released into the synaptic cleft, is largely recycled by the glutamate-glutamine cycle, which involves uptake into astrocytes, conversion into glutamine and subsequent release of glutamine from astrocytes as a precursor for neuroneal glutamate synthesis. We analysed glutamine efflux from cultured astrocytes by pre-loading cells with labelled glutamine for 30 min and subsequently measured glutamine efflux for 30 min. Efflux of pre-loaded glutamine was rapid and almost complete after 30 min with a first order rate of 0.11 +/- 0.01/min. Efflux was 50% reduced when cells were depleted of intracellular Na+. Increasing intracellular Na+ concentration had a small stimulatory effect on glutamine efflux, indicating the participation of a Na+-dependent transport mechanism. About 50% of the basal efflux could not be inhibited by depletion of the intracellular Na+, suggesting the presence of an additional Na+-independent transport mechanism. Glutamine efflux was stimulated two- to threefold by addition of extracellular neutral amino acids, such as alanine or leucine. The stimulatory effects of alanine and leucine had a Na+-dependent and a Na+-independent component, suggesting the presence of two antiport mechanisms one involving Na+. When compared to the expression of glutamine transporter mRNAs in cultured astrocytes it appeared likely that glutamine efflux was mediated by SN1, LAT2, ASCT2 and an additional, yet unidentified, transporter that mediates about 40% of the basal efflux.
Collapse
Affiliation(s)
- Joachim W Deitmer
- School of Biochemistry & Molecular Biology, Australian National University, Canberra, Australia
| | | | | |
Collapse
|