1
|
Farrera-Hernández A, Marín-Llera JC, Chimal-Monroy J. WNT5A-Ca 2+-CaN-NFAT signalling plays a permissive role during cartilage differentiation in embryonic chick digit development. Dev Biol 2021; 469:86-95. [PMID: 33058830 DOI: 10.1016/j.ydbio.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/08/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
During digit development, the correct balance of chondrogenic signals ensures the recruitment of undifferentiated cells into the cartilage lineage or the maintenance of cells at the undifferentiated stage. WNT/β catenin maintains the pool of progenitor cells, whereas TGFβ signalling promotes cartilage differentiation by inducing Sox9 expression. Moreover, WNT5A promotes the degradation of β catenin during mouse limb development. Although these mechanisms are well established, it is still unknown whether the signalling pathway downstream WNT5A is also involved in early chondrogenesis during digit formation. Thus, the aim of this study was to determine the role of WNT5A during the recruitment of progenitor cells during digit development. Our results showed that WNT5A activated calcium (Ca2+) release in the undifferentiated region during digit development. Further, the blockade of Ca2+ release or calcineurin (CaN) or nuclear factor of activated T-cells (NFAT) functions resulted in an inhibition of cartilage differentiation. Together, our results demonstrate that non canonical WNT5A-Ca2+-CaN-NFAT signalling plays a key role during embryonic digit development in vivo promoting the competence for chondrogenic signals and also acts as a permissive factor for chondrogenesis independently of cell death mechanisms.
Collapse
Affiliation(s)
- Alejandro Farrera-Hernández
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Ciudad Universitaria, Apartado Postal 70228, Mexico
| | - Jessica Cristina Marín-Llera
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Ciudad Universitaria, Apartado Postal 70228, Mexico
| | - Jesús Chimal-Monroy
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Ciudad Universitaria, Apartado Postal 70228, Mexico.
| |
Collapse
|
2
|
Effects of Levetiracetam, Carbamazepine, Phenytoin, Valproate, Lamotrigine, Oxcarbazepine, Topiramate, Vinpocetine and Sertraline on Presynaptic Hippocampal Na(+) and Ca(2+) Channels Permeability. Neurochem Res 2015; 41:758-69. [PMID: 26542150 DOI: 10.1007/s11064-015-1749-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
Abstract
Ion channels are targets of various antiepileptic drugs. In cerebral presynaptic nerve endings Na(+) and Ca(2+) channels are particularly abundant, as they control neurotransmitter release, including the release of glutamate (Glu), the most concentrated excitatory amino acid neurotransmitter in the brain. Several pre-synaptic channels are implicated in the mechanism of action of the pro-convulsive agent, 4-aminopyridine (4-AP). In the present study the effects of levetiracetam and other established and newer (vinpocetine) anti-epileptic drugs, as well as of the anti-depressant, sertraline on the increase in Ca(2+) induced by 4-AP in hippocampal isolated nerve endings were investigated. Also the effects of some of the anti-seizure drugs on the selective increase in Ca(2+) induced by high K(+), or on the selective increase in Na(+) induced by veratridine were tested. Sertraline and vinpocetine effectively inhibited the rise in Ca(2+) induced by 4-AP, which was dependent on the out-in Na(+) gradient and tetrodotoxin sensitive. Carbamazepine, phenytoin, lamotrigine and oxcarbazepine inhibited the rise in Ca(2+) induced by 4-AP too, but at higher concentrations than sertraline and vinpocetine, whereas levetiracetam, valproic acid and topiramate did not. The three latter antiepileptic drugs also failed in modifying other responses mediated by the activation of brain presynaptic Na(+) or Ca(2+) channels, including Glu release. This indicates that levetiracetam, valproic acid and topiramate mechanisms of action are unrelated with a decrease in presynaptic Na(+) or Ca(2+) channels permeability. It is concluded that depolarized cerebral isolated nerve endings represent a useful tool to unmask potential antiepileptic drugs targeting presynaptic Na(+) and/or Ca(2+) channels in the brain; such as vinpocetine or the anti-depressant sertraline, which high effectiveness to control seizures in the animal in vivo has been demonstrated.
Collapse
|
3
|
Aldana BI, Sitges M. Sertraline inhibits pre-synaptic Na⁺ channel-mediated responses in hippocampus-isolated nerve endings. J Neurochem 2012; 121:197-205. [PMID: 22288826 DOI: 10.1111/j.1471-4159.2012.07674.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, a possible sertraline action on cerebral pre-synaptic Na(+) channels was investigated. For this purpose, the effect of sertraline on responses induced by the Na(+) channel opener, veratridine, namely the increase in Na(+) and in neurotransmitter release in hippocampus-isolated nerve endings was investigated. Results show that sertraline in the low μM range (1.5-25 μM) progressively inhibits the rise in Na(+) and the release of pre-loaded [(3) H]Glu as well as the release of endogenous 5-HT, Glu and GABA (detected by HPLC) induced by veratridine depolarization either under external Ca(2+) -free conditions or in the presence of external Ca(2+) . In addition, under non-depolarized conditions, sertraline (25 μM) increased the external concentration of 5-HT at expense of its internal concentration, and unchanged the external and internal concentrations of the amino acid neurotransmitters and of the 5-HT main metabolite, 5-HIAA. This result is consistent with the sertraline inhibitory action of the serotonin transporter. However, sertraline is unlikely to inhibit pre-synaptic Na(+) channels permeability by increasing external 5-HT. Because 5-HT in a wide concentration range (1-1000 μM) did not change the veratridine-induced increase in Na(+) . In summary, present findings demonstrate that besides the inhibition of 5-HT reuptake, sertraline is an effective inhibitor of pre-synaptic Na(+) channels controlling neurotransmitter release.
Collapse
Affiliation(s)
- Blanca I Aldana
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
| | | |
Collapse
|
4
|
Characterization of Phenytoin, Carbamazepine, Vinpocetine and Clorgyline Simultaneous Effects on Sodium Channels and Catecholamine Metabolism in Rat Striatal Nerve Endings. Neurochem Res 2008; 34:470-9. [DOI: 10.1007/s11064-008-9805-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 07/07/2008] [Indexed: 01/05/2023]
|
5
|
Sitges M, Guarneros A, Nekrassov V. Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: Comparison with the Na+ channel-mediated release. Neuropharmacology 2007; 53:854-62. [PMID: 17904592 DOI: 10.1016/j.neuropharm.2007.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/03/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
The effect of carbamazepine, phenytoin, valproate, oxcarbazepine, lamotrigine and topiramate, that are among the most widely used antiepileptic drugs (AEDs), and of the new putative AED vinpocetine on the Ca(2+) channel-mediated release of [(3)H]Glu evoked by high K(+) in hippocampal isolated nerve endings was investigated. Results show that carbamazepine, oxcarbazepine and phenytoin reduced [(3)H]Glu release to high K(+) to about 30% and 55% at concentrations of 500 microM and 1500 microM, respectively; lamotrigine and topiramate to about 27% at 1500 microM; while valproate failed to modify it. Vinpocetine was the most potent and effective; 50 microM vinpocetine practically abolished the high K(+) evoked release of [(3)H]Glu. Comparison of the inhibition exerted by the AEDs on [(3)H]Glu release evoked by high K(+) with the inhibition exerted by the AEDs on [(3)H]Glu release evoked by the Na(+) channel opener, veratridine, shows that all the AEDs are in general more effective blockers of the presynaptic Na(+) than of the presynaptic Ca(2+) channel-mediated response. The high doses of AEDs required to control seizures are frequently accompanied by adverse secondary effects. Therefore, the higher potency and efficacy of vinpocetine to reduce the permeability of presynaptic ionic channels controlling the release of the most important excitatory neurotransmitter in the brain must be advantageous in the treatment of epilepsy.
Collapse
Affiliation(s)
- María Sitges
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, Apartado Postal 70228, Ciudad Universitaria 04510, México D.F., Mexico.
| | | | | |
Collapse
|
6
|
Sitges M, Chiu LM, Guarneros A, Nekrassov V. Effects of carbamazepine, phenytoin, lamotrigine, oxcarbazepine, topiramate and vinpocetine on Na+ channel-mediated release of [3H]glutamate in hippocampal nerve endings. Neuropharmacology 2006; 52:598-605. [PMID: 17070874 DOI: 10.1016/j.neuropharm.2006.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/14/2006] [Accepted: 09/05/2006] [Indexed: 11/22/2022]
Abstract
Several of the most effective antiepileptic drugs are believed to stop the paroxysmal neuronal activity acting as Na(+) channel blockers. However, no single study comparing in parallel the potency and efficacy of the most commonly used antiepileptic drugs on brain Na(+) channel-mediated responses is available. In the present study the effects of increasing concentrations of carbamazepine, phenytoin, lamotrigine, oxcarbazepine and topiramate, which are among the most frequently used antiepileptic drugs, and of the new putative antiepileptic drug, vinpocetine, on the release of glutamate (Glu) elicited by the Na(+) channel opener, veratridine were investigated in hippocampal isolated nerve endings preloaded with the labeled excitatory amino acid neurotransmitter. The present results show that carbamazepine, phenytoin, lamotrigine and oxcarbazepine, in the range from 150 to 1500 microM, progressively inhibit [(3)H]Glu release induced by veratridine. Also vinpocetine progressively inhibits the veratridine-induced response, but in a much lower range of concentrations (from 1.5 to 15 microM), whereas topiramate only exerts a modest inhibition (20%) of Glu release to veratridine at the highest dose tested (1500 microM). These results indicate that the mechanism of action of several of the most widely used antiepileptic drugs involves reduction in cerebral presynaptic voltage sensitive Na(+) channels permeability. Considering that the high doses of antiepileptic drugs required to control seizures are frequently accompanied by adverse secondary effects, the higher potency of vinpocetine to reduce Na(+) channels permeability might be advantageous.
Collapse
Affiliation(s)
- María Sitges
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, Apartado Postal 70228, Ciudad Universitaria 04510, México D.F., Mexico.
| | | | | | | |
Collapse
|
7
|
Sitges M, Chiu LM, Nekrassov V. Single and combined effects of carbamazepine and vinpocetine on depolarization-induced changes in Na+, Ca2+ and glutamate release in hippocampal isolated nerve endings. Neurochem Int 2006; 49:55-61. [PMID: 16621162 DOI: 10.1016/j.neuint.2005.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 12/21/2005] [Indexed: 11/22/2022]
Abstract
The single and combined effects of carbamazepine and vinpocetine on the release of the excitatory amino acid neurotransmitter glutamate, on the rise in internal Na+ (Na(i), as determined with SBFI), and on the rise in internal Ca2+ (Ca(i), as determined with fura-2) induced by an increased permeability of presynaptic Na+ channels, with veratridine, or by an increased permeability of presynaptic Ca2+ channels with high K+, were investigated in isolated hippocampal nerve endings. The present study shows that carbamazepine and vinpocetine, both inhibit dose dependently the release of preloaded [3H]Glu induced by veratridine. However, carbamazepine is two orders of magnitude less potent than vinpocetine. The calculated IC(50)'s for carbamazepine and vinpocetine to inhibit veratridine-induced [3H]Glu release are 200 and 2 microM, respectively. Consistently 150 microM carbamazepine and 1.5 microM vinpocetine reduce the veratridine-induced rise in Na(i) in a similar extent. The single effects of carbamazepine and of vinpocetine on the presynaptic Na+ channel mediated responses, namely the rise in Na(i) and the release of Glu induced by veratridine, are additive. Responses that depend on the entrance of external Ca2+ via presynaptic Ca2+ channels, such as the release of [3H]Glu and the rise in Ca(i) induced by high K+, are insensitive to 300 microM carbamazepine and slightly reduced by 5 microM vinpocetine. It is concluded that the additive effects of carbamazepine, which is one of the most common antiepileptic drugs, and vinpocetine that besides its known neuroprotective action and antiepileptic potential is a memory enhancer, may perhaps be advantageous in the treatment of epileptic patients.
Collapse
Affiliation(s)
- María Sitges
- Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, Apartado Postal 70228, Ciudad Univeresitaria, 04510 México D.F., Mexico.
| | | | | |
Collapse
|
8
|
Galindo CA, Sitges M. Dihydropiridines mechanism of action in striatal isolated nerve endings: comparison with omega-agatoxin IVA. Neurochem Res 2004; 29:659-69. [PMID: 15098927 DOI: 10.1023/b:nere.0000018836.82122.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The relative contribution of Ca2+ and Na+ channels to the mechanism underlying the action of the dihydropiridines (DHPs), nimodipine, nitrendipine and nifedipine was investigated in rat striatum synaptosomes. The rise in internal Ca2+ (Ca(i), as determined with fura-2) induced by high K+ was unchanged by the DHPs, which like tetrodotoxin (TTX) inhibited both the rise in internal Na+ (Na(i), as determined with the Na+ selective indicator dye, SBFI) and the rise in Ca(i) induced by veratridine. Nimodipine and nitrendipine were much more potent than nifedipine. Oppositely to TTX and to the DHPs, the P/Q type Ca2+ channel blocker, omega-agatoxin IVA did not inhibit the rise in Ca(i) induced by veratridine, but inhibited the rise in Ca(i) induced by high K+. Veratridine-evoked release of dopamine, GABA, Glu, and Asp (detected by HPLC) was inhibited by nimodipine, nitrendipine, and TTX, while high K+-evoked release was unchanged by the DHPs or TTX. It is concluded that the reduction in presynaptic Na+ channel permeability might contribute to the cerebral effects of DHPs.
Collapse
Affiliation(s)
- C A Galindo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | | |
Collapse
|
9
|
Galván E, Sitges M. Characterization of the participation of sodium channels on the rise in Na+ induced by 4-aminopyridine (4-AP) in synaptosomes. Neurochem Res 2004; 29:347-55. [PMID: 15002730 DOI: 10.1023/b:nere.0000013737.17288.ce] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The participation of voltage-sensitive Na+ channels (VSSC) on the changes on internal (i) Na+, K+, Ca2+, and on DA, Glu, and GABA release caused by different concentrations of 4-AP was investigated in striatum synaptosomes. TTX, which abolished the increase in Na(i) (as determined with SBFI), induced by 0.1 mM 4-AP only inhibited by 30% the rise in Na(i) induced by 1 mM 4-AP. One millimolar 4-AP markedly decreased the fluorescence of the K+ indicator dye PBFI but 0.1 mM 4-AP did not. Like 1 mM 4-AP, ouabain decreased PBFI fluorescence and increased a considerable fraction of Na(i) in a TTX-insensitive manner. In contrast with the different TTX sensitivity of the rise in Na(i) induced by 0.1 and 1 mM 4-AP, the rise in Ca(i) (as determined with fura-2) induced by the two concentrations of 4-AP was markedly inhibited by TTX, as well as by omega-agatoxin in combination with omega-conotoxin GVIA, indicating that only the TTX-sensitive fraction of the rise in Na(i) induced by 4-AP is linked with the activation of presynaptic Ca2+ channels. It is concluded that the TTX-sensitive fraction of neurotransmitter release evoked by 4-AP is released by exocytosis, and the TTX insensitive fraction involves reversal of the neurotransmitters transporters. This contrasts with the exocytosis evoked by high K+ that is unchanged by TTX and with the neurotransmitter-transporter-mediated release evoked by veratridine, which is highly TTX sensitive and does not require activation of Ca2+ channels.
Collapse
Affiliation(s)
- Emilio Galván
- Departmento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
10
|
Abstract
Endogenous amines and peptides continuously modulate the activity of neuronal networks and are required even for their normal operation. The respiratory rhythm generator, localized in the pre-Bötzinger complex, is not an exception. This network is modulated by various neurotransmitters, including serotonin (5-HT). In this study, we isolated the respiratory network in brainstem slices and demonstrate that the endogenous activation of 5-HT(2A) is required for the generation of the respiratory rhythm in vitro. At the network level, activation of 5-HT(2A) receptors with 4-iodo-2,5-dimethoxyamphetamine or the 5-HT uptake blocker alaproclate increased the frequency of respiratory activity. Blockade of endogenously activated 5-HT(2A) receptors with three different antagonists decreased the frequency, amplitude, and regularity of respiratory population activity, an effect that was blocked by protein kinase C (PKC) activators. At the cellular level, blockade of 5-HT(2A) receptors reduced the action potential discharge in all examined respiratory neurons, which was associated with a reduction in the fast and the persistent sodium current. Continuous application of 5-HT(2A)-receptor antagonists differentially affected pacemaker neurons. Pacemaker activity was eliminated in cadmium-insensitive pacemaker neurons. In cadmium-sensitive pacemaker neurons, the frequency of pacemaker activity was unaffected and the amplitude of pacemaker bursts was enhanced. It is assumed that cadmium-insensitive pacemakers rely on the persistent sodium current, whereas cadmium-sensitive pacemakers depend on the activation of calcium currents. We conclude that endogenously activated 5-HT(2A) receptors are required for maintaining fictive respiratory activity in the brainstem slice by modulating sodium conductances via a PKC pathway.
Collapse
|
11
|
Bönöczk P, Gulyás B, Adam-Vizi V, Nemes A, Kárpáti E, Kiss B, Kapás M, Szántay C, Koncz I, Zelles T, Vas A. Role of sodium channel inhibition in neuroprotection: effect of vinpocetine. Brain Res Bull 2000; 53:245-54. [PMID: 11113577 DOI: 10.1016/s0361-9230(00)00354-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vinpocetine (ethyl apovincaminate) discovered during the late 1960s has successfully been used in the treatment of central nervous system disorders of cerebrovascular origin for decades. The increase in the regional cerebral blood flow in response to vinpocetine administration is well established and strengthened by new diagnostical techniques (transcranial Doppler, near infrared spectroscopy, positron emission tomography). The latest in vitro studies have revealed the effect of the compound on Ca(2+)/calmodulin dependent cyclic guanosine monophosphate-phosphodiesterase 1, voltage-operated Ca(2+) channels, glutamate receptors and voltage dependent Na(+)-channels; the latest being especially relevant to the neuroprotective action of vinpocetine. The good brain penetration profile and heterogenous brain distribution pattern (mainly in the thalamus, basal ganglia and visual cortex) of labelled vinpocetin were demonstrated by positron emission tomography in primates and man. Multicentric, randomized, placebo-controlled clinical studies proved the efficacy of orally administered vinpocetin in patients with organic psychosyndrome. Recently positron emission tomography studies have proved that vinpocetine is able to redistribute regional cerebral blood flow and enhance glucose supply of brain tissue in ischemic post-stroke patients.
Collapse
Affiliation(s)
- P Bönöczk
- Chemical Works of Gedeon Richter Ltd., Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang CY, Tan ZY, Chen B, Zhao ZQ, Ji YH. Antihyperalgesia effect of BmK IT2, a depressant insect-selective scorpion toxin in rat by peripheral administration. Brain Res Bull 2000; 53:335-8. [PMID: 11113589 DOI: 10.1016/s0361-9230(00)00355-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study was undertaken to assess the antihyperalgesia effect of BmK IT2, a sodium channel-specific ligand purified from the venom of Chinese scorpion Buthus martensi Karsch in rat by peripheral injection. The peripheral inflammation of rat was induced by carrageenan resulted in hyperalgesia to heat stimulus. The heat hyperalgesia was measured by paw withdrawal latency (PWL). PWL was increased to 272 +/- 18%, 217 +/- 19% and 186 +/- 16% of the control by application of 10 microl BmK IT2 at the concentration of 0.1, 0. 01 and 0.001 mg/ml in inflammatory rats, respectively. In contrast, PWL was enhanced to about 177 +/- 16%, 141 +/- 15% and 133 +/- 15% of the control at the same applied concentrations of BmK IT2 in normal rats. The results thus suggest that BmK IT2 can produce peripheral antihyperalgesia and antinociception, which might be attributed a pathway of modulating the sodium channels on nociceptor.
Collapse
Affiliation(s)
- C Y Wang
- Shanghai Institute of Physiology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Sitges M, Nekrassov V, Guarneros A. Simultaneous action of MK-801 (dizclopine) on dopamine, glutamate, aspartate and GABA release from striatum isolated nerve endings. Brain Res 2000; 854:48-56. [PMID: 10784106 DOI: 10.1016/s0006-8993(99)02282-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The simultaneous effect of MK-801 on the baseline- and depolarization (20 microM veratridine or 30 mM high K+)-evoked release of endogenous dopamine, glutamate (Glu), aspartate (Asp), and GABA is investigated in the same preparation of rat striatum isolated nerve endings. MK-801, in the microM range, selectively increases the baseline and high K+ depolarization-evoked release of dopamine, without causing any effect on the baseline or on the high K+-evoked release of Glu, Asp and GABA. In addition to this selective action on dopamine release, MK-801 inhibits the veratridine depolarization-evoked release of all the neurotransmitters tested, including dopamine. In SBFI and fura-2 preloaded striatal synaptosomes, MK-801 inhibits the elevation of internal Na+ (Na(i)) and the elevation of internal Ca2+ (Ca(i)) induced by veratridine depolarization. The elevation of Ca(i) induced by high K+ depolarization is unchanged by MK-801. This study reveals two separate MK-801 actions. (1) The voltage-independent action, which increases dopamine release selectively, and might contribute to the effects of MK-801 on motor coordination. (2) The voltage-dependent action, which inhibits all the veratridine-evoked responses including the evoked release of the excitatory amino acids (which are particularly concentrated in striatum nerve endings), and might contribute to the anticonvulsant and neuroprotective effects of MK-801.
Collapse
Affiliation(s)
- M Sitges
- Depto. de Biología Celular, Instituto de Investigaciones Biomédicas, UNAM, México, DF, México.
| | | | | |
Collapse
|
14
|
Sitges M, Nekrassov V. Vinpocetine selectively inhibits neurotransmitter release triggered by sodium channel activation. Neurochem Res 1999; 24:1585-91. [PMID: 10591410 DOI: 10.1023/a:1021164418478] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effects of vinpocetine on internal Na+ (Na(i)), cAMP accumulation, internal Ca2+ (Ca(i)) and excitatory amino acid neurotransmitters release, under resting and under depolarized conditions, was investigated in rat striatum synaptosomes. Veratridine (20 microM) or high K+ (30 mM) were used as depolarizing agents. Results show that vinpocetine in the low microM range inhibits the elevation of Na(i), the elevation of Ca(i) and the release of glutamate and aspartate induced by veratridine depolarization. In contrast, vinpocetine fails to inhibit the rise of Ca(i) and the neurotransmitter release induced by high K+, which are both TTX insensitive responses. Results also show that the inhibition exerted by vinpocetine on all the above veratridine-induced responses is not reflected in PDE activity. Our interpretation of these results is that vinpocetine inhibits neurotransmitter release triggered by veratridine activation of voltage sensitive Na+ channels, but not that triggered by a direct activation of VSCC. Thus, the main mechanism involved in the neuroprotective action of vinpocetine in the CNS is unlikely to be due to a direct inhibition of Ca2+ channels or PDE enzymes, but rather the inhibition of presynaptic Na+ channel-activation unchained responses.
Collapse
Affiliation(s)
- M Sitges
- Depto. de Biología Celular, Instituto de Investigaciones Biomédicas, UNAM, Ciudad Universitaria, México.
| | | |
Collapse
|
15
|
Tapia R, Peña F, Arias C. Neurotoxic and synaptic effects of okadaic acid, an inhibitor of protein phosphatases. Neurochem Res 1999; 24:1423-30. [PMID: 10555783 DOI: 10.1023/a:1022588808260] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein phosphorylation and dephosphorylation reactions, catalyzed by kinases and phosphatases, are involved in the regulation of a wide variety of physiological processes. In the nervous system, such reactions seem to modulate the function of several proteins crucial in synaptic transmission, including voltage-gated and ligand-gated channels, neurotransmitter release, and neurotransmitter transporters. On the other hand, hyperphosphorylation of certain cytoskeletal proteins or receptors may lead to neuronal death. In the present work we review the neurotoxic effect of okadaic acid (OKA), a potent and specific inhibitor of the serine/threonine protein phosphatases 1 and 2A, as well as its action on synaptic function. We analyze recent findings demonstrating that the microinjection of OKA in rat hippocampus induces neuronal stress, hyperexcitation and neurodegeneration, and discuss their possible relationships to alterations of protein phosphorylation-dephosphorylation observed in Alzheimer's disease brain. These results suggest that protein hyperphosphorylation due to inhibition of phosphatases in vivo induces neuronal stress and subsequent neurodegeneration.
Collapse
Affiliation(s)
- R Tapia
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, DF, México.
| | | | | |
Collapse
|
16
|
Hamano T, Hanahisa Y, Yamaguchi M. Inhibitory effect of regucalcin on Ca(2+)-dependent protein kinase activity in rat brain cytosol: involvement of endogenous regucalcin. Brain Res Bull 1999; 50:187-92. [PMID: 10566980 DOI: 10.1016/s0361-9230(99)00184-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of regucalcin, a Ca(2+)-binding protein, on Ca(2+)-dependent protein kinase activity in the brain cytosol of rats with different ages (5 and 50 weeks old) was investigated. The addition of calmodulin (10 microg/ml) or dioctanoylglycerol (5 microg/ml) in the enzyme reaction mixture caused a significant increase in protein kinase activity in the presence of CaCl2 (1 mM), indicating that Ca2+ calmodulin or protein kinase C is present in the cytosol. Such an increase was completely prevented by the addition of regucalcin (10(-7) M). Moreover, regucalcin (10(-7) M) significantly inhibited cytosolic protein kinase activity without Ca2+/calmodulin or dioctanoylglycerol addition. Meanwhile, the presence of anti-regucalcin monoclonal antibody (10-50 ng/ml) in the enzyme reaction mixture caused a significant elevation of protein kinase activity, suggesting an inhibitory effect of endogenous regucalcin. Brain cytosolic protein kinase activity was significantly elevated by increasing age (50-week-old rats). Also, regucalcin (10(-7) M) significantly decreased protein kinase activity without Ca(2+) addition in the brain cytosol of aged rats. However, the effect of anti-regucalcin monoclonal antibody (50 ng/ml) in elevating protein kinase activity was not seen in the brain cytosol of aged rats. These results suggest that regucalcin has an inhibitory effect on Ca(2+)-dependent protein kinase activity in rat brain cytosol, and that the effect of endogenous regucalcin may be weakened in the brain cytosol of aged rats.
Collapse
Affiliation(s)
- T Hamano
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka, Shizuoka City, Japan
| | | | | |
Collapse
|