1
|
Sharma P, Kale S, Phugare S, Pendharkar S, Shinde P, Mandhan A, Goel SK, Gairola S. Molecular size distribution in pentavalent (A, C, Y, W, X) meningococcal polysaccharide conjugate vaccine by HPSEC-UV-MALS-RI method- a conceivable stability indicating parameter. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124048. [PMID: 38430603 DOI: 10.1016/j.jchromb.2024.124048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/05/2024]
Abstract
Molecular size distribution (MSD) of polysaccharides serves as a key parameter that directly correlates to the immunogenicity of vaccine. MSD at meningococcal polysaccharide (A, C, Y and W) or conjugate bulk level is well established under detailed pharmacopeial and WHO guidelines. We report here, a newly developed method for determination of molecular size distribution of pentavalent Meningococcal conjugate vaccine comprising of A, C, Y, W and X (MenFive). Although serogroup specific molecular size could not be estimated here; lot to lot consistency monitoring, molecular aggregates distribution in final lot, are key takeaways of this method. Determination of MSD in pentavalent fill finished product was quite challenging. Various columns/detectors combination, buffers, physico-chemical conditions (temperature, 2-8 °C, 25 °C, 40 °C and 60 °C; flow rate, 0.3 mL to 0.8 mL), liquid/lyophilized formulations, were explored. Polymer-based packed columns were explored for estimation for MSD by aqueous size exclusion chromatography, using combinations of- Shodex OHPAK SB 807 HQ, Shodex OHPAK SB 806 HQ, G6000 PWXL, coupled with guard Shodex OHPAK SB-G-6B. MenFive showed heterogenous distribution of molecules ranging from 200 to 19000 kDa, indicating its complex nature. However, 1000-8000 kDa was dominant range, comprising of ≥ 50 % distribution of molecules, in both liquid as well as lyophilized formulations, with average molecular weight around 6000-6500 kDa. The molar mass distribution after slicing would provide an insight to the conformation of molecules through its presentation as HMW, LMW, aggregates and subsequently, the presence of dominant population of molecules of a particular molecular weight and its total contribution in the sample.
Collapse
|
2
|
Bazhenova A, Gao F, Bolgiano B, Harding SE. Glycoconjugate vaccines against Salmonella enterica serovars and Shigella species: existing and emerging methods for their analysis. Biophys Rev 2021; 13:221-246. [PMID: 33868505 PMCID: PMC8035613 DOI: 10.1007/s12551-021-00791-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
The global spread of enteric disease, the increasingly limited options for antimicrobial treatment and the need for effective eradication programs have resulted in an increased demand for glycoconjugate enteric vaccines, made with carbohydrate-based membrane components of the pathogen, and their precise characterisation. A set of physico-chemical and immunological tests are employed for complete vaccine characterisation and to ensure their consistency, potency, safety and stability, following the relevant World Health Organization and Pharmacopoeia guidelines. Variable requirements for analytical methods are linked to conjugate structure, carrier protein nature and size and O-acetyl content of polysaccharide. We investigated a key stability-indicating method which measures the percent free saccharide of Salmonella enterica subspecies enterica serovar Typhi capsular polysaccharide, by detergent precipitation, depolymerisation and HPAEC-PAD quantitation. Together with modern computational approaches, a more precise design of glycoconjugates is possible, allowing for improvements in solubility, structural conformation and stability, and immunogenicity of antigens, which may be applicable to a broad spectrum of vaccines. More validation experiments are required to establish the most effective and suitable methods for glycoconjugate analysis to bring uniformity to the existing protocols, although the need for product-specific approaches will apply, especially for the more complex vaccines. An overview of current and emerging analytical approaches for the characterisation of vaccines against Salmonella Typhi and Shigella species is described in this paper. This study should aid the development and licensing of new glycoconjugate vaccines aimed at the prevention of enteric diseases.
Collapse
Affiliation(s)
- Aleksandra Bazhenova
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Fang Gao
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Stephen E. Harding
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
- Museum of Cultural History, University of Oslo, Postboks 6762 St. Olavs plass, 0130 Oslo, Norway
| |
Collapse
|
3
|
Li K, Dong F, Gao F, Bian L, Sun S, Du R, Hu Y, Mao Q, Zheng H, Wu X, Liang Z. Effect of freezing on recombinant hepatitis E vaccine. Hum Vaccin Immunother 2020; 16:1545-1553. [PMID: 31809644 PMCID: PMC7482780 DOI: 10.1080/21645515.2019.1694327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Studies have revealed that vaccines are more often exposed to sub-zero temperatures during cold chain transportation than what was previously known. Such exposure might be detrimental to the potency of temperature-sensitive vaccines. The aim of this study was to evaluate the impact of exposure to freezing on the physicochemical properties and biological activities of recombinant hepatitis E (rHE) vaccine. Changes in rHE vaccine due to freezing temperatures were analyzed with regard to sedimentation rate, antigenicity, and antibody affinity and potency. The freezing temperature of rHE was measured, then rHE vaccine was exposed to freezing temperatures below -10°C.Significant increase of sedimentation rate was noted, according to shake test and massed precipitates. In addition, the binding affinity of rHE vaccine to six specific monoclonal antibodies was significantly reduced and the in vivo potency for eliciting a protective IgG response was also partially lost, especially for anti-HEV neutralizing antibodies. Altogether, our work indicates that exposure of rHE vaccine to a temperature below -10°C results in the loss of structural integrity and biological potency of rHE vaccine.
Collapse
Affiliation(s)
- Kelei Li
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
- Research and Development Center, Minhai Biotechnology Co. Ltd, Beijing, China
| | - Fangyu Dong
- The Second Department of Research, Lanzhou Institute of Biological Products Co. Ltd, Lanzhou, China
| | - Fan Gao
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Lianlian Bian
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Shiyang Sun
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Ruixiao Du
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Yalin Hu
- Quality Assurance Department, Hualan Biological Engineering Inc, Xinxiang, China
| | - Qunying Mao
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Haifa Zheng
- Research and Development Center, Minhai Biotechnology Co. Ltd, Beijing, China
| | - Xing Wu
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| |
Collapse
|
4
|
Asowata OE, Ashiru OT, Sturm AW, Moodley P. Stability of a monovalent rotavirus vaccine after exposure to different temperatures observed in KwaZulu-Natal, South Africa. Afr Health Sci 2019; 19:1993-1999. [PMID: 31656482 PMCID: PMC6794501 DOI: 10.4314/ahs.v19i2.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Rotavirus infection and its associated hospitalization of children less than 5 years old in middle- and low-income countries remains a public health challenge. We hypothesized that the Rotarix®potency is affected by non-optimal temperatures which translates into reduced vaccine effectiveness in these settings. OBJECTIVE To assess the effect of non-optimal temperatures on the potency of the Rotarix® vaccine in South Africa. METHODS Rotarix® vaccine was exposed to temperatures reflecting breaches in the cold chain. Vero cells (ATCC CCL-81) grown in a 24-well tissue culture plates were infected with Rotarix® vaccine viruses after exposure to non-optimal temperatures and the potency of the vaccine was determined using the plaque assay. RESULTS Exposure of the Rotarix® vaccine to seasonal temperatures in KwaZulu-Natal for 6 hours and to extreme temperatures of 40oC for 72 hours as well as to -20°C and -80°C for 12 hours did not affect the potency of the vaccine beyond its expected standard of >7 x 105 PFU/ml. CONCLUSION This study revealed that the Rotarix® vaccine remains potent even after exposure to non-optimal temperatures. However, this study only explored the effect of a constant 'adverse' temperature on vaccine potency and not the effect of temperature fluctuations.
Collapse
Affiliation(s)
- Osaretin Emmanuel Asowata
- Department of Medical Microbiology, Nelson R Mandela School of Medicine, University of KwaZulu-Natal
| | - Olubisi Titilayo Ashiru
- Department of Medical Microbiology, Nelson R Mandela School of Medicine, University of KwaZulu-Natal
| | - A Willem Sturm
- Department of Medical Microbiology, Nelson R Mandela School of Medicine, University of KwaZulu-Natal
| | - Prashini Moodley
- Department of Medical Microbiology, Nelson R Mandela School of Medicine, University of KwaZulu-Natal
| |
Collapse
|
5
|
Evaluation of impact of temperature and pH alterations on the size and antigenicity of meningococcal serogroup A and X polysaccharides and conjugates. Vaccine 2019; 37:965-972. [PMID: 30651197 DOI: 10.1016/j.vaccine.2018.12.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/10/2018] [Accepted: 12/29/2018] [Indexed: 02/05/2023]
Abstract
The changes in the recommended storage conditions of the glycoconjugate vaccines against Neisseria meningitidis (Men) serogroup A and serogroup X can affect its activity or potency. Elevated temperature and the change in pH may result in the physical instability leading to the size degradation of the polysaccharide (PS) and subsequent loss of PS epitopes. Moreover, high temperature may also result in protein aggregation and altered tertiary structure of the protein in the conjugate. Consequently, the construction of a potent glycoconjugate is dependent on optimal temperature and pH. The changes in both these conditions can also affect the production of a capsular polysaccharide (PS) and its conjugation to a protein carrier and may also affect the integrity of the vaccine molecule including the maintenance of the protective epitopes. In our study we have used inhibition ELISA as a tool to assess the impact of temperature and pH alterations on the antigenicity of N. meningitidis serogroup A and X, PS and conjugates and their correlation with the size distribution analysis using high pressure size exclusion chromatography. The studies on pH alterations from 5 to 9 led to minimal impact on size and antigenicity of all antigens, however, an elevated temperature adversely impacted the antigen size as well as antigenicity to varying extent. Results indicate the higher stability of MenX PS and conjugate as compared to that for MenA counterparts at elevated temperatures. Furthermore, both the MenA and MenX conjugates appears to be more stable as compared to the corresponding PSs.
Collapse
|
6
|
|
7
|
Bastos RC, Corrêa MB, de Souza IM, da Silva MN, da Silva Gomes Pereira D, Martins FO, da Silva Faria C, Ano Bom APD, de Lourdes Leal M, Jessouroun E, da Silva JG, de Andrade Medronho R, da Silveira IAFB. Brazilian meningococcal C conjugate vaccine: physicochemical, immunological, and thermal stability characteristics. Glycoconj J 2017; 35:3-13. [PMID: 28929266 DOI: 10.1007/s10719-017-9787-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 02/02/2023]
Abstract
High temperature is known to cause some instability in polysaccharide-protein conjugated vaccines and studies under stress conditions may be useful in determining whether short-term accidental exposure to undesired conditions can compromise product quality. In this study, we examined the structural stability of three industrial batches of Brazilian Meningococcal C conjugate bulk (MPCT) incubated at 4, 37, and 55 °C for 5 weeks. The effect of exposure to the storage temperatures was monitored by HPLC-SEC, CZE, CD and NMR techniques. The immunological significance of any physicochemical changes observed in MPCT was determined by SBA and ELISA assays of serum from immunized mice. Fluorescence emission spectra at 4 and 37 °C were similar among all samples and compatible with the native fold of the carrier protein. Fluorescence spectra of MPCT stored at 55 °C decreased in intensity and had a significant red-shift, indicating conformational changes. Far-UV CD spectra revealed a trend toward loss of structural conformation as storage temperature was increased to 55 °C. The NMR data showed modified signal intensity of the aromatic and aliphatic residues, mainly for samples incubated at 55 °C, suggesting a partial loss of tertiary structure. About 50% free saccharide content was found in bulks stored at 55 °C, but no difference was observed in the IgG or SBA titers. The present study showed physicochemical methods alone are insufficient to predict the biological activity of a MPCT conjugate vaccine without extensive validation against immunological data. However, they provide a sensitive means of detecting changes induced in a vaccine exposed to adverse environmental condition.
Collapse
Affiliation(s)
- Renata Chagas Bastos
- Laboratório de Macromoléculas, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Marilza Batista Corrêa
- Laboratório de Tecnologia Bacteriana, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Milton Neto da Silva
- Laboratório de Tecnologia Bacteriana, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | - Camila da Silva Faria
- Laboratório de Tecnologia Bacteriana, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Paula Dinis Ano Bom
- Laboratório de Macromoléculas, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria de Lourdes Leal
- Laboratório de Tecnologia Bacteriana, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ellen Jessouroun
- Programa de Vacinas Bacterianas, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - José Godinho da Silva
- Laboratório de Macromoléculas, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
8
|
Beresford NJ, Martino A, Feavers IM, Corbel MJ, Bai X, Borrow R, Bolgiano B. Quality, immunogenicity and stability of meningococcal serogroup ACWY-CRM 197 , DT and TT glycoconjugate vaccines. Vaccine 2017; 35:3598-3606. [DOI: 10.1016/j.vaccine.2017.03.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 11/24/2022]
|
9
|
The Effect of Physicochemical Modification on the Function of Antibodies Induced by Anti-Nicotine Vaccine in Mice. Vaccines (Basel) 2017; 5:vaccines5020011. [PMID: 28513561 PMCID: PMC5492008 DOI: 10.3390/vaccines5020011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 11/17/2022] Open
Abstract
Smoking remains one of the major causes of morbidity and mortality worldwide. One approach to assisting smoking cessation is via anti-nicotine vaccines, composed of nicotine-like haptens conjugated to a carrier protein plus adjuvant(s). We have previously shown that the carrier, hapten, linker, hapten load, degree of conjugate aggregation, and presence of adducts can each influence the function (nicotine-binding capacity) of the antibody (Ab) induced. Herein, we extend those findings and show that tertiary structure is also critical to the induction of functional immune responses and that this can be influenced by conjugation conditions. We evaluated immunogenicity in mice using six lots of NIC7-CRM, a conjugate of 5-aminoethoxy-nicotine (Hapten 7), and a single point (glycine 52 to glutamic acid) mutant nontoxic form of diphtheria toxin, cross-reactive material 197 (CRM197), which were synthesized under different reaction conditions resulting in conjugates with equivalent molecular characteristics (hapten load, aggregates, adducts), but a different tertiary structure. When tested in mice, better functional responses (reduced nicotine in the brain of immunized animals relative to non-immunized controls) were obtained with conjugates with a more closed structure than those with an open conformation. These studies highlight the need for a better understanding of the physicochemical properties of small molecule conjugate vaccines.
Collapse
|
10
|
Otto RBD, Burkin K, Amir SE, Crane DT, Bolgiano B. Patterns of binding of aluminum-containing adjuvants to Haemophilus influenzae type b and meningococcal group C conjugate vaccines and components. Biologicals 2015; 43:355-62. [PMID: 26194164 PMCID: PMC4582044 DOI: 10.1016/j.biologicals.2015.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/14/2015] [Accepted: 06/16/2015] [Indexed: 12/17/2022] Open
Abstract
The basis of Haemophilus influenzae type b (Hib) and Neisseria meningitidis serogroup C (MenC) glycoconjugates binding to aluminum-containing adjuvants was studied. By measuring the amount of polysaccharide and protein in the non-adsorbed supernatant, the adjuvant, aluminum phosphate, AlPO4, was found to be less efficient than aluminum hydroxide, Al(OH)3 at binding to the conjugates, at concentrations relevant to licensed vaccine formulations and when equimolar. At neutral pH, binding of TT conjugates to AlPO4 was facilitated through the carrier protein, with only weak binding of AlPO4 to CRM197 being observed. There was slightly higher binding of either adjuvant to tetanus toxoid conjugates, than to CRM197 conjugates. This was verified in AlPO4 formulations containing DTwP-Hib, where the adsorption of TT-conjugated Hib was higher than CRM197-conjugated Hib. At neutral pH, the anionic Hib and MenC polysaccharides did not appreciably bind to AlPO4, but did bind to Al(OH)3, due to electrostatic interactions. Phosphate ions reduced the binding of the conjugates to the adjuvants. These patterns of adjuvant adsorption can form the basis for future formulation studies with individual and combination vaccines containing saccharide-protein conjugates.
Collapse
Affiliation(s)
- Robert B D Otto
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | - Karena Burkin
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | - Saba Erum Amir
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | - Dennis T Crane
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| |
Collapse
|
11
|
Determination of freeze damage on HPV vaccines by use of flow cytometry. Biologicals 2015; 43:266-73. [DOI: 10.1016/j.biologicals.2015.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 11/22/2022] Open
|
12
|
Molecular attributes of conjugate antigen influence function of antibodies induced by anti-nicotine vaccine in mice and non-human primates. Int Immunopharmacol 2015; 25:518-27. [PMID: 25737198 DOI: 10.1016/j.intimp.2015.02.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 11/20/2022]
Abstract
Anti-nicotine vaccines aim to prevent nicotine entering the brain, and thus reduce or eliminate the reward that drives nicotine addiction. Those tested in humans to date have failed to improve quit rates over placebo, possibly because antibody (Ab) responses were insufficient to sequester enough nicotine in the blood in the majority of subjects. We have previously shown in mice that the carrier, hapten and linker used in the nicotine conjugate antigen each influence the function (nicotine-binding capacity) of the Ab induced. Herein we have evaluated immunogenicity in mice of 27 lots of NIC7-CRM, a conjugate of 5-aminoethoxy-nicotine (Hapten 7) and a mutant nontoxic form of diphtheria toxin (CRM197), that differed in three antigen attributes, namely hapten load (number of haptens conjugated to each molecule of CRM197), degree of conjugate aggregation and presence of adducts (small molecules attached to CRM197 via a covalent bond during the conjugation process). A range of functional responses (reduced nicotine in the brain of immunized animals relative to non-immunized controls) were obtained with the different conjugates, which were adjuvanted with aluminum hydroxide and CpG TLR9 agonist. Trends for better functional responses in mice were obtained with conjugates having a hapten load of 11 to 18, a low level of high molecular mass species (HMMS) (i.e., not aggregated) and a low level of adducts and a more limited testing in cynomolgus monkeys confirmed these results. Thus hapten load, conjugate aggregation and presence of adducts are key antigen attributes that can influence Ab function induced by NIC7-CRM.
Collapse
|
13
|
Gao F, Lockyer K, Burkin K, Crane DT, Bolgiano B. A physico-chemical assessment of the thermal stability of pneumococcal conjugate vaccine components. Hum Vaccin Immunother 2014; 10:2744-53. [PMID: 25483488 PMCID: PMC4977451 DOI: 10.4161/hv.29696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Physico-chemical analysis of pneumococcal polysaccharide (PS)-protein conjugate vaccine components used for two commercially licensed vaccines was performed to compare the serotype- and carrier protein-specific stabilities of these vaccines. Nineteen different monovalent pneumococcal conjugates from commercial vaccines utilizing CRM197, diphtheria toxoid (DT), Protein D (PD) or tetanus toxoid (TT) as carrier proteins were incubated at temperatures up to 56°C for up to eight weeks or were subjected to freeze-thawing (F/T). Structural stability was evaluated by monitoring their size, integrity and carrier protein conformation. The molecular size of the vaccine components was well maintained for Protein D, TT and DT conjugates at -20°C, 4°C and F/T, and for CRM197 conjugates at 4°C and F/T. It was observed that four of the eight serotypes of Protein D conjugates tended to form high molecular weight complexes at 37°C or above. The other conjugated carrier proteins also appeared to form oligomers or ‘aggregates’ at elevated temperatures, but rarely when frozen and thawed. There was evidence of degradation in some of the conjugates as evidenced by the formation of lower molecular weight materials which correlated with measured free saccharide. In conclusion, pneumococcal-Protein D/TT/DT and most CRM197 bulk conjugate vaccines were stable when stored at 2–8°C, the recommended temperature. In common between the conjugates produced by the two manufacturers, serotypes 1, 5, and 19F were relatively less stable and 6B was the most stable, with types 7F and 23F also showing good stability.
Collapse
Key Words
- CRM197, Cross-Reacting Material- 197
- DT, diphtheria toxoid
- F/T, freeze-thawing, HPAEC-PAD, high pH anion-exchange chromatography with pulsed amperometric detection
- HPAEC-PAD
- HPLC
- MW, molecular weight
- PD, Protein D
- PS, polysaccharide
- Pn, pneumococcal
- Protein D
- SEC, size-exclusion chromatography
- Streptococcus pneumoniae
- TT, tetanus toxoid
- conjugate vaccine
- fluorescence spectroscopy
- pneumococcal
- polysaccharide
- stability
Collapse
Affiliation(s)
- Fang Gao
- a Division of Bacteriology ; National Institute for Biological Standards and Control ; Hertfordshire , UK
| | | | | | | | | |
Collapse
|
14
|
Development and validation of high-performance size exclusion chromatography methods to determine molecular size parameters of Haemophilus influenzae type b polysaccharides and conjugates. Anal Biochem 2014; 453:22-8. [DOI: 10.1016/j.ab.2014.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/20/2022]
|
15
|
Murhekar MV, Dutta S, Kapoor AN, Bitragunta S, Dodum R, Ghosh P, Swamy KK, Mukhopadhyay K, Ningombam S, Parmar K, Ravishankar D, Singh B, Singh V, Sisodiya R, Subramanian R, Takum T. Frequent exposure to suboptimal temperatures in vaccine cold-chain system in India: results of temperature monitoring in 10 states. Bull World Health Organ 2013; 91:906-13. [PMID: 24347729 DOI: 10.2471/blt.13.119974] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/01/2013] [Accepted: 06/12/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To estimate the proportion of time the vaccines in the cold-chain system in India are exposed to temperatures of < 0 or > 8 °C. METHODS In each of 10 states, the largest district and the one most distant from the state capital were selected for study. Four boxes, each containing an electronic temperature recorder and two vials of diphtheria, pertussis and tetanus vaccine, were placed in the state or regional vaccine store for each study state. Two of these boxes were then shipped - one per facility - towards the two most peripheral health facilities where vaccine was stored in each study district. The boxes were shipped, handled and stored as if they were routine vaccine supplies. FINDINGS In state, regional and district vaccine stores and peripheral health facilities, respectively, the temperatures in the boxes exceeded 8 °C for 14.3%, 13.2%, 8.3% and 14.7% of their combined storage times and fell below 0 °C for 1.5%, 0.2%, 0.6% and 10.5% of these times. The boxes also spent about 18% and 7% of their combined times in transit at < 0 and > 8 °C, respectively. In shake tests conducted at the end of the study, two thirds of the vaccine vials in the boxes showed evidence of freezing. CONCLUSION While exposure to temperatures above 8 °C occurred at every level of vaccine storage, exposure to subzero temperatures was only frequent during vaccine storage at peripheral facilities and vaccine transportation. Systematic efforts are needed to improve temperature monitoring in the cold-chain system in India.
Collapse
Affiliation(s)
- Manoj V Murhekar
- National Institute of Epidemiology, Indian Council of Medical Research, R127, Tamil Nadu Housing Board, Ayapakkam, Ambattur, Chennai 600 077, India
| | | | | | - Sailaja Bitragunta
- Directorate of Health, Medical and Familty Welfare, Government of Andhra Pradesh, Hyderabad, India
| | - Raja Dodum
- Department of Health and Family Welfare, Government of Arunachal Pradesh, Papum Pare, India
| | - Pramit Ghosh
- Department of Community Medicine, Medical College, Kolkata, India
| | | | | | | | - Kamlesh Parmar
- Department of Health and Family Welfare, Government of Gujarat, Gandhinagar, India
| | | | - Balraj Singh
- Department of Community Medicine and Epidemiology, Indira Gandhi Medical College, Shimla, India
| | - Varsha Singh
- State Institute of Health and Family Welfare, Government of Bihar, Patna, India
| | - Rajesh Sisodiya
- Directorate of Health Services, Government of Madhya Pradesh, Bhopal, India
| | | | - Tana Takum
- Department of Health and Family Welfare, Government of Arunachal Pradesh, Papum Pare, India
| |
Collapse
|
16
|
|
17
|
|
18
|
Matthias DM, Robertson J, Garrison MM, Newland S, Nelson C. Freezing temperatures in the vaccine cold chain: A systematic literature review. Vaccine 2007; 25:3980-6. [PMID: 17382434 DOI: 10.1016/j.vaccine.2007.02.052] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/07/2007] [Accepted: 02/16/2007] [Indexed: 11/30/2022]
Abstract
The dangers of accidental freezing of vaccines in the cold chain have prompted studies throughout the globe to better characterize the risk. To date, there has been no systematic review of these studies. This analysis highlights that accidental freezing is pervasive and occurs across all segments of the cold chain. Between 14% and 35% of refrigerators or transport shipments were found to have exposed vaccine to freezing temperatures, while in studies that examined all segments of distribution, between 75% and 100% of the vaccine shipments were exposed. More rigorous study designs were associated with higher levels of freeze exposure. As more expensive, freeze-sensitive vaccines are introduced into immunization schedules, freeze prevention will become increasingly critical for ensuring that the world's children are receiving fully potent vaccine.
Collapse
|
19
|
Cuervo MLC, Pérez LR, Oviedo M, Costa L, Perdomo V. Relationships among physico-chemical and biological tests for a synthetic Hib–TT conjugate vaccine. Vaccine 2007; 25:194-200. [PMID: 17161239 DOI: 10.1016/j.vaccine.2005.05.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 05/10/2005] [Accepted: 05/19/2005] [Indexed: 11/27/2022]
Abstract
The relationships among physico-chemical and biological tests were evaluated in this study for Cuban Hib vaccine, a tetanus toxoid conjugated with a polysaccharide obtained from chemical synthesis, in order to estimate the biological significance of the relevant physico-chemical assays for lot released. In order to get samples with theoretical different potencies, Hib-TT samples were stored at -20, 4, 25, 37 and 70 degrees C for 5 weeks and after they were evaluated by HPLC and Orcinol methods and for immunogenicity and bactericidal activity. We found strong relationships between HPLC and free PRP level (r2=0.9571), anti-PRP antibodies and bactericidal activity (r2=0.9649) and free PRP content and anti-PRP antibodies titres (r2=0.7671). A lower correlation was found for HPLC and anti-PRP titres (r2=0.5996). We demonstrate that it is possible to monitor this new product combining physico-chemical and biological tests in order to contribute to its characterisation.
Collapse
Affiliation(s)
- Mario Landys Chovel Cuervo
- Cuban Center for Quality Control of Drugs (CECMED), Calle 200, No. 1706 entre 17 y 19, CP 11600, Siboney, Playa, Ciudad de la Habana, Cuba.
| | | | | | | | | |
Collapse
|
20
|
Shao J, Li M, Jia Q, Lu Y, Wang PG. Sequence of Escherichia coli O128 antigen biosynthesis cluster and functional identification of an alpha-1,2-fucosyltransferase. FEBS Lett 2003; 553:99-103. [PMID: 14550554 DOI: 10.1016/s0014-5793(03)00980-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
O128 is one of the most common atypical enteropathogenic Escherichia coli isolated from diarrhea patients worldwide. The primary structure of E. coli O128 repeat units has previously been determined as -->3)-beta-D-GalNAc-(1-->4)-alpha-D-Gal-(1-->3)-beta-D-GalNAc-(1-->6)-[alpha-L-Fuc-(1-->2)]-beta-D-Gal-(1--> pentasaccharide. Here we report the complete sequencing of E. coli O128 antigen biosynthesis gene cluster and its flanking regions. Comparative sequence analysis revealed the expected O128 antigen process genes, GDP-fucose biosynthesis genes and four potential glycosyltransferase genes responsible for the assembly of E. coli O128 antigen repeats. WbsJ was shown to encode an alpha-1,2-fucosyltransferase by enzymatic assays and nuclear magnetic resonance spectroscopy analysis.
Collapse
Affiliation(s)
- Jun Shao
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
21
|
Wang JY, Chang AHC, Guttormsen HK, Rosas AL, Kasper DL. Construction of designer glycoconjugate vaccines with size-specific oligosaccharide antigens and site-controlled coupling. Vaccine 2003; 21:1112-7. [PMID: 12559788 DOI: 10.1016/s0264-410x(02)00625-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coupling of carbohydrate antigens to protein carriers is a typical approach to enhancing the immunogenicity of carbohydrate-based vaccines. Glycoconjugates with well-defined structures are needed for studies defining the structural variables that govern antibody responses. We report a chemical strategy for preparation of an array of glycoconjugates containing saccharides of desired molecular sizes by selective depolymerization of bacterial polysaccharides and chemically controlled site-specific coupling. As an example, we synthesized and evaluated an oligosaccharide-based vaccine against type III group B Streptococcus.
Collapse
Affiliation(s)
- Julia Y Wang
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
22
|
Ho MM, Mawas F, Bolgiano B, Lemercinier X, Crane DT, Huskisson R, Corbel MJ. Physico-chemical and immunological examination of the thermal stability of tetanus toxoid conjugate vaccines. Vaccine 2002; 20:3509-22. [PMID: 12297396 DOI: 10.1016/s0264-410x(02)00342-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The thermal stability of meningococcal C (MenC)- and Haemophilus influenzae b (Hib)-tetanus toxoid (TT) conjugate vaccines was investigated using spectroscopic and chromatographic techniques and immunogenicity assays in animal models. In this stability study, both the bulk concentrate and final fills were incubated at -20, 4, 23, 37 or 55 degrees C for 5 weeks or subjected to cycles of freeze-thawing. The structural stability, hydrodynamic size and molecular integrity of the treated vaccines were monitored by circular dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopic techniques, size exclusion chromatography (FPLC-SEC), and high performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Only storage at 55 degrees C for 5 weeks caused some slight unfolding and modification in the tertiary structure of the carrier protein in the MenC-TT conjugate. Substantial loss of saccharide content from the MenC conjugates was observed at 37 and 55 degrees C. Unexpectedly, the experimental immunogenicity of MenC-TT vaccine adsorbed to Alhydrogel was significantly reduced only by repeated freeze-thawing, but not significantly decreased by thermal denaturation. Neither the molecular integrity nor the immunogenicity of the lyophilised Hib-TT vaccines was significantly affected by freeze-thawing or by storage at high temperature. In conclusion, the MenC- and Hib-TT conjugate vaccines were relatively stable when stored at higher temperatures, though when MenC-TT vaccine was adsorbed to Alhydrogel, it was more vulnerable to repeated freeze-thawing. When compared with CRM(197) conjugate vaccines studied previously using similar techniques, the tetanus toxoid conjugates were found to have higher relative thermal stability in that they retained immunogenicity following storage at elevated temperatures.
Collapse
Affiliation(s)
- Mei M Ho
- Bacteriology Division, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, EN6 3QG, Potters Bar, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Metz B, Hendriksen CFM, Jiskoot W, Kersten GFA. Reduction of animal use in human vaccine quality control: opportunities and problems. Vaccine 2002; 20:2411-30. [PMID: 12057596 DOI: 10.1016/s0264-410x(02)00192-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In vivo assays play a crucial role in the assessment of the potency and safety of human vaccines. Robust vaccine production procedures, improved characterisation methods and development of well-characterised vaccines create possibilities to reduce animal use. In this paper the current status in this field is reviewed. Achievements with regard to in vivo and in vitro potency and safety testing are discussed as well as new developments and possibilities in the field of in vitro characterisation of vaccine components. Finally, validation and implementation issues will be dealt with. Although replacement of in vivo tests for batch release of existing vaccines is difficult, emerging technologies allow well-considered reduction of in vivo experiments during product and process development and improvement. Inextricably bound up with this approach is good manufacturing practice (GMP), resulting in robust, validated production processes.
Collapse
Affiliation(s)
- Bernard Metz
- Laboratory for Product and Process Development, National Institute of Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|