1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Ancarola ME, Maldonado LL, García LCA, Franchini GR, Mourglia-Ettlin G, Kamenetzky L, Cucher MA. A Comparative Analysis of the Protein Cargo of Extracellular Vesicles from Helminth Parasites. Life (Basel) 2023; 13:2286. [PMID: 38137887 PMCID: PMC10744797 DOI: 10.3390/life13122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Helminth parasites cause debilitating-sometimes fatal-diseases in humans and animals. Despite their impact on global health, mechanisms underlying host-parasite interactions are still poorly understood. One such mechanism involves the exchange of extracellular vesicles (EVs), which are membrane-enclosed subcellular nanoparticles. To date, EV secretion has been studied in helminth parasites, including EV protein content. However, information is highly heterogeneous, since it was generated in multiple species, using varied protocols for EV isolation and data analysis. Here, we compared the protein cargo of helminth EVs to identify common markers for each taxon. For this, we integrated published proteomic data and performed a comparative analysis through an orthology approach. Overall, only three proteins were common in the EVs of the seven analyzed species. Additionally, varied repertoires of proteins with moonlighting activity, vaccine antigens, canonical and non-canonical proteins related to EV biogenesis, taxon-specific proteins of unknown function and RNA-binding proteins were observed in platyhelminth and nematode EVs. Despite the lack of consensus on EV isolation protocols and protein annotation, several proteins were shown to be consistently detected in EV preparations from organisms at different taxa levels, providing a starting point for a selective biochemical characterization.
Collapse
Affiliation(s)
- María Eugenia Ancarola
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Lucas L. Maldonado
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073, Argentina
| | - Lucía C. A. García
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Gisela R. Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), La Plata B1900, Argentina;
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
| | - Laura Kamenetzky
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina;
| | - Marcela A. Cucher
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| |
Collapse
|
3
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
4
|
Vaccines for Human Schistosomiasis: Recent Progress, New Developments and Future Prospects. Int J Mol Sci 2022; 23:ijms23042255. [PMID: 35216369 PMCID: PMC8879820 DOI: 10.3390/ijms23042255] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022] Open
Abstract
Schistosomiasis, caused by human trematode blood flukes (schistosomes), remains one of the most prevalent and serious of the neglected tropical parasitic diseases. Currently, treatment of schistosomiasis relies solely on a single drug, the anthelmintic praziquantel, and with increased usage in mass drug administration control programs for the disease, the specter of drug resistance developing is a constant threat. Vaccination is recognized as one of the most sustainable options for the control of any pathogen, but despite the discovery and reporting of numerous potentially promising schistosome vaccine antigens, to date, no schistosomiasis vaccine for human or animal deployment is available. This is despite the fact that Science ranked such an intervention as one of the top 10 vaccines that need to be urgently developed to improve public health globally. This review summarizes current progress of schistosomiasis vaccines under clinical development and advocates the urgent need for the establishment of a revolutionary and effective anti-schistosome vaccine pipeline utilizing cutting-edge technologies (including developing mRNA vaccines and exploiting CRISPR-based technologies) to provide novel insight into future vaccine discovery, design, manufacture and deployment.
Collapse
|
5
|
Panzner U, Excler JL, Kim JH, Marks F, Carter D, Siddiqui AA. Recent Advances and Methodological Considerations on Vaccine Candidates for Human Schistosomiasis. FRONTIERS IN TROPICAL DISEASES 2021; 2:719369. [PMID: 39280170 PMCID: PMC11392908 DOI: 10.3389/fitd.2021.719369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Schistosomiasis remains a neglected tropical disease of major public health concern with high levels of morbidity in various parts of the world. Although considerable efforts in implementing mass drug administration programs utilizing praziquantel have been deployed, schistosomiasis is still not contained. A vaccine may therefore be an essential part of multifaceted prevention control efforts. In the 1990s, a joint United Nations committee promoting parasite vaccines shortlisted promising candidates including for schistosomiasis discussed below. After examining the complexity of immune responses in human hosts infected with schistosomes, we review and discuss the antigen design and preclinical and clinical development of the four leading vaccine candidates: Sm-TSP-2 in Phase 1b/2b, Sm14 in Phase 2a/2b, Sm-p80 in Phase 1 preparation, and Sh28GST in Phase 3. Our assessment of currently leading vaccine candidates revealed some methodological issues that preclude a fair comparison between candidates and the rationale to advance in clinical development. These include (1) variability in animal models - in particular non-human primate studies - and predictive values of each for protection in humans; (2) lack of consensus on the assessment of parasitological and immunological parameters; (3) absence of reliable surrogate markers of protection; (4) lack of well-designed parasitological and immunological natural history studies in the context of mass drug administration with praziquantel. The controlled human infection model - while promising and unique - requires validation against efficacy outcomes in endemic settings. Further research is also needed on the impact of advanced adjuvants targeting specific parts of the innate immune system that may induce potent, protective and durable immune responses with the ultimate goal of achieving meaningful worm reduction.
Collapse
Affiliation(s)
- Ursula Panzner
- International Vaccine Institute, Seoul, South Korea
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Jerome H Kim
- International Vaccine Institute, Seoul, South Korea
| | - Florian Marks
- International Vaccine Institute, Seoul, South Korea
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- University of Antananarivo, Antananarivo, Madagascar
| | | | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
6
|
Al-Naseri A, Al-Absi S, El Ridi R, Mahana N. A comprehensive and critical overview of schistosomiasis vaccine candidates. J Parasit Dis 2021; 45:557-580. [PMID: 33935395 PMCID: PMC8068781 DOI: 10.1007/s12639-021-01387-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
A digenetic platyhelminth Schistosoma is the causative agent of schistosomiasis, one of the neglected tropical diseases that affect humans and animals in numerous countries in the Middle East, sub-Saharan Africa, South America and China. Several control methods were used for prevention of infection or treatment of acute and chronic disease. Mass drug administration led to reduction in heavy-intensity infections and morbidity, but failed to decrease schistosomiasis prevalence and eliminate transmission, indicating the need to develop anti-schistosome vaccine to prevent infection and parasite transmission. This review summarizes the efficacy and protective capacity of available schistosomiasis vaccine candidates with some insights and future prospects.
Collapse
Affiliation(s)
- Aya Al-Naseri
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Samar Al-Absi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Noha Mahana
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| |
Collapse
|
7
|
White Bear J, Long T, Skinner D, McKerrow JH. Predictions of novel Schistosoma mansoni - human protein interactions consistent with experimental data. Sci Rep 2018; 8:13092. [PMID: 30166569 PMCID: PMC6117258 DOI: 10.1038/s41598-018-31272-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Infection by the human blood fluke, Schistosoma mansoni involves a variety of cross-species protein- protein interactions. The pathogen expresses a diverse arsenal of proteins that facilitate the breach of physical and biochemical barriers present in skin evasion of the immune system, and digestion of human plasma proteins including albumin and hemoglobin, allowing schistosomes to reside in the host for years. However, only a small number of specific interactions between S. mansoni and human proteins have been identified. We present and apply a protocol that generates testable predictions of S. mansoni-human protein interactions. In this study, we have preliminary predictions of novel interactions between schistosome and human proteins relevant to infection and the ability of the parasite to evade the immune system. We applied a computational whole-genome comparative approach to predict potential S. mansoni-human protein interactions based on similarity to known protein complexes. We first predict S. mansoni -human protein interactions based on similarity to known protein complexes. Putative interactions were then scored and assessed using several contextual filters, including the use of annotation automatically derived from literature using a simple natural language processing methodology. Next, in vitro experiments were carried out between schistosome and host proteins to validate several prospective predictions. Our method predicted 7 out of the 10 previously known cross-species interactions involved in pathogenesis between S. mansoni and its human host. Interestingly, two novel putative interactions involving Schistosoma proteins, the cercarial elastase SmCE, and the adult tegument surface protein Sm29, were also predicted and experimentally characterized. Preliminary data suggest that elafin, a host endogenous serine protease inhibitor, may be a novel substrate for SmCE. Additionally, CD59, an inhibitor of the membrane attack complex, could interact with Sm29. Furthermore, the application framework provides an integrated methodology for investigation of host-pathogen interactions and an extensive source of orthogonal data for experimental analysis. We have made the predictions available for community perusal.
Collapse
Affiliation(s)
- J White Bear
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA.
- Graduate Group in Bioinformatics, University of California, San Francisco, CA, 94158, USA.
- MIT Lincoln Laboratory 244 Wood St, Lexington, MA, USA.
| | - Thavy Long
- Department of Pathology and Sandler Center for Basic Research in Parasitic Diseases, University of California at San Francisco, San Francisco, California, 94158, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego 9500 Gilman Dr, La Jolla, CA, 92093, USA
- INRA - InTheRes - UMR 1436, Equipe Transporteurs Membranaires et Résistance, 180, Chemin de Tournefeuille, Toulouse, France
| | - Danielle Skinner
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - James H McKerrow
- Department of Pathology and Sandler Center for Basic Research in Parasitic Diseases, University of California at San Francisco, San Francisco, California, 94158, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Zhang W, Ahmad G, Molehin AJ, Torben W, Le L, Kim E, Lazarus S, Siddiqui AJ, Carter D, Siddiqui AA. Schistosoma mansoni antigen Sm-p80: prophylactic efficacy using TLR4 agonist vaccine adjuvant glucopyranosyl lipid A-Alum in murine and non-human primate models. J Investig Med 2018; 66:1124-1132. [PMID: 29997146 PMCID: PMC6288690 DOI: 10.1136/jim-2018-000786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2018] [Indexed: 01/06/2023]
Abstract
Sm-p80, the large subunit of Schistosoma mansoni calpain, is a leading candidate for a schistosomiasis vaccine. The prophylactic and antifecundity efficacy of Sm-p80 has been tested in three animal models (mouse, hamster and baboon) using a multitude of vaccine formulations and approaches. In our continual effort to enhance the vaccine efficacy, in this study, we have utilized the adjuvant, synthetic hexa-acylated lipid A derivative, glucopyranosyl lipid A (GLA) formulated in aluminum (GLA-Alum) with recombinant Sm-p80. The rSm-p80+GLA-Alum immunization regimen provided 33.33%–53.13% reduction in worm burden in the mouse model and 38% worm burden reduction in vaccinated baboons. Robust Sm-p80-specific immunoglobulin (Ig)G, IgG1, IgG2a and IgM responses were observed in all immunized animals. The rSm-p80+GLA-Alum coadministration induced a mix of T-helper (Th) cells (Th1, Th2 and Th17) responses as determined via the release of interleukin (IL)-2, IL-4, IL-18, IL-21, IL-22 and interferon-γ.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Gul Ahmad
- Department of Natural Sciences, School of Arts & Sciences, Peru State College, Peru, Nebraska, USA
| | - Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Workineh Torben
- Comparative Pathology/Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Loc Le
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
| | - Eunjee Kim
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Samra Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Arif J Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
9
|
Cheng PC, Lin CN, Peng SY, Kang TF, Lee KM. Combined IL-12 Plasmid and Recombinant SjGST Enhance the Protective and Anti-pathology Effect of SjGST DNA Vaccine Against Schistosoma japonicum. PLoS Negl Trop Dis 2016; 10:e0004459. [PMID: 26891172 PMCID: PMC4758724 DOI: 10.1371/journal.pntd.0004459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/23/2016] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis is listed as one of most important tropical diseases and more than 200 million people are estimated to be infected. Development of a vaccine is thought to be the most effective way to control this disease. Recombinant 26-kDa glutathione S-transferase (rSjGST) has previously been reported to achieve a worm reduction rate of 42-44%. To improve the efficiency of the vaccine against Schistosoma japonicum, we immunized mice with a combination of pcDNA vector-encoded 26-kDa SjGST (pcDNA/SjGST), IL-12 expressing-plasmid (pIL-12), and rSjGST. Co-vaccination with pcDNA/SjGST, pIL-12, and rSjGST led to a reduction in worm burden, hepatic egg burden, and the size of liver tissue granulomas than that in the untreated infection controls. In addition, we detected high levels of specific IgG, IgG1, and IgG2a against the rSjGST antigen in infected mice vaccinated with this combination of pcDNA/SjGST, pIL-12, and rSjGST. Moreover, high expression levels of Th2 cytokines, including IL-4 and IL-10, were also detected in this group, without diminished levels of IL-12, INF-γ, and TNF-α cytokines that are related to parasite killing. In conclusion, we have developed a new vaccination regimen against S. japonicum infection and shown that co-immunization with pcDNA/SjGST vaccine, pIL-12, and rSjGST has significant anti-parasite, anti-hepatic egg and anti-pathology effects in mice. The efficacy of this vaccination method should be further validated in large animals such as water buffalo. This method may help to reduce the transmission of zoonotic schistosomiasis japonica.
Collapse
Affiliation(s)
- Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (PCC); (KML)
| | - Ching-Nan Lin
- Institute of Microbiology and Immunology, National Yang-Mng University, Taipei, Taiwan
- Institute of Tropical Medicine, National Yang-Mng University, Taipei, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Fu Kang
- Institute of Tropical Medicine, National Yang-Mng University, Taipei, Taiwan
| | - Kin-Mu Lee
- Institute of Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
- * E-mail: (PCC); (KML)
| |
Collapse
|
10
|
Fonseca CT, Oliveira SC, Alves CC. Eliminating Schistosomes through Vaccination: What are the Best Immune Weapons? Front Immunol 2015; 6:95. [PMID: 25806033 PMCID: PMC4353369 DOI: 10.3389/fimmu.2015.00095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/18/2015] [Indexed: 12/24/2022] Open
Abstract
The successful development of vaccines depends on the knowledge of the immunological mechanisms associated with the elimination of the pathogen. In the case of schistosomes, its complex life cycle and the mechanisms developed to evade host immune system, turns the development of a vaccine against the disease into a very difficult task. Identifying the immunological effector mechanisms involved in parasite attrition and the major targets for its response is a key step to formulate an effective vaccine. Recent studies have described some promising antigens to compose a subunit vaccine and have pointed to some immune factors that play a role in parasite elimination. Here, we review the immune components and effector mechanisms associated with the protective immunity induced by those vaccine candidates and the lessons we have learned from the studies of the acquired resistance to infection in humans. We will also discuss the immune factors that correlate with protection and therefore could help to evaluate those vaccine formulations in clinical trials.
Collapse
Affiliation(s)
- Cristina Toscano Fonseca
- Laboratório de Esquistossomose do Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz , Belo Horizonte , Brazil ; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Sergio Costa Oliveira
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil ; Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Clarice Carvalho Alves
- Laboratório de Esquistossomose do Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz , Belo Horizonte , Brazil
| |
Collapse
|
11
|
Adenowo AF, Oyinloye BE, Ogunyinka BI, Kappo AP. Impact of human schistosomiasis in sub-Saharan Africa. Braz J Infect Dis 2015; 19:196-205. [PMID: 25636189 PMCID: PMC9425372 DOI: 10.1016/j.bjid.2014.11.004] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 10/15/2014] [Accepted: 11/12/2014] [Indexed: 01/02/2023] Open
Abstract
Schistosomiasis, a neglected tropical disease of poverty ranks second among the most widespread parasitic disease in various nations in sub-Saharan Africa. Neglected tropical diseases are causes of about 534,000 deaths annually in sub-Saharan Africa and an estimated 57 million disability-adjusted life-years are lost annually due to the neglected tropical diseases. The neglected tropical diseases exert great health, social and financial burden on economies of households and governments. Schistosomiasis has profound negative effects on child development, outcome of pregnancy, and agricultural productivity, thus a key reason why the “bottom 500 million” inhabitants of sub-Saharan Africa continue to live in poverty. In 2008, 17.5 million people were treated globally for schistosomiasis, 11.7 million of those treated were from sub-Saharan Africa. This enervating disease has been successfully eradicated in Japan, as well as in Tunisia. Morocco and some Caribbean Island countries have made significant progress on control and management of this disease. Brazil, China and Egypt are taking steps towards elimination of the disease, while most sub-Saharan countries are still groaning under the burden of the disease. Various factors are responsible for the continuous and persistent transmission of schistosomiasis in sub-Saharan Africa. These include climatic changes and global warming, proximity to water bodies, irrigation and dam construction as well as socio-economic factors such as occupational activities and poverty. The morbidity and mortality caused by this disease cannot be overemphasized. This review is an exposition of human schistosomiasis as it affects the inhabitants of various communities in sub-Sahara African countries. It is hoped this will bring a re-awakening towards efforts to combat this impoverishing disease in terms of vaccines development, alternative drug design, as well as new point-of-care diagnostics.
Collapse
Affiliation(s)
- Abiola Fatimah Adenowo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; Department of Biochemistry, College of Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Bolajoko Idiat Ogunyinka
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
12
|
Salem ML, Shoukry NM, Zidan AAA, Vournakis J. Immunomodulatory effects of IL-12 released from poly-N-acetyl glucosamine gel matrix during schistosomiasis infection. Cytotechnology 2014; 66:667-75. [PMID: 23884721 PMCID: PMC4082772 DOI: 10.1007/s10616-013-9620-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/15/2013] [Indexed: 02/07/2023] Open
Abstract
We have reported recently that Interleukin-12 (IL-12) released from poly-N-acetyl glucosamine gel matrix (F2 gel/IL-12) is more effective than free IL-12 to enhance vaccination of mice with Schistosoma soluble worm antigen preparation. The aim of this study is to evaluate the effect of F2 gel/IL-12 on the inflammatory responses in mice undergoing schistosomiasis infection in absence of vaccination. To achieve this, mice undergoing Schistosoma mansoni infection or cured from this infection, after treatment with praziquantil (PZQ), were treated with subcutaneous injection of IL-12 for 3 consecutive days or once with F2 gel loaded with IL-12 (F2 gel/IL-12). The treatment was started on day 35 days after infection. For infection, mice were infected with 100 cercariae of S. mansoni using tail immersion method. We found that treatment with F2 gel/IL-12 induced significant decreases in the egg burden with a moderate reduction in the size of granuloma and decrease in the cellular granulomatous reaction in the lung as compared to infected mice treated with IL-12. These effects of F2 gel/IL-12 were more pronounced in infected mice previously treated with the anti-schistosomal drug PZQ. The total numbers of white blood cells in all treated mice showed similar profile. Treatment with IL-12 or F2 gel/IL-12, however, showed significant reduction in the number of mononuclear cells when compared with non-treated infected mice. In conclusion, this study showed the ability of IL-12 released from F2 gel to lower the inflammatory response to Schistosoma infection even in absence of vaccination.
Collapse
Affiliation(s)
- Mohamed L Salem
- Immunology and Biotechnology Division, Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt,
| | | | | | | |
Collapse
|
13
|
Yan HB, Lou ZZ, Li L, Brindley PJ, Zheng Y, Luo X, Hou J, Guo A, Jia WZ, Cai X. Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium. BMC Genomics 2014; 15:428. [PMID: 24899069 PMCID: PMC4070553 DOI: 10.1186/1471-2164-15-428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 05/19/2014] [Indexed: 12/20/2022] Open
Abstract
Background Cysticercosis remains a major neglected tropical disease of humanity in many regions, especially in sub-Saharan Africa, Central America and elsewhere. Owing to the emerging drug resistance and the inability of current drugs to prevent re-infection, identification of novel vaccines and chemotherapeutic agents against Taenia solium and related helminth pathogens is a public health priority. The T. solium genome and the predicted proteome were reported recently, providing a wealth of information from which new interventional targets might be identified. In order to characterize and classify the entire repertoire of protease-encoding genes of T. solium, which act fundamental biological roles in all life processes, we analyzed the predicted proteins of this cestode through a combination of bioinformatics tools. Functional annotation was performed to yield insights into the signaling processes relevant to the complex developmental cycle of this tapeworm and to highlight a suite of the proteases as potential intervention targets. Results Within the genome of this helminth parasite, we identified 200 open reading frames encoding proteases from five clans, which correspond to 1.68% of the 11,902 protein-encoding genes predicted to be present in its genome. These proteases include calpains, cytosolic, mitochondrial signal peptidases, ubiquitylation related proteins, and others. Many not only show significant similarity to proteases in the Conserved Domain Database but have conserved active sites and catalytic domains. KEGG Automatic Annotation Server (KAAS) analysis indicated that ~60% of these proteases share strong sequence identities with proteins of the KEGG database, which are involved in human disease, metabolic pathways, genetic information processes, cellular processes, environmental information processes and organismal systems. Also, we identified signal peptides and transmembrane helices through comparative analysis with classes of important regulatory proteases. Phylogenetic analysis using Bayes approach provided support for inferring functional divergence among regulatory cysteine and serine proteases. Conclusion Numerous putative proteases were identified for the first time in T. solium, and important regulatory proteases have been predicted. This comprehensive analysis not only complements the growing knowledge base of proteolytic enzymes, but also provides a platform from which to expand knowledge of cestode proteases and to explore their biochemistry and potential as intervention targets. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-428) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong-Bin Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu Province, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Parasitic diseases caused by protozoan and helminth parasites are among the leading causes of morbidity and mortality in tropical and subtropical regions of the world. Unfortunately, at present, there is no vaccine against any human parasitic disease. Conventional vaccine methods have largely failed against parasitic infections. This is due, in part, to the complexity of the parasite life cycle, the ability of the parasite to evade the immune system, and difficulties in identifying and eliciting the desired protective immune responses. The discovery of DNA vaccines has renewed hope for vaccine development against parasites. In the last decade, DNA vaccines were successful in inducing at least partial protection against several parasitic diseases. This review discusses the latest developments in DNA vaccines against tropical parasitic diseases.
Collapse
Affiliation(s)
- Akram A Da'dara
- Department of Immunology and Infectious Disease, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA.
| | | |
Collapse
|
15
|
Karmakar S, Zhang W, Ahmad G, Torben W, Alam MU, Le L, Damian RT, Wolf RF, White GL, Carey DW, Carter D, Reed SG, Siddiqui AA. Cross-species protection: Schistosoma mansoni Sm-p80 vaccine confers protection against Schistosoma haematobium in hamsters and baboons. Vaccine 2014; 32:1296-303. [PMID: 24397898 DOI: 10.1016/j.vaccine.2013.12.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/09/2013] [Accepted: 12/18/2013] [Indexed: 01/02/2023]
Abstract
The ability of the Schistosoma mansoni antigen, Sm-p80, to provide cross-species protection against Schistosoma haematobium challenge was evaluated in hamster and baboon models. Pronounced reduction in worm burden (48%) and in tissue egg load (64%) was observed in hamsters vaccinated with recombinant Sm-p80 admixed with glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE). Similarly, in baboons, the Sm-p80/GLA-SE vaccine produced a 25% reduction in S. haematobium adult worms and decreased the egg load in the urinary bladder by 64%. A 40% and 53% reduction in fecal and urine egg output, respectively, was observed in vaccinated baboons. A balanced pro-inflammatory (Th17 and Th1) and Th2 type of response was generated after vaccination and appears indicative of augmented prophylactic efficacy. These data on cross-species protection coupled with the prophylactic, therapeutic and antifecundity efficacy against the homologous parasite, S. mansoni, reinforces Sm-p80 as a promising vaccine candidate. It is currently being prepared for GMP-compliant manufacture and for further pre-clinical development leading to human clinical trials. These results solidify the expectation that the Sm-p80 vaccine will provide relief for both the intestinal and the urinary schistosomiasis and thus will be greatly beneficial in reducing the overall burden of schistosomiasis.
Collapse
Affiliation(s)
- Souvik Karmakar
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gul Ahmad
- Department of Natural Sciences, School of Arts & Sciences, Peru State College, Peru, NE 68321, USA
| | - Workineh Torben
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mayeen U Alam
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Loc Le
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Raymond T Damian
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Roman F Wolf
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gary L White
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - David W Carey
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, WA 98102, USA; PAI Life Sciences, Seattle, WA 98102, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
16
|
Karmakar S, Zhang W, Ahmad G, Alam MU, Winn R, Torben W, Le L, Tillery KA, Siddiqui AA. Complement plays a minimal role in Sm-p80-mediated protection against Schistosoma mansoni. Hum Vaccin Immunother 2013; 10:640-7. [PMID: 24374377 DOI: 10.4161/hv.27576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sm-p80, the large subunit of Schistosoma masoni calpain, is a leading antigen candidate for a schistosome vaccine. Prophylactic and antifecundity efficacy of Sm-p80 has been tested using a variety of vaccine approaches. However, the mechanism of Sm-p80-mediated killing is still unknown. In this study, potential role of complement in Sm-p80-mediated protection was studied using both in vitro (cobra venom factor inhibition) and in vivo using mice deficient in C3 (C3 -/-; B6.129S4-C3tm1Crr/J). In the absence of C3, Sm-p80-based vaccine was able to provide significant reduction in adult worm burden following challenge with schistosome cercariae in mice suggesting the effector functions of complement may be limited in this vaccine-induced protection.
Collapse
Affiliation(s)
- Souvik Karmakar
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | - Gul Ahmad
- Department of Natural Sciences; School of Arts & Sciences; Peru State College; Peru, NE USA
| | - Mayeen U Alam
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | - Richard Winn
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | | | - Loc Le
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | - Kory A Tillery
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Pathology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| |
Collapse
|
17
|
Olveda DU, Li Y, Olveda RM, Lam AK, Chau TNP, Harn DA, Williams GM, Gray DJ, Ross AGP. Bilharzia: Pathology, Diagnosis, Management and Control. TROPICAL MEDICINE & SURGERY 2013; 1:135. [PMID: 25346933 PMCID: PMC4208666 DOI: 10.4172/2329-9088.1000135] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
More than one billion people travel internationally each year and approximately 100 million to the tropics. Schistosomiasis is a neglected tropical disease caused by trematode blood flukes of the genus Schistosoma. It currently infects over 250 million people worldwide and results in approximately 25 million disability adjusted life years lost. Clinical manifestations depend on the affected organ. Subtle morbidities have also been documented including: growth retardation, anaemia and poor cognitive function in children. While schistosomiasis has been eradicated from Japan and significantly reduced in parts of China and Egypt, transmission in many other regions remains ongoing due to the wide-spread distribution of the intermediate snail host, poor sanitation, lack of health education and decreasing compliance to mass drug administration. Integrated control has significantly reduced the burden of disease in China but considerable financial capital is needed if similar results are to be duplicated elsewhere. Human vaccination is in various stages of development, and once found, will become an integral part of future control. This comprehensive review examines the epidemiology, pathology, diagnosis, clinical management, prevention and control of the disease.
Collapse
Affiliation(s)
- David U Olveda
- Griffith Health Institute, Griffith University, Gold Coast Campus, Australia
| | - Yuesheng Li
- Hunan Institute of Parasitic Diseases, WHO Collaborating Centre for Research and Control of Schistosomiasis on Lake Region, China and Queensland Institute of Medical Research, Australia
| | - Remigio M Olveda
- Research Institute for Tropical Medicine, Department of Health, Philippines
| | - Alfred K Lam
- Griffith Health Institute, Griffith University, Gold Coast Campus, Australia
| | - Thao N P Chau
- Flinders University, Discipline of Public Health, Australia
| | - Donald A Harn
- College of Veterinary Medicine, University of Georgia, USA
| | - Gail M Williams
- School of Population Health, University of Queensland, Brisbane, Australia
| | - Darren J Gray
- School of Population Health, University of Queensland, Brisbane, Australia
| | - Allen G P Ross
- Griffith Health Institute, Griffith University, Gold Coast Campus, Australia
| |
Collapse
|
18
|
Torben W, Ahmad G, Zhang W, Nash S, Le L, Karmakar S, Siddiqui AA. Role of antibody dependent cell mediated cytotoxicity (ADCC) in Sm-p80-mediated protection against Schistosoma mansoni. Vaccine 2012; 30:6753-8. [PMID: 23000221 DOI: 10.1016/j.vaccine.2012.09.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/07/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Schistosomiasis is a major health problem in the developing world and for international travelers to the endemic countries. Existing strategies to control schistosomiasis have had limited successes so far. The addition of an effective vaccine in existing control measures would be greatly beneficial in reducing the impact of the disease. In this regard, Sm-p80 mediated protection against intestinal schistosomiasis caused by Schistosoma mansoni has been observed to be promising in two animal models of infection and disease. In this study, the role of antibody dependent cell mediated cytotoxicity (ADCC) was deciphered in Sm-p80-mediated protection especially in the elimination of lung stage schistosomula. This was achieved using lung lavage cells and lung cells that were isolated from mice immunized with and without Sm-p80 formulated in a recombinant vaccine formulation. Significant differences were observed in cytotoxicity assays using immune sera with the lung lavage cells which showed 51% more killing of schistosomula and elevated levels of nitric oxide in the supernatants were detected compared to controls.
Collapse
Affiliation(s)
- Workineh Torben
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Schistosome infections in humans are characterized by the development of chronic disease and high re-infection rates after treatment due to the slow development of immunity. It appears that anti-schistosome antibodies are at least partially mediating protective mechanisms. Efforts to develop a vaccine based on immunization with surface-exposed or secreted larval or worm proteins are ongoing. Schistosomes also express a large number of glycans as part of their glycoprotein and glycolipid repertoire, and antibody responses to those glycans are mounted by the infected host. This observation raises the question if glycans might also form novel vaccine targets for immune intervention in schistosomiasis. This review summarizes current knowledge of antibody responses and immunity in experimental and natural infections with Schistosoma, the expression profiles of schistosome glycans (the glycome), and antibody responses to individual antigenic glycan motifs. Future directions to study anti-glycan responses in schistosomiasis in more detail in order to address more precisely the possible role of glycans in antibody-mediated immunity are discussed.
Collapse
|
20
|
Rabia Aly I, Diab M, El-Amir AM, Hendawy M, Kadry S. Fasciola gigantica fatty acid binding protein (FABP) as a prophylactic agent against Schistosoma mansoni infection in CD1 mice. THE KOREAN JOURNAL OF PARASITOLOGY 2012; 50:37-43. [PMID: 22451732 PMCID: PMC3309049 DOI: 10.3347/kjp.2012.50.1.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/04/2011] [Accepted: 11/10/2011] [Indexed: 01/26/2023]
Abstract
Although schistosomicidal drugs and other control measures exist, the advent of an efficacious vaccine remains the most potentially powerful means for controlling this disease. In this study, native fatty acid binding protein (FABP) from Fasciola gigantica was purified from the adult worm's crude extract by saturation with ammonium sulphate followed by separation on DEAE-Sephadex A-50 anion exchange chromatography and gel filtration using Sephacryl HR-100, respectively. CD1 mice were immunized with the purified, native F. gigantica FABP in Freund's adjuvant and challenged subcutaneously with 120 Schistosoma mansoni cercariae. Immunization of CD1 mice with F. gigantica FABP has induced heterologous protection against S. mansoni, evidenced by the significant reduction in mean worm burden (72.3%), liver and intestinal egg counts (81.3% and 80.8%, respectively), and hepatic granuloma counts (42%). Also, it elicited mixed IgG1/IgG2b immune responses with predominant IgG1 isotype, suggesting that native F. gigantica FABP is mediated by a mixed Th1/Th2 response. However, it failed to induce any significant differences in the oogram pattern or in the mean granuloma diameter. This indicated that native F. gigantica FABP could be a promising vaccine candidate against S. mansoni infection.
Collapse
|
21
|
Abstract
Schistosomiasis is a major neglected tropical disease of public health importance to a billion people. An estimated 200 million people are currently infected; an additional 779 million individuals are at risk to acquire the infection in 74 countries. Despite many years of implementation of mass anti-parasitic drug therapy programs and other control measures, this disease has not been contained and continues to spread to new geographic areas. The discovery of a protective vaccine still remains the most potentially effective means for the control of this disease, especially if the vaccine provides long-term immunity against the infection. A vaccine would contribute to the reduction of schistosomiasis morbidity through induced immune responses leading to decrease in parasite load and reduced egg production. This vaccine could be administered to children between the ages of 3 and 12 years to prevent severe infection in a particularly high risk population. This review summarizes the current status of schistosomiasis vaccine development.
Collapse
Affiliation(s)
- Afzal A Siddiqui
- Department of Microbiology and Immunology, Internal Medicine, Pathology, Texas Tech University Health Sciences Center, Lubbock, TX USA.
| | | | | |
Collapse
|
22
|
Computational vaccinology: an important strategy to discover new potential S. mansoni vaccine candidates. J Biomed Biotechnol 2011; 2011:503068. [PMID: 22013383 PMCID: PMC3196198 DOI: 10.1155/2011/503068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/12/2011] [Indexed: 11/17/2022] Open
Abstract
The flatworm Schistosoma mansoni is a blood fluke parasite that causes schistosomiasis, a debilitating disease that occurs throughout the developing world. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control schistosomiasis is through immunization with an antischistosomiasis vaccine combined with drug treatment. Several papers on Schistosoma mansoni vaccine and drug development have been published in the past few years, representing an important field of study. The advent of technologies that allow large-scale studies of genes and proteins had a remarkable impact on the screening of new and potential vaccine candidates in schistosomiasis. In this postgenomic scenario, bioinformatic technologies have emerged as important tools to mine transcriptomic, genomic, and proteomic databases. These new perspectives are leading to a new round of rational vaccine development. Herein, we discuss different strategies to identify potential S. mansoni vaccine candidates using computational vaccinology.
Collapse
|
23
|
Ahmad G, Zhang W, Torben W, Ahrorov A, Damian RT, Wolf RF, White GL, Carey DW, Mwinzi PNM, Ganley-Leal L, Kennedy RC, Siddiqui AA. Preclinical prophylactic efficacy testing of Sm-p80-based vaccine in a nonhuman primate model of Schistosoma mansoni infection and immunoglobulin G and E responses to Sm-p80 in human serum samples from an area where schistosomiasis is endemic. J Infect Dis 2011; 204:1437-49. [PMID: 21921206 DOI: 10.1093/infdis/jir545] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The prophylactic efficacy of a schistosome antigen (Sm-p80) was tested in a nonhuman primate model, the baboon. Using a total of 28 baboons, different vaccination strategies were used including recombinant Sm-p80 protein formulated in Toll-like receptor 7 and Toll-like receptor 9 agonists, and DNA priming followed by boosting with protein plus adjuvants. Recombinant protein approaches provided levels of prophylactic efficacy of 52%-58%, whereas prime-boost approaches conferred 38%-47% protection in baboons. An appropriately balanced pro-inflammatory (T-helper 17 [Th17] and Th1) and anti-inflammatory (Th2) type of response was generated; the Th1 and Th17 types of immune responses appear to be indicative of increased prophylactic efficacy. Production and expression of several cytokines (interleukin 2 [IL-2], interferon γ, IL-12α, IL-1β, IL-6, and IL-22) were up-regulated in vaccinated animals. Human correlate studies revealed Sm-p80 reactivity with immunoglobulin G in human serum samples from schistosome-infected individuals. In addition, a complete lack of prevailing Sm-p80-specific immunoglobulin E in a high-risk or infected population was observed, thus minimizing the risk of hypersensitivity reaction following vaccination with Sm-p80 in humans. This study provided the proof of concept to move Sm-p80 forward into further preclinical development leading to human clinical trials.
Collapse
Affiliation(s)
- Gul Ahmad
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schistosoma mansoni antigen Sm-p80: Prophylactic efficacy of a vaccine formulated in human approved plasmid vector and adjuvant (VR 1020 and alum). Acta Trop 2011; 118:142-51. [PMID: 21334302 DOI: 10.1016/j.actatropica.2011.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 12/18/2022]
Abstract
Schistosomiasis is an important parasitic disease. Consensus is developing now that ideal control methods of the disease should be based on an integrated approach incorporating drug treatment, sanitation improvement, education, and an effective vaccine. With regards to the vaccine development, Sm-p80 has been shown to be a promising and strong immunogenic vaccine candidate. In the present study, Sm-p80-based vaccine formulated in alum was tested for its prophylactic efficacy in a mouse model. It was observed that vaccination using heterologous prime boost (DNA prime followed by boost with protein formulated in alum) and homologous prime boost (both prime and boost with protein formulated in alum) approaches, resulted in 61% and 55% reduction in worm burden, respectively. The protection was directly correlated with the induction of high titers of antibody responses that mainly included IgG, its isotypes, and IgM. In addition, both of the immunization approaches triggered a mixed Th1 and Th2 type response. Some involvement of Th17 specific immune response was also detected as indicated by the up-regulation of relevant cytokines. These results reinforce the potential of Sm-p80 as a viable vaccine candidate.
Collapse
|
25
|
Torben W, Ahmad G, Zhang W, Siddiqui AA. Role of antibodies in Sm-p80-mediated protection against Schistosoma mansoni challenge infection in murine and nonhuman primate models. Vaccine 2011; 29:2262-71. [PMID: 21277404 DOI: 10.1016/j.vaccine.2011.01.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/23/2010] [Accepted: 01/13/2011] [Indexed: 01/23/2023]
Abstract
Schistosomiasis is an important public health concern in more than 76 developing countries. Advent of an anti-schistosome vaccine would undoubtedly add to the existing control measures and may eventually help in the elimination of this disease. In the present study we have attempted to dissect the role(s) of antibodies in Sm-p80 mediated protection by intravenously transferring pooled sera from mice immunized with Sm-p80-pcDNA3 or purified IgG from baboons immunized with Sm-p80-pcDNA3, into naïve C57BL/6 mice, respectively, prior to challenge with cercariae. The passive transfer of antibodies from protected mice (homologous transfers) as well as transfer of total IgG from baboons (heterologous transfers), into naïve mice showed statistically significant reductions in worm burden and in the number of eggs in the tissues. Immunizations of antibody knockout mice (μMt-/-; B10.129S2 (B6)-Igh-6(tm1Cgn)/J) with recombinant Sm-p80 in the presence of CpG-motif oligodeoxynucleotides as an adjuvant, resulted in substantial reduction of Sm-p80-mediated protection, compared to C57BL/6 (normal) control group of mice. Down regulation of cytokines that have important effects on B cell proliferation as well as the recovery of higher number of parasites in antibody knockout indicated a significant role(s) of antibodies in Sm-p80-mediated protection against Schistosoma mansoni in mice. In toto, these studies appear to suggest that antibodies play a significant role in Sm-p80 mediated protection.
Collapse
Affiliation(s)
- Workineh Torben
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
26
|
Ahmad G, Zhang W, Torben W, Noor Z, Siddiqui AA. Protective effects of Sm-p80 in the presence of resiquimod as an adjuvant against challenge infection with Schistosoma mansoni in mice. Int J Infect Dis 2010; 14:e781-7. [PMID: 20630783 DOI: 10.1016/j.ijid.2010.02.2266] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 02/27/2010] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES To determine the prophylactic efficacy of an Sm-p80-based vaccine formulation against challenge infection with Schistosoma mansoni in mice using an approach comprising of initial priming with DNA and boosting with recombinant protein in the presence of resiquimod (R848) as an adjuvant. METHODS In the first experiment (prime-boost approach), mice were primed with Sm-p80-pcDNA3 (week 0) and boosted at weeks 4 and 8 with recombinant Sm-p80 formulated in resiquimod (R848). Each mouse in the control group first received only pcDNA3 and was boosted with R848. In the second set of experiments (recombinant protein approach), mice were immunized (week 0) and boosted (weeks 4 and 8) with rSm-p80 formulated in R848. Animals of the control group in this series of experiments received only R848 at 0, 4, and 8 weeks. All of the animals from both the 'prime-boost' and 'recombinant protein' groups were challenged with cercariae of S. mansoni, 4 weeks after the last immunization. The mice were sacrificed 6 weeks post-challenge and the reductions in worm burden and egg production were determined. Sm-p80-specific antibody titers were estimated in the mice sera by ELISA. Cytokine mRNA and protein production by proliferating splenocytes in response to in vitro stimulation with Sm-p80, were estimated via RT-PCR and ELISA, respectively. RESULTS Vaccination with Sm-p80 (prime-boost approach) showed 49% reduction in worm burden; with the recombinant protein approach the protection was found to be 50%. The protection levels were correlated with antibody production. Upon antigenic stimulation with recombinant Sm-p80, splenocytes secreted significant levels of interferon (IFN)-γ and interleukin (IL)-2, indicating that the immune responses were Th1-biased and this was further supported in terms of distribution of antibody isotypes and mRNA expression of cytokines. CONCLUSIONS In conclusion the present study clearly demonstrates that Sm-p80 consistently maintained its protective nature, and resiquimod as an immunopotentiating agent slightly boosted the protective effects of Sm-p80 in both 'DNA prime-protein boost' and 'recombinant protein' immunization approaches in a murine model.
Collapse
Affiliation(s)
- Gul Ahmad
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, 3601 4th Street, Mail Stop 6591, Lubbock, TX 79430, USA
| | | | | | | | | |
Collapse
|
27
|
Zhang W, Ahmad G, Torben W, Siddiqui AA. Sm-p80-based DNA vaccine made in a human use approved vector VR1020 protects against challenge infection with Schistosoma mansoni in mouse. Parasite Immunol 2010; 32:252-8. [PMID: 20398225 DOI: 10.1111/j.1365-3024.2009.01181.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although there is an effective drug (praziquantel) available for the treatment of schistosomiasis, yet the disease is still spreading unabated and is rampant in 76 countries. Control via praziquantel treatment has so far been insufficient in reducing the disease transmission. Therefore, a vaccine in addition to other strategies, for example, improving sanitation and introduction of new drugs are essential to successfully control and eventually eradicate schistosomiasis. To this effect, we have targeted a functionally important antigen, Sm-p80 as a vaccine candidate. In this study, full length cDNA of Sm-p80 was cloned in VR1020, a FDA approved vector for human use. The protective efficacy of this vaccine formulation was tested in a murine model. Sm-p80-VR1020 vaccine formulation was able to induce 47% reduction in worm burden. Serology on samples obtained from vaccinated animals revealed a strong antibody response which included IgG and all of its subtypes, IgM and IgA. Proliferating splenocytes in response to recombinant Sm-p80 produced a wide spectrum of cytokines representing Th1, Th2 and Th17 types, as ascertained via RT-PCR analysis. These findings further strengthen the importance of Sm-p80 molecule as a vaccine candidate for intestinal schistosomiasis.
Collapse
Affiliation(s)
- W Zhang
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
28
|
Zhang W, Ahmad G, Torben W, Noor Z, Le L, Damian RT, Wolf RF, White GL, Chavez-Suarez M, Podesta RB, Kennedy RC, Siddiqui AA. Sm-p80-based DNA vaccine provides baboons with levels of protection against Schistosoma mansoni infection comparable to those achieved by the irradiated cercarial vaccine. J Infect Dis 2010; 201:1105-12. [PMID: 20187746 DOI: 10.1086/651147] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To date, no vaccine is available to prevent human schistosomiasis. We have targeted a protein of Schistosoma mansoni that plays an important role in the surface membrane renewal process, a mechanism widely believed to be utilized by the parasite as an immune evasion strategy. Sm-p80 antigen is a promising vaccine target because of its documented immunogenicity, protective efficacy, and antifecundity effects observed in both experimental murine and nonhuman primate models of this infectious disease. In the present study, we report that, in a vector approved for human use (VR1020), an Sm-p80-based DNA vaccine formulation confers a 46% reduction in the worm burden in a baboon (Papio anubis) model. Baboons vaccinated with Sm-p80-VR1020 had a 28% decrease in egg production after challenge with the infectious parasite. Sm-p80-VR1020 vaccine elicited robust immune responses to specific antigen Sm-p80, including immunoglobulin (Ig) G, its subtypes IgG1 and IgG2, and IgA and IgM in vaccinated animals. When stimulated in vitro with recombinant Sm-p80, peripheral blood mononuclear cells and splenocytes from baboons vaccinated with Sm-p80-VR1020 produced considerably higher levels of T helper 1 response-enhancing cytokines (interleukin [IL]-2 and interferon-gamma) than T helper 2 (Th2) response-enhancing cytokines (IL-4 and IL-10). Peripheral blood mononuclear cells produced a significantly higher number of spot-forming units for interferon-gamma than for IL-4 in enzyme-linked immunosorbent spot assays. A mixed T helper 1/T helper 2 type of humoral and T cell responses was generated after immunization with Sm-p80-VR1020. These findings again highlight the potential of Sm-p80 as a promising vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of 1Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Carvalho JA, Rodgers J, Atouguia J, Prazeres DMF, Monteiro GA. DNA vaccines: a rational design against parasitic diseases. Expert Rev Vaccines 2010; 9:175-91. [PMID: 20109028 DOI: 10.1586/erv.09.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parasitic diseases are one of the most devastating causes of morbidity and mortality worldwide. Although immunization against these infections would be an ideal solution, the development of effective vaccines has been hampered by specific challenges posed by parasitic pathogens. Plasmid-based DNA vaccines may prove to be promising immunization tools in this area because vectors can be designed to integrate several antigens from different stages of the parasite life cycle or different subspecies; vaccines, formulations and immunization protocols can be tuned to match the immune response that offers protective immunity; and DNA vaccination is an affordable platform for developing countries. Partial and full protective immunity have been reported following DNA vaccination against the most significant parasitic diseases in the world.
Collapse
Affiliation(s)
- Joana A Carvalho
- Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
30
|
Ahmad G, Zhang W, Torben W, Haskins C, Diggs S, Noor Z, Le L, Siddiqui AA. Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine. Parasitol Res 2009; 105:1767-77. [PMID: 19809833 DOI: 10.1007/s00436-009-1646-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/23/2009] [Indexed: 12/17/2022]
Abstract
Advent of an effective schistosome vaccine would contribute significantly toward reducing the disease spectrum and transmission of schistosomiasis. We have targeted a functionally important antigen, Sm-p80, as a vaccine candidate because of its consistent immunogenicity, protective and antifecundity potentials, and important role in the immune evasion process. In this study, we report that using two vaccination approaches (prime boost and recombinant protein), Sm-p80-based vaccine formulation(s) confer up to 70% reduction in worm burden in mice. Animals immunized with the vaccine exhibited a decrease in egg production by up to 75%. The vaccine elicited strong immune responses that included IgM, IgA, and IgG (IgG1, IgG2a, IgG2b, and IgG3) in vaccinated animals. Splenocytes proliferated in response to Sm-p80 produced Th1 and Th17 response enhancing cytokines. These results again emphasize the potential of Sm-p80 as a viable vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- Gul Ahmad
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wei F, Liu Q, Zhai Y, Fu Z, Liu W, Shang L, Men J, Gao S, Lian H, Jin H, Chen C, Lin J, Shi Y, Xia Z, Zhu XQ. IL-18 enhances protective effect in mice immunized with a Schistosoma japonicum FABP DNA vaccine. Acta Trop 2009; 111:284-8. [PMID: 19467215 DOI: 10.1016/j.actatropica.2009.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 03/13/2009] [Accepted: 03/24/2009] [Indexed: 12/16/2022]
Abstract
Two recombinant plasmids, pVAX/SjFABP and pVAX/mIL-18 containing Schistosoma japonicum 14 kDa fatty acid binding protein (SjFABP) and murine IL-18, were constructed and evaluated for their ability to induce immune responses and to protect against S. japonicum challenge in mice. Mice were intramuscularly immunized twice at three-weekly intervals, and challenged with S. japonicum cercariae at 4 weeks after the last vaccination. All animals vaccinated with pVAX/SjFABP alone or plus pVAX/mIL-18 developed specific anti-SWAP ELISA antibody and T lymphocyte proliferation. Co-injection of pVAX/mIL-18 significantly increased the production of IFN-gamma and IL-2 compared with pVAX/SjFABP alone, indicating that IL-18 enhances the Th1-dominant immune response. The challenge experiment showed that co-injection of plasmid encoding IL-18 significantly enhances protective effect against S. japonicum infection, as demonstrated by worm reduction rates and the hepatic egg reduction rates 45 days post-challenge. These results indicated that IL-18 may become a novel vaccine adjuvant for development of vaccines against schistosomiasis.
Collapse
|
32
|
Ahmad G, Torben W, Zhang W, Wyatt M, Siddiqui AA. Sm-p80-based DNA vaccine formulation induces potent protective immunity against Schistosoma mansoni. Parasite Immunol 2009; 31:156-61. [PMID: 19222788 DOI: 10.1111/j.1365-3024.2008.01091.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
No effective vaccine exists for the human parasitic disease, schistosomiasis. We have targeted a functionally important antigen, Sm-p80 as a vaccine candidate because of its consistent immunogenicity, protective potential and important role in the immune evasion process. In this study we report that a Sm-p80-based DNA vaccine formulation confers 59% reduction in worm burden in mice. Animals immunized with Sm-p80-pcDNA3 exhibited a decrease in egg production by 84%. Sm-p80 DNA elicited strong immune responses that include IgG2A and IgG2B antibody isotypes in vaccinated animals. Splenocytes proliferated in response to Sm-p80 produced appreciably more Th1 response enhancing cytokines (IL-2, IFN-gamma) than Th2 response enhancing cytokines (IL-4, IL-10). These data reinforce the potential of Sm-p80 as an excellent vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- G Ahmad
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, 79430, USA
| | | | | | | | | |
Collapse
|
33
|
Ahmad G, Zhang W, Torben W, Damian RT, Wolf RF, White GL, Chavez-Suarez M, Kennedy RC, Siddiqui AA. Protective and antifecundity effects of Sm-p80-based DNA vaccine formulation against Schistosoma mansoni in a nonhuman primate model. Vaccine 2009; 27:2830-7. [PMID: 19366570 DOI: 10.1016/j.vaccine.2009.02.096] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 12/26/2022]
Abstract
Schistosomiasis is an important parasitic disease for which there is no available vaccine. We have focused on a functionally important antigen of Schistosoma mansoni, Sm-p80, as a vaccine candidate because of its consistent immunogenicity, protective potential and antifecundity effect observed in murine models; and for its pivotal role in the immune evasion process. In the present study we report that an Sm-p80-based DNA vaccine formulation confers 38% reduction in worm burden in a nonhuman primate model, the baboon (Papio anubis). Animals immunized with Sm-p80-pcDNA3 exhibited a decrease in egg production by 32%. Sm-p80 DNA elicited specific immune responses that include IgG; its subtypes IgG1 and IgG2; and IgM in vaccinated animals. Peripheral blood mononuclear cells (PBMCs) from immunized animals when stimulated in vitro with Sm-p80 produced appreciably more Th1 response enhancing cytokines (IL-2, IFN-gamma) than Th2 response enhancing cytokines (IL-4, IL-10). PBMCs produced appreciably more spot-forming units for INF-gamma than for IL-4 in enzyme-linked immunosorbent spot (ELISPOT) assays. Overall it appears that even though a mixed (Th1/Th2) type of humoral antibody response was generated following immunization with Sm-p80; the dominant protective immune response is Th1 type. These data reinforce the potential of Sm-p80 as an excellent vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- Gul Ahmad
- Department of Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wei F, Liu Q, Gao S, Shang L, Zhai Y, Men J, Jiang L, Zhu XQ, Fu Z, Shi Y, Xia Z, Lin J. Enhancement by IL-18 of the protective effect of a Schistosoma japonicum 26kDa GST plasmid DNA vaccine in mice. Vaccine 2008; 26:4145-9. [PMID: 18562051 DOI: 10.1016/j.vaccine.2008.05.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 01/10/2023]
Abstract
Two recombinant plasmids pVAX/Sj26GST and pVAX/mIL-18 containing Schistosoma japonicum 26kDa GST and murine IL-18 were evaluated for their ability to protect mice against S. japonicum challenge. Mice were given 2 intramuscular immunizations 3 weeks apart, and challenged with S. japonicum cercariae 4 weeks later. Adult worm and egg burdens were determined 48 days post-challenge. All animals vaccinated with pVAX/Sj26GST alone or with pVAX/mIL-18 developed specific anti-SWAP (soluble worm antigen preparation) ELISA antibody and splenocyte proliferation response. Co-injection of pVAX/mIL-18 significantly increased the production of IFN-gamma and IL-12, indicating that IL-18 enhances the Th1-dominant immune response. Challenge experiments showed that worms were reduced in the pVAX/Sj26GST group by 30.1% and by 49.4% in animals given pVAX/mIL-18 additionally. Corresponding hepatic and fecal egg reductions were 44.8% and 53.0%, and 50.6% and 56.6%, respectively. These results indicate that IL-18 may be an effective adjuvant for a schistosomiasis vaccine.
Collapse
Affiliation(s)
- Feng Wei
- Laboratory of Parasitology, Veterinary Institute, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun 130062, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Da'dara AA, Li YS, Xiong T, Zhou J, Williams GM, McManus DP, Feng Z, Yu XL, Gray DJ, Harn DA. DNA-based vaccines protect against zoonotic schistosomiasis in water buffalo. Vaccine 2008; 26:3617-25. [PMID: 18524429 PMCID: PMC2567122 DOI: 10.1016/j.vaccine.2008.04.080] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/22/2008] [Accepted: 04/29/2008] [Indexed: 01/23/2023]
Abstract
Schistosomiasis japonica is an endemic, zoonotic disease of major public health importance in China where water buffaloes account for approximately 75% of disease transmission. Interventions that reduce schistosome infection in water buffaloes will enhance their health simultaneously reducing disease transmission to humans. While chemotherapy has proved successful, it requires continued time consuming and expensive mass treatments. A more sustainable option would be development of vaccines that reduce transmission of S. japonicum from bovines to replace bovine chemotherapy. We performed two randomized double blind trials in water buffaloes to determine if DNA vaccines encoding triose-phosphate isomerase (SjCTPI), or the tetraspanin 23 kDa integral membrane protein (SjC23), alone or fused to bovine heat shock protein 70 (Hsp70) could induce a level of immunity conducive to long-term sustainable control. Groups of water buffaloes (15/group) received three intramuscular injections, 4 weeks apart. Booster immunizations were co-administered with a plasmid DNA encoding IL-12. Four weeks after the last injection, water buffaloes were challenged with 1000 cercariae, and vaccine efficacy analyzed 8 weeks later. Water buffaloes vaccinated with SjCTPI-Hsp70 or SjCTPI plasmids had worm burdens reduced by 51.2% and 41.5%, respectively. Importantly, fecal miracidial hatching was reduced by 52.1% and 33.2% respectively compared to control vaccinated water buffaloes. Vaccination with SjC23-Hsp70 and SjC23 plasmids reduced worm burdens by 50.9% and 45.5%, respectively, and fecal miracidial hatching by 52.0% and 47.4%. A mathematical model of schistosome transmission predicts that schistosome vaccines capable of reducing water buffaloes' fecal egg output by 45%, alone or in conjunction with praziquantel treatment, will lead to a significant reduction in transmission of schistosomiasis. Both DNA vaccines tested here exceed this hypothetical level. Indeed, mathematical modeling of SjCTPI-Hsp70 and SjC23-Hsp70 alone and in conjunction with human chemotherapy showed a significant reduction in transmission almost to the point of elimination.
Collapse
Affiliation(s)
- Akram A Da'dara
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bethony JM, Diemert DJ, Oliveira SC, Loukas A. Can schistosomiasis really be consigned to history without a vaccine? Vaccine 2008; 26:3373-6. [PMID: 18513839 DOI: 10.1016/j.vaccine.2008.04.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 03/17/2008] [Accepted: 04/03/2008] [Indexed: 12/27/2022]
Abstract
Recently, considerable enthusiasm has been expressed for expanding and combining control efforts for neglected tropical diseases (NTDs). While these efforts are laudable, the drugs in question require repeated mass administration for indefinite periods of time, and their use to achieve eradication is fraught with challenges. Mass drug administration is unlikely to be effective in isolation, and should not proceed without concurrent control methods, such as vaccines. Schistosomiasis is one of the most important NTDs, and one whose effective control is unlikely in the absence of improved sanitation and a vaccine. Recent advances in biotechnologies have enhanced antigen discovery and new molecules that show promise as recombinant vaccines are being reported. Funding bodies supporting research into the control of schistosomiasis should invest not only in mass drug administration but also in the development of new control strategies, including the development of vaccines.
Collapse
|
37
|
Abstract
Schistosomiasis is a common intravascular trematode infection. The snail/human lifecycle is illustrated. Travellers who acquire the infection are often asymptomatic, but nearly always give a history of fresh water exposure in endemic countries when asked. The various manifestations of symptomatic schistosomiasis are described, including the rare but important complication of neuroschistosomiasis. Guidelines for diagnostic tests, treatment with praziquantel and management of complications are given. Prospects for disease control in endemic countries by improvement in public health and mass treatment are discussed. Various vaccines are in development, but none are in clinical use yet.
Collapse
Affiliation(s)
- Tom J Blanchard
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
38
|
Abstract
Schistosomiasis, caused by trematode blood flukes of the genus Schistosoma, is recognized as the most important human helminth infection in terms of morbidity and mortality. Infection follows direct contact with freshwater harboring free-swimming larval (cercaria) forms of the parasite. Despite the existence of the highly effective antischistosome drug praziquantel (PZQ), schistosomiasis is spreading into new areas, and although it is the cornerstone of current control programs, PZQ chemotherapy does have limitations. In particular, mass treatment does not prevent reinfection. Furthermore, there is increasing concern about the development of parasite resistance to PZQ. Consequently, vaccine strategies represent an essential component for the future control of schistosomiasis as an adjunct to chemotherapy. An improved understanding of the immune response to schistosome infection, both in animal models and in humans, suggests that development of a vaccine may be possible. This review considers aspects of antischistosome protective immunity that are important in the context of vaccine development. The current status in the development of vaccines against the African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes is then discussed, as are new approaches that may improve the efficacy of available vaccines and aid in the identification of new targets for immune attack.
Collapse
|
39
|
Siddiqui AA, Ahmad G, Damian RT, Kennedy RC. Experimental vaccines in animal models for schistosomiasis. Parasitol Res 2008; 102:825-33. [PMID: 18259777 DOI: 10.1007/s00436-008-0887-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/13/2008] [Indexed: 01/06/2023]
Abstract
Considerable morbidity and mortality results from the affliction of an estimated 200 million people worldwide by several species of schistosomes; 779 million are exposed to the disease in 74 different countries. Even though anti-parasitic drugs and other control measures, including public hygiene and snail control are available, the advent of an effective vaccine still remains the most potentially powerful means for the control of this disease. The putative vaccine could be administered to small children prior to the time when their contact with infected water is maximal, so as to prevent severe infection in the subsequent years. This review attempts to summarize the status of schistosome vaccine development with special emphasis on functionally important vaccine candidates. The importance of utilizing both murine and nonhuman primate models as a prerequisite for clinical trials is discussed.
Collapse
Affiliation(s)
- Afzal A Siddiqui
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6591, Lubbock, TX 79430-6591, USA.
| | | | | | | |
Collapse
|
40
|
Nascimento EJM, Amorim RV, Cavalcanti A, Alves VF, Nakazawa M, Pereira VRA, Lucena-Silva N. Assessment of a DNA vaccine encoding an anchored-glycosylphosphatidylinositol tegumental antigen complexed to protamine sulphate on immunoprotection against murine schistosomiasis. Mem Inst Oswaldo Cruz 2007; 102:21-7. [PMID: 17293994 DOI: 10.1590/s0074-02762007000100003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 11/29/2006] [Indexed: 11/22/2022] Open
Abstract
Protamine sulphate/DNA complexes have been shown to protect DNA from DNase digestion in a lipid system for gene transfer. A DNA-based vaccine complexed to protamine sulphate was used to induce an immune response against Schistosoma mansoni anchored-glycosylphosphatidylinositol tegumental antigen in BALB/c mice. The protection elicited ranged from 33 to 44%. The spectrum of the elicited immune response induced by the vaccine formulation without protamine was characterized by a high level of IgG (IgG1> IgG2a). Protamine sulphate added to the DNA vaccine formulation retained the green fluorescent protein encoding-plasmid longer in muscle and spleen. The experiments in vivo showed that under protamine sulphate effect, the scope of protection remained unchanged, but a modulation in antibody production (IgG1= IgG2a) was observed.
Collapse
|
41
|
Kusel JR, Al-Adhami BH, Doenhoff MJ. The schistosome in the mammalian host: understanding the mechanisms of adaptation. Parasitology 2007; 134:1477-526. [PMID: 17572930 DOI: 10.1017/s0031182007002971] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SUMMARYIn this review, we envisage the host environment, not as a hostile one, since the schistosome thrives there, but as one in which the relationship between the two organisms consists of constant communication, through signalling mechanisms involving sense organs, surface glycocalyx, surface membrane and internal organs of the parasite, with host fluids and cells. The surface and secretions of the schistosome egg have very different properties from those of other parasite stages, but adapted for the dispersal of the eggs and for the preservation of host liver function. We draw from studies of mammalian cells and other organisms to indicate how further work might be carried out on the signalling function of the surface glycocalyx, the raft structure of the surface and existence of pores in the surface membrane, the repair of the surface membrane, the role of the membrane structure in ion channel function (including recent work on the actin cytoskeleton and calcium channels) and the possible role of P-glycoproteins in the adaptation of the parasite to its environment. We are speculative in some areas, such as the suggestions that variability in surface properties of schistosomes may relate to the existence of membrane rafts and that parasite communities may exhibit quorum sensing. This speculative approach is adopted with the hope that future work on the whole organisms and their interactions will be encouraged.
Collapse
Affiliation(s)
- J R Kusel
- Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | |
Collapse
|
42
|
Abstract
Katayama syndrome is an early clinical manifestation of schistosomiasis that occurs several weeks post-infection with Schistosoma spp (trematode) worms. Because of this temporal delay and its non-specific presentation, it is the form of schistosomiasis most likely to be misdiagnosed by travel medicine physicians and infectious disease specialists in non-endemic countries. Katayama syndrome appears between 14-84 days after non-immune individuals are exposed to first schistosome infection or heavy reinfection. Disease onset appears to be related to migrating schistosomula and egg deposition with individuals typically presenting with nocturnal fever, cough, myalgia, headache, and abdominal tenderness. Serum antibodies and schistosome egg excretion often substantiate infection if detected. Diffuse pulmonary infiltrates are found radiologically, and almost all cases have eosinophilia and a history of water contact 14-84 days before presentation of clinical symptoms; patients respond well to regimens of praziquantel with and without steroids. Artemisinin treatment given early after exposure may decrease the risk of the syndrome.
Collapse
Affiliation(s)
- Allen G Ross
- Department of Community Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | | | |
Collapse
|
43
|
Loukas A, Tran M, Pearson MS. Schistosome membrane proteins as vaccines. Int J Parasitol 2006; 37:257-63. [PMID: 17222846 DOI: 10.1016/j.ijpara.2006.12.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 11/28/2006] [Accepted: 12/03/2006] [Indexed: 01/08/2023]
Abstract
Schistosomes are parasitic blood flukes that infect approximately 200 million people and are arguably the most important human helminth in terms of mortality. The outermost surface of intra-mammalian stages of the parasite, the tegument, is the key to the parasite's success, but it is also generally viewed as the most susceptible target for vaccines and drugs. Over the past 2 years the proteome of the Schistosoma mansoni tegument has been investigated and these studies revealed surprisingly few proteins that are predicted to be accessible to the host immune response, namely proteins with at least one membrane-spanning domain. However, of this handful of proteins, some are showing great promise as recombinant vaccines against schistosomiasis at a pre-clinical level. In particular, the tetraspanin family of integral membrane proteins appears to be abundantly represented in the tegument, and convergent data using the mouse vaccine model and correlates of protective immunity in naturally exposed people suggests that this family of membrane proteins offer great promise for schistosomiasis vaccines. With the recent advances in schistosome genomics and proteomics, a new suite of potential vaccine antigens are presented and these warrant detailed investigation and appropriate funding over the next few years.
Collapse
Affiliation(s)
- Alex Loukas
- Helminth Biology Laboratory, Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research Brisbane, Qld 4006, Australia.
| | | | | |
Collapse
|
44
|
Gan XX, Shen LY, Wang Y, Ding JZ, Shen HY, Zeng XP, McManus DP, Brindley PJ, Fan J. Recombinant tegumental protein Shistosoma japonicum very lowdensity lipoprotein binding protein as a vaccine candidate against Schistosoma japonicum. Mem Inst Oswaldo Cruz 2006; 101:9-13. [PMID: 16612506 DOI: 10.1590/s0074-02762006000100003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A polyhistidine-tagged recombinant tegumental protein Schistosoma japonicum very lowdensity lipoprotein binding protein (SVLBP) from adult Schistosoma japonicum was expressed in Escherichia coli. The affinity purified rSVLBP was used to vaccinate mice. The worm numbers and egg deposition recovered from the livers and veins of the immunized mice were 33.5% and 47.6% less than that from control mice, respectively (p<0.05). There was also a marked increase in the antibody response in vaccinated mice: the titer of IgG1 and IgG2a, IgG2b in the vaccinated group was significantly higher than that in the controls (>1:6,400 in total IgG). In a comparison of the reactivity of sera from healthy individuals and patients with rSVLBP, recognition patterns against this parasite tegumental antigen varied among different groups of the individuals. Notably, the average titres of anti-rSVLBP antibody in sera from faecal egg-negative individuals was significantly higher than that in sera from the faecal egg-positives, which may be reflect SVLBP-specific protection. These results suggested that the parasite tegumental protein SVLBP was a promising candidate for further investigation as a vaccine antigen for use against Asian schistosomiasis.
Collapse
Affiliation(s)
- Xiao-Xian Gan
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bergquist NR, Leonardo LR, Mitchell GF. Vaccine-linked chemotherapy: can schistosomiasis control benefit from an integrated approach? Trends Parasitol 2005; 21:112-7. [PMID: 15734657 DOI: 10.1016/j.pt.2005.01.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present strong emphasis on gross organ pathology (liver, kidneys, bladder) in schistosomiasis needs to be replaced with a more balanced view of the disease that also takes into account systemic symptoms that are less easy to assess, such as retarded growth, cognitive development and the effect of continuing low-level blood loss. Access to better estimates of disease burdens, morbidity and mortality is delivering results that bring into question the wisdom of downgrading the impact of the disease. In this scenario, the simplistic approach of exclusive drug treatment might not be sufficient and, in the worst-case scenario, might even exacerbate pathology. To meet this challenge, the repositioning of vaccines within the totality of disease control through the combined use of chemotherapy and vaccination is recommended as the basis for a novel, more-versatile approach to control. Studies on human correlate responses in endemic areas have opened the way to assess the protective value of specific antigens through the cytokine responses and antibodies they elicit. Moreover, vaccine formulations based on novel adjuvants could improve the final outcome through selective manipulation of the immune response. Thus, the tools of vaccine-linked chemotherapy are in principle already available and could shortly be put to the test in clinical trials.
Collapse
|
46
|
Osada Y, Kumagai T, Hato M, Suzuki T, El-Malky M, Asahi H, Kanazawa T, Ohta N. Establishment of Schistosoma japonicum calpain-specific mouse T cell hybridomas and identification of a T cell epitope that stimulates IFNγ production. Vaccine 2005; 23:2813-9. [PMID: 15780729 DOI: 10.1016/j.vaccine.2004.10.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 10/14/2004] [Accepted: 10/19/2004] [Indexed: 11/17/2022]
Abstract
Calpain is a calcium-dependent cystein protease, and the homologues of schistosome are known as one of vaccine candidate molecules against schistosomiasis. Here, we established two IL-2 producing T cell hybridoma cell lines specific for Schistosoma japonicum calpain, to identify T cell epitope(s) on the molecule. Overlapping 15mer oligopeptides of calpain were synthesized and tested for their stimulatory abilities to the hybridomas. As a result, epitopes recognized by the two hybridoma lines were the same: EQLKIYAQRC. Spleen cells from calpain multiple antigenic peptide (MAP)-immunized BALB/c mice produced IFNgamma upon stimulation with MAP or soluble worm antigen preparation (SWAP). The identification of the T cell epitope to stimulate Th1 response will contribute to the proper design of synthetic vaccines, evaluation of their protective potentials and elucidation of protective mechanisms in murine experimental schistosomiasis.
Collapse
Affiliation(s)
- Yoshio Osada
- Department of Parasitology and Tropical Public Health, The University of Occupational and Environmental Health, Japan, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Siddiqui AA, Pinkston JR, Quinlin ML, Saeed Q, White GL, Shearer MH, Kennedy RC. Characterization of the immune response to DNA vaccination strategies for schistosomiasis candidate antigen, Sm-p80 in the baboon. Vaccine 2005; 23:1451-6. [PMID: 15670880 DOI: 10.1016/j.vaccine.2004.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/27/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
Even though schistosomicidal agents and other control measures, including public hygiene and snail control exist, development of an efficacious vaccine still remains the most potentially powerful method for control of schistosomiasis. In our continuing efforts to develop a vaccine against schistosomiasis, we have selected a vaccine candidate (Sm-p80), which plays an important role in the immune evasion process of the parasite. Sm-p80 has been shown to confer up to 60% protection in mice following experimental infection. In this initial study, we have used Sm-p80 plus the Th1 response promoting cytokine, interleukin-2 (IL-2), in a DNA immunogen formulation. The vaccine was tested for its safety and immunogenicity in a baboon model of schistosomiasis. The vaccine generated a Th1 type Sm-p80-specific response in baboons with IgG(1)/IgG(2) ratios of less than 1.0. No detectable IgG(3) or IgG(4) anti-Sm-p80 responses were present in the immunized baboons. The antibodies to Sm-p80 were able to kill up to 35% schistosomula in vitro in the presence of complement. These results although preliminary suggest the potential of Sm-p80 as a viable vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- Afzal A Siddiqui
- Department of Internal Medicine, Texas Tech Women's Health and Research Institute, 1400 Wallace Blvd., Amarillo, TX 79106-1791, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Kumagai T, Maruyama H, Hato M, Ohmae H, Osada Y, Kanazawa T, Ohta N. Schistosoma japonicum: localization of calpain in the penetration glands and secretions of cercariae. Exp Parasitol 2005; 109:53-7. [PMID: 15639140 DOI: 10.1016/j.exppara.2004.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/29/2004] [Accepted: 11/02/2004] [Indexed: 11/29/2022]
Abstract
A monoclonal antibody was generated against the large subunit of Schistosoma japonicum calpain to study the localization and possible function of the molecule in vivo. Mice were immunized with recombinant S. japonicum calpain and polyclonal antisera and a monoclonal antibody specific to schistosome calpain was obtained. In immunohistochemistry, a monoclonal antibody against S. japonicum calpain, KG-2E11, bound weakly to calpain expressed at the surface of adult worm tegument, however, it bound strongly to the cercarial secretions ("footprints") of S. japonicum, emitted from the penetration glands. The present study indicates that calpain is multifunctional as it is expressed at various locations in different developmental stages. Calpain-based vaccines could thus possibly induce protective immunity against cercariae and the following early developing stages.
Collapse
Affiliation(s)
- Takashi Kumagai
- Department of Parasitology and Tropical Public Health, The University of Occupational and Environmental Health Japan, Kitakyusyu, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ivory C, Chadee K. DNA vaccines: designing strategies against parasitic infections. GENETIC VACCINES AND THERAPY 2004; 2:17. [PMID: 15579202 PMCID: PMC544584 DOI: 10.1186/1479-0556-2-17] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 12/03/2004] [Indexed: 11/28/2022]
Abstract
The complexity of parasitic infections requires novel approaches to vaccine design. The versatility of DNA vaccination provides new perspectives. This review discusses the use of prime-boost immunizations, genetic adjuvants, multivalent vaccines and codon optimization for optimal DNA vaccine design against parasites.
Collapse
Affiliation(s)
- Catherine Ivory
- Institute of Parasitology of McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada, H9X 3V9
| | - Kris Chadee
- Institute of Parasitology of McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada, H9X 3V9
| |
Collapse
|
50
|
Abstract
There is continued transmission of schistosomiasis japonica in China and Philippines despite highly effective control programs that focus on the application of the highly effective drug praziquantel (PZQ). The massive Three Gorges Dam across the Yangtze River in Southern China, soon to be completed, is expected to significantly increase schistosomiasis transmission and introduce the disease into areas currently unaffected. After long-term experience it is generally accepted that PZQ chemotherapy, although the cornerstone of current control programs, does have significant limitations. Furthermore, efficient drug delivery requires a substantial infrastructure to regularly cover all parts of an endemic area. Although there is not yet clear-cut evidence for the existence of PZQ-resistant schistosome strains, decreased susceptibility to the drug has been observed in several countries. As a result, a protective vaccine represents an essential component for the long-term control of schistosomiasis. This article briefly reviews aspects of anti-schistosome protective immunity that are important in the context of vaccine development. The current status in the development of vaccines against Schistosoma japonicum will then be discussed as will new approaches that may improve on the efficacy of available vaccines, and aid in the identification of new targets for immune attack. With new and extensive data becoming available from the S. japonicum genome project, the prospects for developing an effective vaccine are encouraging. The challenges that remain are many but it is crucial that the momentum towards developing effective anti-schistosome vaccines is maintained.
Collapse
Affiliation(s)
- Donald P McManus
- Molecular Parasitology Laboratory, Australian Center for International and Tropical Health and Nutrition, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, QLD 4029, Australia.
| | | |
Collapse
|