1
|
Salgado CL, Corea AFM, Covre LP, Fonseca-Martins AMD, Falqueto A, Guedes HLDM, Rossi-Bergmann B, Gomes DCO. Intranasal delivery of LaAg vaccine improves immunity of aged mice against visceral Leishmaniasis. Acta Trop 2024; 252:107125. [PMID: 38280636 DOI: 10.1016/j.actatropica.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
There are no approved vaccines yet for human visceral leishmaniasis (VL), the most severe form of the leishmaniasis clinical manifestations that is fatal in over 95 % of untreated cases. It is well-accepted that immunological changes during aging have deleterious impact on the efficacy of vaccines and response to infections. In this work, we compared the response of young and aged mice to intranasal vaccination with killed Leishmania amazonensis promastigote antigens (LaAg) that were then challenged with L. infantum infection, a species that causes visceral leishmaniasis. Intranasal vaccination with LaAg induced a similar reduction in parasitism and hepatosplenomegaly in both young and aged mice compared to their unvaccinated counterparts. Following infection, there was also a less prominent inflammatory profile particularly in the vaccinated aged group, with lower production of TNF-α and nitrite compared to the respective unvaccinated group. Interestingly, the LaAg intranasal vaccination promoted increased production of IFN-γ that was observed in both young- and aged vaccinated groups. Additionally, CD4+ and CD8+T cells from both vaccinated groups presented decreased expression of the inhibitory receptors PD-1 and KLRG1 compared to their unvaccinated controls. Interestingly, a strong positive correlation was observed between the expression of both inhibitory receptors PD-1 and KLRG1 and parasitism, which was more conspicuous in the unvaccinated-aged mice than in the others. Overall, this study helps define new strategies to improve vaccine effectiveness and provides a perspective for prophylactic alternatives against leishmaniasis.
Collapse
Affiliation(s)
- Caio Loureiro Salgado
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | | | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil; Division of Medicine, University College London, London, United Kingdom
| | | | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Cláudio Oliviera Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil; Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, Brazil.
| |
Collapse
|
2
|
Costa Souza BL, Pinto EF, Bezerra IP, Gomes DC, Martinez AMB, Ré MI, de Matos Guedes HL, Rossi-Bergmann B. Crosslinked chitosan microparticles as a safe and efficient DNA carrier for intranasal vaccination against cutaneous leishmaniasis. Vaccine X 2023; 15:100403. [PMID: 38026045 PMCID: PMC10665653 DOI: 10.1016/j.jvacx.2023.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Intranasal (i.n.) vaccination with adjuvant-free plasmid DNA encoding the leishmanial antigen LACK (LACK DNA) has shown to induce protective immunity against both cutaneous and visceral leishmaniasis in rodents. In the present work, we sought to evaluate the safety and effectiveness of d,l-glyceraldehyde cross-linked chitosan microparticles (CCM) as a LACK DNA non-intumescent mucoadhesive delivery system. CCM with 5 μm of diameter was prepared and adsorbed with a maximum of 2.4 % (w/w) of DNA with no volume alteration. Histological analysis of mouse nostrils instilled with LACK DNA / CCM showed microparticles to be not only mucoadherent but also mucopenetrant, inducing no local inflammation. Systemic safeness was confirmed by the observation that two nasal instillations one week apart did not alter the numbers of bronchoalveolar cells or blood eosinophils; did not alter ALT, AST and creatinine serum levels; and did not induce cutaneous hypersensitivity. When challenged in the footpad with Leishmania amazonensis, mice developed significantly lower parasite loads as compared with animals given naked LACK DNA or CCM alone. That was accompanied by increased stimulation of Th1-biased responses, as seen by the higher T-bet / GATA-3 ratio and IFN-γ levels. Together, these results demonstrate that CCM is a safe and effective mucopenetrating carrier that can increase the efficacy of i.n. LACK DNA vaccination against cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Beatriz L.S. Costa Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo F. Pinto
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Izabella P.S. Bezerra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel C.O. Gomes
- Núcleo de Doenças Infecciosas/Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Brazil
| | - Ana Maria B. Martinez
- Laboratório de Neurodegeneração e Reparo, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Maria Inês Ré
- Mines Albi, UMR-CNRS 5302, Centre RAPSODEE, Université de Toulouse, Campus Jarlard, Albi, France
| | - Herbert L. de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Varotto-Boccazzi I, Epis S, Cattaneo GM, Guerrini N, Manenti A, Rubolini D, Gabrieli P, Otranto D, Zuccotti G, Montomoli E, Bandi C. Rectal Administration of Leishmania Cells Elicits a Specific, Th1-Associated IgG2a Response in Mice: New Perspectives for Mucosal Vaccination against Leishmaniasis, after the Repurposing of a Study on an Anti-Viral Vaccine Candidate. Trop Med Infect Dis 2023; 8:406. [PMID: 37624344 PMCID: PMC10458511 DOI: 10.3390/tropicalmed8080406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
The mucosal immune system plays a pivotal role in the control of infections, as it represents the first line of defense against most pathogens, from respiratory viruses to intestinal parasites. Mucosal vaccination is thus regarded as a promising strategy to protect animals, including humans, from infections that are acquired by ingestion, inhalation or through the urogenital system. In addition, antigens delivered at the mucosal level can also elicit systemic immune responses. Therefore, mucosal vaccination is potentially effective also against systemic infections acquired through non-mucosal routes, for example, through the bite of hematophagous insects, as in the case of leishmaniasis, a widespread disease that affects humans and dogs. Here, we explored the potential of antigen rectal administration for the generation of anti-Leishmania immunity. Mice were immunized through rectal administration of whole cells of the model parasite Leishmania tarentolae (using a clone engineered to express the spike protein of the SARS-CoV-2 virus generated in a previous study). A specific anti-Leishmania IgG antibody response was detected. In addition, the recorded IgG2a/IgG1 ratio was higher than that of animals injected subcutaneously; therefore, suggesting a shift to a Th1-biased immune response. Considering the importance of a Th1 polarization as a protective response against Leishmania infections, we suggest that further investigation should be focused on the development of novel types of vaccines against these parasites based on rectal immunization.
Collapse
Affiliation(s)
- Ilaria Varotto-Boccazzi
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (I.V.-B.); (G.M.C.); (P.G.)
- Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, 20157 Milan, Italy;
| | - Sara Epis
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (I.V.-B.); (G.M.C.); (P.G.)
- Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, 20157 Milan, Italy;
| | - Giulia Maria Cattaneo
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (I.V.-B.); (G.M.C.); (P.G.)
| | - Noemi Guerrini
- VisMederi, 53100 Siena, Italy; (N.G.); (A.M.); (E.M.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | | | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy;
- Water Research Institute-National Research Council of Italy, IRSA-CNR, 20861 Brugherio, Italy
| | - Paolo Gabrieli
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (I.V.-B.); (G.M.C.); (P.G.)
- Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, 20157 Milan, Italy;
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan 65175/4161, Iran
| | - Gianvincenzo Zuccotti
- Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, 20157 Milan, Italy;
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Emanuele Montomoli
- VisMederi, 53100 Siena, Italy; (N.G.); (A.M.); (E.M.)
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Claudio Bandi
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (I.V.-B.); (G.M.C.); (P.G.)
- Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, 20157 Milan, Italy;
| |
Collapse
|
4
|
Jesus-Oliveira P, Silva-Couto L, Pinho N, Da Silva-Ferreira AT, Saboia-Vahia L, Cuervo P, Da-Cruz AM, Gomes-Silva A, Pinto EF. Identification of Immunodominant Proteins of the Leishmania (Viannia) naiffi SubProteome as Pan-Specific Vaccine Targets against Leishmaniasis. Vaccines (Basel) 2023; 11:1129. [PMID: 37514945 PMCID: PMC10386316 DOI: 10.3390/vaccines11071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 07/30/2023] Open
Abstract
Leishmaniasis is a wide-spectrum disease caused by parasites from Leishmania genus. A well-modulated immune response that is established after the long-lasting clinical cure of leishmaniasis can represent a standard requirement for a vaccine. Previous studies demonstrated that Leishmania (Viannia) naiffi causes benign disease and its antigens induce well-modulated immune responses in vitro. In this work we aimed to identify the immunodominant proteins present in the soluble extract of L. naiffi (sLnAg) as candidates for composing a pan-specific anti-leishmaniasis vaccine. After immunoblotting using cured patients of cutaneous leishmaniasis sera and proteomics approaches, we identified a group of antigenic proteins from the sLnAg. In silico analyses allowed us to select mildly similar proteins to the host; in addition, we evaluated the binding potential and degree of promiscuity of the protein epitopes to HLA molecules and to B-cell receptors. We selected 24 immunodominant proteins from a sub-proteome with 328 proteins. Homology analysis allowed the identification of 13 proteins with the most orthologues among seven Leishmania species. This work demonstrated the potential of these proteins as promising vaccine targets capable of inducing humoral and cellular pan-specific immune responses in humans, which may in the future contribute to the control of leishmaniasis.
Collapse
Affiliation(s)
- Prisciliana Jesus-Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Luzinei Silva-Couto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Nathalia Pinho
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas de Neuroinflamação do Rio de Janeiro, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | | | - Leonardo Saboia-Vahia
- Laboratório de Vírus Respiratórios e Sarampo, Laboratório de Referência para COVID-19 (World Health Organization), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas de Neuroinflamação do Rio de Janeiro, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Alda Maria Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas em Saúde, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Rio de Janeiro 20020-000, Brazil
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade Estadual do Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
| | - Adriano Gomes-Silva
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Pesquisa Clínica em Micobacterioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Eduardo Fonseca Pinto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas em Saúde, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Rio de Janeiro 20020-000, Brazil
| |
Collapse
|
5
|
The Use of an Adjuvant System Improves Innate and Adaptive Immune Response When Associated with a Leishmania ( Viannia) braziliensis Antigen in a Vaccine Candidate against L. ( Leishmania) infantum Infection. Vaccines (Basel) 2023; 11:vaccines11020395. [PMID: 36851272 PMCID: PMC9962147 DOI: 10.3390/vaccines11020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The adjuvants' optimal dose and the administration route can directly influence the epitope recognition patterns and profiles of innate response. We aimed to establish the effect and the optimal dose of adjuvant systems for proposing a vaccine candidate to be employed with Leishmania (Viannia) braziliensis. METHODS We evaluated the adjuvants saponin (SAP), monophosphoryl lipid A (MPL) and resiquimod (R-848) isolated and combined as adjuvant systems in a lower dose corresponding to 25%, 33%, and 50% of each adjuvant total dose. Male outbred BALB/c mice were divided into 13 groups, SAP, MPL, and R-848 isolated, and the adjuvant systems SAP plus MPL (SM), SAP plus R-848 (SR), and MPL plus R-848 (MR). RESULTS SM50 increased levels of all chemokines analyzed and TNF production, while it presented an increased inflammatory cell infiltrate in the skin with macrophage recruitment. Thus, we proposed a vaccine candidate employing L. (V.) braziliensis antigen associated with the SM adjuvant system against experimental L. (Leishmania) infantum challenge. We observed a significant increase in the frequency of cells expressing the central and effector memory CD4+ T cells phenotype in immunized mice with the LBSM50. In the liver, there was a decreased parasite load when mice received LBSM50. CONCLUSIONS When combined with L. (V.) braziliensis antigen, SM50 increases TNF and IFN-γ, which generates central and effector memory CD4+ T cells. Therefore, using an adjuvant system can promote an effective innate immune response with the potential to compose future vaccines.
Collapse
|
6
|
Kumar A, Singh B, Tiwari R, Singh VK, Singh SS, Sundar S, Kumar R. Emerging role of γδ T cells in protozoan infection and their potential clinical application. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105210. [PMID: 35031509 DOI: 10.1016/j.meegid.2022.105210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Abstract
γδ T cells are thymus derived heterogeneous and unconventional T- lymphocyte expressing TCR γ (V γ9) and TCRδ (Vδ2) chain and play an important role in connecting innate and adaptive armaments of immune response. These cells can recognize wide ranges of antigens even without involvement of major histocompatibility complex and exert their biological functions by cytotoxicity or activating various types of immune cells. In recent past, γδ T cells have emerged as an important player during protozoa infection and rapidly expand after exposure with them. They have also been widely studied in vaccine induced immune response against many bacterial and protozoan infections with improved clinical outcome. In this review, we will discuss the various roles of γδ T cells in immunity against malaria and leishmaniasis, the two important protozoan diseases causing significant mortality and morbidity throughout the world.
Collapse
Affiliation(s)
- Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, India
| | | | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, India.
| |
Collapse
|
7
|
Nikolaou C, Muehle K, Schlickeiser S, Japp AS, Matzmohr N, Kunkel D, Frentsch M, Thiel A. High-dimensional single cell mass cytometry analysis of the murine hematopoietic system reveals signatures induced by ageing and physiological pathogen challenges. IMMUNITY & AGEING 2021; 18:20. [PMID: 33879187 PMCID: PMC8056611 DOI: 10.1186/s12979-021-00230-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/26/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Immune ageing is a result of repetitive microbial challenges along with cell intrinsic or systemic changes occurring during ageing. Mice under 'specific-pathogen-free' (SPF) conditions are frequently used to assess immune ageing in long-term experiments. However, physiological pathogenic challenges are reduced in SPF mice. The question arises to what extent murine experiments performed under SPF conditions are suited to analyze immune ageing in mice and serve as models for human immune ageing. Our previous comparisons of same aged mice with different microbial exposures, unambiguously identified distinct clusters of immune cells characteristic for numerous previous pathogen encounters in particular in pet shop mice. RESULTS We here performed single cell mass cytometry assessing splenic as secondary and bone marrow as primary lymphoid organ-derived leukocytes isolated from young versus aged SPF mice in order to delineate alterations of the murine hematopoietic system induced during ageing. We then compared immune clusters from young and aged SPF mice to pet shop mice in order to delineate alterations of the murine hematopoietic system induced by physiological pathogenic challenges and those caused by cell intrinsic or systemic changes during ageing. Notably, distinct immune signatures were similarly altered in both pet shop and aged SPF mice in comparison to young SPF mice, including increased frequencies of memory T lymphocytes, effector-cytokine producing T cells, plasma cells and mature NK cells. However, elevated frequencies of CD4+ T cells, total NK cells, granulocytes, pDCs, cDCs and decreased frequencies of naïve B cells were specifically identified only in pet shop mice. In aged SPF mice specifically the frequencies of splenic IgM+ plasma cells, CD8+ T cells and CD4+ CD25+ Treg were increased as compared to pet shop mice and young mice. CONCLUSIONS Our study dissects firstly how ageing impacts both innate and adaptive immune cells in primary and secondary lymphoid organs. Secondly, it partly distinguishes murine intrinsic immune ageing alterations from those induced by physiological pathogen challenges highlighting the importance of designing mouse models for their use in preclinical research including vaccines and immunotherapies.
Collapse
Affiliation(s)
- Christos Nikolaou
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany. .,Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany. .,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Kerstin Muehle
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Alberto Sada Japp
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Matzmohr
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Desiree Kunkel
- Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Marco Frentsch
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Inoculation of the Leishmania infantum HSP70-II Null Mutant Induces Long-Term Protection against L. amazonensis Infection in BALB/c Mice. Microorganisms 2021; 9:microorganisms9020363. [PMID: 33673117 PMCID: PMC7918614 DOI: 10.3390/microorganisms9020363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Leishmania amazonensis parasites are etiological agents of cutaneous leishmaniasis in the New World. BALB/c mice are highly susceptible to L. amazonensis challenge due to their inability to mount parasite-dependent IFN-γ-mediated responses. Here, we analyzed the capacity of a single administration of the LiΔHSP70-II genetically-modified attenuated L. infantum line in preventing cutaneous leishmaniasis in mice challenged with L. amazonensis virulent parasites. In previous studies, this live attenuated vaccine has demonstrated to induce long-protection against murine leishmaniasis due to Old World Leishmania species. Vaccinated mice showed a reduction in the disease evolution due to L. amazonensis challenge, namely reduction in cutaneous lesions and parasite burdens. In contrast to control animals, after the challenge, protected mice showed anti-Leishmania IgG2a circulating antibodies accompanied to the induction of Leishmania-driven specific IFN-γ systemic response. An analysis performed in the lymph node draining the site of infection revealed an increase of the parasite-specific IFN-ϒ production by CD4+ and CD8+ T cells and a decrease in the secretion of IL-10 against leishmanial antigens. Since the immunity caused by the inoculation of this live vaccine generates protection against different forms of murine leishmaniasis, we postulate LiΔHSP70-II as a candidate for the development of human vaccines.
Collapse
|
9
|
Dantzler KW, de la Parte L, Jagannathan P. Emerging role of γδ T cells in vaccine-mediated protection from infectious diseases. Clin Transl Immunology 2019; 8:e1072. [PMID: 31485329 PMCID: PMC6712516 DOI: 10.1002/cti2.1072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023] Open
Abstract
γδ T cells are fascinating cells that bridge the innate and adaptive immune systems. They have long been known to proliferate rapidly following infection; however, the identity of the specific γδ T cell subsets proliferating and the role of this expansion in protection from disease have only been explored more recently. Several recent studies have investigated γδ T‐cell responses to vaccines targeting infections such as Mycobacterium, Plasmodium and influenza, and studies in animal models have provided further insight into the association of these responses with improved clinical outcomes. In this review, we examine the evidence for a role for γδ T cells in vaccine‐induced protection against various bacterial, protozoan and viral infections. We further discuss results suggesting potential mechanisms for protection, including cytokine‐mediated direct and indirect killing of infected cells, and highlight remaining open questions in the field. Finally, building on current efforts to integrate strategies targeting γδ T cells into immunotherapies for cancer, we discuss potential approaches to improve vaccines for infectious diseases by inducing γδ T‐cell activation and cytotoxicity.
Collapse
|
10
|
Bezerra IPS, Costa-Souza BLS, Carneiro G, Ferreira LAM, de Matos Guedes HL, Rossi-Bergmann B. Nanoencapsulated retinoic acid as a safe tolerogenic adjuvant for intranasal vaccination against cutaneous leishmaniasis. Vaccine 2019; 37:3660-3667. [PMID: 31133469 DOI: 10.1016/j.vaccine.2019.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Mucosal, but not peripheral, vaccination with whole Leishmania amazonensis antigen (LaAg) effectively protects mice against leishmaniasis, likely through a tolerogenic mechanism. Given the crucial role of retinoic acid (RA) in CD4+ Foxp3+ regulatory T cell (Treg) differentiation and mucosal tolerance, here we evaluated the capacity of RA to improve intranasal (i.n.) vaccination with LaAg. To prevent degradation and possible mucosa irritation, RA was encapsulated in solid lipid nanoparticles (RA-SLN). Thus, BALB/c mice were given two i.n. doses of LaAg alone or in association with RA-SLN (LaAg/RA-SLN) prior to challenge with L. amazonensis. No histological sign of irritation or inflammation was produced in the nasal mucosa after RA-SLN administration. LaAg/RA-SLN vaccine was more effective in delaying lesion growth and reducing parasite burdens than LaAg alone (96% and 61% reduction, respectively). At two months after challenge, both vaccinated groups displayed similar T helper (Th) 1-skewed in situ cytokine responses, different from early infection where both Th1 and Th2 responses were suppressed, except for transforming growth factor (TGF)-β mRNA, that was higher in mice given RA-SLN. At the mucosa, RA-SLN promoted enhanced expression of interleukin (IL)-10 and CD4+ Foxp3+ Treg population. In sum, these data show that RA-SLN is an effective and safe tolerogenic adjuvant for i.n. vaccination against leishmaniasis.
Collapse
Affiliation(s)
- Izabella P S Bezerra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Beatriz L S Costa-Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guilherme Carneiro
- Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | | | | | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Salgado CL, Dias EL, Stringari LL, Covre LP, Dietze R, Lima Pereira FE, de Matos Guedes HL, Rossi-Bergmann B, Gomes DCO. Pam3CSK4 adjuvant given intranasally boosts anti-Leishmania immunogenicity but not protective immune responses conferred by LaAg vaccine against visceral leishmaniasis. Microbes Infect 2019; 21:328-335. [PMID: 30817996 DOI: 10.1016/j.micinf.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/29/2022]
Abstract
The use of adjuvants in vaccine formulations is a well-established practice to improve immunogenicity and protective immunity against diseases. Previously, we have demonstrated the feasibility of intranasal vaccination with the antigen of killed Leishmania amazonensis promastigotes (LaAg) against experimental leishmaniasis. In this work, we sought to optimize the immunogenic effect and protective immunity against murine visceral leishmaniasis conferred by intranasal delivery of LaAg in combination with a synthetic TLR1/TLR2 agonist (Pam3CSK4). Intranasal vaccination with LaAg/PAM did not show toxicity or adverse effects, induced the increase of delayed-type hypersensitivity response and the production of inflammatory cytokines after parasite antigen recall. However, mice vaccinated with LaAg/PAM and challenged with Leishmania infantum presented significant reduction of parasite burden in both liver and spleen, similar to those vaccinated with LaAg. Although LaAg/PAM intranasal vaccination had induced higher frequencies of specific CD4+ and CD8+ T cells and increased levels of IgG2a antibody isotype in serum, both LaAg and LaAg/PAM groups presented similar levels of IL-4 and IFN-y and decreased production of IL-10 when compared to controls. Our results provide the first evidence of the feasibility of intranasal immunization with antigens of killed Leishmania in association with a TLR agonist, which may be explored for developing an effective and alternative strategy for vaccination against visceral leishmaniasis.
Collapse
Affiliation(s)
- Caio Loureiro Salgado
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | - Emmanoel Loss Dias
- Núcleo de Núcleo de Biotecnologia, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | | | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil; Global Health and Tropical Medicine, Instituto de Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Herbet Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Núcleo Multidisciplinar de Pesquisa UFRJ, Xerém em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil; Núcleo de Núcleo de Biotecnologia, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil.
| |
Collapse
|
12
|
Pratti JES, da Fonseca Martins AM, da Silva JP, Ramos TD, Pereira JC, Firmino-Cruz L, Oliveira-Maciel D, Vieira TSDS, Lacerda LL, Vale AM, Freire-de-Lima CG, Gomes DCO, Saraiva EM, Rossi-Bergmann B, de Matos Guedes HL. The role of TLR9 on Leishmania amazonensis infection and its influence on intranasal LaAg vaccine efficacy. PLoS Negl Trop Dis 2019; 13:e0007146. [PMID: 30802247 PMCID: PMC6405171 DOI: 10.1371/journal.pntd.0007146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 03/07/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Leishmania (L.) amazonensis is one of the etiological agents of cutaneous leishmaniasis (CL) in Brazil. Currently, there is no vaccine approved for human use against leishmaniasis, although several vaccine preparations are in experimental stages. One of them is Leishvacin, or LaAg, a first-generation vaccine composed of total L. amazonensis antigens that has consistently shown an increase of mouse resistance against CL when administered intranasally (i.n.). Since Toll-like receptor 9 (TLR9) is highly expressed in the nasal mucosa and LaAg is composed of TLR9-binding DNA CpG motifs, in this study we proposed to investigate the role of TLR9 in both L. amazonensis infection and in LaAg vaccine efficacy in C57BL/6 (WT) mice and TLR9-/- mice. First, we evaluated, the infection of macrophages by L. amazonensis in vitro, showing no significant difference between macrophages from WT and TLR9-/- mice in terms of both infection percentage and total number of intracellular amastigotes, as well as NO production. In addition, neutrophils from WT and TLR9-/- mice had similar capacity to produce neutrophil extracellular traps (NETs) in response to L. amazonensis. L. amazonensis did not activate dendritic cells from WT and TLR9-/- mice, analysed by MHCII and CD86 expression. However, in vivo, TLR9-/- mice were slightly more susceptible to L. amazonensis infection than WT mice, presenting a larger lesion and an increased parasite load at the peak of infection and in the chronic phase. The increased TLR9-/- mice susceptibility was accompanied by an increased IgG and IgG1 production; a decrease of IFN-γ in infected tissue, but not IL-4 and IL-10; and a decreased number of IFN-γ producing CD8+ T cells, but not CD4+ T cells in the lesion-draining lymph nodes. Also, TLR9-/- mice could not control parasite growth following i.n. LaAg vaccination unlike the WT mice. This protection failure was associated with a reduction of the hypersensitivity response induced by immunization. The TLR9-/- vaccinated mice failed to respond to antigen stimulation and to produce IFN-γ by lymph node cells. Together, these results suggest that TLR9 contributes to C57BL/6 mouse resistance against L. amazonensis, and that the TLR9-binding LaAg comprising CpG motifs may be important for intranasal vaccine efficacy against CL.
Collapse
Affiliation(s)
| | - Alessandra Marcia da Fonseca Martins
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana Paiva da Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tadeu Diniz Ramos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joyce Carvalho Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luan Firmino-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Oliveira-Maciel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago Soares de Souza Vieira
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leandra Linhares Lacerda
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andre Macedo Vale
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celio G. Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel C. Oliveira Gomes
- Laboratório de Imunobiologia, Núcleo de Doenças Infecciosas/ Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, ES, Brazil
| | - Elvira M. Saraiva
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Núcleo Multidisciplinar de Pesquisa UFRJ–Xerém em Biologia (NUMPEX-BIO), Campus Duque de Caxias Professor Geraldo Cidade (Polo Avançado de Xerém), Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil
| |
Collapse
|
13
|
Pereira Silva Bezerra I, Amaral Abib M, Rossi-Bergmann B. Intranasal but not subcutaneous vaccination with LaAg allows rapid expansion of protective immunity against cutaneous leishmaniasis. Vaccine 2018; 36:2480-2486. [DOI: 10.1016/j.vaccine.2018.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 12/22/2022]
|
14
|
Stegmiller NP, Barcelos EC, Leal JM, Covre LP, Donatele DM, de Matos Guedes HL, Cunegundes MC, Rodrigues RR, Gomes DCO. Intranasal vaccination with adjuvant-free S. aureus antigens effectively protects mice against experimental sepsis. Vaccine 2016; 34:3493-9. [PMID: 27091687 DOI: 10.1016/j.vaccine.2016.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/15/2016] [Accepted: 04/07/2016] [Indexed: 01/21/2023]
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive coccal bacterium comprising part of the human skin, nares and gastrointestinal tract normal microbiota. It is also an important cause of nosocomial/community-acquired infections in humans and animals, which can cause a diverse array of infections, including sepsis, which is a progressive systemic inflammation response syndrome that is frequently fatal. The emergence of drug-resistant strains and the high toxicity of the treatments used for these infections point out the need to develop an effective, inexpensive and safe vaccine that can be used prophylactically. In this work, we used an experimental sepsis model to evaluate the effectiveness of whole antigens from S. aureus (SaAg) given by the intranasal route to induce protective immunity against S. aureus infection in mice. BALB/c mice were vaccinated via intranasal or intramuscular route with two doses of SaAg, followed by biocompatibility and immunogenicity evaluations. Vaccinated animals did not show any adverse effects associated with the vaccine, as determined by transaminase and creatinine measurements. Intranasal, but not intramuscular vaccination with SaAg led to a significant reduction in IL-10 production and was associated with increased level of IFN-γ and NO. SaAg intranasal vaccination was able to prime cellular and humoral immune responses and inducing a higher proliferation index and increased production of specific IgG1/IgG2, which contributed to decrease the bacterial load in both liver and the spleen and improve survival during sepsis. These findings present the first evidence of the effectiveness of whole Ag intranasal-based vaccine administration, which expands the vaccination possibilities against S. aureus infection.
Collapse
Affiliation(s)
| | | | - Janine Miranda Leal
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | - Dirlei Molinari Donatele
- Departamento de Medicina Veterinária, Universidade Federal do Espírito Santo - UFES, Alegre, Brazil
| | | | | | | | - Daniel Cláudio Oliviera Gomes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil; Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil.
| |
Collapse
|
15
|
Intranasal vaccination with killed Leishmania amazonensis promastigotes antigen (LaAg) associated with CAF01 adjuvant induces partial protection in BALB/c mice challenged with Leishmania (infantum) chagasi. Parasitology 2015; 142:1640-6. [DOI: 10.1017/s0031182015001250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe CAF01 adjuvant has previously been shown to be safe for human use and to be a potent adjuvant for several vaccine antigens. In the present work, we sought to optimize the Leishmania amazonensis antigens (LaAg) intranasal vaccine in an attempt to enhance the protective immune responses against Leishmania (infantum) chagasi by using the CAF01 association. LaAg/CAF01 vaccinated mice that were challenged 15 days after booster dose with L. (infantum) chagasi showed a significant reduction in their parasite burden in both the spleen and liver, which is associated with an increase in specific production of IFN-γ and nitrite, and a decrease in IL-4 production. In addition, LaAg/CAF01 intranasal delivery was able to increase lymphoproliferative immune responses after parasite antigen recall. These results suggest the feasibility of using the intranasal route for the delivery of crude antigens and of a human-compatible adjuvant against visceral leishmaniasis.
Collapse
|
16
|
Intranasal vaccination with leishmanial antigens protects golden hamsters (Mesocricetus auratus) against Leishmania (Viannia) Braziliensis infection. PLoS Negl Trop Dis 2015; 9:e3439. [PMID: 25569338 PMCID: PMC4287559 DOI: 10.1371/journal.pntd.0003439] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Background Previous results have shown that oral and intranasal administration of particulate Leishmania (Leishmania) amazonensis antigens (LaAg) partially protects mice against L. amazonensis infection. However, vaccination studies on species of the subgenus Viannia, the main causative agent of cutaneous and mucosal leishmaniasis in the Americas, have been hampered by the lack of easy-to-handle bio-models that accurately mimic the human disease. Recently, we demonstrated that the golden hamster is an appropriate model for studying the immunopathogenesis of cutaneous leishmaniasis caused by L. (Viannia) braziliensis. Using the golden hamster model, our current study investigated whether the protective effect of intranasal immunisation with LaAg can be extended to L. braziliensis infection. Methodology/Principal Findings Golden hamsters vaccinated with either two intranasal (IN) doses of LaAg (10 µg) or two intramuscular doses of LaAg (20 µg) were challenged 2 weeks post-vaccination with L. braziliensis. The results showed that IN immunisation with LaAg significantly reduced lesion growth and parasitic load as well as serum IgG and IgG2 levels. At the experimental endpoint on day 114 post-infection, IN-immunised hamsters that were considered protected expressed IFN-γ and IL10 mRNA levels that returned to uninfected skin levels. In contrast to the nasal route, intramuscular (IM) immunisation failed to provide protection. Conclusions/Significance These results demonstrate for the first time that the nasal route of immunisation can induce cross protection against L. braziliensis infection. Leishmaniasis is a disease that is common in most tropical countries. In Brazil, the cutaneous form of the disease is highly prevalent, with approximately 28,000 new cases reported annually. L. (Viannia) braziliensis is the main causative agent of cutaneous leishmaniasis; however, vaccine studies against protozoans of the subgenus Viannia have been largely neglected, mainly due to the high resistance of most mouse strains to the infection. Here, the authors used the golden hamster, which is highly susceptible to dermotropic Leishmania spp infection. It was previously shown that oral and intranasal vaccination with whole L. (Leishmania) amazonensis antigens (LaAg) protected mice against L. amazonensis infection. In the present study, the authors investigated whether the protective effect of intranasal immunisation with LaAg can be extended to L. braziliensis infection using the golden hamster model. The results showed that intranasal immunisation with LaAg significantly reduced lesion growth and parasitic load as well as IgG and IgG2 serum levels. At the endpoint of the experiment, intranasally immunised hamsters that were considered protected expressed IFN-γ and IL10 mRNA at levels similar to those in uninfected skin. These data show that the use of a proper animal model and/or different vaccination strategies may facilitate the development of an effective vaccine against L. braziliensis.
Collapse
|
17
|
de Matos Guedes HL, da Silva Costa BL, Chaves SP, de Oliveira Gomes DC, Nosanchuk JD, De Simone SG, Rossi-Bergmann B. Intranasal vaccination with extracellular serine proteases of Leishmania amazonensis confers protective immunity to BALB/c mice against infection. Parasit Vectors 2014; 7:448. [PMID: 25239157 PMCID: PMC4261548 DOI: 10.1186/1756-3305-7-448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022] Open
Abstract
Background Previously, we demonstrated that unlike subcutaneous or intramuscular vaccination, intranasal vaccination of BALB/c mice with whole Leishmania amazonensis antigens leads to protection against cutaneous leishmaniasis. Here, the role of parasite serine proteases in the protective immunity was investigated. Findings Serine Proteases were partially purified from both soluble (LaSP-Sol) and extracellular (LaSP-Ex) Leishmania amazonensis promastigote extracts by aprotinin-agarose chromatography. BALB/c mice were intranasally immunized with LaSP-Sol and LaSP-Ex prior to infection with L. amazonensis. LaSP-Ex but not LaSP-Sol vaccination led to significantly smaller lesions and parasite burdens as compared with non-vaccinated controls. Protection was accompanied by systemic Th1 polarization with increased IFN-γ and decreased IL-4 and IL-10 splenic production. Likewise, increased production of IFN-γ, IL-12 and IL-4 concomitant with decreased TGF-β and TNF-α was locally observed in the infected footpad. Conclusion This study indicates that extracellular serine proteases of L. amazonensis are strong candidates for a more defined intranasal vaccine against cutaneous leishmaniasis. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-448) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Herbert Leonel de Matos Guedes
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | |
Collapse
|
18
|
Carneiro MBH, de Andrade e Sousa LM, Vaz LG, Dos Santos LM, Vilela L, de Souza CC, Gonçalves R, Tafuri WL, Afonso LCC, Côrtes DF, Vieira LQ. Short-term protection conferred by Leishvacin® against experimental Leishmania amazonensis infection in C57BL/6 mice. Parasitol Int 2014; 63:826-34. [PMID: 25102355 DOI: 10.1016/j.parint.2014.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 01/21/2023]
Abstract
To date, there is no vaccine available against human leishmaniasis. Although some vaccination protocols can induce immunity in murine models, they fail to induce protection in humans. The reasons for that remain unclear. The aim of the present study was to characterize the changes in the pattern of the immune response during subcutaneous vaccination with Leishvacin® in mice. We also investigated whether IFN-γ and nitric oxide synthase are indispensable for the protection elicited by the vaccine. C57BL/6 WT vaccinated mice showed smaller lesions and fewer numbers of parasites in footpads until 8 weeks post-infection. Up to this time, they produced higher levels of IFN-γ, IL-2, IL-4, IL-17A and IL-10 and higher specific antibody response than control non-vaccinated mice. Moreover, we showed that IFN-γ, most likely by induction of iNOS expression, is essential for immunity. However, after 12 weeks of infection, we observed loss of difference in lesion size and parasite burden between the groups. Loss of resistance was associated with the disappearance of differences in cytokine patterns between vaccinated and control mice, but not of antibody response, which remained different until a later time of infection. The reversal of resistance to L. amazonensis could not be explained by upregulation of regulatory cytokines. Our data point to a subversion of the host immune response by L. amazonensis even when a protective response was previously induced.
Collapse
Affiliation(s)
- Matheus Batista Heitor Carneiro
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Louisa Maria de Andrade e Sousa
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Gomes Vaz
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Liliane Martins Dos Santos
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciano Vilela
- Centro de Pesquisas, Biomm S/A, Montes Claros, MG 39400-307, Brazil
| | - Carolina Carvalho de Souza
- Departamento de Patologia Geral, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minhas Gerais, Brazil
| | - Ricardo Gonçalves
- Departamento de Patologia Geral, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minhas Gerais, Brazil
| | - Wagner Luis Tafuri
- Departamento de Patologia Geral, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minhas Gerais, Brazil
| | | | - Denise Fonseca Côrtes
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Ciências Biológicas, ICEB/NUPEB, Universidade Federal de Ouro Preto, Brazil
| | - Leda Quercia Vieira
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Ciências Biológicas, ICEB/NUPEB, Universidade Federal de Ouro Preto, Brazil.
| |
Collapse
|
19
|
Ramirez L, Corvo L, Duarte MC, Chávez-Fumagalli MA, Valadares DG, Santos DM, de Oliveira CI, Escutia MR, Alonso C, Bonay P, Tavares CAP, Coelho EAF, Soto M. Cross-protective effect of a combined L5 plus L3 Leishmania major ribosomal protein based vaccine combined with a Th1 adjuvant in murine cutaneous and visceral leishmaniasis. Parasit Vectors 2014; 7:3. [PMID: 24382098 PMCID: PMC3880976 DOI: 10.1186/1756-3305-7-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/28/2013] [Indexed: 12/14/2022] Open
Abstract
Background Two Leishmania major ribosomal proteins L3 (LmL3) and L5 (LmL5) have been described as protective molecules against cutaneous leishmaniasis due to infection with L. major and Leishmania braziliensis in BALB/c mice when immunized with a Th1 adjuvant (non-methylated CpG-oligodeoxynucleotides; CpG-ODN). In the present study we analyzed the cross-protective efficacy of an LmL3-LmL5-CpG ODN combined vaccine against infection with Leishmania amazonensis and Leishmania chagasi (syn. Leishmania infantum) the etiologic agents of different clinical forms of human leishmaniasis in South America. Methods The combined vaccine was administered subcutaneously to BALB/c mice. After immunization the cellular and humoral responses elicited were analyzed. Mice were independently challenged with L. amazonensis and L. chagasi. The size of the cutaneous lesions caused by the infection with the first species, the parasite loads and the immune response in both infection models were analyzed nine weeks after challenge. Results Mice vaccinated with the combined vaccine showed a Th1-like response against LmL3 and LmL5. Vaccinated mice were able to delay lesion development due to L. amazonensis infection and to control parasite loads in the site of infection. A reduction of the parasite burden in the lymph nodes draining the site of infection and in the liver and spleen was observed in the vaccinated mice after a subcutaneous infection with L. chagasi. In both models of infection, protection was correlated to parasite antigen-specific production of IFN-γ and down-regulation of parasite-mediated IL-4 and IL-10 responses. Conclusions The data presented here demonstrate the potential use of L. major L3 and L5 recombinant ribosomal proteins for the development of vaccines against various Leishmania species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
20
|
Gray KK, Worthy MN, Juelich TL, Agar SL, Poussard A, Ragland D, Freiberg AN, Holbrook MR. Chemotactic and inflammatory responses in the liver and brain are associated with pathogenesis of Rift Valley fever virus infection in the mouse. PLoS Negl Trop Dis 2012; 6:e1529. [PMID: 22389738 PMCID: PMC3289610 DOI: 10.1371/journal.pntd.0001529] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/02/2012] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the initial hepatitis is neurologic in nature which is supported by observations of human disease and the BALB/c mouse model.
Collapse
Affiliation(s)
- Kimberly K. Gray
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Melissa N. Worthy
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry L. Juelich
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Stacy L. Agar
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Allison Poussard
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Dan Ragland
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michael R. Holbrook
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
21
|
Noh G, Lee SS. A pilot study of interferon-gamma-induced specific oral tolerance induction (ISOTI) for immunoglobulin E-mediated anaphylactic food allergy. J Interferon Cytokine Res 2010; 29:667-75. [PMID: 19642905 DOI: 10.1089/jir.2009.0001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Food-induced anaphylaxis is a life-threatening, IgE-mediated disease. No specific therapeutic recommendations, aside from the avoidance of offending foods, exist at this time. However, specific oral tolerance induction for food allergy has been investigated by several groups. In this study, specific oral tolerance induction was attempted using interferon-gamma (IFN-gamma) as an adjuvant for IgE-mediated anaphylactic food allergies. A total of 25 patients with IgE-mediated anaphylactic food allergy to milk, eggs, or wheat were selected. IFN-gamma-induced specific oral tolerance induction (ISOTI) was conducted on 10 patients, while five patients were only treated with food, five patients received only IFN-gamma therapy, and five patients did not receive any treatment. Tolerance for IgE-mediated anaphylactic food allergy was successfully induced in all patients (10/10) with ISOTI, while no patients acquired tolerance for allergenic foods in the control groups. Food-specific IgE levels were increased, and skin prick test reactions significantly decreased after the completion of ISOTI. IFN-gamma-induced specific oral tolerance induction (ISOTI) is a promisingly effective treatment for IgE-mediated anaphylactic food allergy. IFN-gamma may be an important cytokine in tolerance induction. Simultaneous allergen stimulation with nonspecific immunomodulation of IFN-gamma was essential for specific tolerance induction in IgE-mediated anaphylactic food allergy.
Collapse
Affiliation(s)
- Geunwoong Noh
- Department of Allergy and Clinical Immunology, Seoul Allergy Clinic, Seoul, Korea.
| | | |
Collapse
|
22
|
Intranasal immunization with Leish-111f induces IFN-gamma production and protects mice from Leishmania major infection. Vaccine 2010; 28:2207-2213. [PMID: 20056184 DOI: 10.1016/j.vaccine.2009.12.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 12/03/2009] [Accepted: 12/23/2009] [Indexed: 11/22/2022]
Abstract
The mucosal vaccination is a non-invasive alternative approach for not only mucosal pathogens but also parenteral pathogens, since it induces both mucosal and systemic immunoreactions. The purpose of this study was to evaluate the application of intranasal (i.n.) immunization with a recombinant leishmanial protein against Leishmania infection. BALB/c mice were i.n. administered 1-3 times with Leish-111f plus cholera toxin (CT) adjuvant (Leish-111f/CT). Splenocytes from i.n. immunized mice produced high level of IFN-gamma but not IL-4 in response to Leish-111f. When infected with 1x10(6) of Leishmania major promastigotes 2 weeks after the final administration, lesion development was completely controlled in all mice i.n. administered with Leish-111f/CT. Mice i.n. administered with Leish-111f alone showed neither cytokine productions nor lesion control even after 6 administrations, suggesting the importance of CT adjuvant. This report demonstrated for the first time that i.n. administration of a recombinant leishmanial protein induces Th1 type immunity and protects mice from Leishmania infection.
Collapse
|
23
|
Tigabu B, Juelich T, Bertrand J, Holbrook MR. Clinical evaluation of highly pathogenic tick-borne flavivirus infection in the mouse model. J Med Virol 2009; 81:1261-9. [DOI: 10.1002/jmv.21524] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Pinchuk LM, Filipov NM. Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. IMMUNITY & AGEING 2008; 5:1. [PMID: 18267021 PMCID: PMC2268915 DOI: 10.1186/1742-4933-5-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 02/11/2008] [Indexed: 02/05/2023]
Abstract
BACKGROUND Despite several reports on age-related phenotypic changes of the immune system's cells, studies that use a multipoint age comparison between the specific and innate immune cell populations of prototypical Th1- and Th2-type polarized mouse strains are still lacking. RESULTS Using a multipoint age comparison approach, cells from the two major immune system compartments, peripheral blood and spleen, and flow cytometry analysis, we found several principal differences in T cell and professional antigen presenting cell (APC) populations originating from a prototypical T helper (Th) 1 mouse strain, C57BL/6, and a prototypical Th2 strain, BALB/c. For example, regardless of age, there were strain differences in both peripheral blood mononuclear cells (PBMC) and spleens in the proportion of CD4+ (higher in the BALB/c strain), CD8+ T cells and CD11b+/CD11c+ APC (greater in C57BL/6 mice). Other differences were present only in PBMC (MHC class II + and CD19+ were greater in C57BL/6 mice) or differences were evident in the spleens but not in circulation (CD3+ T cells were greater in C57BL/6 mice). There were populations of cells that increased with age in PBMC and spleens of both strains (MHC class II+), decreased in the periphery and spleens of both strains (CD11b+) or did not change in the PBMC and spleens of both strains (CD8+). We also found strain and age differences in the distribution of naïve and memory/activated splenic T cells, e.g., BALB/c mice had more memory/activated and less naive CD8+ and CD4+ T cells and the C57BL/6 mice. CONCLUSION Our data provide important information on the principal differences, within the context of age, in T cell and professional APC populations between the prototypical Th1 mouse strain C57BL/6 and the prototypical Th2 strain BALB/c. Although the age-related changes that occur may be rather subtle, they may be very relevant in conditions of disease and stress. Importantly, our data indicate that age and strain should be considered in concert in the selection of appropriate mouse models for immunological research.
Collapse
Affiliation(s)
- Lesya M Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| | | |
Collapse
|
25
|
Pinheiro RO, Rossi-Bergmann B. Interferon-gamma is required for the late but not early control of Leishmania amazonensis infection in C57Bl/6 mice. Mem Inst Oswaldo Cruz 2007; 102:79-82. [PMID: 17294004 DOI: 10.1590/s0074-02762007000100013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 01/12/2007] [Indexed: 05/13/2023] Open
Abstract
The critical role of interferon-gamma (IFN-gamma) in the resistance of C57Bl/6 mice to Leishmania major is widely established but its role in the relative resistance of these animals to L. amazonensis infection is still not clear. In this work we use C57Bl/6 mice congenitally deficient in the IFN-gamma gene (IFN-gamma KO) to address this issue. We found that IFN-gamma KO mice were as resistant as their wild-type (WT) counterparts at least during the first two months of infection. Afterwards, whereas WT mice maintained lesion growth under control, IFN-gamma KO mice developed devastating lesions. At day 97 of infection, their lesions were 9-fold larger than WT controls, concomitant with an increased parasite burden. At this stage, lesion-draining cells from IFN-gamma KO mice had impaired capacity to produce interleukin-12 (IL-12) and tumour necrosis factor-a in response to parasite antigens whereas IL-4 was slightly increased in comparison to infected WT mice. Together, these results show that IFN-gamma is not critical for the initial control of L. amazonensis infection in C57Bl/6 mice, but is essential for the development of a protective Th1 type immune response in the later stages.
Collapse
Affiliation(s)
- Roberta Olmo Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-900, Brasil
| | | |
Collapse
|
26
|
Gomes DCDO, Pinto EF, de Melo LDB, Lima WP, Larraga V, Lopes UG, Rossi-Bergmann B. Intranasal delivery of naked DNA encoding the LACK antigen leads to protective immunity against visceral leishmaniasis in mice. Vaccine 2007; 25:2168-72. [PMID: 17240003 DOI: 10.1016/j.vaccine.2006.11.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/23/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
We previously showed that intranasal (i.n.) vaccination with pCIneo plasmid encoding the leishmanial LACK gene (pCIneo-LACK) induces long-lasting protective immunity against cutaneous leishmaniasis in mice. In this work, we proposed to investigate whether the efficacy of i.n. pCIneo-LACK is extensive to visceral leishmaniasis. BALB/c mice received two i.n. doses of 30 microg pCIneo-LACK prior to intravenous (i.v.) infection with Leishmania chagasi. Vaccinated mice developed significantly lower parasite burden in the liver and spleen than control mice receiving empty pCIneo or saline. The spleen cells of vaccinated mice produced significantly increased IFN-gamma and IL-4 concomitant with decreased IL-10 production during infection. Serum levels of specific IgG were elevated whereas TNF-alpha were decreased as compared with controls. These results show that the practical needle-free i.n. pCIneo-LACK vaccine displays potential broad-spectrum activity against leishmaniasis.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- DNA, Protozoan/genetics
- Interferon-gamma/metabolism
- Interleukin-4/metabolism
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/prevention & control
- Leishmaniasis, Visceral/genetics
- Leishmaniasis, Visceral/immunology
- Liver/drug effects
- Liver/parasitology
- Mice
- Mice, Inbred BALB C
- Plasmids/administration & dosage
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Spleen/drug effects
- Spleen/metabolism
- Spleen/parasitology
- Treatment Outcome
Collapse
|
27
|
Serezani CH, Perrela JH, Russo M, Peters-Golden M, Jancar S. Leukotrienes are essential for the control of Leishmania amazonensis infection and contribute to strain variation in susceptibility. THE JOURNAL OF IMMUNOLOGY 2006; 177:3201-8. [PMID: 16920959 DOI: 10.4049/jimmunol.177.5.3201] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukotrienes (LTs) are known to be produced by macrophages when challenged with Leishmania, but it is not known whether these lipid mediators play a role in host defense against this important protozoan parasite. In this study, we investigated the involvement of LTs in the in vitro and in vivo response to Leishmania amazonensis infection in susceptible (BALB/c) and resistant (C3H/HePAS) mice. Pharmacologic or genetic deficiency of LTs resulted in impaired leishmanicidal activity of peritoneal macrophages in vitro. In contrast, addition of LTB4 increased leishmanicidal activity and this effect was dependent on the BLT1 receptor. LTB4 augmented NO production in response to L. amazonensis challenge, and studies with a NO synthesis inhibitor revealed that NO was critical for the enhancement of macrophage leishmanicidal activity. Interestingly, macrophages from resistant mice produced higher levels of LTB4 upon L. amazonensis challenge than did those from susceptible mice. In vivo infection severity, as assessed by footpad swelling following s.c. promastigote inoculation, was increased when endogenous LT synthesis was abrogated either pharmacologically or genetically. Taken together, these results for the first time reveal an important role for LTB4 in the protective response to L. amazonensis, identify relevant leishmanicidal mechanisms, and suggest that genetic variation in LTB4 synthesis might influence resistance and susceptibility patterns to infection.
Collapse
Affiliation(s)
- Carlos H Serezani
- Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
28
|
Pinheiro RO, Pinto EF, de Matos Guedes HL, Filho OAA, de Mattos KA, Saraiva EM, de Mendonça SCF, Rossi-Bergmann B. Protection against cutaneous leishmaniasis by intranasal vaccination with lipophosphoglycan. Vaccine 2006; 25:2716-22. [PMID: 16814903 DOI: 10.1016/j.vaccine.2006.05.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/24/2006] [Accepted: 05/29/2006] [Indexed: 11/21/2022]
Abstract
We previously showed the opposing effect of systemic and mucosal vaccination with whole Leishmania amazonensis antigen (LaAg). Here, the role played by lipophosphoglycan (LPG) as the key disease-promoting component of intramuscular (i.m.) LaAg and its usefulness as a defined intranasal vaccine was investigated in murine cutaneous leishmaniasis. BALB/c mice were twice vaccinated by the i.m. route with 25mug of intact LaAg or with LaAg that was pretreated with anti-LPG 3A1-La monoclonal antibody, prior to infection with L. amazonensis. LPG neutralization rendered the otherwise disease-promoting LaAg antigen protective, as observed by the smaller lesion sizes and reduced parasite burden. The increased resistance was accompanied by a markedly lower antigen-driven TGF-beta and IL-10 responses in the lesion-draining lymph nodes, concomitant with significantly higher IFN-gamma production. To test for intranasal efficacy, 10 microg of affinity-purified LPG and its parental LaAg were twice instilled in the nostrils prior to L. amazonensis infection. In both cases, similarly slower lesion growth and lower parasite burden were found that was associated with increased IFN-gamma and IL-10 responses in the lesion-draining lymph nodes. These results support a role for LPG in the dual route-related effect of LaAg and shows its strong potential as a defined needle-free and adjuvant-free vaccine for cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Roberta Olmo Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Arrais-Silva WW, Pinto EF, Rossi-Bergmann B, Giorgio S. Hyperbaric oxygen therapy reduces the size of Leishmania amazonensis-induced soft tissue lesions in mice. Acta Trop 2006; 98:130-6. [PMID: 16638602 DOI: 10.1016/j.actatropica.2006.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 02/11/2006] [Accepted: 03/03/2006] [Indexed: 11/26/2022]
Abstract
In this study we determined whether exposing mice to hyperbaric oxygen (HBO) would alter various disease parameters of a susceptible mouse strain infected with Leishmania amazonensis. BALB/c mice exposed to HBO (100% O2 at a pressure of 2.5 ATA, 1h before parasite inoculation and subsequently for 20 days) showed significant delay in lesion development and reduction in lesion parasite burdens compared with HBO-unexposed mice. Circulating levels of interferon gamma (IFN-gamma) and tumor necrosis factor (TNF-alpha) were significantly elevated in HBO-exposed as compared to HBO-unexposed mice. Concanavalin A-stimulated lymph nodes cultures from HBO-exposed mice released significantly more IFN-gamma and less interleukin 10 (IL-10) than cultures from HBO-unexposed mice, consistent with a skewed Th1 response. These results demonstrate, for the first time, that HBO can play a pathogen control role during leishmaniasis. Further studies are needed to elucidate whether hyperoxia alone or increased atmospheric pressure alone can exert a similar effect.
Collapse
Affiliation(s)
- Wagner Welber Arrais-Silva
- Departamento de Parasitologia, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, CEP 13083-970, Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
30
|
Calvopina M, Barroso PA, Marco JD, Korenaga M, Cooper PJ, Nonaka S, Hashiguchi Y. Efficacy of vaccination with a combination of Leishmania amastigote antigens and the lipid A-analogue ONO-4007 for immunoprophylaxis and immunotherapy against Leishmania amazonensis infection in a murine model of New World cutaneous leishmaniasis. Vaccine 2006; 24:5645-52. [PMID: 16621179 DOI: 10.1016/j.vaccine.2006.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
Activation of innate immunity using adjuvants that activate Toll-like receptor 4 pathways have great potential for improving the protection induced by parasite vaccines. We investigated protective and therapeutic effects of a vaccine against leishmaniasis containing a combination of an adjuvant synthetic lipid A-analogue, ONO-4007 and Leishmania amazonensis antigens. ONO-4007 was co-injected with soluble and membrane-enriched L. amazonensis-amastigote antigens into BALB/c mice that had either already been infected with 1 x 10(6) L. amazonensis promastigotes (immunotherapy study) or before challenge with the same infectious dose (immunoprophylaxis study). Sixty percent of mice vaccinated before infectious challenge controlled their Leishmania infections - defined by the absence of footpad-swelling and negative Leishmania cultures - compared to 0% of controls, and 40% of mice vaccinated after infection resolved their infections compared to 0% of controls. Protective immunity in both immunoprophylaxis and immunotherapy models was associated with increased protein production of IL-12 and IFN-gamma. These data suggest that vaccination with a combination of ONO-4007 and amastigote antigens of L. amazonensis may be useful for the prevention and treatment of leishmaniasis, and that the protective immunity induced is associated with the production of type-1 cytokines.
Collapse
Affiliation(s)
- Manuel Calvopina
- Department of Parasitology, Kochi Medical School, Kochi University, Kochi 783-8505, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Pinheiro RO, Pinto EF, Lopes JRC, Guedes HLM, Fentanes RF, Rossi-Bergmann B. TGF-beta-associated enhanced susceptibility to leishmaniasis following intramuscular vaccination of mice with Leishmania amazonensis antigens. Microbes Infect 2005; 7:1317-23. [PMID: 16027022 DOI: 10.1016/j.micinf.2005.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/14/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
Leishmania amazonensis and Leishmania braziliensis are the main causal agents of anergic diffuse cutaneous leishmaniasis and hyperergic mucosal leishmaniasis in man, respectively. In this work we demonstrate that intramuscular vaccination of BALB/c mice with whole antigens of L. amazonensis (LaAg) but not L. braziliensis (LbAg) results in increased susceptibility to cutaneous leishmaniasis. LaAg vaccination resulted in an increased capacity of the draining lymph nodes to produce IL-10 and TGF-beta during antigen recall responses. In vitro cultivation with LaAg but not LbAg induced increased apoptosis of CD8+ T cells. Following infection with L. amazonensis, LaAg-vaccinated mice produced significantly more TGF-beta and a higher serum IgG1/IgG2a antibody ratio compared with LbAg-vaccinated and non-vaccinated animals. The association of TGF-beta with enhanced susceptibility to infection was confirmed in mice co-vaccinated with LaAg and neutralizing anti-TGF-beta antibodies. Upon parasite challenge, these animals developed much smaller lesion sizes and parasite burdens, comparable with non-vaccinated controls. The disease-promoting effect of LaAg vaccination is not a general event, as in contrast to BALB/c, the disease outcome in C57Bl/6 mice was unaltered. Together, these findings indicate that species-specific components of L. amazonensis activate overt TGF-beta production that predisposes more susceptible individuals to aggravated disease following vaccination.
Collapse
Affiliation(s)
- Roberta Olmo Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Basano SDA, Camargo LMA. Leishmaniose tegumentar americana: histórico, epidemiologia e perspectivas de controle. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2004. [DOI: 10.1590/s1415-790x2004000300010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A Leishmaniose Tegumentar Americana (LTA) é uma doença causada por protozoários do gênero Leishmania, transmitida ao homem pela picada de mosquitos flebotomíneos (Ordem Diptera; Família Psychodidae; Sub-Família Phlebotominae). No Brasil existem atualmente 6 espécies de Leishmania responsáveis pela doença humana, e mais de 200 espécies de flebotomíneos implicados em sua transmissão. Trata-se de uma doença que acompanha o homem desde tempos remotos e que tem apresentado, nos últimos 20 anos, um aumento do número de casos e ampliação de sua ocorrência geográfica, sendo encontrada atualmente em todos os Estados brasileiros, sob diferentes perfis epidemiológicos. Estima-se que, entre 1985 e 2003, ocorreram 523.975 casos autóctones, a sua maior parte nas regiões Nordeste e Norte do Brasil. Neste estudo, são discutidos aspectos relacionados ao tratamento e ao controle dessa doença, assim como também as dificuldades para a implementação dessas medidas. São apontadas alternativas que passam pela estruturação dos serviços de saúde, com respeito ao diagnóstico, no desenvolvimento de drogas de aplicação tópica ou por via oral, no desenvolvimento de vacinas, no controle diferenciado de vetores e no aprofundamento de estudos relacionados à biologia celular do parasita.
Collapse
|
33
|
Vanloubbeeck YF, Ramer AE, Jie F, Jones DE. CD4+ Th1 cells induced by dendritic cell-based immunotherapy in mice chronically infected with Leishmania amazonensis do not promote healing. Infect Immun 2004; 72:4455-63. [PMID: 15271903 PMCID: PMC470671 DOI: 10.1128/iai.72.8.4455-4463.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The susceptibility of mice to Leishmania amazonensis infection is thought to result from an inability to develop a Th1 response. Our data show that the low levels of gamma interferon (IFN-gamma) produced by the draining lymph node (DLN) cells of chronically infected mice could be enhanced in vitro and in vivo with L. amazonensis antigen-pulsed bone marrow-derived dendritic cells (BM-DC) and the Th1-promoting cytokine interleukin-12 (IL-12). Given intralesionally to chronically infected mice, this treatment induced the upregulation of mRNA levels for IFN-gamma, the transcription factor T-box expressed in T cells, and IL-12 receptor beta 2 in CD4(+) T cells from the DLN and an increase in parasite-specific immunoglobulin G2a in the serum. However, this Th1 response was not associated with healing, and the antigen-specific enhancement of IFN-gamma production remained impaired in the DLN. However, addition of IL-12 to the in vitro recall response was able to recover this defect, suggesting that antigen-presenting cell-derived IL-12 production may be limited in infected mice. This was supported by the fact that L. amazonensis amastigotes limited the production of IL-12p40 from BM-DC in vitro. Altogether, our data indicate that the immune response of mice chronically infected with L. amazonensis can be enhanced towards a Th1 phenotype but that the presence of Th1 CD4(+) T cells does not promote healing. This suggests that the phenotype of the CD4(+) T cells may not always be indicative of protection to L. amazonensis infection. Furthermore, our data support growing evidence that antigen-presenting cell function, such as IL-12 production, may limit the immune response in L. amazonensis-infected mice.
Collapse
Affiliation(s)
- Yannick F Vanloubbeeck
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
| | | | | | | |
Collapse
|
34
|
Pinto EF, Pinheiro RO, Rayol A, Larraga V, Rossi-Bergmann B. Intranasal vaccination against cutaneous leishmaniasis with a particulated leishmanial antigen or DNA encoding LACK. Infect Immun 2004; 72:4521-7. [PMID: 15271911 PMCID: PMC470668 DOI: 10.1128/iai.72.8.4521-4527.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously demonstrated that oral delivery of a disease-promoting particulated antigen of Leishmania amazonensis (LaAg) partially protects mice against cutaneous leishmaniasis. In the present work, we sought to optimize a mucosal vaccine by using the intranasal route for delivery of different antigen preparations, including (i) LaAg, (ii) soluble recombinant p36/LACK leishmanial antigen (LACK), and (iii) plasmid DNA encoding LACK (LACK DNA). BALB/c mice that received two intranasal doses of 10 microg of LaAg and were challenged 1 week postvaccination with L. amazonensis developed delayed but effective control of lesion growth. A diminished parasite burden was accompanied by enhancement of both gamma interferon (IFN-gamma) and interleukin-10 levels in the lesion-draining lymph nodes. The vaccine efficacy improved with time. At 4 months postvaccination, when a strong parasite-specific TH1-type response was present in vivo, the infection was controlled for at least 5 months after challenge. In contrast to the particulated LaAg, soluble LACK (10 microg/dose) had no effect. Interestingly, LACK DNA (30 microg/dose), but not empty DNA, promoted rapid and durable protective immunity. Parasite growth was effectively controlled, and at 5 months after challenge LACK-reactive cells in both the mucosal and lesion-draining lymph nodes produced high levels of IFN-gamma. These results demonstrate for the first time the feasibility of using the intranasal route for long-lived memory vaccination against cutaneous leishmaniasis with adjuvant-free crude antigens or DNA.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- DNA, Protozoan/administration & dosage
- DNA, Protozoan/genetics
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Leishmania/immunology
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/prevention & control
- Mice
- Mice, Inbred BALB C
- Particle Size
- Protozoan Proteins/administration & dosage
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/immunology
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Solubility
- Th1 Cells/immunology
- Th2 Cells/immunology
- Treatment Outcome
- Vaccination
Collapse
Affiliation(s)
- Eduardo Fonseca Pinto
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|