1
|
Volokhov DV, Furtak V, Allen C, Pulle G, Zajac MD, Levin Y, Kochba E, Moore SM. Robust humoral immune response against rabies virus in rabbits and guinea pigs immunized with plasmid DNA vectors encoding rabies virus glycoproteins - An approach to the production of polyclonal antibody reagents. Mol Cell Probes 2022; 64:101833. [PMID: 35691598 DOI: 10.1016/j.mcp.2022.101833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
DNA-based immunization has been previously shown to be an efficient approach to induce robust immunity against infectious diseases in animals and humans. The advantages of DNA vaccines are simplicity of their construction and production, low cost, high stability, and ability to elicit a full spectrum of immune responses to target antigens. The goals of this study were (i) to assess the antibody immune response to rabies virus glycoproteins (rGPs) in rabbits and guinea pigs after intramuscular immunization with pTargeT and pVAC2-mcs mammalian expression vectors encoding either the wild-type (WT) or codon-optimized (cOPT) rGP genes; and (ii) to prepare in-house rabbit anti-rGP polyclonal antibody reagents suitable for in Single Radial Immunodiffusion (SRID) and Indirect Fluorescent Antibody (IFA) assays. The maximum antibody responses against rabies virus in rabbits and guinea pigs were observed after immunization series with 500 μg/dose of pVAC2-mcs vector encoding either the WT or cOPT rGP genes adjuvanted with Emulsigen-D. No significant difference in the anti-rabies virus neutralizing antibody titers was observed in rabbits immunized with the WT and cOPT rGPs. The in-house rabbit anti-rGP polyclonal antibody reagents reacted comparable to the current reference reagents in SRID and IFA assays. The results of the study demonstrated that the DNA immunization of animals with the WT or cOPT rGPs is a promising approach to either induction of high anti-rabies virus neutralizing antibody titers in vivo or for production of polyclonal antibody reagents against rabies.
Collapse
Affiliation(s)
- Dmitriy V Volokhov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA.
| | - Vyacheslav Furtak
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Cynthia Allen
- Vaccine Quality Division, Center for Biologics Evaluation (CBE), Biologic and Radiopharmaceutical Drugs Directorate (BRDD), Health Canada, 100 Eglantine Driveway, Ottawa, ON K1A 0K9, Canada
| | - Gayle Pulle
- Vaccine Quality Division, Center for Biologics Evaluation (CBE), Biologic and Radiopharmaceutical Drugs Directorate (BRDD), Health Canada, 100 Eglantine Driveway, Ottawa, ON K1A 0K9, Canada
| | - Michelle D Zajac
- Kansas State University, College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, 1800 Denison Ave., Manhattan, KS, 66506, USA
| | - Yotam Levin
- NanoPass Technologies Ltd., 3 Golda Meir St., Nes Ziona, 7403648, Israel
| | - Efrat Kochba
- NanoPass Technologies Ltd., 3 Golda Meir St., Nes Ziona, 7403648, Israel
| | - Susan M Moore
- The University of Missouri Veterinary Medical Diagnostic Laboratory (VMDL), One Health Laboratory, 1509 Rollins St., Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Dendritic cell targeted Ccl3- and Xcl1-fusion DNA vaccines differ in induced immune responses and optimal delivery site. Sci Rep 2019; 9:1820. [PMID: 30755656 PMCID: PMC6372594 DOI: 10.1038/s41598-018-38080-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/18/2018] [Indexed: 11/08/2022] Open
Abstract
Fusing antigens to chemokines to target antigen presenting cells (APC) is a promising method for enhancing immunogenicity of DNA vaccines. However, it is unclear how different chemokines compare in terms of immune potentiating effects. Here we compare Ccl3- and Xcl1-fusion vaccines containing hemagglutinin (HA) from influenza A delivered by intramuscular (i.m.) or intradermal (i.d.) DNA vaccination. Xcl1 fusion vaccines target cDC1s, and enhance proliferation of CD4+ and CD8+ T cells in vitro. In contrast, Ccl3 target both cDC1 and cDC2, but only enhance CD4+ T cell proliferation in combination with cDC2. When Ccl3- or Xcl1-HA fusion vaccines were administered by i.m. DNA immunization, both vaccines induced Th1-polarized immune responses with antibodies of the IgG2a/IgG2b subclass and IFNγ-secreting T cells. After i.d. DNA vaccination, however, only Xcl1-HA maintained a Th1 polarized response and induced even higher numbers of IFNγ-secreting T cells. Consequently, Xcl1-HA induced superior protection against influenza infection compared to Ccl3-HA after i.d. immunization. Interestingly, i.m. immunization with Ccl3-HA induced the strongest overall in vivo cytotoxicity, despite not inducing OT-I proliferation in vitro. In summary, our results highlight important differences between Ccl3- and Xcl1- targeted DNA vaccines suggesting that chemokine fusion vaccines can be tailor-made for different diseases.
Collapse
|
3
|
DNA Vaccine Targeting Gonadotropin-Releasing Hormone Receptor and Its Application in Animal Contraception. Mol Biotechnol 2018; 61:73-83. [PMID: 30448908 DOI: 10.1007/s12033-018-0137-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Overpopulation of free-roaming and wildlife animals negatively affects economy and public health in many parts of the world. Contraceptive vaccines are viewed as a valuable option for reducing numbers of unwanted animals. This study develops vaccines for potential use in animal contraception exploiting a DNA platform. Objectives of the study were to generate DNA constructs directed against gonadotropin-releasing hormone receptor (GnRHR), a crucial molecular player in animal reproduction, and characterize them for ability to promote immune responses and suppression of reproductive parameters in vivo. DNA constructs were created to encode for a recombinant protein composed of two domains: GnRHR, the target antigen, and ubiquitin (Ub), a support protein. Ub-GnRHR constructs administered intramuscularly or intradermally or containing different promoters were compared. CMV and EF1α promoters were shown to be superior to CAG. In fertility trials, mice immunized intradermally with Ub-GnRHR construct driven by EF1α had a significantly lower number of fetuses. Importantly, the impaired fertility was achieved with a single DNA immunization and without the use of adjuvants. The study demonstrated for the first time that targeting the GnRH receptor with DNA-based vaccines could be a viable option for animal contraception.
Collapse
|
4
|
Golahdooz M, Eybpoosh S, Bashar R, Taherizadeh M, Pourhossein B, Shirzadi M, Amiri B, Fazeli M. Comparison of Immune Responses following Intradermal and Intramuscular Rabies Vaccination Methods. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2018. [DOI: 10.29252/jommid.6.4.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
5
|
Wang F, Chen Q, Li S, Zhang C, Li S, Liu M, Mei K, Li C, Ma L, Yu X. Linear DNA vaccine prepared by large-scale PCR provides protective immunity against H1N1 influenza virus infection in mice. Vet Microbiol 2017. [PMID: 28622854 DOI: 10.1016/j.vetmic.2017.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Linear DNA vaccines provide effective vaccination. However, their application is limited by high cost and small scale of the conventional polymerase chain reaction (PCR) generally used to obtain sufficient amounts of DNA effective against epidemic diseases. In this study, a two-step, large-scale PCR was established using a low-cost DNA polymerase, RKOD, expressed in Pichia pastoris. Two linear DNA vaccines encoding influenza H1N1 hemagglutinin (HA) 1, LEC-HA, and PTO-LEC-HA (with phosphorothioate-modified primers), were produced by the two-step PCR. Protective effects of the vaccines were evaluated in a mouse model. BALB/c mice were immunized three times with the vaccines or a control DNA fragment. All immunized animals were challenged by intranasal administration of a lethal dose of influenza H1N1 virus 2 weeks after the last immunization. Sera of the immunized animals were tested for the presence of HA-specific antibodies, and the total IFN-γ responses induced by linear DNA vaccines were measured. The results showed that the DNA vaccines but not the control DNA induced strong antibody and IFN-γ responses. Additionally, the PTO-LEC-HA vaccine effectively protected the mice against the lethal homologous mouse-adapted virus, with a survival rate of 100% versus 70% in the LEC-HA-vaccinated group, showing that the PTO-LEC-HA vaccine was more effective than LEC-HA. In conclusion, the results indicated that the linear H1N1 HA-coding DNA vaccines induced significant immune responses and protected mice against a lethal virus challenge. Thus, the low-cost, two-step, large-scale PCR can be considered a potential tool for rapid manufacturing of linear DNA vaccines against emerging infectious diseases.
Collapse
Affiliation(s)
- Fei Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Quanjiao Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Shuntang Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Chenyao Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Shanshan Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Min Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Kun Mei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Chunhua Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Xiaolan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
van der Maaden K, Varypataki EM, Yu H, Romeijn S, Jiskoot W, Bouwstra J. Parameter optimization toward optimal microneedle-based dermal vaccination. Eur J Pharm Sci 2014; 64:18-25. [DOI: 10.1016/j.ejps.2014.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
7
|
Ullas PT, Madhusudana SN, Desai A, Sagar BKC, Jayamurugan G, Rajesh YBRD, Jayaraman N. Enhancement of immunogenicity and efficacy of a plasmid DNA rabies vaccine by nanoformulation with a fourth-generation amine-terminated poly(ether imine) dendrimer. Int J Nanomedicine 2014; 9:627-34. [PMID: 24501540 PMCID: PMC3912024 DOI: 10.2147/ijn.s53415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Delayed onset of, and low magnitude of, protective immune responses are major drawbacks limiting the practical utility of plasmid vaccination against rabies. In this study we evaluated whether nanoformulation with the novel poly(ether imine) (PETIM) dendrimer can enhance the immunogenicity and efficacy of a plasmid-based rabies vaccine. Materials and methods A plasmid vaccine construct (pIRES-Rgp) was prepared by cloning the full-length rabies virus glycoprotein gene into pIRES vector. Drawing upon the results of our previous study, a dendriplex (dendrimer-DNA complex) of pIRES-Rgp was made with PETIM dendrimer (10:1 w/w, PETIM:pIRES-Rgp). In vitro transfection was done on baby hamster kidney (BHK)-21 cells to evaluate expression of glycoprotein gene from pIRES-Rgp and PETIM-pIRES-Rgp. Subsequently, groups of Swiss albino mice were immunized intramuscularly with pIRES-Rgp or PETIM-pIRES-Rgp. A commercially available cell culture rabies vaccine was included for comparison. Rabies virus neutralizing antibody (RVNA) titers in the immune sera were evaluated on days 14, 28, and 90 by rapid fluorescent focus inhibition test. Finally, an intracerebral challenge study using a challenge virus standard strain of rabies virus was done to evaluate the protective efficacy of the formulations. Results Protective levels of RVNA titer (≥0.5 IU/mL) were observed by day 14 in animals immunized with pIRES-Rgp and its dendriplex. Notably, PETIM-pIRES-Rgp produced 4.5-fold higher RVNA titers compared to pIRES-Rgp at this time point. All mice immunized with the PETIM-pIRES-Rgp survived the intracerebral rabies virus challenge, compared with 60% in the group which received pIRES-Rgp. Conclusion Our results suggest that nanoformulation with PETIM dendrimer can produce an earlier onset of a high-titered protective antibody response to a plasmid-based rabies vaccine. PETIM dendriplexing appears to be an efficacious nonviral delivery strategy to enhance genetic vaccination.
Collapse
Affiliation(s)
| | | | - Anita Desai
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | |
Collapse
|
8
|
Launay O, Surenaud M, Desaint C, Ben Hamouda N, Pialoux G, Bonnet B, Poizot-Martin I, Gonzales G, Cuzin L, Bourgault-Villada I, Lévy Y, Choppin J, Durier C. Long-term CD4(+) and CD8(+) T-cell responses induced in HIV-uninfected volunteers following intradermal or intramuscular administration of an HIV-lipopeptide vaccine (ANRS VAC16). Vaccine 2013; 31:4406-15. [PMID: 23850610 DOI: 10.1016/j.vaccine.2013.06.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/31/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND We have shown that the intradermal (ID) administration of an HIV-1 lipopeptide candidate vaccine (LIPO-4) is well tolerated in healthy volunteers, with one fifth the IM dose delivered by this route inducing HIV-1-specific CD8(+) T-cell responses of a magnitude and quality similar to those achieved by IM administration. In this long-term follow-up, we aimed to investigate the sustainability and epitopic breadth of the immune responses induced. METHODS In a prospective multicentre trial, 68 healthy volunteers were randomised to receive, at weeks 0, 4 and 12, either a 0.5 ml IM (500 μg of each lipopeptide; 35 volunteers) dose or a 0.1 ml ID (100 μg of each lipopeptide; 33 volunteers) dose of the LIPO-4 vaccine, in the deltoid region of the non-dominant arm. All 68 volunteers received the first two vaccinations, and 44 volunteers in the ID group and 22 in the IM group received the third. We describe here the long-term CD8(+) and CD4(+) T-cell immune responses, up to 48 weeks after the first immunisation. RESULTS Response frequency was highest at week 14 for CD4(+) T cells, at 85% (28/33) for the IM group and 61% (20/33) for the ID group (p=0.027), and at week 48 for CD8(+) T cells, at 36% (12/33) for the ID group and 31% (11/35) for the IM group (p=0.67). Response rates tended to be lower for volunteers receiving the third vaccination boost, whether IM or ID. Finally, we also observed a striking change in the specificity of the CD8(+) T-cell responses induced shortly (2 weeks) or several months (48 weeks) after LIPO-4 vaccination. CONCLUSION Lipopeptide vaccines elicited sustainable CD4(+) and CD8(+) T-cell responses, following IM or ID administration. CD8(+) T-cell responses had shifted and expanded to different epitopes after one year of follow-up. These results should facilitate the design of the next generation of prime-boost trials with repeated doses of lipopeptide vaccines.
Collapse
Affiliation(s)
- Odile Launay
- Université Paris Descartes, Faculté de Médecine, Inserm, CIC BT505, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, CIC de Vaccinologie Cochin-Pasteur, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Construction and immunogenicity of a recombinant pseudotype baculovirus expressing the glycoprotein of rabies virus in mice. Arch Virol 2011; 156:753-8. [PMID: 21221673 DOI: 10.1007/s00705-010-0909-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
A pseudotype baculovirus with the glycoprotein of vesicular stomatitis virus (VSV-G) on the envelope was used as a vector for the construction of recombinant baculovirus expressing the G protein of rabies virus (RABV) under the cytomegalovirus (CMV) promoter. The generated recombinant baculovirus (BV-G) efficiently expressed the RABV G proteins in mammalian cells. Intramuscular vaccination with BV-G (10(9) PFU/mouse) induced the production of RABV G-specific neutralizing antibodies and strong T cell responses in mice. Our data clearly indicate that pseudotype baculovirus-mediated gene delivery can be utilized as an alternative strategy to develop a new generation of vaccine against RABV infection.
Collapse
|
10
|
Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications. Vaccine 2009; 27:7214-8. [DOI: 10.1016/j.vaccine.2009.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/03/2009] [Indexed: 11/21/2022]
|
11
|
Kaur M, Saxena A, Rai A, Bhatnagar R. Rabies DNA vaccine encoding lysosome‐targeted glycoprotein supplemented with Emulsigen‐D confers complete protection in preexposure and postexposure studies in BALB/c mice. FASEB J 2009; 24:173-83. [DOI: 10.1096/fj.09-138644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Manpreet Kaur
- Laboratory of Molecular Biology and Genetic EngineeringSchool of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
| | - Ankur Saxena
- National Biotechnology CenterIndian Veterinary Research InstituteIzatnagarIndia
| | - Anant Rai
- National Biotechnology CenterIndian Veterinary Research InstituteIzatnagarIndia
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic EngineeringSchool of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
12
|
Kaur M, Rai A, Bhatnagar R. Rabies DNA vaccine: no impact of MHC class I and class II targeting sequences on immune response and protection against lethal challenge. Vaccine 2009; 27:2128-37. [PMID: 19356616 PMCID: PMC7115670 DOI: 10.1016/j.vaccine.2009.01.128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/24/2009] [Accepted: 01/29/2009] [Indexed: 11/23/2022]
Abstract
Rabies is progressive fatal encephalitis. WHO estimates 55,000 rabies deaths and more than 10 million PEP every year world-wide. A variety of cell-culture derived vaccines are available for prophylaxis against rabies. However, their high cost restricts their usage in developing countries, where such cases are most often encountered. This is driving the quest for newer vaccine formulations; DNA vaccines being most promising amongst them. Here, we explored strategies of antigen trafficking to various cellular compartments aiming at improving both humoral and cellular immunity. These strategies include use of signal sequences namely Tissue Plasminogen Activator (TPA), Ubiquitin (UQ) and Lysosomal-Associated Membrane Protein-1 (LAMP-1). TPA, LAMP-1 and their combination were aimed at enhancing the CD4(+) T cell and antibody response. In contrast, the UQ tag was utilized for enhancing CD8(+) response. The potency of modified DNA vaccines assessed by total antibody response, antibody isotypes, cytokine profile, neutralizing antibody titer and protection conferred against in vivo challenge; was enhanced in comparison to native unmodified vaccine, but the response elicited did not pertain to the type of target sequence and the directed arm of immunity. Interestingly, the DNA vaccines that had been designed to generate different type of immune responses yielded in effect similar response. In conclusion, our data indicate that the directing target sequence is not the exclusive deciding factor for type and extent of immune response elicited and emphasizes on the antigen dependence of immune enhancement strategies.
Collapse
Key Words
- ab, antibody
- ig, immunoglobulin
- elisa, enzyme linked immunosorbent assay
- gp, glycoprotein
- lamp-1, lysosomal-associated membrane protein-1
- mhc, major histocompatibility complex
- mq, milli quartz water
- pmsf, phenyl methyl sulphonyl fluoride
- ripa, radioimmunoprecipitation assay buffer
- rffit, rapid fluorescence focus inhibition test
- tm, transmembrane
- tpa, tissue plasminogen activator
- tris, tris(hydroxymethyl) aminomethane
- uq, ubiquitin
- targeting sequence
- rabies virus-neutralizing antibody (rvna)
- survival
Collapse
Affiliation(s)
- Manpreet Kaur
- Laboratory Of Molecular Biology And Genetic Engineering, School Of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | | | | |
Collapse
|
13
|
Tesoro Cruz E, Feria Romero IA, López Mendoza JG, Orozco Suárez S, Hernández González R, Favela FB, Pérez Torres A, José Álvaro Aguilar Setién. Efficient post-exposure prophylaxis against rabies by applying a four-dose DNA vaccine intranasally. Vaccine 2008; 26:6936-44. [DOI: 10.1016/j.vaccine.2008.09.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/21/2008] [Accepted: 09/24/2008] [Indexed: 11/28/2022]
|
14
|
Goubier A, Fuhrmann L, Forest L, Cachet N, Evrad-Blanchard M, Juillard V, Fischer L. Superiority of needle-free transdermal plasmid delivery for the induction of antigen-specific IFNγ T cell responses in the dog. Vaccine 2008; 26:2186-90. [DOI: 10.1016/j.vaccine.2008.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 12/28/2022]
|
15
|
Tesoro-Cruz E, Calderón-Rodríguez R, Hernández-González R, Blanco-Favéla F, Aguilar-Setién A. Intradermal DNA vaccination in ear pinnae is an efficient route to protect cats against rabies virus. Vet Res 2008; 39:16. [PMID: 18215393 DOI: 10.1051/vetres:2007054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 10/11/2007] [Indexed: 11/14/2022] Open
Abstract
A DNA vaccine against rabies (pGQH) was administrated to cats in order to examine different administration routes. Four groups of three cats each were inoculated with pGQH as follows: group A, intramuscularly (IM), 100 microg; group B, intranasally (IN), 100 microg; group C, intradermally into ear pinnae (ID-EP), 100 microg, and group D, IM, 200 microL of phosphate buffer solution (PBS) alone (control group). Blood was drawn on days 0, 30, 60, 90, 120, 150, and 180. Groups A, B, and C received a booster on day 30. At day 200 all animals were challenged. A passive transfer of cat sera, as well as a viral challenge, was performed in mice. The results displayed that neutralizing antibody titers were higher in cats of group C (ID-EP) showing high early titers (> 2 IU) and the highest titer was on day 120 (> 14 IU). In group B (IN), two out of three cats seroconverted on day 30 (> 0.5 IU), the third cat seroconverted until day 60 (> 0.5 IU). In contrast, the lowest levels of neutralizing antibodies were detected in group A (IM). The control group showed no anti-rabies antibodies. Groups A (IM) and D (control) succumbed after lethal challenge. All animals from the ID-EP group (C) survived, only one individual from the IN (B) group died. Mice that received cat sera from ID-EP, IM, and IN groups survived and were protected (30/30 survivors). Mice groups that received pre-immunization sera from cats were not protected (0/30 survivors). This study demonstrates that pGQH immunization was successful when it was administrated ID-EP, and acceptable through the IN route. The IM route, however, was not effective in cats. For vaccination, the IN route seems attractive due to its accessibility for application, but it seems to activate seroconversion slowly. The best route to promote anti-rabies antibody titers was the ID-EP route. This practical and efficient route should be further studied.
Collapse
Affiliation(s)
- Emiliano Tesoro-Cruz
- Unidad de Investigación Médica de Alta Especialidad en Inmunología, IMSS, México DF.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Various technological developments have revitalized the approaches employed to study the disease of rabies. In particular, reverse genetics has facilitated the generation of novel viruses used to improve our understanding of the fundamental aspects of rabies virus (RABV) biology and pathogenicity and yielded novel constructs potentially useful as vaccines against rabies and other diseases. Other techniques such as high throughput methods to examine the impact of rabies virus infection on host cell gene expression and two hybrid systems to explore detailed protein-protein interactions also contribute substantially to our understanding of virus-host interactions. This review summarizes much of the increased knowledge about rabies that has resulted from such studies but acknowledges that this is still insufficient to allow rational attempts at curing those who present with clinical disease.
Collapse
Affiliation(s)
- Susan A Nadin-Davis
- Centre of Expertise for Rabies, Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | | |
Collapse
|
17
|
Vilalta A, Jimenez G, Rusalov D, Planchon R, Lalor P, Carner K, Chaplin JA, Komai M, Manthorpe M, Kaslow DC, Rolland A. Vaccination with Polymerase Chain Reaction-Generated Linear Expression Cassettes Protects Mice Against Lethal Influenza A Challenge. Hum Gene Ther 2007; 18:763-71. [PMID: 17705698 DOI: 10.1089/hum.2007.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The feasibility of a linear expression cassette (LEC)-based influenza A DNA vaccine was demonstrated in mice, using a lethal dose (LD90) of a mouse-adapted A/Hong Kong/8/68 (H3N2) influenza strain. LECs expressing hemagglutinin (HA) from either the homotypic H3N2 or the heterotypic H1N1 (A/Puerto Rico/8/34) influenza virus were produced by polymerase chain reaction and either phosphodiester- or phosphorothioate-modified oligonucleotide primers. Survival subsequent to lethal viral challenge was used as a primary end point; weight loss was the secondary end point. Survival and weight loss data showed that protection can be achieved in mice with 50 microg of phosphate-buffered saline-formulated LEC DNA or 2 microg of Vaxfectin-formulated LEC DNA. Survival correlated with neutralizing antibody titers (hemagglutination inhibition, HAI); titers obtained after vaccination with LEC were equivalent to those obtained with HA (H3N2) plasmid DNA control. Vaccination with heterotypic H1 HA-LEC DNA provided no protection against viral challenge.
Collapse
|
18
|
Tung WS, Bakar SA, Sekawi Z, Rosli R. DNA vaccine constructs against enterovirus 71 elicit immune response in mice. GENETIC VACCINES AND THERAPY 2007; 5:6. [PMID: 17445254 PMCID: PMC3225814 DOI: 10.1186/1479-0556-5-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 04/19/2007] [Indexed: 12/17/2022]
Abstract
Background Enterovirus 71 (EV71) is a major causative viral agent responsible for large outbreaks of hand, foot and mouth disease (HFMD), a common rash illness in children and infants. There is no effective antiviral treatment for severe EV71 infections and no vaccine is available. The objectives of this study were to design and construct a DNA vaccine against Enterovirus 71 using the viral capsid protein (VP1) gene of EV71 and to verify the functionality of the DNA vaccine in vitro and in vivo. Methods The VP1 gene of EV71 from two local outbreak isolates were amplified using PCR and then inserted into a eukaryotic expression vector, pVAX1. The 3.9 kb recombinant constructs were transformed into competent E. coli cells and the positive clones were screened and selected using PCR analysis, restriction digestion analysis and DNA sequencing. The constructs were then tested for protein expression in Vero cells. Subsequently, in the in vivo studies, female Balb/c mice were immunized with the DNA vaccine constructs. Enzyme Linked Immunosorbent Assay (ELISA) and virus neutralizing assay were performed to detect the presence of anti-VP1 IgG in mice and its neutralizing effect against the EV71. Results The pVAX1 vector was successfully cloned with the VP1 gene from each of the isolate (S2/86/1 and 410/4) in the correct orientation and in-frame. The DNA vaccine constructs with the VP1 gene were shown to be expressed in a cell-free in vitro expression system. The VP1 protein was successfully expressed in the mammalian cell line and was detected using RT-PCR, Indirect Immunofluorescence Assay (IFA) and western blotting. The anti-VP1 IgG levels in mice immunized with the DNA vaccine constructs increased after the first booster but declined following the second booster. The anti-VP1 IgG in the mice immunized with the DNA vaccine constructs exhibited neutralising activity against EV71. Conclusion The promising results obtained in the present study have prompted further testing to improve the expression and immunogenicity of this potential EV71 DNA vaccine.
Collapse
Affiliation(s)
- Wong Siew Tung
- Dept. of Human Growth and Development, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sazaly Abu Bakar
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya Medical Center, 50603 Kuala Lumpur, Malaysia
| | - Zamberi Sekawi
- Dept of Clinical Laboratory Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Rozita Rosli
- Dept. of Human Growth and Development, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Patial S, Chaturvedi VK, Rai A, Saini M, Chandra R, Saini Y, Gupta PK. Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2. Vaccine 2007; 25:4020-8. [PMID: 17391817 DOI: 10.1016/j.vaccine.2007.02.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 02/10/2007] [Accepted: 02/16/2007] [Indexed: 11/28/2022]
Abstract
A bicistronic DNA vaccine against rabies and parvovirus infection of dogs was developed by subcloning rabies glycoprotein and canine parvovirus (CPV) VP2 genes into a bicistronic vector. After characterizing the expression of both the proteins in vitro, the bicistronic DNA vaccine was injected in mice and induced immune response was compared with monocistronic DNA vaccines. There was no significant difference in ELISA and virus neutralizing (VN) antibody responses against rabies and CPV in mice immunized with either bicistronic or monocistronic DNA vaccine. Further, there was significantly similar protection in mice immunized with either bicistronic or monocistronic rabies DNA vaccine on rabies virus challenge. Similarly, dogs immunized with monocistronic and bicistronic DNA vaccines developed comparable VN antibodies against rabies and CPV. This study indicated that bicistronic DNA vaccine can be used in dogs to induce virus neutralizing immune responses against both rabies and CPV.
Collapse
Affiliation(s)
- Sonika Patial
- Division of Veterinary Biotechnology, Indian Veterinary Research institute, Izatnagar, 243 122, India
| | | | | | | | | | | | | |
Collapse
|
20
|
Scheerlinck JPY, Greenwood DLV. Particulate delivery systems for animal vaccines. Methods 2007; 40:118-24. [PMID: 16997719 DOI: 10.1016/j.ymeth.2006.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 05/05/2006] [Indexed: 11/28/2022] Open
Abstract
The requirements for veterinary vaccines are different to those of human vaccines. Indeed, while more side effects can be tolerated in animals than in humans; there are stricter requirements in terms of cost, ease of delivery (including to wildlife), and a need to develop vaccines in species for which relatively little is known in terms of molecular immunology. By their nature particulate vaccine delivery systems are well suited to address these challenges. Here, we review particulate vaccine delivery systems, ranging from cm-sized long-distance ballistic devices to nano-bead technology for veterinary species and wildlife.
Collapse
|
21
|
Margalith M, Vilalta A. Sustained protective rabies neutralizing antibody titers after administration of cationic lipid-formulated pDNA vaccine. GENETIC VACCINES AND THERAPY 2006; 4:2. [PMID: 16480501 PMCID: PMC1431525 DOI: 10.1186/1479-0556-4-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 02/15/2006] [Indexed: 11/21/2022]
Abstract
Published data indicate that formulation of pDNA with cationic lipids could greatly enhance the response to a pDNA vaccine in larger mammals. The present work tested the influence of several pDNA:cationic lipid formulations on rabies neutralizing titers. Plasmid expressing Rabies G protein (CVS strain) was evaluated in vivo for ability to elicit neutralizing titers. pDNA:DMRIE-DOPE formulated at two DNA:cationic lipid molar ratios was compared in mice to a Vaxfectin™-pDNA formulation. Mouse data indicate that Vaxfectin™ is more effective than DMRIE-DOPE in eliciting neutralizing titers. In addition, the ratio of pDNA to DMRIE-DOPE can also affect neutralizing titers. Our data show that sustained neutralizing titers (120 days) can be obtained after a single administration of DMRIE-DOPE-formulated pDNA in rabbits.
Collapse
Affiliation(s)
- Michal Margalith
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Adrián Vilalta
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| |
Collapse
|
22
|
Rath A, Choudhury S, Batra D, Kapre SV, Rupprecht CE, Gupta SK. DNA vaccine for rabies: relevance of the trans-membrane domain of the glycoprotein in generating an antibody response. Virus Res 2005; 113:143-52. [PMID: 15978691 DOI: 10.1016/j.virusres.2005.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 01/08/2023]
Abstract
Various studies have demonstrated the potential of immunization with DNA vaccines encoding the rabies virus glycoprotein (RV-G) to elicit humoral responses. In the present study, we have designed four constructs using a VR1020 vector, wherein the RV-G ectodomain has been cloned without the signal sequence (SS) and the trans-membrane domain (TD) (rGVR), without the SS but with the TD (rGVRt), with the SS but without the TD (rGVRs) and with the SS and the TD (rGVRst), under the control of a cytomegalovirus (CMV) promoter, and downstream of the tissue plasminogen activator (TPA) signal sequence. In addition, RV-G has been expressed as a His6 tag fusion protein, both in Escherichia coli as well as in baculovirus expression systems. Using a prime-boost strategy, BALB/cJ mice administered with the rGVRt construct either in saline (intramuscularly) or adsorbed onto gold microcarriers (delivered intradermally by gene gun) generated the highest rabies virus neutralizing antibody (RVNA) titers. Inclusion of the SS, in addition to the TD (rGVRst), led to a significant decrease in RVNA titers, compared to the rGVRt construct. The DNA vaccine construct lacking both the SS and the TD domain and the vaccine having only the SS generated lower antibody responses, compared to the rGVRt construct. After priming with DNA vaccine, boosting with both E. coli- as well as baculovirus-expressed rRV-G led to an increase in the RVNA titers. The present results demonstrate that a DNA vaccine encoding the full-length sequence of the ectodomain plus TD of the mature native RV-G is capable of expressing an 'ideal' immunogen to produce RVNA titers.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Baculoviridae/metabolism
- Escherichia coli/metabolism
- Genetic Vectors
- Glycoproteins/biosynthesis
- Glycoproteins/genetics
- Glycoproteins/immunology
- Gold
- Immunization, Secondary
- Injections, Intramuscular
- Injections, Subcutaneous
- Male
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Protein Structure, Tertiary
- Rabies/blood
- Rabies/immunology
- Rabies Vaccines/administration & dosage
- Rabies Vaccines/immunology
- Sodium Chloride
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Envelope Proteins/biosynthesis
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Archana Rath
- Gamete Antigen Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
23
|
Ashraf S, Singh P, Yadav DK, Shahnawaz M, Mishra S, Sawant SV, Tuli R. High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J Biotechnol 2005; 119:1-14. [PMID: 16038998 PMCID: PMC7114349 DOI: 10.1016/j.jbiotec.2005.06.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 05/23/2005] [Accepted: 06/02/2005] [Indexed: 11/29/2022]
Abstract
A synthetic gene coding for the surface glycoprotein (G protein) of rabies virus was strategically designed to achieve high-level expression in transgenic plants. The native signal peptide was replaced by that of the pathogenesis related protein, PR-S of Nicotiana tabacum. An endoplasmic reticulum retention signal was included at C-terminus of the G protein. Tobacco plants were genetically engineered by nuclear transformation. Selected transgenic lines expressed the chimeric G protein at 0.38% of the total soluble leaf protein. Mice immunized intraperitoneally with the G protein purified from tobacco leaf microsomal fraction elicited high level of immune response as compared to the inactivated commercial viral vaccine. The plant-derived G protein induced complete protective immunity in mice against intracerebral lethal challenge with live rabies virus. The results establish that plants can provide a safe and effective production system for the expression of immunoprotective rabies virus surface protein.
Collapse
Affiliation(s)
- Shadma Ashraf
- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - P.K. Singh
- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Dinesh K. Yadav
- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Md. Shahnawaz
- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Satish Mishra
- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Samir V. Sawant
- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Rakesh Tuli
- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| |
Collapse
|
24
|
Chen J, Fang F, Li X, Chang H, Chen Z. Protection against influenza virus infection in BALB/c mice immunized with a single dose of neuraminidase-expressing DNAs by electroporation. Vaccine 2005; 23:4322-8. [PMID: 15925433 DOI: 10.1016/j.vaccine.2005.03.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2004] [Accepted: 03/16/2005] [Indexed: 11/16/2022]
Abstract
The ability of a single dose of plasmid DNA encoding neuraminidase (NA) or hemagglutinin (HA) from influenza virus A/PR/8/34 (PR8) (H1N1) to protect against homologous virus infection was examined in BALB/c mice. In the present study, mice were immunized once with 30 microg of NA or HA DNA by electroporation. Four weeks or 28 weeks after immunization, mice were challenged with a lethal dose of homologous virus and the ability of NA or HA DNA to protect the mice from influenza was evaluated. We found that a single inoculation of NA DNA could provide protection against influenza virus challenge as well as long-term protection against viral infection. Whereas, the mice immunized with a single dose of HA DNA could not be protected. In addition, neonatal mice immunized with a single dose of 30 microg of NA DNA could be provided with significant protection against viral infection.
Collapse
Affiliation(s)
- Jianjun Chen
- College of Life Science, Hunan Normal University, Yuelushan, Changsha, China
| | | | | | | | | |
Collapse
|
25
|
Coutsinos Z, Villefroy P, Gras-Masse H, Guillet JG, Bourgault-Villada I. Evaluation of SIV-lipopeptide immunizations administered by the intradermal route in their ability to induce antigen specific T-cell responses in rhesus macaques. ACTA ACUST UNITED AC 2005; 43:357-66. [PMID: 15708309 DOI: 10.1016/j.femsim.2004.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 09/27/2004] [Accepted: 09/28/2004] [Indexed: 11/24/2022]
Abstract
Numerous clinical and experimental observations have shown that cellular immunity, in particular CD8+ T-lymphocytes, plays an important role in the control of HIV infection. We have focused on a lipopeptide vaccination strategy that has been shown to induce polyepitopic T-cell responses in both animals and humans, in order to deliver simian immunodeficiency virus (SIV) antigens to rhesus macaques. Given the relevance of antigen administration route in the development of an effective cellular immune response, this study was designed to assess SIV lipopeptide immunizations administered either by the intradermal (ID) or the intramuscular (IM) routes in their ability to elicit GAG and NEF multispecific T-lymphocytes in the rhesus macaque. Antigen specific T-cell responses were observed between 7 and 11 weeks following vaccination in both groups. Macaques immunized by the IM route yielded antigen-specific IFN-gamma secreting lymphocytes in response to no more than two pools of peptides derived from SIV-NEF. In contrast, among the four ID-immunized macaques, two presented multi-specific T-cell responses to as many as four pools of SIV-NEF and/or GAG peptides. Responses persisted 16 weeks following the vaccination protocol in one of the ID-vaccinated macaques. The induction of such responses is of great clinical relevance in the development of an effective HIV vaccine. Given the crucial role of CD8+ T-lymphocytes in HIV/SIV containment, vaccination through the intradermal route should merit high consideration in the development of an AIDS vaccine.
Collapse
Affiliation(s)
- Zoe Coutsinos
- Institut Cochin, Départment d'Immunologie, INSERM U567, CNRS UMR 8104, IFR Alfred Jost, Université René Descartes, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | | | |
Collapse
|
26
|
Haghighi HR, Prescott JF. Assessment in mice of vapA–DNA vaccination against Rhodococcus equi infection. Vet Immunol Immunopathol 2005; 104:215-25. [PMID: 15734542 DOI: 10.1016/j.vetimm.2004.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 11/15/2004] [Accepted: 12/01/2004] [Indexed: 11/25/2022]
Abstract
There is a need to produce a vaccine against Rhodococcus equi pneumonia in foals in which immunity against infection is largely based on a type 1, cell-mediated, immune response. The VapA protein of the virulence plasmid of R. equi is highly immunogenic. To assess the potential of vapA-DNA to produce immunity, C57BL/6 and BALB/c mice were immunized with a DNA vaccine constructed from vapA incorporated into pcDNA3.1. The plasmid construct expressed VapA in a COS-7 cell line. Intramuscular immunization of mice resulted in enhanced clearance of R. equi from the liver of intravenously challenged mice compared to non-immunized controls. This effect was more marked when pORF-IL-12, a plasmid expressing murine IL12, was included with the vaccine. Antibody developed to VapA, with an IgG2a response being more marked in mice immunized with pcDNA-vapA than in non-immunized or in mice immunized with the mixed vapA and IL-12 plasmid constructs. In conclusion, this study has shown for the first time that DNA immunization with vapA enhances the immune responses of mice against R. equi infection, that the IgG subisotype response is consistent with a type 1-based immune response, and that this can be enhanced by injection of the IL-12 gene.
Collapse
Affiliation(s)
- H R Haghighi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | |
Collapse
|
27
|
Maes P, Clement J, Gavrilovskaya I, Van Ranst M. Hantaviruses: Immunology, Treatment, and Prevention. Viral Immunol 2004; 17:481-97. [PMID: 15671746 DOI: 10.1089/vim.2004.17.481] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hantaviruses are rodent-borne bunyaviruses that are associated with two main clinical diseases in humans: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. It has been suggested that host-related immune mechanisms rather than direct viral cytopathology may be responsible for the principal abnormality (vascular dysfunction) in these syndromes. This review summarizes the current knowledge on hantaviral host immune responses, immune abnormalities, laboratory diagnosis, and antiviral therapy as well as the current approaches in vaccine development.
Collapse
Affiliation(s)
- Piet Maes
- Laboratory of Clinical Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|