1
|
Yano H, Koga K, Sato T, Shinohara T, Iriguchi S, Matsuda A, Nakazono K, Shioiri M, Miyake Y, Kassai Y, Kiyoi H, Kaneko S. Human iPSC-derived CD4 + Treg-like cells engineered with chimeric antigen receptors control GvHD in a xenograft model. Cell Stem Cell 2024; 31:795-802.e6. [PMID: 38848686 DOI: 10.1016/j.stem.2024.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
CD4+ T cells induced from human iPSCs (iCD4+ T cells) offer a therapeutic opportunity for overcoming immune pathologies arising from hematopoietic stem cell transplantation. However, most iCD4+ T cells are conventional helper T cells, which secrete inflammatory cytokines. We induced high-level expression of FOXP3, a master transcription factor of regulatory T cells, in iCD4+ T cells. Human iPSC-derived, FOXP3-induced CD4+ T (iCD4+ Treg-like) cells did not secrete inflammatory cytokines upon activation. Moreover, they showed demethylation of the Treg-specific demethylation region, suggesting successful conversion to immunosuppressive iCD4+ Treg-like cells. We further assessed these iCD4+ Treg-like cells for CAR-mediated immunosuppressive ability. HLA-A2 CAR-transduced iCD4+ Treg-like cells inhibited CD8+ cytotoxic T cell (CTL) division in a mixed lymphocyte reaction assay with A2+ allogeneic CTLs and suppressed xenogeneic graft-versus-host disease (GVHD) in NSG mice treated with A2+ human PBMCs. In most cases, these cells suppressed the xenogeneic GvHD progression as much as natural CD25+CD127- Tregs did.
Collapse
Affiliation(s)
- Hisashi Yano
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; Department of Haematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keiko Koga
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Takayuki Sato
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Tokuyuki Shinohara
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Atsushi Matsuda
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Kazuki Nakazono
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Maki Shioiri
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Yasuyuki Miyake
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Yoshiaki Kassai
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Hitoshi Kiyoi
- Department of Haematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan.
| |
Collapse
|
2
|
Ueda N, Uemura Y, Zhang R, Kitayama S, Iriguchi S, Kawai Y, Yasui Y, Tatsumi M, Ueda T, Liu TY, Mizoro Y, Okada C, Watanabe A, Nakanishi M, Senju S, Nishimura Y, Kuzushima K, Kiyoi H, Naoe T, Kaneko S. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response. Stem Cell Reports 2018; 10:1935-1946. [PMID: 29805109 PMCID: PMC5993651 DOI: 10.1016/j.stemcr.2018.04.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
CD4+ T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40Lhigh iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40Lhigh iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. iPSC-derived T cells have molecular similarity to group 1 innate lymphoid cells iPSC-derived CD40Lhigh T cell-adjuvants induce leukemia-specific CTLs via DCs
Collapse
MESH Headings
- Biomarkers
- CD40 Ligand/metabolism
- Cell Differentiation
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Gene Expression
- Humans
- Immunity, Innate
- Immunophenotyping
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/immunology
- Induced Pluripotent Stem Cells/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Receptors, Antigen, T-Cell/genetics
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- WT1 Proteins/immunology
Collapse
Affiliation(s)
- Norihiro Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center (NCC), 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center (NCC), 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Shuichi Kitayama
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Kawai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yutaka Yasui
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minako Tatsumi
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Tatsuki Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tian-Yi Liu
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan; Key Laboratory of Cancer Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Yasutaka Mizoro
- Department of Life Science Frontiers, CiRA, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chihiro Okada
- Department of Life Science Frontiers, CiRA, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, CiRA, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8561, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kiyotaka Kuzushima
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 464-8603, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-ku, Nagoya 460-0001, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Tsuruta M, Ueda S, Yew PY, Fukuda I, Yoshimura S, Kishi H, Hamana H, Hirayama M, Yatsuda J, Irie A, Senju S, Yuba E, Kamba T, Eto M, Nakayama H, Nishimura Y. Bladder cancer-associated cancer-testis antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4 + T cells expressing converged T-cell receptor genes in vitro. Oncoimmunology 2018; 7:e1415687. [PMID: 29632734 DOI: 10.1080/2162402x.2017.1415687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022] Open
Abstract
DEP domain containing 1 (DEPDC1) and M-phase phosphoprotein 1 (MPHOSPH1) are human cancer testis antigens that are frequently overexpressed in urinary bladder cancer. In a phase I/II clinical trial, a DEPDC1- and MPHOSPH1-derived short peptide vaccine demonstrated promising efficacy in preventing bladder cancer recurrence. Here, we aimed to identify long peptides (LPs) derived from DEPDC1 and MPHOSPH1 that induced both T-helper (Th) cells and tumor-reactive cytotoxic T lymphocytes (CTLs). Stimulation of peripheral blood mononuclear cells (PBMCs) from healthy donors with the synthetic DEPDC1- and MPHOSPH1-LPs predicted to bind to promiscuous human leukocyte antigen (HLA) class II molecules by a computer algorithm induced specific CD4+ T cells as revealed by interferon-γ enzyme-linked immunospot assays. Three of six LPs encompassed HLA-A2- or -A24-restricted CTL epitopes or both, and all six LPs stimulated DEPDC1- or MPHOSPH1-specific Th cells restricted by promiscuous and frequently observed HLA class II molecules in the Japanese population. Some LPs are naturally processed from the proteins in DCs, and the capacity of these LPs to cross-prime CTLs was confirmed in vivo using HLA-A2 or -A24 transgenic mice. The LP-specific and HLA class II-restricted T-cell responses were also observed in PBMCs from patients with bladder cancer. Repeated stimulation of PBMCs with DEPDC1-LPs and MPHOSPH1-LPs yielded clonal Th cells expressing specific T-cell receptor (TCR)-α and β genes. These DEPDC1- or MPHOSPH1-derived LPs may have applications in immunotherapy in patients with bladder cancer, and the TCR genes identified may be useful for monitoring of Th cells specific to LPs in vivo.
Collapse
Affiliation(s)
- Miki Tsuruta
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Shohei Ueda
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Poh Yin Yew
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Isao Fukuda
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Sachiko Yoshimura
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences (Medicine), University of Toyama, Sugitani, Toyama, Toyama, Japan
| | - Hiroshi Hamana
- Department of Innovative Cancer Immunotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Toyama, Japan
| | - Masatoshi Hirayama
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Atsushi Irie
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Nishimura Project Laboratory, Center for Resource Development and Analysis, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
4
|
Ueda N, Zhang R, Tatsumi M, Liu TY, Kitayama S, Yasui Y, Sugai S, Iwama T, Senju S, Okada S, Nakatsura T, Kuzushima K, Kiyoi H, Naoe T, Kaneko S, Uemura Y. BCR-ABL-specific CD4 + T-helper cells promote the priming of antigen-specific cytotoxic T cells via dendritic cells. Cell Mol Immunol 2018; 15:15-26. [PMID: 27181332 PMCID: PMC5827172 DOI: 10.1038/cmi.2016.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 12/18/2022] Open
Abstract
The advent of tyrosine kinase inhibitor (TKI) therapy markedly improved the outcome of patients with chronic-phase chronic myeloid leukemia (CML). However, the poor prognosis of patients with advanced-phase CML and the lifelong dependency on TKIs are remaining challenges; therefore, an effective therapeutic has been sought. The BCR-ABL p210 fusion protein's junction region represents a leukemia-specific neoantigen and is thus an attractive target for antigen-specific T-cell immunotherapy. BCR-ABL p210 fusion-region-specific CD4+ T-helper (Th) cells possess antileukemic potential, but their function remains unclear. In this study, we established a BCR-ABL p210 b3a2 fusion-region-specific CD4+ Th-cell clone (b3a2-specific Th clone) and examined its dendritic cell (DC)-mediated antileukemic potential. The b3a2-specific Th clone recognized the b3a2 peptide in the context of HLA-DRB1*09:01 and exhibited a Th1 profile. Activation of this clone through T-cell antigen receptor stimulation triggered DC maturation, as indicated by upregulated production of CD86 and IL-12p70 by DCs, which depended on CD40 ligation by CD40L expressed on b3a2-specific Th cells. Moreover, in the presence of HLA-A*24:02-restricted Wilms tumor 1 (WT1)235-243 peptide, DCs conditioned by b3a2-specific Th cells efficiently stimulated the primary expansion of WTI-specific cytotoxic T lymphocytes (CTLs). The expanded CTLs were cytotoxic toward WT1235-243-peptide-loaded HLA-A*24:02-positive cell lines and exerted a potent antileukemic effect in vivo. However, the b3a2-specific Th-clone-mediated antileukemic CTL responses were strongly inhibited by both TKIs and interferon-α. Our findings indicate a crucial role of b3a2-specific Th cells in leukemia antigen-specific CTL-mediated immunity and provide an experimental basis for establishing novel CML immunotherapies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Clone Cells
- Cross-Priming/drug effects
- Cross-Priming/immunology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Epitopes/immunology
- Fusion Proteins, bcr-abl/metabolism
- HLA-DR Serological Subtypes/metabolism
- Humans
- Interferon-alpha/pharmacology
- Interleukin-12/biosynthesis
- Leukemia/pathology
- Mice
- Mice, Inbred BALB C
- Peptides/pharmacology
- Phenotype
- Protein Kinase Inhibitors/pharmacology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Norihiro Ueda
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Rong Zhang
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Minako Tatsumi
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
| | - Tian-Yi Liu
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuichi Kitayama
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yutaka Yasui
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Shiori Sugai
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Tatsuaki Iwama
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Kiyotaka Kuzushima
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasushi Uemura
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
5
|
Generation of Large Numbers of Antigen-Expressing Human Dendritic Cells Using CD14-ML Technology. PLoS One 2016; 11:e0152384. [PMID: 27050553 PMCID: PMC4822879 DOI: 10.1371/journal.pone.0152384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
We previously reported a method to expand human monocytes through lentivirus-mediated introduction of cMYC and BMI1, and we named the monocyte-derived proliferating cells, CD14-ML. CD14-ML differentiated into functional DC (CD14-ML-DC) upon addition of IL-4, resulting in the generation of a large number of DC. One drawback of this method was the extensive donor-dependent variation in proliferation efficiency. In the current study, we found that introduction of BCL2 or LYL1 along with cMYC and BMI1 was beneficial. Using the improved method, we obtained CD14-ML from all samples, regardless of whether the donors were healthy individuals or cancer patients. In vitro stimulation of peripheral blood T cells with CD14-ML-DC that were loaded with cancer antigen-derived peptides led to the establishment of CD4+ and CD8+ T cell lines that recognized the peptides. Since CD14-ML was propagated for more than 1 month, we could readily conduct genetic modification experiments. To generate CD14-ML-DC that expressed antigenic proteins, we introduced lentiviral antigen-expression vectors and subjected the cells to 2 weeks of culture for drug-selection and expansion. The resulting antigen-expressing CD14-ML-DC successfully induced CD8+ T cell lines that were reactive to CMVpp65 or MART1/MelanA, suggesting an application in vaccination therapy. Thus, this improved method enables the generation of a sufficient number of DC for vaccination therapy from a small amount of peripheral blood from cancer patients. Information on T cell epitopes is not necessary in vaccination with cancer antigen-expressing CD14-ML-DC; therefore, all patients, irrespective of HLA type, will benefit from anti-cancer therapy based on this technology.
Collapse
|
6
|
Hirayama M, Tomita Y, Yuno A, Tsukamoto H, Senju S, Imamura Y, Sayem MA, Irie A, Yoshitake Y, Fukuma D, Shinohara M, Hamada A, Jono H, Yuba E, Kono K, Yoshida K, Tsunoda T, Nakayama H, Nishimura Y. An oncofetal antigen, IMP-3-derived long peptides induce immune responses of both helper T cells and CTLs. Oncoimmunology 2016; 5:e1123368. [PMID: 27471607 PMCID: PMC4938377 DOI: 10.1080/2162402x.2015.1123368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factor II mRNA-binding protein 3 (IMP-3), an oncofetal antigen identified using genome-wide cDNA microarray analyses, is overexpressed in several malignancies. IMP-3-derived cytotoxic T lymphocyte (CTL) epitopes have been used for peptide-based immunotherapies against various cancers. In addition to CTLs, induction of tumor-associated antigen (TAA)-specific helper T (Th) cells is crucial for establishment of effective antitumor immunity. In this study, we aimed to identify IMP-3-derived long peptides (IMP-3-LPs) carrying CTL and promiscuous Th-cell epitopes for use in cancer immunotherapy. IMP-3-derived Th-cell epitopes that bind to multiple HLA-class II molecules were predicted by in silico analysis, and their immunogenicity was determined by utilizing human T cells. We identified two highly immunogenic IMP-3-LPs presented by multiple HLA-class II molecules. One of the IMP-3-LPs encompassed two CTL epitopes that have been used for peptide-vaccine immunotherapy in ongoing clinical trials. IMP-3-LPs-specific Th cells responded to autologous dendritic cells (DCs) loaded with the recombinant IMP-3 proteins, suggesting that these s (LPs) can be naturally processed and presented. The IMP-3-LPs and specific Th cells augmented the expansion of IMP-3-specific CTLs, which was further enhanced by programmed cell death-1 (PD-1) blockade. In addition, IMP-3-LP encapsulated in liposomes was efficiently cross-presented in vitro, and this LP successfully cross-primed CTLs in HLA-A2 transgenic mice (Tgm) in vivo. Furthermore, one of the IMP-3-LPs induced IMP-3-specific Th cells from peripheral blood mononuclear cells (PBMCs) of head-and-neck malignant tumor (HNMT) patients. These findings suggest the potential usefulness of IMP-3-LPs in propagating both Th cells and CTLs and may have implications for IMP-3-LPs-based cancer immunotherapy.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Tomita
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Yuno
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotake Tsukamoto
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Yuya Imamura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mohammad Abu Sayem
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Atsushi Irie
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Daiki Fukuma
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Akinobu Hamada
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan; Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan; Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , Sakai, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , Sakai, Japan
| | - Koji Yoshida
- OncoTherapy Science Incorporation, Research and Development Division, Kawasaki, Japan; Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, the University of Tokyo, Tokyo, Japan; AstraZeneca K.K., Oncology, Medical, Tokyo, Japan
| | - Takuya Tsunoda
- OncoTherapy Science Incorporation, Research and Development Division, Kawasaki, Japan; Merck-Living Innovation, Tokyo, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| |
Collapse
|
7
|
Sayem MA, Tomita Y, Yuno A, Hirayama M, Irie A, Tsukamoto H, Senju S, Yuba E, Yoshikawa T, Kono K, Nakatsura T, Nishimura Y. Identification of glypican-3-derived long peptides activating both CD8 + and CD4 + T cells; prolonged overall survival in cancer patients with Th cell response. Oncoimmunology 2015; 5:e1062209. [PMID: 26942076 PMCID: PMC4760284 DOI: 10.1080/2162402x.2015.1062209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 12/26/2022] Open
Abstract
In a recent phase I clinical trial, a vaccine consisting of glypican-3 (GPC3)-derived CTL epitopes was found to be safe and induced measurable immune and clinical responses in patients with hepatocellular carcinoma (HCC). The aim of this study was to identify GPC3-derived long peptides (GPC3-LPs) carrying promiscuous HLA class II-restricted T helper (Th) cell epitopes. Using a computer algorithm, we predicted GPC3-LPs that can bind to promiscuous HLA class II molecules. Their antigenicity for induction of specific CD4+ T cells in healthy donors or patients with HCC, before and after vaccination with GPC3-SPs, was proven by IFNγ enzyme-linked immunospot assays. Natural processing of these epitopes was confirmed by the immune response of helper T cells to dendritic cells (DCs) loaded with GPC3 proteins. Cross-presentation capacity was assessed in vitro using human DCs and LPs encapsulated in liposomes and in vivo in HLA-A2 transgenic mice (Tgm). All five LPs could induce Th1 cells and were presented by several frequently occurring HLA class II molecules in vitro. Four of them were likely to be naturally processed. One of the LPs encapsulated in liposomes was well cross-presented in vitro; it cross-primed CTLs in HLA-A2 Tgm. LP-specific and HLA class II-restricted CD4+ T-cell responses were observed in 14 of 20 HCC patients vaccinated with GPC3-SPs. Repeated vaccinations enhanced GPC3-LP-specific responses in 8 of 13 patients with HCC. Moreover, the presence of the specific Th cell was correlated with prolonged overall survival (OS). GPC3-LPs can be useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Mohammad A Sayem
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan; Department of Biotechnology and Genetic Engineering; Mawlana Bhashani Science and Technology University; Tangail, Bangladesh
| | - Yusuke Tomita
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan; Department of Respiratory Medicine; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Akira Yuno
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan; Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan; Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Atsushi Irie
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University ; Kumamoto, Japan
| | - Hirotake Tsukamoto
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University ; Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University ; Kumamoto, Japan
| | - Eiji Yuba
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University ; Sakai, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy; Exploratory Oncology Research and Clinical Trial Center; National Cancer Center ; Kashiwa, Japan
| | - Kenji Kono
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University ; Sakai, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy; Exploratory Oncology Research and Clinical Trial Center; National Cancer Center ; Kashiwa, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University ; Kumamoto, Japan
| |
Collapse
|
8
|
Tomita Y, Yuno A, Tsukamoto H, Senju S, Yoshimura S, Osawa R, Kuroda Y, Hirayama M, Irie A, Hamada A, Jono H, Yoshida K, Tsunoda T, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y. Identification of CDCA1-derived long peptides bearing both CD4+ and CD8+ T-cell epitopes: CDCA1-specific CD4+ T-cell immunity in cancer patients. Int J Cancer 2014; 134:352-66. [PMID: 24734272 DOI: 10.1002/ijc.28376] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We recently identified a novel cancer-testis antigen, cell division cycle associated 1 (CDCA1) using genome-wide cDNA microarray analysis, and CDCA1-derived cytotoxic T lymphocyte (CTL)-epitopes. In this study, we attempted to identify CDCA1-derived long peptides (LPs) that induce both CD4+ helper T (Th) cells and CTLs. We combined information from a recently developed computer algorithm predicting HLA class II-binding peptides with CDCA1-derived CTL-epitope sequences presented by HLA-A2 (A*02:01) or HLA-A24 (A*24:02) to select candidate CDCA1-LPs encompassing both Th cell epitopes and CTL-epitopes. We studied the immunogenicity of CDCA1-LPs and the cross-priming potential of LPs bearing CTL-epitopes in both human in vitro and HLA-class I transgenic mice in vivo. Then we analyzed the Th cell response to CDCA1 in head-and-neck cancer (HNC) patients before and after vaccination with a CDCA1-derived CTL-epitope peptide using IFN-γ enzyme-linked immunospot assays. We identified two CDCA1-LPs, CDCA1(39–64)-LP and CDCA1(55–78)-LP, which encompass naturally processed epitopes recognized by Th cells and CTLs. CDCA1-specific CTLs were induced through cross-presentation of CDCA1-LPs in vitro and in vivo. In addition, CDCA1-specific Th cells enhanced induction of CDCA1-specific CTLs. Furthermore, significant frequencies of CDCA1-specific Th cell responses were detected after short-term in vitro stimulation of peripheral blood mononuclear cells (PBMCs) with CDCA1-LPs in HNC patients (CDCA1(39–64)-LP, 74%; CDCA1(55–78)-LP, 68%), but not in healthy donors. These are the first results demonstrating the presence of CDCA1-specific Th cell responses in HNC patients and underline the possible utility of CDCA1-LPs for propagation of both CDCA1-specific Th cells and CTLs.
Collapse
|
9
|
Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y, Hirayama M, Imamura Y, Yatsuda J, Sayem MA, Irie A, Hamada A, Jono H, Yoshida K, Tsunoda T, Daigo Y, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y. Identification of immunogenic LY6K long peptide encompassing both CD4 + and CD8 + T-cell epitopes and eliciting CD4 + T-cell immunity in patients with malignant disease. Oncoimmunology 2014; 3:e28100. [PMID: 25340007 PMCID: PMC4203508 DOI: 10.4161/onci.28100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 12/13/2022] Open
Abstract
Identification of peptides that activate both tumor-specific helper T (Th) cells and cytotoxic T lymphocytes (CTLs) are important for the induction of effective antitumor immune responses. We focused on a long peptide (LP) derived from lymphocyte antigen 6 complex locus K (LY6K) encompassing both candidate Th epitopes and a known CTL epitope. Using IFNγ ELISPOT assays as a marker of activated T cells, we studied the immunogenicity and cross-priming potential of LY6K-LP, assaying human immune cell responses in vitro and immunologic activities in HLA-A24 transgenic mice in vivo. We identified LY6K172–191-LP as an effective immunogen spanning naturally processed epitopes recognized by T helper type 1 (Th1) cells and CTLs. LY6K-specific CTLs were induced through cross-presentation of LY6K172–191-LP in vitro and in vivo. In addition, LY6K172–191-LP enhanced induction of LY6K-specific CTLs among the peripheral blood mononuclear cells (PBMCs) of head-and-neck malignant tumor (HNMT) patients. LY6K172–191-LP-specific Th1 immunologic response following 1 week in vitro stimulation of PBMCs with LY6K172–191-LP were detected in 16 of 21 HNMT patients (76%) vaccinated with CTL-epitope peptides and 1 of 11 HNMT patients (9%) prior to vaccination, but not in 9 healthy donors. Our results are the first to demonstrate the presence of LY6K-specific Th1 cell responses in HNMT patients and underscore the possible utility of LY6K172–191-LP for the induction and propagation of both LY6K-specific Th1 cells and CTLs.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Respiratory Medicine; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Akira Yuno
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Hirotake Tsukamoto
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yasuhiro Kuroda
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yuya Imamura
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Junji Yatsuda
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Mohammad Abu Sayem
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Biotechnology and Genetic Engineering; Mawlana Bhashani Science and Technology University; Tangail, Bangladesh
| | - Atsushi Irie
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Akinobu Hamada
- Department of Clinical Pharmaceutical Sciences; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto, Japan
| | - Koji Yoshida
- Laboratory of Molecular Medicine; Human Genome Center; Institute of Medical Science; The University of Tokyo; Tokyo, Japan ; OncoTherapy Science Incorporation; Research and Development Division; Kanagawa, Japan
| | - Takuya Tsunoda
- Laboratory of Molecular Medicine; Human Genome Center; Institute of Medical Science; The University of Tokyo; Tokyo, Japan ; OncoTherapy Science Incorporation; Research and Development Division; Kanagawa, Japan
| | - Yataro Daigo
- Laboratory of Molecular Medicine; Human Genome Center; Institute of Medical Science; The University of Tokyo; Tokyo, Japan ; Department of Medical Oncology and Cancer Center; Shiga University of Medical Science; Otsu, Japan
| | - Hirotsugu Kohrogi
- Department of Respiratory Medicine; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yusuke Nakamura
- Department of Clinical Pharmaceutical Sciences; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Medicine; University of Chicago; Chicago, IL USA
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| |
Collapse
|
10
|
Haruta M, Tomita Y, Imamura Y, Matsumura K, Ikeda T, Takamatsu K, Nishimura Y, Senju S. Generation of a large number of functional dendritic cells from human monocytes expanded by forced expression of cMYC plus BMI1. Hum Immunol 2013; 74:1400-8. [PMID: 23811433 DOI: 10.1016/j.humimm.2013.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/03/2013] [Accepted: 05/29/2013] [Indexed: 11/28/2022]
Abstract
Anticancer vaccination therapies with monocyte-derived dendritic cells (DC) are widely conducted. A large number of primary monocytes (approximately 10(8) cells) are needed to generate the number of DC required to achieve an effect upon vaccination, and monocytes are usually purified from peripheral blood mononuclear cells obtained by apheresis procedure, which is somehow invasive for cancer patients. As a means to facilitate the generation of DC for therapeutic use, we herein report a method to amplify human monocytes. We found that lentivirus-mediated transduction of cMYC along with BMI1 induced proliferation of CD14(+) monocytes derived from 9 out of 12 blood donors, and we named the monocyte-derived proliferating cells CD14-ML. Their proliferation continued for 3-5 weeks in the presence of M-CSF and GM-CSF, resulting in 20-1000-fold amplification. Importantly, the expanded CD14-ML differentiated into fully functional DC (CD14-ML-DC) upon the addition of IL-4 to the culture. We successfully stimulated autologous CD8(+) T cells with CD14-ML-DC pulsed with cytomegalovirus peptide or MART-1 peptide to generate antigen-specific CTL lines. This is the first report describing the method for in vitro expansion of human peripheral blood monocytes.
Collapse
Affiliation(s)
- Miwa Haruta
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y, Hirayama M, Irie A, Kawahara K, Yatsuda J, Hamada A, Jono H, Yoshida K, Tsunoda T, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y. Identification of promiscuous KIF20A long peptides bearing both CD4+ and CD8+ T-cell epitopes: KIF20A-specific CD4+ T-cell immunity in patients with malignant tumor. Clin Cancer Res 2013; 19:4508-20. [PMID: 23714729 DOI: 10.1158/1078-0432.ccr-13-0197] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To identify long peptides (LP) derived from a novel tumor-associated antigen (TAA), kinesin family member 20A (KIF20A), which induce tumor-specific T-helper type 1 (TH1) cells and CTLs. EXPERIMENTAL DESIGN We combined information from a recently developed computer algorithm predicting HLA class II-binding peptides with KIF20A-derived CTL-epitope sequences presented by HLA-A2 (A*02:01) or HLA-A24 (A*24:02) to select candidate promiscuous TH1-cell epitopes containing CTL epitopes. Peripheral blood mononuclear cells (PBMC) derived from healthy donors or patients with head-and-neck malignant tumor (HNMT) were used to study the immunogenicity of KIF20A-LPs, and the in vitro cross-priming potential of KIF20A-LPs bearing CTL epitopes. We used HLA-A24 transgenic mice to address whether vaccination with KIF20A-LP induces efficient cross-priming of CTLs in vivo. The TH1-cell response to KIF20A-LPs in HNMT patients receiving immunotherapy with TAA-derived CTL-epitope peptides was analyzed using IFN-γ enzyme-linked immunospot assays. RESULTS We identified promiscuous KIF20A-LPs bearing naturally processed epitopes recognized by CD4(+) T cells and CTLs. KIF20A-specific CTLs were induced by vaccination with a KIF20A-LP in vivo. KIF20A expression was detected in 55% of HNMT by immunohistochemistry, and significant frequencies of KIF20A-specific TH1 cell responses were detected after short-term in vitro stimulation of PBMCs with KIF20A-LPs in 50% of HNMT patients, but not in healthy donors. Furthermore, these responses were associated with KIF20A expression in HNMT tissues. CONCLUSIONS These are the first results showing the presence of KIF20A-specific TH1 cell responses in HNMT patients and underline the possible utility of KIF20A-LPs for propagation of TH1 cells and CTLs.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells. Gene Ther 2012; 20:504-13. [DOI: 10.1038/gt.2012.59] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Senju S, Matsunaga Y, Fukushima S, Hirata S, Motomura Y, Fukuma D, Matsuyoshi H, Nishimura Y. Immunotherapy with pluripotent stem cell-derived dendritic cells. Semin Immunopathol 2011; 33:603-12. [DOI: 10.1007/s00281-011-0263-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/15/2011] [Indexed: 01/29/2023]
|
14
|
Senju S, Haruta M, Matsumura K, Matsunaga Y, Fukushima S, Ikeda T, Takamatsu K, Irie A, Nishimura Y. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy. Gene Ther 2011; 18:874-83. [PMID: 21430784 DOI: 10.1038/gt.2011.22] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This report describes generation of dendritic cells (DCs) and macrophages from human induced pluripotent stem (iPS) cells. iPS cell-derived DC (iPS-DC) exhibited the morphology of typical DC and function of T-cell stimulation and antigen presentation. iPS-DC loaded with cytomegalovirus (CMV) peptide induced vigorous expansion of CMV-specific autologous CD8+ T cells. Macrophages (iPS-MP) with activity of zymosan phagocytosis and C5a-induced chemotaxis were also generated from iPS cells. Genetically modified iPS-MPs were generated by the introduction of expression vectors into undifferentiated iPS cells, isolation of transfectant iPS cell clone and subsequent differentiation. By this procedure, we generated iPS-MP expressing a membrane-bound form of single chain antibody (scFv) specific to amyloid β (Aβ), the causal protein of Alzheimer's disease. The scFv-transfectant iPS-MP exhibited efficient Aβ-specific phagocytosis activity. iPS-MP expressing CD20-specific scFv engulfed and killed BALL-1 B-cell leukemia cells. Anti-BALL-1 effect of iPS-MP in vivo was demonstrated in a xeno-transplantation model using severe combined immunodeficient mice. In addition, we established a xeno-free culture protocol to generate iPS-DC and iPS-MP. Collectively, we demonstrated the possibility of application of iPS-DC and macrophages to cell therapy.
Collapse
Affiliation(s)
- S Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rojas-Villarraga A, Botello-Corzo D, Anaya JM. HLA-Class II in Latin American patients with type 1 diabetes. Autoimmun Rev 2010; 9:666-73. [DOI: 10.1016/j.autrev.2010.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/17/2010] [Indexed: 12/28/2022]
|
16
|
Pluripotent stem cells as source of dendritic cells for immune therapy. Int J Hematol 2010; 91:392-400. [PMID: 20155337 DOI: 10.1007/s12185-010-0520-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/24/2009] [Accepted: 11/26/2009] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DC) are the most potent antigen-presenting cells. In vivo transfer of antigen-bearing DC has proven efficient in priming T cell responses specific to the antigen. DC-based cellular vaccination is now regarded as a powerful means for immunotherapy, especially for anti-cancer immunotherapy. Clinical trials of therapy with DC pulsed with peptide antigens or genetically modified to present antigens are currently carried out in many institutions. In addition, antigen-specific negative regulation of immune response by DC is considered to be a promising approach for treatments of autoimmune diseases and also for regulation of allo-reactive immune response causing graft rejection and GVHD in transplantation medicine. DC for transfer therapy are now generated by in vitro differentiation of peripheral blood monocytes of the patients. However, there is a limitation in the number of available monocytes, and the DC-differentiation potential of monocytes varies depending on the blood donor. Embryonic stem (ES) cells possess both pluripotency and infinite propagation capacity. We consider ES cells to be an ideal source for DC to be used in immunotherapy. Several groups, including us, have developed methods to generate DC from ES cells. This review introduces the studies on generation, characterization, and genetic modification of DC derived from ES cells or induced pluripotent stem (iPS) cells. The issues to be resolved before clinical application of pluripotent stem cell-derived DC will also be discussed.
Collapse
|
17
|
Senju S, Suemori H, Zembutsu H, Uemura Y, Hirata S, Fukuma D, Matsuyoshi H, Shimomura M, Haruta M, Fukushima S, Matsunaga Y, Katagiri T, Nakamura Y, Furuya M, Nakatsuji N, Nishimura Y. Genetically Manipulated Human Embryonic Stem Cell-Derived Dendritic Cells with Immune Regulatory Function. Stem Cells 2007; 25:2720-9. [PMID: 17690179 DOI: 10.1634/stemcells.2007-0321] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetically manipulated dendritic cells (DC) are considered to be a promising means for antigen-specific immune therapy. This study reports the generation, characterization, and genetic modification of DC derived from human embryonic stem (ES) cells. The human ES cell-derived DC (ES-DC) expressed surface molecules typically expressed by DC and had the capacities to stimulate allogeneic T lymphocytes and to process and present protein antigen in the context of histocompatibility leukocyte antigen (HLA) class II molecule. Genetic modification of human ES-DC can be accomplished without the use of viral vectors, by the introduction of expression vector plasmids into undifferentiated ES cells by electroporation and subsequent induction of differentiation of the transfectant ES cell clones to ES-DC. ES-DC introduced with invariant chain-based antigen-presenting vectors by this procedure stimulated HLA-DR-restricted antigen-specific T cells in the absence of exogenous antigen. Forced expression of programmed death-1-ligand-1 in ES-DC resulted in the reduction of the proliferative response of allogeneic T cells cocultured with the ES-DC. Generation and genetic modification of ES-DC from nonhuman primate (cynomolgus monkey) ES cells was also achieved by the currently established method. ES-DC technology is therefore considered to be a novel means for immune therapy.
Collapse
Affiliation(s)
- Satoru Senju
- Department of Immunogenetics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shaw BE, Gooley TA, Malkki M, Madrigal JA, Begovich AB, Horowitz MM, Gratwohl A, Ringdén O, Marsh SGE, Petersdorf EW. The importance of HLA-DPB1 in unrelated donor hematopoietic cell transplantation. Blood 2007; 110:4560-6. [PMID: 17726164 DOI: 10.1182/blood-2007-06-095265] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic cell transplantation (HCT) from an HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 allele-matched unrelated donor is a well-recognized life-saving treatment modality for patients with hematologic disorders. The morbidity and mortality from clinically significant acute graft-versus-host disease (aGVHD) remains a limitation. The extent to which transplantation outcome may be improved with donor matching for HLA-DP is not well defined. The risks of aGVHD, relapse, and mortality associated with HLA-DPB1 allele mismatching were determined in 5929 patients who received a myeloablative HCT from an HLA-A-, HLA-B-, HLA-C-, HLA-DRB1-, and HLA-DQB1-matched or -mismatched donor. There was a statistically significantly higher risk of both grades 2 to 4 aGVHD (odds ratio [OR] = 1.33; P < .001) and grades 3 to 4 aGVHD (OR = 1.26; P < .001) after HCT from an HLA-DPB1-mismatched donor compared with a matched donor. The increased risk of aGVHD was accompanied by a statistically significantly decrease in disease relapse (hazard ratio [HR] = 0.82; P = .01). HLA-DPB1 functions as a classical transplantation antigen. The increased risk of GVHD associated with HLA-DPB1 mismatching is accompanied by a lower risk of relapse. Knowledge of the DPB1 matching status prior to transplantation will aid in more precise risk stratification for the individual patient.
Collapse
|
19
|
Di Lorenzo TP, Peakman M, Roep BO. Translational mini-review series on type 1 diabetes: Systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 2007; 148:1-16. [PMID: 17349009 PMCID: PMC1868845 DOI: 10.1111/j.1365-2249.2006.03244.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
T cell epitopes represent the molecular code words through which the adaptive immune system communicates. In the context of a T cell-mediated autoimmune disease such as type 1 diabetes, CD4 and CD8 T cell recognition of islet autoantigenic epitopes is a key step in the autoimmune cascade. Epitope recognition takes place during the generation of tolerance, during its loss as the disease process is initiated, and during epitope spreading as islet cell damage is perpetuated. Epitope recognition is also a potentially critical element in therapeutic interventions such as antigen-specific immunotherapy. T cell epitope discovery, therefore, is an important component of type 1 diabetes research, in both human and murine models. With this in mind, in this review we present a comprehensive guide to epitopes that have been identified as T cell targets in autoimmune diabetes. Targets of both CD4 and CD8 T cells are listed for human type 1 diabetes, for humanized [human leucocyte antigen (HLA)-transgenic] mouse models, and for the major spontaneous disease model, the non-obese diabetic (NOD) mouse. Importantly, for each epitope we provide an analysis of the relative stringency with which it has been identified, including whether recognition is spontaneous or induced and whether there is evidence that the epitope is generated from the native protein by natural antigen processing. This analysis provides an important resource for investigating diabetes pathogenesis, for developing antigen-specific therapies, and for developing strategies for T cell monitoring during disease development and therapeutic intervention.
Collapse
Affiliation(s)
- T P Di Lorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | |
Collapse
|
20
|
Sobel DO, Creswell K. Characterization of anti-islet cytotoxic human T-cell clones from patients with type 1 diabetes mellitus. Autoimmunity 2006; 39:323-32. [PMID: 16891221 DOI: 10.1080/08916930600720753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To identify important anti-islet T-cells and their target antigen(s), we have isolated and characterized seventeen human T-cell clones which are reactive to an extract of rat insulinoma (RIN) cells from three children with new onset type 1 diabetes mellitus (T1D). Of these 17 clones, 15 were found tissue specific. Six of eight tested tissue specific clones did not recognize known islet antigens such as GAD, 52 kDa islet protein, insulin, ICA512, and heat shock protein 60 (hsp60), suggesting that these clones recognize an autoantigen not previously identified. All tested clones were phenotypically CD4 and functionally Th0 or Th0/Th1 cells. One RIN extract reactive clone (2E9) recognized hsp60 and was CD4 and TCR alpha/beta positive. This clone also proliferated in response to human and rat islets suggesting that the antigen is conserved between species. This clone and 75% of all the tested RIN reactive clones exhibited anti-islet cytotoxicity by lysing target cells coated with RIN extract. HLA DR determinants may play a role in this cytotoxic activity since preincubation with HLA DR antibody decreased the anti-islet cytoxicity of the two tested clones. In conclusion, we have isolated RIN reactive CD4+T-cell clones from diabetic subjects, six of which appears tissue specific and non-reactive to putative important islet antigens, and in turn may be recognizing yet undiscovered islet antigens. The high frequency anti-islet cytotoxic properties of the islet reactive clones provides evidence for a role of CD4+ cytotoxic T-lymphocytes in the diabetic process. Further, the isolation of hsp60 reactive clone with anti-islet cytotoxic properties suggests that cell mediated immunity against hsp60 may be important in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Douglas O Sobel
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20007-2197, USA.
| | | |
Collapse
|
21
|
Chen Z, de Kauwe AL, Keech C, Wijburg O, Simpfendorfer K, Alexander WS, McCluskey J. Humanized transgenic mice expressing HLA DR4-DQ3 haplotype: reconstitution of phenotype and HLA-restricted T-cell responses. ACTA ACUST UNITED AC 2006; 68:210-9. [PMID: 16948641 DOI: 10.1111/j.1399-0039.2006.00656.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many autoimmune conditions have close genetic linkages to particular human histocompatibility leukocyte antigen (HLA) class II genes. With the aim of establishing a murine model of autoimmune disease, we have generated an HLA DR4-DQ3 haplotype transgenic (Tg) mouse that expresses a 440-kb yeast artificial chromosome harbouring DRA, DRB1*040101, DRB4*010301, DQA1*030101, DQB1*0302 and all the internal regulatory segments. This Tg mouse line was crossed to human CD4 (hCD4) Tg mice and endogenous class II knockout mice (I-A(o/o) and I-E(o/o)) lines to generate a DR4-DQ3.hCD4.IAE(o/o) Tg line. The Tg DR and DQ molecules are expressed on the physiological cell types in these animals, i.e. on most B cells (>85%), dendritic cells (DCs) and macrophages but not on T cells, with levels of expression comparable with those of human B cells (where DR > DQ expression). The DR4/DQ3 transgenes fully reconstituted the CD4 T-cell compartment, in both the thymus and the periphery, and the analysis of the T-cell receptor repertoire in the Tg mice confirmed that these class II molecules were able to mediate thymic selection of a broad range of Vbeta families. HLA DR4- and DQ3-restricted T-cell responses were elicited following immunization with known T-cell determinants presented by these molecules. Furthermore, the DR4-DQ3-restricted CD4(+) T cells conferred protective antibody-mediated immunity against an otherwise lethal infection with Salmonella enterica var. typhimurium. These new DR4-DQ3 Tg mice should prove to be valuable tools for dissecting the importance of this class II haplotype in autoimmune disorders like rheumatoid arthritis.
Collapse
Affiliation(s)
- Z Chen
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Shaw BE, Marsh SGE, Mayor NP, Russell NH, Madrigal JA. HLA-DPB1 matching status has significant implications for recipients of unrelated donor stem cell transplants. Blood 2005; 107:1220-6. [PMID: 16234356 DOI: 10.1182/blood-2005-08-3121] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies in unrelated donor (UD) hematopoietic stem cell transplantations (HSCT) show an effect of the matching status of HLA-DPB1 on complications. We analyzed 423 UD-HSCT pairs. Most protocols included T-cell depletion (TCD). All pairs had high-resolution tissue typing performed for 6 HLA loci. Two hundred eighty-two pairs were matched at 10 of 10 alleles (29% were DPB1 matched). In 141 HLA-mismatched pairs, 28% were matched for DPB1. In the 10 of 10 matched pairs (n = 282), the 3-year probability of relapse was 61%. This was significantly higher in DPB1-matched pairs (74%) as compared with DPB1-mismatched pairs (56%) (log rank, P = .001). This finding persisted in multivariate analysis. In the group overall (n = 423), relapse was also significantly increased if DPB1 was matched (log rank; P < .001). These results were similar in chronic myeloid leukemia (CML; P < .001) and acute lymphoblastic leukemia (ALL; P = .013). In ALL, DPB1-matched pairs had a significantly worse overall survival (log rank; P = .025). Thus, in recipients of TCD UD-HSCT, a match for DPB1 is associated with a significantly increased risk of disease relapse, irrespective of the matching status for the other HLA molecules. It is possible that this effect is especially apparent following TCD transplantations and invites speculation about the function of DPB1 within the immune system.
Collapse
Affiliation(s)
- Bronwen E Shaw
- Anthony Nolan Research Institute, London, United Kingdom.
| | | | | | | | | |
Collapse
|
23
|
Röhn TA, Schadendorf D, Sun Y, Nguyen XD, Roeder D, Langen H, Vogt AB, Kropshofer H. Melanoma cell necrosis facilitates transfer of specific sets of antigens onto MHC class II molecules of dendritic cells. Eur J Immunol 2005; 35:2826-39. [PMID: 16163671 DOI: 10.1002/eji.200526299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vaccine strategies that target dendritic cells (DC) in order to elicit immunity against tumors are the subject of intense research. For the induction and maintenance of anti-tumor immunity, CD4+ helper T cells are often required, which need to see appropriate MHC class II-peptide complexes on DC. So far, it remained widely unclear what type of tumor cells can feed the MHC class II processing pathway of DC with what type of antigens. Here, we report that peptide loading onto MHC class II molecules of myeloid DC is facilitated by melanoma cells undergoing necrotic rather than apoptotic cell death. Importantly, the set of MHC class II-associated peptides induced by necrotic tumor cells differed from those found upon engagement of apoptotic tumor cells. This may be due to the fact that only necrotic cells liberated heat shock proteins, which bind tumor-derived peptides and thereby may promote processing by DC. The potential of DC to activate T cells was kinetically controlled through their antigen receptivity: CD4+ T cells were easily stimulated upon encountering antigen early in DC maturation, whereas antigen capture at later maturation stages favored activation of CD8+ T cells. These findings may aid in designing future vaccination strategies and in identifying novel tumor-specific helper T cell antigens.
Collapse
Affiliation(s)
- Till A Röhn
- Basel Institute for Immunology, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen YZ, Lai ZF, Nishimura Y. Coculture of Th cells with interleukin (IL)-7 in the absence of antigenic stimuli induced T-cell anergy reversed by IL-15. Hum Immunol 2005; 66:677-87. [PMID: 15993713 DOI: 10.1016/j.humimm.2005.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 02/14/2005] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
Interleukin-7 (IL-7) is an important survival factor for T cells. We report here for the first time that it has another important role, facilitating T-cell clonal unresponsiveness, or anergy. The anergy was induced by a 20-day coculture of activated-human CD4(+) T-cell clones with IL-7 and irradiated peripheral blood mononuclear cells without antigenic stimuli. T-cell survival, but not T-cell anergy induction, was dependent on direct cell contacts between T cells and irradiated peripheral blood mononuclear cells. The anergic T cells exhibited no or very low expression of IL-7 receptor alpha chain (IL-7Ralpha), IL-2 receptor alpha chain (IL-2Ralpha), and common gamma chain (gammac), and did not express cytotoxic T-lymphocyte-associated protein 4, but expressed IL-15Ralpha. Coculture for 3 to 9 days of anergic T cells with a T-cell-activating cytokine IL-15, but not IL-2, restored the responsiveness of IL-7-induced anergic T cells together with reexpressions of IL-7Ralpha, IL-2Ralpha, and gammac. The anergy induction by IL-7 and restoration of responsiveness by IL-15 suggest novel mechanisms for regulation of helper T-cell responses, induction of peripheral tolerance, and breakdown of T-cell self-tolerance.
Collapse
Affiliation(s)
- Yu-Zhen Chen
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | |
Collapse
|
25
|
Wong FS, Wen L. What can the HLA transgenic mouse tell us about autoimmune diabetes? Diabetologia 2004; 47:1476-87. [PMID: 15349728 DOI: 10.1007/s00125-004-1505-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 07/27/2004] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes mellitus is a polygenic disease strongly associated with the class II molecules DR3, 4 and the linked DQ2, 8 alleles. These molecules play an important role in presentation of peptide antigens after intracellular processing to CD4 T lymphocytes. A number of in vitro approaches have been used to elucidate the molecular basis for the association of particular HLA alleles with susceptibility to or protection from Type 1 diabetes mellitus. These have focused on the structure of the antigen-presenting molecules, together with their peptides. Binding studies, peptide elution, molecular modelling and crystallisation of the peptide MHC complex have between them made it possible to define the peptide-binding regions and to examine the stability of binding of peptides from putative autoantigens. It is difficult to study the role of these molecules in vivo in humans, and HLA transgenic mice have been generated to overcome this problem. Studies of mice expressing the HLA class II alleles associated with diabetes have shown that the presence of HLA molecules alone does not cause disease except in the presence of an islet "insult", even when this "insult" would in itself be insufficient to precipitate disease in the absence of the HLA class II transgene. HLA transgenic mice offer a way to elucidate the in vivo role of these molecules, and could help the development of targeted immunotherapy.
Collapse
Affiliation(s)
- F S Wong
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
26
|
Affiliation(s)
- Timothy I M Tree
- Department of Immunobiology, Guy's, King's, and St. Thomas' School of Medicine, King's College London, Denmark Hill Campus, London SE5 9NU, UK
| | | |
Collapse
|
27
|
Uemura Y, Senju S, Fujii S, Iwai LK, Maenaka K, Tabata H, Kanai T, Chen YZ, Nishimura Y. Specificity, degeneracy, and molecular mimicry in antigen recognition by HLA-Class II restricted T cell receptors: implications for clinical medicine. Mod Rheumatol 2003; 13:205-14. [PMID: 24387206 DOI: 10.3109/s10165-003-0225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract In humans, increased susceptibility to specific autoimmune diseases is closely associated with specific HLA-class II alleles. CD4(+) T cells that recognize short self-peptides in the context of HLA-class II molecules via their T cell receptor (TCR) are considered to mediate the central role of pathogenesis in autoimmunity. Although both self- and nonself-peptides are presented on HLA-class II molecules under physiological conditions, several mechanisms exist to avoid the T cell response to the self-peptide/HLA-class II complex. One of the mechanisms that account for the breakdown in immune tolerance is cross-recognition by TCR between a pathogen-derived antigen and a host antigen (molecular mimicry theory). Epidemiological studies have indicated that a number of autoimmune diseases are developed or exacerbated after infections. Therefore, elucidating the recognition nature of HLA-class II restricted TCR in detail is necessary in order to understand disease processes. A large body of evidence indicates that T cell recognition is highly degenerate, and many different peptides can activate an individual T cell. Degeneracy of TCR recognition also can appear in various physiological outcomes, ranging from full activation to strong antagonism. Here, we review the clinical implications of our findings on T cell recognition, as well as a new direction of future applications for analyses in molecular mimicry. We also describe the latest developments in methods of mapping TCR epitopes for CD4(+) T cells using a peptide epitope expression library generated in the class II-associated invariant chain peptide substituted invariant chain gene format.
Collapse
Affiliation(s)
- Yasushi Uemura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University , 1-1-1 Honjo, Kumamoto 860-8556 , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA.
| |
Collapse
|
29
|
Uemura Y, Senju S, Maenaka K, Iwai LK, Fujii S, Tabata H, Tsukamoto H, Hirata S, Chen YZ, Nishimura Y. Systematic analysis of the combinatorial nature of epitopes recognized by TCR leads to identification of mimicry epitopes for glutamic acid decarboxylase 65-specific TCRs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:947-60. [PMID: 12517961 DOI: 10.4049/jimmunol.170.2.947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulating evidence indicates that recognition by TCRs is far more degenerate than formerly presumed. Cross-recognition of microbial Ags by autoreactive T cells is implicated in the development of autoimmunity, and elucidating the recognition nature of TCRs has great significance for revelation of the disease process. A major drawback of currently used means, including positional scanning synthetic combinatorial peptide libraries, to analyze diversity of epitopes recognized by certain TCRs is that the systematic detection of cross-recognized epitopes considering the combinatorial effect of amino acids within the epitope is difficult. We devised a novel method to resolve this issue and used it to analyze cross-recognition profiles of two glutamic acid decarboxylase 65-autoreactive CD4(+) T cell clones, established from type I diabetes patients. We generated a DNA-based randomized epitope library based on the original glutamic acid decarboxylase epitope using class II-associated invariant chain peptide-substituted invariant chains. The epitope library was composed of seven sublibraries, in which three successive residues within the epitope were randomized simultaneously. Analysis of agonistic epitopes indicates that recognition by both TCRs was significantly affected by combinations of amino acids in the antigenic peptide, although the degree of combinatorial effect differed between the two TCRs. Protein database searching based on the TCR recognition profile proved successful in identifying several microbial and self-protein-derived mimicry epitopes. Some of the identified mimicry epitopes were actually produced from recombinant microbial proteins by APCs to stimulate T cell clones. Our data demonstrate the importance of the combinatorial nature of amino acid residues of epitopes in molecular mimicry.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Antigen Presentation/genetics
- Antigens, Differentiation, B-Lymphocyte/genetics
- Autoantigens/analysis
- Autoantigens/metabolism
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Cells, Cultured
- Clone Cells
- Combinatorial Chemistry Techniques/methods
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/metabolism
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Glutamate Decarboxylase/analysis
- Glutamate Decarboxylase/genetics
- Glutamate Decarboxylase/metabolism
- HLA-DR Antigens/genetics
- HLA-DRB4 Chains
- Histocompatibility Antigens Class II/genetics
- Humans
- Isoenzymes/analysis
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Ligands
- Molecular Mimicry/genetics
- Molecular Mimicry/immunology
- Molecular Sequence Data
- Peptide Library
- Peptides/genetics
- Peptides/immunology
- Peptides/isolation & purification
- Peptides/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Yasushi Uemura
- Division of Immunogenetics, Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Costa M, Saiz A, Casamitjana R, Castañer MF, Sanmartí A, Graus F, Jaraquemada D. T-cell reactivity to glutamic acid decarboxylase in stiff-man syndrome and cerebellar ataxia associated with polyendocrine autoimmunity. Clin Exp Immunol 2002; 129:471-8. [PMID: 12197888 PMCID: PMC1906483 DOI: 10.1046/j.1365-2249.2002.01931.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies to glutamic acid decarboxilase (GAD-Abs) are present in the serum of 60-80% of newly diagnosed type 1 diabetes (DM1) patients and patients with autoimmune polyendocrine syndrome (APS) associated with DM1. Higher titre of GAD-Abs are also present in the serum of 60% of patients with stiff-man syndrome (SMS) and all reported patients with cerebellar ataxia associated with polyendocrine autoimmunity (CAPA). Several studies suggest that GAD-Abs may play a critical role in the pathogenesis of SMS and CAPA but little is known about T-cell responsiveness to GAD-65 in these neurological diseases. To analyse cell-mediated responses to GAD, we studied the peripheral blood lymphocyte proliferation and cytokine responses to recombinant human GAD-65 in 5 patients with SMS, 6 with CAPA, 9 with DM1, 8 with APS and 15 control subjects. GAD-65-specific cellular proliferation was significantly higher in SMS than in CAPA, DM1, APS or controls. In contrast, only T cells from CAPA patients showed a significantly high production of interferon-gamma after GAD stimulation, compared to all other patients and controls. No differences were found for IL-4 production. These results suggest that, despite similar humoral autoreactivity, cellular responses to GAD are different between SMS and CAPA, with a greater inflammatory response in CAPA, and this difference may be relevant to the pathogenesis of these diseases.
Collapse
Affiliation(s)
- M Costa
- Immunology Unit, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Masewicz SA, Meldrum N, Gersuk V, Gaur L, Hagopian W, Moriarity L, Nepom GT. Complexity of human immune response profiles for CD4+ T cell epitopes from the diabetes autoantigen GAD65. Autoimmunity 2002; 34:231-40. [PMID: 11905849 DOI: 10.3109/08916930109014692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Complex protein antigens contain multiple potential T cell recognition epitopes, which are generated through a processing pathway involving partial antigen degradation via proteases, binding to MHC molecules, and display on the APC surface, followed by recognition via the T cell receptor. We have investigated recognition of the GAD65 protein, one of the well-characterized autoantigens in type I diabetes, among individuals carrying the HLA-DR4 haplotypes characteristic of susceptibility to IDDM. Using sets of 20-mer peptides spanning the GAD65 molecule, multiple immunostimulatory epitopes were identified, with diverse class II DR molecules functioning as the restriction element. The majority of T cell responses were restricted by DRB1 molecules; however, DRB4 restricted responses were also observed. Antigen-specific T cell clones and lines were derived from peripheral blood samples of pre-diabetic and IDDM patients and T cell recognition and response were measured. Highly variable proliferative and cytokine release profiles were observed, even among T cells specific for a single GAD65 epitope.
Collapse
Affiliation(s)
- S A Masewicz
- Virginia Mason Research Center, Seattle, WA 98101, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Matsushita S, Tanaka Y, Matsuoka T, Nakashima T. Clonal expansion of freshly isolated CD4T cells by randomized peptides and identification of peptide ligands using combinatorial peptide libraries. Eur J Immunol 2001; 31:2395-402. [PMID: 11500823 DOI: 10.1002/1521-4141(200108)31:8<2395::aid-immu2395>3.0.co;2-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We synthesized Xn (n = 9 -- 19) peptides that consist of 9 to 19 residues with random sequences. X19 is considered to deliver antigenic stimuli to CD4 T cells, because: (a) X19 induces proliferation of peripheral blood mononuclear cells (PBMC), in the presence of IL-2, which is abrogated by monoclonal antibodies to class II HLA; (b) X19 + IL-2 induces proliferation of CD4 T cell clones of distinct specificities; and (c) T cell clones recognizing the same TCR ligands with distinct V beta usage are equally stimulated by X19 + IL-2. We next co-cultured single peripheral CD4 T cells with X19 and mitomycin-treated autologous PBMC. Indeed, single T cells of CD45RA(-) memory phenotype exhibited clonal expansion, with variable rates of proliferation, when IL-4, IL-7, IL-9, IL-15 and agonistic antibody to CD29 were included in the culture. These T cell clones showed heterogeneous proliferation patterns against KGXXXXXXXXXGK-based and KGXXXXXXXXXGKGKK-based combinatorial peptides libraries, in the presence of IL-2. Pattern-match search on a T cell clone resulted in peptide ligand candidates, one of which induced proliferation, as did protein molecules carrying the corresponding sequence. These results indicate that X19 can induce proliferation of peripheral memory T cells, the peptide ligands of which can be determined using combinatorial peptide libraries.
Collapse
Affiliation(s)
- S Matsushita
- Division of Immunogenetics, Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.
| | | | | | | |
Collapse
|
33
|
Fujii S, Uemura Y, Iwai LK, Ando M, Senju S, Nishimura Y. Establishment of an expression cloning system for CD4+ T cell epitopes. Biochem Biophys Res Commun 2001; 284:1140-7. [PMID: 11414702 DOI: 10.1006/bbrc.2001.5107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported an epitope presenting vector, pCI, a derivative of a human invariant chain (Ii) expression vector, in which the class II associated invariant chain peptide (CLIP, Ii p89-101) could be substituted with antigenic peptides. In the current study, we used this vector to develop a new expression cloning system to identify CD4+ T cell epitopes. We inserted double-stranded oligo DNAs of randomized sequences into this vector and prepared an epitope-presenting library which loads randomized 13-mer peptides onto HLA class II molecules coexpressed in COS-7 cells. Utilizing this library, we isolated a cross-reactive epitope recognized by a glutamic acid decarboxylase (GAD) 65-autoreactive T cell clone established from a patient with insulin-dependent diabetes mellitus. Although the newly identified epitope (PVQLSNQWHVVGATF) was far different from the original epitope, GAD65 p116-128 (NILLQYVVKSFDR), it did have the capacity to stimulate the T cell clone comparable to that of the original GAD epitope. Our system may be applicable not only for identifying of cross-reactive epitopes for CD4+ T cells of known specificity, but also for detection of epitopes stimulatory for CD4+ T cells the epitopes of which are unknown.
Collapse
Affiliation(s)
- S Fujii
- Division of Immunogenetics, Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Nishimura Y, Ito H, Fujii S, Tabata H, Tokano Y, Chen YZ, Matsuda I, Mitsuya H, Kira J, Hashimoto H, Senju S, Matsushita S. Molecular and cellular analyses of HLA class II-associated susceptibility to autoimmune diseases in the Japanese population. Mod Rheumatol 2001; 11:103-12. [PMID: 24383685 DOI: 10.3109/s101650170020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract It is well known that individuals who are positive for particular HLA class II alleles show a high risk of developing autoimmune diseases. HLA class II molecules expressed on antigen-presenting cells present antigenic peptides to CD4(+) T cells. Their extensive polymorphism affects the structures of peptides bound to HLA class II molecules to create individual differences in immune responses to antigenic peptides. In order to gain a better understanding of mechanisms of the association between HLA class II alleles and susceptibility to autoimmune diseases, it is important to identify self-peptides presented by disease-susceptible HLA class II molecules and triggering disease-causative T cells. Many of the autoimmune diseases are observed in all ethnic groups, whereas the incidence of diseases, clinical manifestations and disease-susceptible HLA class II alleles are different among various ethnic groups for some autoimmune diseases. These phenomena suggest that differences in autoimmune self-peptide(s) in the context of disease-susceptible HLA class II molecules may cause these differences. Therefore, comparisons among disease-susceptible HLA class II alleles, autoantigenic peptides, and clinical manifestations of autoimmune diseases in different ethnic groups would be helpful in elucidating the pathogenesis of the diseases. In this review, we describe our recent findings on (1) the uniqueness of both clinical manifestations and the HLA-linked genetic background of Asian-type (opticospinal form) multiple sclerosis, (2) the characteristics of glutamic acid decarboxylase 65 (GAD65) or β2-glycoprotein I (β2-GPI) autoreactive T cells in Japanese patients with insulin-dependent diabetes mellitus (IDDM) or anti-β2-GPI antibody-associated autoimmunity, respectively, and (3) the generation of an efficient delivery system of peptides to the HLA class II-restricted antigen presentation path-way by utilizing a class II-associated invariant chain peptide (CLIP)-substituted invariant chain, which may be applicable to an evaluation of the "molecular mimicry hypothesis" for the activation of autoreactive T cells.
Collapse
Affiliation(s)
- Y Nishimura
- Division of Immunogenetics, Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences , 2-2-1 Honjo, Kumamoto 860-0811 , Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abraham RS, Wen L, Marietta EV, David CS. Type 1 diabetes-predisposing MHC alleles influence the selection of glutamic acid decarboxylase (GAD) 65-specific T cells in a transgenic model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1370-9. [PMID: 11145722 DOI: 10.4049/jimmunol.166.2.1370] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic factors that contribute to the etiology of type 1 diabetes are still largely uncharacterized. However, the genes of the MHC (HLA in humans) have been consistently associated with susceptibility to disease. We have used several transgenic mice generated in our laboratory, bearing susceptible or resistant HLA alleles, in the absence of endogenous MHC class II (Abetao), to study immune responses to the autoantigen glutamic acid decarboxylase (GAD) 65 and its relevance in determining the association between autoreactivity and disease pathogenesis. Mice bearing diabetes-susceptible haplotypes, HLA DR3 (DRB1*0301) or DQ8 (DQB1*0302), singly or in combination showed spontaneous T cell reactivity to rat GAD 65, which is highly homologous to the self Ag, mouse GAD 65. The presence of diabetes-resistant or neutral alleles, such as HLA DQ6 (DQB1*0602) and DR2 (DRB1*1502) prevented the generation of any self-reactive responses to rat GAD. In addition, unmanipulated Abetao/DR3, Abetao/DQ8, and Abetao/DR3/DQ8 mice recognized specific peptides, mainly from the N-terminal region of the GAD 65 molecule. Most of these regions are conserved between human, mouse, and rat GAD 65. Further analysis revealed that the reactivity was mediated primarily by CD4(+) T cells. Stimulation of these T cells by rat GAD 65 resulted in the generation of a mixed Th1/Th2 cytokine profile in the Abetao/DR3/DQ8, Abetao/DR3, and Abetao/DQ8 mice. Thus, the presence of diabetes-associated genes determines whether immune tolerance is maintained to islet autoantigens, but autoreactivity in itself is not sufficient to induce diabetes.
Collapse
Affiliation(s)
- R S Abraham
- Department of Immunology, Mayo Clinic, Rochester, MN 55905. Department of Endocrinology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- S Baekkeskov
- Department of Medicine and Microbiology/Immunology, Diabetes Center, University of California, San Francisco, CA 94143-0534, USA.
| | | | | | | |
Collapse
|
37
|
Georgantas RW, Leong KW, August JT. Antigen-specific induction of peripheral T cell tolerance in vivo by codelivery of DNA vectors encoding antigen and Fas ligand. Hum Gene Ther 2000; 11:851-8. [PMID: 10779162 DOI: 10.1089/10430340050015464] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fas ligand (FasL, CD95L) induces apoptosis in activated T cells with upregulated Fas (CD95) expression through the process termed activation-induced cell death (AICD). We postulated that coexpression of antigen and FasL within individual antigen-presenting cells would lead to antigen-specific activation of T cells and to their consequent deletion by FasL-mediated AICD. A DNA-gelatin coacervate containing transferrin cell ligand, calcium, and the lysosomatropic agent chloroquine, a formulation previously shown to achieve high-level transfection of immune and muscle cells in vivo, was used to codeliver plasmids encoding FasL and antigen. Mice developed a strong cytolytic T cell response to beta-Gal when injected with DNA encoding beta-galactosidase (LacZ) model antigen, either as naked DNA or DNA nanoparticles, but failed to respond when there was concomitant injection of nanoparticles containing both the LacZ and murine FasL DNA vectors. This loss of T cell response was systemic, specific for beta-Gal, complete when nanoparticles were administered before antigen challenge, and decreased the T cell response from prior immunization with LacZ DNA. In effect, this "tolerization" injection induced antigen-specific peripheral tolerance in study mice, and represents a possible approach to the treatment of autoimmune diseases and transplantation rejection.
Collapse
Affiliation(s)
- R W Georgantas
- Department of Pharmacology and Molecular Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
38
|
Nishimaki K, Kawamura T, Inada H, Yagawa K, Nose Y, Nabeya N, Isshiki G, Tatsumi N, Niihira S. HLA DPB1*0201 gene confers disease susceptibility in japanese with childhood onset type I diabetes, independent of HLA-DR and DQ genotypes. Diabetes Res Clin Pract 2000; 47:49-55. [PMID: 10660221 DOI: 10.1016/s0168-8227(99)00103-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HLA is an important etiologic genetic factor in Type I diabetes and specific HLA-class II genes are closely related to the onset of the disease. Many differences in the patterns of susceptible and resistant DRB1, DQA1, and DQB1 genes have been observed among various ethnic groups. We have previously shown that DRB1*0405, DRB1*0901 and DQA1*0301-DQB1*0302 were the major susceptible alleles or haplotype to Type I diabetes while DR-DQ haplotype studies suggested the important role of DR and DQ alleles in susceptibility and resistance in Japanese patients. Based on the analysis of 90 Japanese patients with childhood onset Type I diabetes and 136 unrelated healthy Japanese controls by polymerase chain reaction-restriction fragment polymorphism method (PCR-RFLP), we report here the association of Type I diabetes with DPB1*0201 (relative risk = 2.29; Pc = 0.027) in this population. Comparison of linkage disequilibrium patterns between patients and controls showed that the significantly high prevalence of DPB1*0201 among patients cannot be attributed simply to linkage disequilibrium with susceptible DRB1 alleles and DQA1-DQB1 haplotypes. Our results suggest that in addition to alleles at the DRB1, DQA1, DQB1 loci, polymorphism at DPB1 locus also influences the risk of Type I diabetes.
Collapse
Affiliation(s)
- K Nishimaki
- Department of Pediatrics, Osaka City University School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ou D, Jonsen LA, Metzger DL, Tingle AJ. CD4+ and CD8+ T-cell clones from congenital rubella syndrome patients with IDDM recognize overlapping GAD65 protein epitopes. Implications for HLA class I and II allelic linkage to disease susceptibility. Hum Immunol 1999; 60:652-64. [PMID: 10439311 DOI: 10.1016/s0198-8859(99)00037-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To fully characterize human glutamic acid decarboxylase (GAD)65 protein T-cell epitopes associated with insulin-dependent diabetes mellitus (IDDM), CTL clones specific to GAD65 protein antigens were isolated from two congenital rubella syndrome (CRS)-associated IDDM patients. Overlapping nonamer T-cell epitopes recognized by both CD4+ or CD8+ CTL clones within peptides GAD65(252-266) and GAD65(274-286) were identified as sequences bounded by GAD65(255-266) with 6/9 overlapping residues, and GAD65(276-285) with 8/9 overlapping residues, respectively, using two panels of overlapping peptide analogs in cytotoxicity assays. HLA restrictive elements of the T-cell clones were also identified using a panel of B cell lines with different HLA phenotypes as targets in cytotoxicity assays. The antigenic GAD65 peptides elicited cytotoxic responses of peptide-specific CD4+ T-cell clones in the context of HLA DRB1*0404. The CD8+ T-cell clone specific to GAD65(255-263) was found to be restricted by HLA A3 and A11. Similarly, the CD8+ T-cell clone specific to GAD65(277-285) killed peptide-sensitized target cells expressing HLA B35 and B15. The observed HLA restriction of these overlapping epitopes implies that a tandem of [DRB1*0404-A11(3)] and/or a tandem of [DRB1*0404-B35(15)] might predispose CRS patients to development of IDDM.
Collapse
Affiliation(s)
- D Ou
- Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
40
|
Nishimura Y, Kanai T, Oiso M, Tabata H, Ito H, Kira J, Chen YZ, Matsushita S. Molecular analyses of HLA class II-associated susceptibility to subtypes of autoimmune diseases unique to Asians. Int J Cardiol 1998; 66 Suppl 1:S93-104; discussion S105. [PMID: 9951808 DOI: 10.1016/s0167-5273(98)00156-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is well known that individuals positive for particular HLA-class II alleles show high risks for the development of Takayasu arteritis and other diseases caused by immunological disorders such as autoimmune diseases and allergies. HLA class II molecules present antigenic peptides to CD4+ T cells. Their extensive polymorphism affects the structures of peptides bound to HLA class II molecules to create individual differences in immune responses to antigenic peptides. To better understand the mechanisms for association between HLA class II alleles and susceptibility to autoimmune diseases, it is important to identify self-peptides presented by disease-susceptible HLA class II molecules and triggering disease-causative T cells. Many autoimmune diseases are observed in all ethnic groups, whereas the incidences of diseases, clinical manifestations and disease-susceptible HLA class II alleles are different among various ethnic groups for some autoimmune diseases. These phenomena suggest that differences in autoimmune self-peptide(s) in the context of disease-susceptible HLA class II molecules may cause these differences. Therefore, comparisons among disease-susceptible HLA class II alleles, autoimmune self-peptides and clinical manifestations of autoimmune diseases in different ethnic groups would be helpful in determining the pathogenesis of the diseases. In this paper, we describe our recent findings on: (1) the uniqueness of both clinical manifestations and HLA-linked genetic background of Asian-type (optico-spinal form) multiple sclerosis; (2) the structural characteristics of peptides bound to HLA-DQ molecules susceptible to insulin-dependent diabetes mellitus; (3) the identification of a disease-related autoantigenic peptide presented by disease-susceptible HLA-DQ molecules in Asians-specific infant onset myasthenia gravis; and (4) a manipulation of human T cell response by altered peptide ligands, as a possible candidate for new and antigen-specific immuno-suppressive therapy against autoimmune diseases.
Collapse
Affiliation(s)
- Y Nishimura
- Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences, Japan.
| | | | | | | | | | | | | | | |
Collapse
|