1
|
Zhang D, Zhao H, Li P, Wu X, Liang Y. Research Progress on Liposome Pulmonary Delivery of Mycobacterium tuberculosis Nucleic Acid Vaccine and Its Mechanism of Action. J Aerosol Med Pulm Drug Deliv 2024; 37:284-298. [PMID: 38669118 PMCID: PMC11502632 DOI: 10.1089/jamp.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Traditional vaccines have played an important role in the prevention and treatment of infectious diseases, but they still have problems such as low immunogenicity, poor stability, and difficulty in inducing lasting immune responses. In recent years, the nucleic acid vaccine has emerged as a relatively cheap and safe new vaccine. Compared with traditional vaccines, nucleic acid vaccine has some unique advantages, such as easy production and storage, scalability, and consistency between batches. However, the direct administration of naked nucleic acid vaccine is not ideal, and safer and more effective vaccine delivery systems are needed. With the rapid development of nanocarrier technology, the combination of gene therapy and nanodelivery systems has broadened the therapeutic application of molecular biology and the medical application of biological nanomaterials. Nanoparticles can be used as potential drug-delivery vehicles for the treatment of hereditary and infectious diseases. In addition, due to the advantages of lung immunity, such as rapid onset of action, good efficacy, and reduced adverse reactions, pulmonary delivery of nucleic acid vaccine has become a hot spot in the field of research. In recent years, lipid nanocarriers have become safe, efficient, and ideal materials for vaccine delivery due to their unique physical and chemical properties, which can effectively reduce the toxic side effects of drugs and achieve the effect of slow release and controlled release, and there have been a large number of studies using lipid nanocarriers to efficiently deliver target components into the body. Based on the delivery of tuberculosis (TB) nucleic acid vaccine by lipid carrier, this article systematically reviews the advantages and mechanism of liposomes as a nucleic acid vaccine delivery carrier, so as to lay a solid foundation for the faster and more effective development of new anti-TB vaccine delivery systems in the future.
Collapse
Affiliation(s)
- Danyang Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Haimei Zhao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Ping Li
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
3
|
Abstract
Introduction: Dengue virus is a global health threat, with approximately 390 million dengue infections annually. Efficient vaccines for dengue prevention are currently lacking. This review aims to summarize the current progress in dengue vaccine development.Area covered: This article discusses recent dengue vaccine developments based on the published literature and ClinicalTrials.gov website up to December 2020.Expert opinion: The first live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV), Dengvaxia, has been licensed in several countries. However, the low efficacy of this vaccine was observed in children and dengue-naïve individuals. It also increased the risk of severe dengue in people who had not been exposed to dengue. The heterologous prime-boost regimen of sequential immunization with DENVax and Dengvaxia covers four serotypes of immunogenicity, eliminating the effect of ADE. Moreover, a heterologous prime-boost regimen that combines inactivated vaccines with alum and live attenuated vaccines might increase the immunogenic response. The lack of an ideal animal model is an obstacle to the development of dengue vaccines, and the macaque model may be considered for similar immunologic responses in humans.
Collapse
Affiliation(s)
- Chung-Hao Huang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Te Tsai
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Seng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D. Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery. ACS NANO 2019; 13:3754-3782. [PMID: 30908008 DOI: 10.1021/acsnano.8b07858] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gene therapy is a promising strategy for the treatment of monogenic disorders. Non-viral gene delivery systems including lipid-based DNA therapeutics offer the opportunity to deliver an encoding gene sequence specifically to the target tissue and thus enable the expression of therapeutic proteins in diseased cells. Currently, available gene delivery approaches based on DNA are inefficient and require improvements to achieve clinical utility. In this Review, we discuss state-of-the-art lipid-based DNA delivery systems that have been investigated in a preclinical setting. We emphasize factors influencing the delivery and subsequent gene expression in vitro, ex vivo, and in vivo. In addition, we cover aspects of nanoparticle engineering and optimization for DNA therapeutics. Finally, we highlight achievements of lipid-based DNA therapies in clinical trials.
Collapse
Affiliation(s)
- Jonas Buck
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
- Department of Biochemistry and Molecular Biology , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| |
Collapse
|
5
|
Abstract
To date, there is no protective vaccine for Ebola virus infection. Safety concerns have prevented the use of live-attenuated vaccines, and forced researchers to examine new vaccine formulations. DNA vaccination is an attractive method for inducing protective immunity to a variety of pathogens, but the low immunogenicity seen in larger animals and humans has hindered its usage. Various approaches have been used to improve the immunogenicity of DNA vaccines, but the most successful, and widespread, is electroporation. Of increasing interest is the use of molecular adjuvants to produce immunomodulatory signals that can both amplify and direct the immune response. When combined, these approaches have the possibility to push DNA vaccination into the forefront of medicine.
Collapse
|
6
|
Danko JR, Kochel T, Teneza-Mora N, Luke TC, Raviprakash K, Sun P, Simmons M, Moon JE, De La Barrera R, Martinez LJ, Thomas SJ, Kenney RT, Smith L, Porter KR. Safety and Immunogenicity of a Tetravalent Dengue DNA Vaccine Administered with a Cationic Lipid-Based Adjuvant in a Phase 1 Clinical Trial. Am J Trop Med Hyg 2018; 98:849-856. [PMID: 29363446 PMCID: PMC5930886 DOI: 10.4269/ajtmh.17-0416] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We conducted an open label, dose escalation Phase 1 clinical trial of a tetravalent dengue DNA vaccine (TVDV) formulated in Vaxfectin® to assess safety and immunogenicity. A total of 40 dengue- and flavivirus-naive volunteers received either low-dose (1 mg) TVDV alone (N = 10, group 1), low-dose TVDV (1 mg) formulated in Vaxfectin (N = 10, group 2), or high-dose TVDV (2 mg, group 3) formulated in Vaxfectin® (N = 20). Subjects were immunized intramuscularly with three doses on a 0-, 30-, 90-day schedule and monitored. Blood samples were obtained after each immunization and various time points thereafter to assess anti-dengue antibody and interferon gamma (IFNγ) T-cell immune responses. The most common adverse events (AEs) across all groups included mild to moderate pain and tenderness at the injection site, which typically resolved within 7 days. Common solicited signs and symptoms included fatigue (42.5%), headache (45%), and myalgias (47.5%). There were no serious AEs related to the vaccine or study procedures. No anti-dengue antibody responses were detected in group 1 subjects who received all three immunizations. There were minimal enzyme-linked immunosorbent assay and neutralizing antibody responses among groups 2 and 3 subjects who completed the immunization schedule. By contrast, IFNγ T-cell responses, regardless of serotype specificity, occurred in 70%, 50%, and 79% of subjects in groups 1, 2, and 3, respectively. The largest IFNγ T-cell responses were among group 3 subjects. We conclude that TVDV was safe and well-tolerated and elicited predominately anti-dengue T-cell IFNγ responses in a dose-related fashion.
Collapse
Affiliation(s)
- Janine R Danko
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Tadeusz Kochel
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Nimfa Teneza-Mora
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Thomas C Luke
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Kanakatte Raviprakash
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Peifang Sun
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Monika Simmons
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - James E Moon
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | | | | | - Kevin R Porter
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| |
Collapse
|
7
|
Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 2017. [PMID: 28604157 DOI: 10.1080/21645515.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune responses. DNA vaccines are currently used in veterinary medicine, but have not achieved widespread acceptance for use in humans due to their low immunogenicity in early clinical studies. However, recent clinical data have re-established the value of DNA vaccines, particularly in priming high-level antigen-specific antibody responses. Several approaches have been investigated for improving DNA vaccine efficacy, including advancements in DNA vaccine vector design, the inclusion of genetically engineered cytokine adjuvants, and novel non-mechanical delivery methods. These strategies have shown promise, resulting in augmented adaptive immune responses in not only mice, but also in large animal models. Here, we review advancements in each of these areas that show promise for increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | | | - Connie S Schmaljohn
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
8
|
Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 2017; 13:2837-2848. [PMID: 28604157 PMCID: PMC5718814 DOI: 10.1080/21645515.2017.1330236] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune responses. DNA vaccines are currently used in veterinary medicine, but have not achieved widespread acceptance for use in humans due to their low immunogenicity in early clinical studies. However, recent clinical data have re-established the value of DNA vaccines, particularly in priming high-level antigen-specific antibody responses. Several approaches have been investigated for improving DNA vaccine efficacy, including advancements in DNA vaccine vector design, the inclusion of genetically engineered cytokine adjuvants, and novel non-mechanical delivery methods. These strategies have shown promise, resulting in augmented adaptive immune responses in not only mice, but also in large animal models. Here, we review advancements in each of these areas that show promise for increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | | | - Connie S Schmaljohn
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
9
|
McVoy MA, Lee R, Saccoccio FM, Hartikka J, Smith LR, Mahajan R, Wang JB, Cui X, Adler SP. A cytomegalovirus DNA vaccine induces antibodies that block viral entry into fibroblasts and epithelial cells. Vaccine 2015; 33:7328-7336. [PMID: 26597035 DOI: 10.1016/j.vaccine.2015.10.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 07/08/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
Abstract
A vaccine to prevent congenital cytomegalovirus (CMV) infections is a national priority. Investigational vaccines have targeted the viral glycoprotein B (gB) as an inducer of neutralizing antibodies and phosphoprotein 65 (pp65) as an inducer of cytotoxic T cells. Antibodies to gB neutralize CMV entry into all cell types but their potency is low compared to antibodies that block epithelial cell entry through targeting the pentameric complex (gH/gL/UL128/UL130/UL131). Hence, more potent overall neutralizing responses may result from a vaccine that combines gB with pentameric complex-derived antigens. To assess the ability of pentameric complex subunits to generate epithelial entry neutralizing antibodies, DNA vaccines encoding UL128, UL130, and/or UL131 were formulated with Vaxfectin(®), an adjuvant that enhances antibody responses to DNA vaccines. Mice were immunized with individual DNA vaccines or with pair-wise or trivalent combinations. Only the UL130 vaccine induced epithelial entry neutralizing antibodies and no synergy was observed from bi- or trivalent combinations. In rabbits the UL130 vaccine again induced epithelial entry neutralizing antibodies while UL128 or UL131 vaccines did not. To evaluate compatibility of the UL130 vaccine with DNA vaccines encoding gB or pp65, mono-, bi-, or trivalent combinations were evaluated. Fibroblast and epithelial entry neutralizing titers did not differ between rabbits immunized with gB alone vs. gB/UL130, gB/pp65, or gB/UL130/pp65 combinations, indicating a lack of antagonism from coadministration of DNA vaccines. Importantly, gB-induced epithelial entry neutralizing titers were substantially higher than activities induced by UL130, and both fibroblast and epithelial entry neutralizing titers induced by gB alone as well as gB/pp65 or gB/UL130/pp65 combinations were comparable to those observed in sera from humans with naturally-acquired CMV infections. These findings support further development of Vaxfectin(®)-formulated gB-expressing DNA vaccine for prevention of congenital CMV infections.
Collapse
Affiliation(s)
- Michael A McVoy
- Virginia Commonwealth University, Richmond, VA, United States
| | - Ronzo Lee
- Virginia Commonwealth University, Richmond, VA, United States
| | | | | | | | | | - Jian Ben Wang
- Virginia Commonwealth University, Richmond, VA, United States
| | - Xiaohong Cui
- Virginia Commonwealth University, Richmond, VA, United States
| | - Stuart P Adler
- Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
10
|
Porter KR, Raviprakash K. Nucleic acid (DNA) immunization as a platform for dengue vaccine development. Vaccine 2015; 33:7135-40. [PMID: 26458805 DOI: 10.1016/j.vaccine.2015.09.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 10/22/2022]
Abstract
Since the early 1990s, DNA immunization has been used as a platform for developing a tetravalent dengue vaccine in response to the high priority need for protecting military personnel deployed to dengue endemic regions of the world. Several approaches have been explored ranging from naked DNA immunization to the use of live virus vectors to deliver the targeted genes for expression. Pre-clinical animal studies were largely successful in generating anti-dengue cellular and humoral immune responses that were protective either completely or partially against challenge with live dengue virus. However, Phase 1 clinical evaluation of a prototype monovalent dengue 1 DNA vaccine expressing prM and E genes revealed anti-dengue T cell IFNγ responses, but poor neutralizing antibody responses. These less than optimal results are thought to be due to poor uptake and expression of the DNA vaccine plasmids. Because DNA immunization as a vaccine platform has the advantages of ease of manufacture, flexible genetic manipulation and enhanced stability, efforts continue to improve the immunogenicity of these vaccines using a variety of methods.
Collapse
Affiliation(s)
- Kevin R Porter
- Naval Medical Research Center, Infectious Diseases Directorate, Silver Spring, MD, United States.
| | - Kanakatte Raviprakash
- Naval Medical Research Center, Infectious Diseases Directorate, Silver Spring, MD, United States
| |
Collapse
|
11
|
Tachibana M, Suwanabun N, Kaneko O, Iriko H, Otsuki H, Sattabongkot J, Kaneko A, Herrera S, Torii M, Tsuboi T. Plasmodium vivax gametocyte proteins, Pvs48/45 and Pvs47, induce transmission-reducing antibodies by DNA immunization. Vaccine 2015; 33:1901-8. [PMID: 25765968 DOI: 10.1016/j.vaccine.2015.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 11/18/2022]
Abstract
Malaria transmission-blocking vaccines (TBV) aim to interfere with the development of the malaria parasite in the mosquito vector, and thus prevent spread of transmission in a community. To date three TBV candidates have been identified in Plasmodium vivax; namely, the gametocyte/gamete protein Pvs230, and the ookinete surface proteins Pvs25 and Pvs28. The Plasmodium falciparum gametocyte/gamete stage proteins Pfs48/45 and Pfs47 have been studied as TBV candidates, and Pfs48/45 shown to induce transmission-blocking antibodies, but the candidacy of their orthologs in P. vivax, Pvs48/45 (PVX_083235) and Pvs47 (PVX_083240), for vivax TBV have not been tested. Herein we investigated whether targeting Pvs48/45 and Pvs47 can inhibit parasite transmission to mosquitoes, using P. vivax isolates obtained in Thailand. Mouse antisera directed against the products from plasmids expressing Pvs48/45 and Pvs47 detected proteins of approximately 45- and 40-kDa, respectively, in the P. vivax gametocyte lysate, by Western blot analysis under non-reducing conditions. In immunofluorescence assays Pvs48/45 was detected predominantly on the surface and Pvs47 was detected in the cytoplasm of gametocytes. Membrane feeding transmission assays demonstrated that anti-Pvs48/45 and -Pvs47 mouse sera significantly reduced the number of P. vivax oocysts developing in the mosquito midgut. Limited amino acid polymorphism of these proteins was observed among 27 P. vivax isolates obtained from Thailand, Vanuatu, and Colombia; suggesting that polymorphism may not be an impediment for the utilization of Pvs48/45 and Pvs47 as TBV antigens. In one Thai isolate we found that the fourth cysteine residue in the Pvs47 cysteine-rich domain (CRD) III (amino acid position 337) is substituted to phenylalanine. However, antibodies targeting Pvs47 CRDI-III showed a significant transmission-reducing activity against this isolate, suggesting that this substitution in Pvs47 was not critical for recognition by the generated antibodies. In conclusion, our results indicate that Pvs48/45 and Pvs47 are potential transmission-blocking vaccine candidates of P. vivax.
Collapse
Affiliation(s)
- Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Nantavadee Suwanabun
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Hideyuki Iriko
- Department of Parasitology, Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Hitoshi Otsuki
- Division of Medical Zoology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Jetsumon Sattabongkot
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Akira Kaneko
- Department of Parasitology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Socrates Herrera
- Malaria Vaccine and Drug Development Center, Cali AA 25574, Colombia
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
12
|
Abstract
Infectious agents generally use mucosal surfaces as entry port to the body thereby necessitating the need of development of mucosal vaccine as vaccination is important for disease avoidance and suppression. Vaccination through mucosal route is a promising strategy to elicit efficient immune response as parentally administered vaccines induce poor mucosal immunity in general. Safety, economy and stability are highly desired with vaccines and this can be achieved with use of delivery cargos. This review focuses on challenges related with mucosal vaccines and use of nanocarriers as suitable cargos to cater the antigen effectively to the desired site. The review also includes different factors which are to be considered regarding the performance of the nanocarriers and clinical status of these systems.
Collapse
|
13
|
Endmann A, Oswald D, Riede O, Talman EG, Vos RE, Schroff M, Kleuss C, Ruiters MHJ, Juhls C. Combination of MIDGE-Th1 DNA vaccines with the cationic lipid SAINT-18: studies on formulation, biodistribution and vector clearance. Vaccine 2014; 32:3460-7. [PMID: 24681271 DOI: 10.1016/j.vaccine.2014.03.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/05/2014] [Accepted: 03/13/2014] [Indexed: 11/29/2022]
Abstract
We have previously shown that the combination of MIDGE-Th1 DNA vectors with the cationic lipid SAINT-18 increases the immune response to the encoded antigen in mice. Here, we report on experiments to further optimize and characterize this approach. We evaluated different formulations of MIDGE-Th1 vectors with SAINT-18 by assessing their influence on the transfection efficiency in cell culture and on the immune response in mice. We found that high amounts of SAINT-18 in formulations with a w/w ratio MIDGE Th1/SAINT-18 of 1:4.8 are beneficial for cell transfection in vitro. In contrast, the formulation of HBsAg-encoding MIDGE-Th1 DNA vectors with the lowest amount of SAINT-18 (w/w ratio MIDGE Th1/SAINT-18 of 1:0.5) resulted in the highest serum IgG1 and IgG2a levels after intradermal immunization of mice. Consequently, latter formulation was selected for a comparative biodistribution study in rats. Following intradermal administration of both naked and formulated MIDGE-Th1 DNA, the vectors localized primarily at the site of injection. Vector DNA levels decreased substantially over the two months duration of the study. When administered in combination with SAINT-18, the vectors were found in significantly higher amounts in draining lymph nodes in comparison to administration of naked MIDGE-Th1 DNA. We propose that the high immune responses induced by MIDGE-Th1/SAINT-18 lipoplexes are mediated by enhanced transfection of cells in vivo, resulting in stronger antigen expression and presentation. Importantly, the combination of MIDGE-Th1 vectors with SAINT-18 was well tolerated in mice and rats and is expected to be safe in human clinical applications.
Collapse
Affiliation(s)
- Anne Endmann
- MOLOGEN AG, Fabeckstraße 30, 14195 Berlin, Germany.
| | | | - Oliver Riede
- MOLOGEN AG, Fabeckstraße 30, 14195 Berlin, Germany
| | - Eduard G Talman
- Synvolux Therapeutics B.V., L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Roelien E Vos
- Synvolux Therapeutics B.V., L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | | | | | - Marcel H J Ruiters
- Synvolux Therapeutics B.V., L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
14
|
Luo K, Zhang H, Zavala F, Biragyn A, Espinosa DA, Markham RB. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities. PLoS One 2014; 9:e90413. [PMID: 24599116 PMCID: PMC3943962 DOI: 10.1371/journal.pone.0090413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80–100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.
Collapse
Affiliation(s)
- Kun Luo
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Hong Zhang
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Fidel Zavala
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Diego A. Espinosa
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Richard B. Markham
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Kulkarni V, Rosati M, Valentin A, Jalah R, Alicea C, Yu L, Guan Y, Shen X, Tomaras GD, LaBranche C, Montefiori DC, Irene C, Prattipati R, Pinter A, Sullivan SM, Pavlakis GN, Felber BK. Vaccination with Vaxfectin(®) adjuvanted SIV DNA induces long-lasting humoral immune responses able to reduce SIVmac251 Viremia. Hum Vaccin Immunother 2013; 9:2069-80. [PMID: 23820294 DOI: 10.4161/hv.25442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We evaluated the immunogenicity and efficacy of Vaxfectin(®) adjuvanted SIV DNA vaccines in mice and macaques. Vaccination of mice with Vaxfectin(®) adjuvanted SIV gag DNA induced higher humoral immune responses than administration of unadjuvanted DNA, whereas similar levels of cellular immunity were elicited. Vaxfectin(®) adjuvanted SIVmac251 gag and env DNA immunization of rhesus macaques was used to examine magnitude, durability, and efficacy of humoral immunity. Vaccinated macaques elicited potent neutralizing antibodies able to cross-neutralize the heterologous SIVsmE660 Env. We found remarkable durability of Gag and Env humoral responses, sustained during ~2 y of follow-up. The Env-specific antibody responses induced by Vaxfectin(®) adjuvanted env DNA vaccination disseminated into mucosal tissues, as demonstrated by their presence in saliva, including responses to the V1-V2 region, and rectal fluids. The efficacy of the immune responses was evaluated upon intrarectal challenge with low repeated dose SIVmac251. Although 2 of the 3 vaccinees became infected, these animals showed significantly lower peak virus loads and lower chronic viremia than non-immunized infected controls. Thus, Vaxfectin(®) adjuvanted DNA is a promising vaccine approach for inducing potent immune responses able to control the highly pathogenic SIVmac251.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Margherita Rosati
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Antonio Valentin
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Lei Yu
- Institute of Human Virology and Department of Microbiology & Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Yongjun Guan
- Institute of Human Virology and Department of Microbiology & Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | | | | | | | | | - Carmela Irene
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | - Rajasekhar Prattipati
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | - Abraham Pinter
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | | | - George N Pavlakis
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| |
Collapse
|
17
|
Vaxfectin adjuvant improves antibody responses of juvenile rhesus macaques to a DNA vaccine encoding the measles virus hemagglutinin and fusion proteins. J Virol 2013; 87:6560-8. [PMID: 23552419 DOI: 10.1128/jvi.00635-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA vaccines formulated with the cationic lipid-based adjuvant Vaxfectin induce protective immunity in macaques after intradermal (i.d.) or intramuscular (i.m.) delivery of 0.5 to 1 mg of codon-optimized DNA encoding the hemagglutinin (H) and fusion (F) proteins of measles virus (MeV). To characterize the effect of Vaxfectin at lower doses of H+F DNA, rhesus macaques were vaccinated twice with 20 μg of DNA plus Vaxfectin i.d., 100 μg of DNA plus Vaxfectin i.d., 100 μg of DNA plus Vaxfectin i.m. or 100 μg of DNA plus phosphate-buffered saline (PBS) i.m. using a needleless Biojector device. The levels of neutralizing (P = 0.036) and binding (P = 0.0001) antibodies were higher after 20 or 100 μg of DNA plus Vaxfectin than after 100 μg of DNA plus PBS. Gamma interferon (IFN-γ)-producing T cells were induced more rapidly than antibody, but were not improved with Vaxfectin. At 18 months after vaccination, monkeys were challenged with wild-type MeV. None developed rash or viremia, but all showed evidence of infection. Antibody levels increased, and IFN-γ- and interleukin-17-producing T cells, including cells specific for the nucleoprotein absent from the vaccine, were induced. At 3 months after challenge, MeV RNA was detected in the leukocytes of two monkeys. The levels of antibody peaked 2 to 4 weeks after challenge and then declined in vaccinated animals reflecting low numbers of bone marrow-resident plasma cells. Therefore, Vaxfectin was dose sparing and substantially improved the antibody response to the H+F DNA vaccine. This immune response led to protection from disease (rash/viremia) but not from infection. Antibody responses after challenge were more transient in vaccinated animals than in an unvaccinated animal.
Collapse
|
18
|
Smith LR, Wodal W, Crowe BA, Kerschbaum A, Bruehl P, Schwendinger MG, Savidis-Dacho H, Sullivan SM, Shlapobersky M, Hartikka J, Rolland A, Barrett PN, Kistner O. Preclinical evaluation of Vaxfectin-adjuvanted Vero cell-derived seasonal split and pandemic whole virus influenza vaccines. Hum Vaccin Immunother 2013; 9:1333-45. [PMID: 23857272 DOI: 10.4161/hv.24209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Increasing the potency and supply of seasonal and pandemic influenza vaccines remains an important unmet medical need which may be effectively accomplished with adjuvanted egg- or cell culture-derived vaccines. Vaxfectin, a cationic lipid-based adjuvant with a favorable safety profile in phase 1 plasmid DNA vaccines trials, was tested in combination with seasonal split, trivalent and pandemic whole virus, monovalent influenza vaccines produced in Vero cell cultures. Comparison of hemagglutination inhibition (HI) antibody titers in Vaxfectin-adjuvanted to nonadjuvanted vaccinated mice and guinea pigs revealed 3- to 20-fold increases in antibody titers against each of the trivalent influenza virus vaccine strains and 2- to 8-fold increases in antibody titers against the monovalent H5N1 influenza virus vaccine strain. With the vaccine doses tested, comparable antibody responses were induced with formulations that were freshly prepared or refrigerated at conventional 2-8°C storage conditions for up to 6 mo. Comparison of T-cell frequencies measured by interferon-gamma ELISPOT assay between groups revealed increases of between 2- to 10-fold for each of the adjuvanted trivalent strains and up to 22-fold higher with monovalent H5N1 strain. Both trivalent and monovalent vaccines were easy to formulate with Vaxfectin by simple mixing. These preclinical data support further testing of Vaxfectin-adjuvanted Vero cell culture vaccines toward clinical studies designed to assess safety and immunogenicity of these vaccines in humans.
Collapse
|
19
|
Veselenak RL, Shlapobersky M, Pyles RB, Wei Q, Sullivan SM, Bourne N. A Vaxfectin(®)-adjuvanted HSV-2 plasmid DNA vaccine is effective for prophylactic and therapeutic use in the guinea pig model of genital herpes. Vaccine 2012; 30:7046-51. [PMID: 23041125 DOI: 10.1016/j.vaccine.2012.09.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/18/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
Abstract
Here we describe studies in the guinea pig model of genital herpes to evaluate a novel plasmid DNA (pDNA) vaccine encoding the HSV-2 glycoprotein D and UL46 and UL47 genes encoding tegument proteins VP11/12 and VP 13/14 (gD2/UL46/UL47), formulated with a cationic lipid-based adjuvant Vaxfectin(®). Prophylactic immunization with Vaxfectin(®)-gD2/UL46/UL47 significantly reduced viral replication in the genital tract, provided complete protection against both primary and recurrent genital skin disease following intravaginal HSV-2 challenge, and significantly reduced latent HSV-2 DNA in the dorsal root ganglia compared to controls. We also examined the impact of therapeutic immunization of HSV-2 infected animals. Here, Vaxfectin(®)-gD2/UL46/UL47 immunization significantly reduced both the frequency of recurrent disease and viral shedding into the genital tract compared to controls. This novel adjuvanted pDNA vaccine has demonstrated both prophylactic and therapeutic efficacy in the guinea pig model of genital herpes and warrants further development.
Collapse
Affiliation(s)
- Ronald L Veselenak
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0436, USA
| | | | | | | | | | | |
Collapse
|
20
|
Richie TL. Malaria vaccines for travelers. Travel Med Infect Dis 2012; 2:193-210. [PMID: 17291981 DOI: 10.1016/j.tmaid.2004.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 07/07/2004] [Indexed: 11/21/2022]
Affiliation(s)
- Thomas L Richie
- Naval Medical Research Center Malaria Program, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| |
Collapse
|
21
|
Hartikka J, Bozoukova V, Morrow J, Rusalov D, Shlapobersky M, Wei Q, Boutsaboualoy S, Ye M, Wloch MK, Doukas J, Sullivan S, Rolland A, Smith LR. Preclinical evaluation of the immunogenicity and safety of plasmid DNA-based prophylactic vaccines for human cytomegalovirus. Hum Vaccin Immunother 2012; 8:1595-606. [PMID: 22922766 DOI: 10.4161/hv.21225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (CMV) establishes a lifelong persistent infection characterized by periods of latency and sporadic viral replication and is a major infectious cause of birth defects following congenital infection. Currently, no licensed vaccine is available that would prevent CMV infection. In an effort to develop a prophylactic CMV vaccine, the effects of different formulations, immunization routes and delivery devices on the immunogenicity of plasmid DNA (pDNA)-based vaccines were evaluated in rabbits and mice. Compared with PBS- and poloxamer-based formulations, significantly higher antibody responses were obtained with pDNA formulated with Vaxfectin (®) , a cationic lipid-based adjuvant. With low vaccine doses, the intradermal (ID) route resulted in higher antibody responses than obtained when the same dose was administered intramuscularly (IM). Since the IM route allowed injection of larger volumes and higher doses than could be administered at a single ID site, better antibody responses were obtained using the IM route. The needle-free injection system Biojector (®) 2000 and electroporation devices enhanced antibody responses only marginally compared with responses obtained with Vaxfectin (®) -formulated pDNA injected IM with a needle. A single-vial Vaxfectin (®) formulation was developed in a dosage form ready for use after thawing at room temperature. Finally, in a GLP-compliant repeat-dose toxicology study conducted in rabbits, single-vial Vaxfectin (®) -formulated vaccines, containing pDNA and Vaxfectin (®) up to 4.5 mg and 2 mg/injection, respectively, showed a favorable safety profile and were judged as well-tolerated. The results support further development of a Vaxfectin (®) -formulated pDNA vaccine to target congenital CMV infection.
Collapse
|
22
|
Shlapobersky M, Marshak JO, Dong L, Huang ML, Wei Q, Chu A, Rolland A, Sullivan S, Koelle DM. Vaxfectin-adjuvanted plasmid DNA vaccine improves protection and immunogenicity in a murine model of genital herpes infection. J Gen Virol 2012; 93:1305-1315. [PMID: 22398318 DOI: 10.1099/vir.0.040055-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The herpes simplex type 2 (HSV-2) envelope glycoprotein (gD2) was evaluated as a potential antigen candidate for a plasmid DNA (pDNA)-based HSV-2 vaccine. The pDNA was formulated with Vaxfectin, a cationic lipid-based adjuvant, and tested in a murine HSV-2 lethal challenge model. gD2 was expressed as full-length (FL) and secreted (S) gD2 forms. A 0.1 µg pDNA dose was tested to distinguish treatment conditions for survival and a 100 µg pDNA dose was tested to distinguish treatment conditions for reduction in vaginal and latent HSV-2 copies. Vaxfectin-formulated gD2 pDNA significantly increased serum IgG titres and survival for both FL gD2 and S gD2 compared with gD2 pDNA alone. Mice immunized with FL gD2 formulated with Vaxfectin showed reduction in vaginal and dorsal root ganglia (DRG) HSV-2 copies. The stringency of this protection was further evaluated by testing Vaxfectin-formulated FL gD2 pDNA at a high 500 LD(50) inoculum. At this high viral challenge, the 0.1 µg dose of FL gD2 Vaxfectin-formulated pDNA yielded 80 % survival compared with no survival for FL gD2 pDNA alone. Vaxfectin-formulated FL gD2 pDNA, administered at a 100 µg pDNA dose, significantly reduced HSV-2 DNA copy number, compared with FL gD2 DNA alone. In addition, 40 % of mice vaccinated with adjuvanted FL pDNA had no detectable HSV-2 viral genomes in the DRG, whereas all mice vaccinated with gD2 pDNA alone were positive for HSV-2 viral genomes. These results show the potential contribution of Vaxfectin-gD2 pDNA to a future multivalent HSV-2 vaccine.
Collapse
Affiliation(s)
- Mark Shlapobersky
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Joshua O Marshak
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Qun Wei
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Alice Chu
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Alain Rolland
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Sean Sullivan
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - David M Koelle
- Department of Global Health, University of Washington, Seattle, WA 98195, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Benaroya Research Institute, Seattle, WA 98101, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Watson DS, Endsley AN, Huang L. Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 2012; 30:2256-72. [PMID: 22306376 DOI: 10.1016/j.vaccine.2012.01.070] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 02/06/2023]
Abstract
Liposomes (phospholipid bilayer vesicles) are versatile and robust delivery systems for induction of antibody and T lymphocyte responses to associated subunit antigens. In the last 15 years, liposome vaccine technology has matured and now several vaccines containing liposome-based adjuvants have been approved for human use or have reached late stages of clinical evaluation. Given the intensifying interest in liposome-based vaccines, it is important to understand precisely how liposomes interact with the immune system and stimulate immunity. It has become clear that the physicochemical properties of liposomal vaccines - method of antigen attachment, lipid composition, bilayer fluidity, particle charge, and other properties - exert dramatic effects on the resulting immune response. Here, we present a comprehensive review of the physicochemical properties of liposomal vaccines and how they influence immune responses. A discussion of novel and emerging immunomodulators that are suitable for inclusion in liposomal vaccines is also presented. Through a comprehensive analysis of the body of liposomal vaccine literature, we enumerate a series of principles that can guide the rational design of liposomal vaccines to elicit immune responses of a desired magnitude and quality. We also identify major unanswered questions in the field, pointing the direction for future study.
Collapse
Affiliation(s)
- Douglas S Watson
- Biosciences Division, SRI International, 140 Research Drive, Harrisonburg, VA 22802, United States. [corrected]
| | | | | |
Collapse
|
24
|
Plasmodium vivax gametocyte protein Pvs230 is a transmission-blocking vaccine candidate. Vaccine 2012; 30:1807-12. [DOI: 10.1016/j.vaccine.2012.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/24/2011] [Accepted: 01/02/2012] [Indexed: 11/23/2022]
|
25
|
Porter KR, Ewing D, Chen L, Wu SJ, Hayes CG, Ferrari M, Teneza-Mora N, Raviprakash K. Immunogenicity and protective efficacy of a vaxfectin-adjuvanted tetravalent dengue DNA vaccine. Vaccine 2012; 30:336-41. [DOI: 10.1016/j.vaccine.2011.10.085] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/28/2011] [Accepted: 10/29/2011] [Indexed: 11/17/2022]
|
26
|
Abstract
This review provides a detailed look at the attributes and immunologic mechanisms of plasmid DNA vaccines and their utility as laboratory tools as well as potential human vaccines. The immunogenicity and efficacy of DNA vaccines in a variety of preclinical models is used to illustrate how they differ from traditional vaccines in novel ways due to the in situ antigen production and the ease with which they are constructed. The ability to make new DNA vaccines without needing to handle a virulent pathogen or to adapt the pathogen for manufacturing purposes demonstrates the potential value of this vaccine technology for use against emerging and epidemic pathogens. Similarly, personalized anti-tumor DNA vaccines can also readily be made from a biopsy. Because DNA vaccines bias the T-helper (Th) cell response to a Th1 phenotype, DNA vaccines are also under development for vaccines against allergy and autoimmune diseases. The licensure of four animal health products, including two prophylactic vaccines against infectious diseases, one immunotherapy for cancer, and one gene therapy delivery of a hormone for a food animal, provides evidence of the efficacy of DNA vaccines in multiple species including horses and pigs. The size of these target animals provides evidence that the somewhat disappointing immunogenicity of DNA vaccines in a number of human clinical trials is not due simply to the larger mass of humans compared with most laboratory animals. The insights gained from the mechanisms of protection in the animal vaccines, the advances in the delivery and expression technologies for increasing the potency of DNA vaccines, and encouragingly potent human immune responses in certain clinical trials, provide insights for future efforts to develop DNA vaccines into a broadly useful vaccine and immunotherapy platform with applications for human and animal health.
Collapse
|
27
|
Nonclinical biodistribution, integration, and toxicology evaluations of an H5N1 pandemic influenza plasmid DNA vaccine formulated with Vaxfectin®. Vaccine 2011; 29:5443-52. [DOI: 10.1016/j.vaccine.2011.05.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 04/20/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022]
|
28
|
Yanasarn N, Sloat BR, Cui Z. Negatively charged liposomes show potent adjuvant activity when simply admixed with protein antigens. Mol Pharm 2011; 8:1174-85. [PMID: 21615153 DOI: 10.1021/mp200016d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Liposomes have been investigated extensively as a vaccine delivery system. Herein the adjuvant activities of liposomes with different net surface charges (neutral, positive, or negative) were evaluated when admixed with protein antigens, ovalbumin (OVA, pI = 4.7), Bacillus anthracis protective antigen protein (PA, pI = 5.6), or cationized OVA (cOVA). Mice immunized subcutaneously with OVA admixed with different liposomes generated different antibody responses. Interestingly, OVA admixed with net negatively charged liposomes prepared with DOPA was as immunogenic as OVA admixed with positively charged liposomes prepared with DOTAP. Immunization of mice with the anthrax PA protein admixed with the net negatively charged DOPA liposomes also induced a strong and functional anti-PA antibody response. When the cationized OVA was used as a model antigen, liposomes with net neutral, negative, or positive charges showed comparable adjuvant activities. Immunization of mice with the OVA admixed with DOPA liposomes also induced OVA-specific CD8(+) cytotoxic T lymphocyte responses and significantly delayed the growth of OVA-expressing B16-OVA tumors in mice. However, not all net negatively charged liposomes showed a strong adjuvant activity. The adjuvant activity of the negatively charged liposomes may be related to the liposome's ability (i) to upregulate the expression of molecules related to the activation and maturation of antigen-presenting cells and (ii) to slightly facilitate the uptake of the antigens by antigen-presenting cells. Simply admixing certain negatively charged liposomes with certain protein antigens of interest may represent a novel platform for vaccine development.
Collapse
Affiliation(s)
- Nijaporn Yanasarn
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
29
|
Sullivan SM, Doukas J, Hartikka J, Smith L, Rolland A. Vaxfectin: a versatile adjuvant for plasmid DNA- and protein-based vaccines. Expert Opin Drug Deliv 2011; 7:1433-46. [PMID: 21118032 DOI: 10.1517/17425247.2010.538047] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE OF THE FIELD Many vaccines require the use of an adjuvant to achieve immunity. So far, few adjuvants have advanced successfully through clinical trials to become part of licensed vaccines. Vaxfectin® (Vical, CA, USA) represents a next-generation adjuvant with promise as a platform technology, showing utility with both plasmid DNA (pDNA) and protein-based vaccines. AREAS COVERED IN THIS REVIEW This review describes the chemical, physical, preclinical and clinical development of Vaxfectin for pDNA-based vaccines. Also included is the preclinical development of Vaxfectin-adjuvanted protein- and peptide-based vaccines. WHAT THE READER WILL GAIN The reader will gain knowledge of vaccine adjuvant development from bench to bedside. TAKE HOME MESSAGE Vaxfectin has effectively boosted the immune response against a range of pDNA-expressed pathogenic antigens in preclinical models extending from rodents to non-human primates. In the clinic, Vaxfectin-adjuvanted pDNA-based H5N1 influenza vaccines have been shown to be well tolerated and to result in durable immune responses within the predicted protective range reported for protein-based vaccines.
Collapse
Affiliation(s)
- Sean M Sullivan
- Vical, Inc., Pharmaceutical Sciences, 10390 Pacific Center Court, San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
30
|
Zhu L, Mahato RI. Targeted delivery of siRNA to hepatocytes and hepatic stellate cells by bioconjugation. Bioconjug Chem 2010; 21:2119-27. [PMID: 20964335 DOI: 10.1021/bc100346n] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previously, we successfully conjugated galactosylated poly(ethylene glycol) (Gal-PEG) to oligonucleotides (ODNs) via an acid labile ester linker (Zhu et al., Bioconjugate Chem. 2008, 19, 290-8). In this study, sense strands of siRNA were conjugated to Gal-PEG and mannose 6-phosphate poly(ethylene glycol) (M6P-PEG) for targeted delivery of siRNAs to hepatocytes and hepatic stellate cells (HSCs), respectively. These siRNA conjugates were purified by ion exchange chromatography and verified by gel retardation assay. To evaluate their RNAi functions, the validated siRNA duplexes targeting firefly luciferase and transforming growth factor beta 1 (TGF-β1) mRNA were conjugated to Gal-PEG and M6P-PEG, and their gene silencing efficiencies were determined after transfection into HepG2 and HSC-T6 cells. The disulfide bond between PEG and siRNA was cleaved by dithiothreitol, leading to the release of intact siRNA. Both Gal-PEG-siRNA and M6P-PEG-siRNA conjugates could silence luciferase gene expression by about 40% without any transfection reagents, while the gene silencing effects reached more than 98% with the help of cationic liposomes at the same dose. Conjugation of TGF-β1 siRNA with Gal-PEG and M6P-PEG could silence endogenous TGF-β1 gene expression as well. In conclusion, these siRNA conjugates have the potential for targeted delivery of siRNAs to hepatocytes and hepatic stellate cells for efficient gene silencing in vivo.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | | |
Collapse
|
31
|
Repeated DNA therapeutic vaccination of chronically SIV-infected macaques provides additional virological benefit. Vaccine 2010; 28:1962-74. [PMID: 20188252 DOI: 10.1016/j.vaccine.2009.10.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that therapeutic immunization by intramuscular injection of optimized plasmid DNAs encoding SIV antigens effectively induces immune responses able to reduce viremia in antiretroviral therapy (ART)-treated SIVmac251-infected Indian rhesus macaques. We subjected such therapeutically immunized macaques to a second round of therapeutic vaccination using a combination of plasmids expressing SIV genes and the IL-15/IL-15 receptor alpha as molecular adjuvant, which were delivered by the more efficacious in vivo constant-current electroporation. A very strong induction of antigen-specific responses to Gag, Env, Nef, and Pol, during ART (1.2-1.6% of SIV-specific T cells in the circulating T lymphocytes) was obtained with the improved vaccination method. Immunological responses were characterized by the production of IFN-gamma, IL-2, and TNF-alpha either alone, or in combination as double or triple cytokine positive multifunctional T cells. A significant induction of CD4(+) T cell responses, mainly targeting Gag, Nef, and Pol, as well as of CD8(+) T cells, mainly targeting Env, was found in both T cells with central memory and effector memory markers. After release from ART, the animals showed a virological benefit with a further approximately 1 log reduction in viremia. Vaccination with plasmid DNAs has several advantages over other vaccine modalities, including the possibility for repeated administration, and was shown to induce potent, efficacious, and long-lasting recall immune responses. Therefore, these data support the concept of adding DNA vaccination to the HAART regimen to boost the HIV-specific immune responses.
Collapse
|
32
|
Avian influenza pandemic preparedness: developing prepandemic and pandemic vaccines against a moving target. Expert Rev Mol Med 2010; 12:e14. [PMID: 20426889 DOI: 10.1017/s1462399410001432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The unprecedented global spread of highly pathogenic avian H5N1 influenza viruses within the past ten years and their extreme lethality to poultry and humans has underscored their potential to cause an influenza pandemic. Combating the threat of an impending H5N1 influenza pandemic will require a combination of pharmaceutical and nonpharmaceutical intervention strategies. The emergence of the H1N1 pandemic in 2009 emphasised the unpredictable nature of a pandemic influenza. Undoubtedly, vaccines offer the most viable means to combat a pandemic threat. Current egg-based influenza vaccine manufacturing strategies are unlikely to be able to cater to the huge, rapid global demand because of the anticipated scarcity of embryonated eggs in an avian influenza pandemic and other factors associated with the vaccine production process. Therefore, alternative, egg-independent vaccine manufacturing strategies should be evaluated to supplement the traditional egg-derived influenza vaccine manufacturing. Furthermore, evaluation of dose-sparing strategies that offer protection with a reduced antigen dose will be critical for pandemic influenza preparedness. Development of new antiviral therapeutics and other, nonpharmaceutical intervention strategies will further supplement pandemic preparedness. This review highlights the current status of egg-dependent and egg-independent strategies against an avian influenza pandemic.
Collapse
|
33
|
Sedegah M, Rogers WO, Belmonte M, Belmonte A, Banania G, Patterson NB, Rusalov D, Ferrari M, Richie TL, Doolan DL. Vaxfectin® enhances both antibody and in vitro T cell responses to each component of a 5-gene Plasmodium falciparum plasmid DNA vaccine mixture administered at low doses. Vaccine 2010; 28:3055-65. [DOI: 10.1016/j.vaccine.2009.10.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/08/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
|
34
|
Immune response induced by a linear DNA vector: influence of dose, formulation and route of injection. Vaccine 2010; 28:3642-9. [PMID: 20362204 DOI: 10.1016/j.vaccine.2010.03.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/09/2010] [Accepted: 03/17/2010] [Indexed: 11/26/2022]
Abstract
Previously, minimalistic, immunogenetically defined gene expression (MIDGE) vectors were developed as effective and sophisticated carriers for DNA vaccination. Here we evaluate the influence of dose, formulation and delivery route on the immune response after vaccination with MIDGE-Th1 vectors encoding hepatitis B virus surface antigen (HBsAg). An HBsAg-specific IgG1 and IgG2a antibody response was induced in a dose-dependent manner, whereas the IgG2a/IgG1 ratio was independent of the injected DNA dose. Formulation of MIDGE-HBsAg-Th1 with the cationic pyridinium amphiphile SAINT-18 significantly increased antibody levels of IgG1 and IgG2a compared to the unformulated vector. In contrast, SAINT-18 had neither a significant effect on the IgG2a/IgG1 ratio nor on the type and strength of cellular immunity. Overall, the strongest immune response was generated after intradermal injection, followed by intramuscular and subcutaneous (s.c.) injection. The results show that the formulation of MIDGE-Th1 with SAINT-18 increased the efficacy of the MIDGE-Th1 DNA vaccine and is therefore a suitable approach to improve the efficacy of DNA vaccines also in large animals and humans.
Collapse
|
35
|
Phase 1 clinical trials of the safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus H5 hemagglutinin. Vaccine 2010; 28:2565-72. [DOI: 10.1016/j.vaccine.2010.01.029] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/09/2010] [Accepted: 01/16/2010] [Indexed: 11/23/2022]
|
36
|
Pandey A, Singh N, Sambhara S, Mittal SK. Egg-independent vaccine strategies for highly pathogenic H5N1 influenza viruses. HUMAN VACCINES 2010; 6:178-88. [PMID: 19875936 PMCID: PMC2888842 DOI: 10.4161/hv.6.2.9899] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of a highly pathogenic H5N1 influenza virus in Hong Kong in 1997 and the subsequent appearance of other H5N1 strains and their spread to several countries in southeast Asia, Africa, the Middle East and Europe has evoked fear of a global influenza pandemic. Vaccines offer the best hope to combat the threat of an influenza pandemic. However, the global demand for a pandemic vaccine cannot be fulfilled by the current egg-based vaccine manufacturing strategies, thus creating a need to explore alternative technologies for vaccine production and delivery. Several egg-independent vaccine approaches such as cell culture-derived whole virus or subvirion vaccines, recombinant protein-based vaccines, virus-like particle (VLP) vaccines, DNA vaccines and viral vector-based vaccines are currently being investigated and appear promising both in preclinical and clinical studies. The present review will highlight the various egg-independent alternative vaccine approaches for pandemic influenza.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Correspondence: Suresh K. Mittal, Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA, Tel: 765-496-2894, Fax: 765-494-9830, , Suryaprakash Sambhara, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA, Tel: 404-639-3800, Fax: 404-639-5180,
| |
Collapse
|
37
|
Buonaguro FM, Tornesello ML, Buonaguro L. Virus-like particle vaccines and adjuvants: the HPV paradigm. Expert Rev Vaccines 2009; 8:1379-98. [PMID: 19803760 DOI: 10.1586/erv.09.81] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Complex antigen structures currently represent the most-studied approach for prophylactic as well as therapeutic vaccines. Different types of complex vaccines, including virus-like particles and virosomes, have been developed depending on the nature of the viral pathogen they are trying to replicate (enveloped vs naked) or the modality to express antigenic epitopes (i.e., the binding of envelope protein on liposomic structures). The complex structure of these vaccines provides them with some adjuvanted properties, not uniformly present for all virus-like particle types. The further inclusion of specific adjuvants in vaccine preparations can modify the presentation modality of such particles to the immune system with a specific Th1 versus Th2 polarization efficacy. A paradigm of the relevance of these new adjuvants are the immunological results obtained with the inclusion of monophosphoryl lipid A adjuvant in the formulation of L1-based human papillomavirus-naked virus-like particles to reduce a Th1 cellular immunity impairment, peculiar for alum-derived adjuvants, along with the induction of highly enhanced humoral and memory B-cellular immunity.
Collapse
Affiliation(s)
- Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Via Mariano Semmola 142, 80131 Napoli, Italy.
| | | | | |
Collapse
|
38
|
Vilalta A, Shlapobersky M, Wei Q, Planchon R, Rolland A, Sullivan S. Analysis of biomarkers after intramuscular injection of Vaxfectin®-formulated hCMV gB plasmid DNA. Vaccine 2009; 27:7409-17. [DOI: 10.1016/j.vaccine.2009.08.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/10/2009] [Accepted: 08/21/2009] [Indexed: 11/26/2022]
|
39
|
YE MING, WEI QUN, CARNER KRISTINR, DOUKAS JOHN, SULLIVAN SEAN, ROLLAND ALAIN, SMITH LARRYR, WLOCH MARYK. RAPID DEVELOPMENT OF A VAXFECTIN®-ADJUVANTED DNA VACCINE ENCODING PANDEMIC SWINE-ORIGIN INFLUENZA A VIRUS (H1N1) HEMAGGLUTININ. ACTA ACUST UNITED AC 2009. [DOI: 10.1142/s1568558609000084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Hartikka J, Bozoukova V, Yang CK, Ye M, Rusalov D, Shlapobersky M, Vilalta A, Wei Q, Rolland A, Smith LR. Vaxfectin®, a cationic lipid-based adjuvant for protein-based influenza vaccines. Vaccine 2009; 27:6399-403. [DOI: 10.1016/j.vaccine.2009.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Vaxfectin®-adjuvanted seasonal influenza protein vaccine: Correlation of systemic and local immunological markers with formulation parameters. Vaccine 2009; 27:6404-10. [DOI: 10.1016/j.vaccine.2009.06.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Henriques A, Madeira C, Fevereiro M, Prazeres D, Aires-Barros M, Monteiro G. Effect of cationic liposomes/DNA charge ratio on gene expression and antibody response of a candidate DNA vaccine against Maedi Visna virus. Int J Pharm 2009; 377:92-8. [DOI: 10.1016/j.ijpharm.2009.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/30/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
|
43
|
West Nile virus seroconversion in penguins after vaccination with a killed virus vaccine or a DNA vaccine. J Zoo Wildl Med 2009; 39:582-9. [PMID: 19110700 DOI: 10.1638/2008-0029.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To investigate the serologic response of penguins to West Nile virus (WNV) vaccines, four species of exclusively indoor-housed penguins, negative for WNV by serology, were evaluated: Humboldt (Spheniscus humboldti), Magellanic (Spheniscus magellanicus), Gentoo (Pygoscelis papua), and Rockhopper (Eudyptes chrysoscome) penguins. Birds were inoculated with either a killed virus vaccine or a plasmid-mediated DNA WNV vaccine, and postinoculation serology was evaluated. Both vaccines induced seroconversion in all four species, and no adverse reactions were noted. Postvaccination serology results varied across species and vaccine types. However, in all four species, the killed virus vaccine resulted in a greater seroconversion rate than the DNA vaccine and in a significantly shorter time period. Additionally, the duration of the seropositive titer was significantly longer in those birds vaccinated with the killed virus vaccine compared with those vaccinated with the DNA vaccine. A subset of unvaccinated penguins serving as negative controls remained negative throughout the duration of the study despite the presence of WNV in the geographic locations of the study, suggesting that indoor housing may minimize exposure to the virus and may be an additional means of preventing WNV infection in penguins.
Collapse
|
44
|
Abstract
Isolation of measles virus in tissue culture by Enders and colleagues in the 1960s led to the development of the first measles vaccines. An inactivated vaccine provided only short-term protection and induced poor T cell responses and antibody that did not undergo affinity maturation. The response to this vaccine primed for atypical measles, a more severe form of measles, and was withdrawn. A live attenuated virus vaccine has been highly successful in protection from measles and in elimination of endemic measles virus transmission with the use of two doses. This vaccine is administered by injection between 9 and 15 months of age. Measles control would be facilitated if infants could be immunized at a younger age, if the vaccine were thermostable, and if delivery did not require a needle and syringe. To these ends, new vaccines are under development using macaques as an animal model and various combinations of the H, F, and N viral proteins. Promising studies have been reported using DNA vaccines, subunit vaccines, and virus-vectored vaccines.
Collapse
Affiliation(s)
- D E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. Rm E5132 Baltimore, MD 21205, USA.
| | | |
Collapse
|
45
|
Hartikka J, Geall A, Bozoukova V, Kurniadi D, Rusalov D, Enas J, Yi JH, Nanci A, Rolland A. Physical characterization and in vivo evaluation of poloxamer-based DNA vaccine formulations. J Gene Med 2008; 10:770-82. [PMID: 18425981 DOI: 10.1002/jgm.1199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Plasmid DNA (pDNA) vaccines have generated significant interest for the prevention or treatment of infectious diseases. Broader applications may benefit from the identification of safe and potent vaccine adjuvants. This report describes the development of a novel polymer-based formulation to enhance the immunogenicity of pDNA-based vaccines. METHODS Plasmid DNA was formulated with a nonionic block copolymer, poloxamer CRL1005, and the cationic surfactant benzalkonium chloride (BAK) to produce a thermodynamically stable, self-assembling system. The influence of parameters such as polymer concentration and BAK composition on the immune responses was evaluated in mice vaccinated with pDNA encoding influenza nucleoprotein. RESULTS At concentrations of 7.5 mg/ml CRL1005, 0.3 mM BAK and 5 mg/ml pDNA, CRL1005/BAK/pDNA particles had a mean diameter of 261 +/- 0.2 nm and a surface charge of - 11.6 +/- 0.9 mV. The negative surface charge and atomic force microscopy images suggested that pDNA binds to BAK adsorbed to the surface of poloxamer particles. The CRL1005/BAK/pDNA formulation significantly enhanced antigen-specific cellular and humoral immune responses, and increased transgene levels in muscle and serum. The complexity of the formulation was reduced by replacing the commercial BAK, which is a mixture of four alkyl chains, with a C14 BAK homolog. The substitution yielded an analytically preferable formulation with equivalent physical characteristics and immunogenicity. CONCLUSIONS The results suggest that the CRL1005/BAK/pDNA formulation may enhance immunogenicity by improving the delivery of pDNA-based vaccines. This formulation is currently being evaluated for the prevention of CMV-associated disease in a phase 2 clinical trial.
Collapse
Affiliation(s)
- Jukka Hartikka
- Vical Incorporated, 10390 Pacific Center Court, San Diego, CA 92121-4340, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Orság P, Kvardová V, Raska M, Miller AD, Ledvina M, Turánek J. Quantitative real-time PCR study on persistence of pDNA vaccine pVax-Hsp60 TM814 in beef muscles. GENETIC VACCINES AND THERAPY 2008; 6:11. [PMID: 18761754 PMCID: PMC2542361 DOI: 10.1186/1479-0556-6-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/02/2008] [Indexed: 11/17/2022]
Abstract
Background Application of plasmid DNA for immunization of food-producing animals established new standards of food safety. The addition of foreign products e.g. pDNA into the food chain should be carefully examined to ensure that neither livestock animals nor consumers develop unpredicted or undesirable side-effects. Methods A quantitative real-time PCR (QRTPCR) methodology was developed to study the biodistribution and persistence of plasmid DNA vaccine pDNAX (pVAX-Hsp60 TM814) in mice and beef cattle. The linear quantification range and the sensitivity of the method was found to be 10 – 109 copies per reaction (500 ng/gDNA) and 3 copies per reaction, respectively. Results Persistence of pDNAX in mice muscle tissue was restricted to injection site and the amount of pDNAX showed delivery formulation dependent (naked pDNA, electroporation, cationic liposome complexes) and mouse age-dependent clearance form injection site but pDNAX was still detectable even after 365 days. The QRTPCR analysis of various muscle tissue samples of vaccinated beef bulls performed 242–292 days after the last revaccination proved that residual pDNAX was found only in the injection site. The highest plasmid levels (up to 290 copies per reaction) were detected in the pDNAX:CDAN/DOPE group similarly to mice model. No pDNA was detected in the samples from distant muscles and draining lymph nodes. Conclusion Quantitative real-time PCR (QRTPCR) assay was developed to assess the residual pDNA vaccine pVAX-Hsp60 TM814 in mice and beef cattle. In beef cattle, ultra low residual level of pDNA vaccine was only found at the injection site. According to rough estimation, consumption of muscles from the injection site represents almost an undetectable intake of pDNA (400 fg/g muscle tissue) for consumers. Residual plasmid in native state will hardly be found at measurable level following further meat processing. This study brings supportive data for animal and food safety and hence for further approval of pDNA vaccine field trials.
Collapse
Affiliation(s)
- Petr Orság
- Veterinary Research Institute, Department of Immunology, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
47
|
Pan CH, Jimenez GS, Nair N, Wei Q, Adams RJ, Polack FP, Rolland A, Vilalta A, Griffin DE. Use of Vaxfectin adjuvant with DNA vaccine encoding the measles virus hemagglutinin and fusion proteins protects juvenile and infant rhesus macaques against measles virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1214-21. [PMID: 18524884 PMCID: PMC2519314 DOI: 10.1128/cvi.00120-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/06/2008] [Accepted: 05/21/2008] [Indexed: 11/20/2022]
Abstract
A measles virus vaccine for infants under 6 months of age would help control measles. DNA vaccines hold promise, but none has provided full protection from challenge. Codon-optimized plasmid DNAs encoding the measles virus hemagglutinin and fusion glycoproteins were formulated with the cationic lipid-based adjuvant Vaxfectin. In mice, antibody and gamma interferon (IFN-gamma) production were increased by two- to threefold. In macaques, juveniles vaccinated at 0 and 28 days with 500 microg of DNA intradermally or with 1 mg intramuscularly developed sustained neutralizing antibody and H- and F-specific IFN-gamma responses. Infant monkeys developed sustained neutralizing antibody and T cells secreting IFN-gamma and interleukin-4. Twelve to 15 months after vaccination, vaccinated monkeys were protected from an intratracheal challenge: viremia was undetectable by cocultivation and rashes did not appear, while two naïve monkeys developed viremia and rashes. The use of Vaxfectin-formulated DNA is a promising approach to the development of a measles vaccine for young infants.
Collapse
Affiliation(s)
- Chien-Hsiung Pan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tanaka T, Legat A, Adam E, Steuve J, Gatot JS, Vandenbranden M, Ulianov L, Lonez C, Ruysschaert JM, Muraille E, Tuynder M, Goldman M, Jacquet A. DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through Toll-like receptor 4. Eur J Immunol 2008; 38:1351-7. [PMID: 18389479 DOI: 10.1002/eji.200737998] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DiC14-amidine cationic liposomes were recently shown to promote Th1 responses when mixed with allergen. To further define the mode of action of diC14-amidine as potential vaccine adjuvant, we characterized its effects on mouse and human myeloid dendritic cells (DC). First, we observed that, as compared with two other cationic liposomes, only diC14-amidine liposomes induced the production of IL-12p40 and TNF-alpha by mouse bone marrow-derived DC. DiC14-amidine liposomes also activated human DC, as shown by synthesis of IL-12p40 and TNF-alpha, accumulation of IL-6, IFN-beta and CXCL10 mRNA, and up-regulation of membrane expression of CD80 and CD86. DC stimulation by diC14-amidine liposomes was associated with activation of NF-kappaB, ERK1/2, JNK and p38 MAP kinases. Finally, we demonstrated in mouse and human cells that diC14-amidine liposomes use Toll-like receptor 4 to elicit both MyD88-dependent and Toll/IL-1R-containing adaptor inducing interferon IFN-beta (TRIF)-dependent responses.
Collapse
Affiliation(s)
- Tetsuya Tanaka
- Laboratoire d'Allergologie Expérimentale, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Charleroi, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lalor P, Webby R, Morrow J, Rusalov D, Kaslow D, Rolland A, Smith L. Plasmid DNA–Based Vaccines Protect Mice and Ferrets against Lethal Challenge with A/Vietnam/1203/04 (H5N1) Influenza Virus. J Infect Dis 2008; 197:1643-52. [DOI: 10.1086/588431] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
50
|
Dose-dependent protection against or exacerbation of disease by a polylactide glycolide microparticle-adsorbed, alphavirus-based measles virus DNA vaccine in rhesus macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:697-706. [PMID: 18287579 DOI: 10.1128/cvi.00045-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Measles remains an important cause of vaccine-preventable child mortality. Development of a low-cost, heat-stable vaccine for infants under the age of 6 months could improve measles control by facilitating delivery at the time of other vaccines and by closing a window of susceptibility prior to immunization at 9 months of age. DNA vaccines hold promise for development, but achieving protective levels of antibody has been difficult and there is an incomplete understanding of protective immunity. In the current study, we evaluated the use of a layered alphavirus DNA/RNA vector encoding measles virus H (SINCP-H) adsorbed onto polylactide glycolide (PLG) microparticles. In mice, antibody and T-cell responses to PLG-formulated DNA were substantially improved compared to those to naked DNA. Rhesus macaques received two doses of PLG/SINCP-H delivered either intramuscularly (0.5 mg) or intradermally (0.5 or 0.1 mg). Antibody and T-cell responses were induced but not sustained. On challenge, the intramuscularly vaccinated monkeys did not develop rashes and had lower viremias than vector-treated control monkeys. Monkeys vaccinated with the same dose intradermally developed rashes and viremia. Monkeys vaccinated intradermally with the low dose developed more severe rashes, with histopathologic evidence of syncytia and intense dermal and epidermal inflammation, eosinophilia, and higher viremia compared to vector-treated control monkeys. Protection after challenge correlated with gamma interferon-producing T cells and with early production of high-avidity antibody that bound wild-type H protein. We conclude that PLG/SINCP-H is most efficacious when delivered intramuscularly but does not provide an advantage over standard DNA vaccines for protection against measles.
Collapse
|