1
|
Abd-Eldaim M, Maarouf M, Potgieter L, Kania SA. Amino Acid Variations of The Immuno-Dominant Domain of Respiratory Syncytial Virus Attachment Glycoprotein (G) Affect the Antibody Responses In BALB/c Mice. J Virol Methods 2023; 316:114712. [PMID: 36958697 DOI: 10.1016/j.jviromet.2023.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of respiratory illness in ruminants and infants. The G glycoprotein of RSV serves as the viral attachment ligand. Despite currently available vaccines, RSV immunity is insufficient, and re-infections occur. Vaccine studies employing the G-protein's 174-187 amino acids, representing the immunodominant domain, have protected mice and calves against infections. To investigate the causes of vaccination failure, we designed four synthetic peptides for the ruminant RSV isolates (391-2, Maryland-BRSV, European-BRSV, and ORSV) using the immune-dominant sequence and vaccinated mice groups with them. The produced antibodies targeting each peptide were evaluated using ELISA and flow cytometry to determine their reactivity against the linear antigen and the native form of the G protein, respectively. Antibodies responded to homologous and heterologous peptides as determined by ELISA. Using flow cytometry-analysis targeting the natively folded protein, most generated antibodies reacted only with their homologous strain. However, antibodies raised to 391-2 peptide reacted with homologous and heterologous Maryland-BRSV viral epitopes. Accordingly, inadequate immunity and recurring RSV infections might be attributed to variations of antibodies targeting the immunodominant region of the G-protein.
Collapse
Affiliation(s)
- Mohamed Abd-Eldaim
- Department of Virology, Faculty of veterinary medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Maarouf
- Department of Virology, Faculty of veterinary medicine, Suez Canal University, Ismailia, Egypt.
| | - Leon Potgieter
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville TN, USA
| | - Stephen A Kania
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville TN, USA
| |
Collapse
|
2
|
Immunogenicity and protective efficacy of RSV G central conserved domain vaccine with a prefusion nanoparticle. NPJ Vaccines 2022; 7:74. [PMID: 35773301 PMCID: PMC9244890 DOI: 10.1038/s41541-022-00487-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) G glycoprotein has recently reemerged as a vaccine antigen due to its ability to elicit potent neutralizing antibodies and ameliorate disease in animal models. Here we designed three constructs to display the G central conserved domain (Gcc) focused on inducing broad and potent neutralizing antibodies. One construct displaying Gcc from both RSV subgroups trimerized via a C-terminal foldon (Gcc-Foldon) was highly immunogenic in mice and in MIMIC, a pre-immune human in vitro model. To explore an optimal RSV vaccine, we combined the Gcc-Foldon antigen with a stabilized pre-fusion-F nanoparticle (pre-F-NP) as a bivalent vaccine and detected no antigenic interference between the two antigens in the MIMIC model. In RSV-primed macaques, the bivalent vaccine elicited potent humoral responses. Furthermore, both Gcc-Foldon and the bivalent vaccine conferred effective protection against RSV challenge in mice. This two-component vaccine could potentially provide effective protection against RSV infection in humans and warrants further clinical evaluation.
Collapse
|
3
|
Borochova K, Niespodziana K, Stenberg Hammar K, van Hage M, Hedlin G, Söderhäll C, Focke-Tejkl M, Valenta R. Features of the Human Antibody Response against the Respiratory Syncytial Virus Surface Glycoprotein G. Vaccines (Basel) 2020; 8:vaccines8020337. [PMID: 32630611 PMCID: PMC7350215 DOI: 10.3390/vaccines8020337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections are a major cause of serious respiratory disease in infants. RSV occurs as two major subgroups A and B, which mainly differ regarding the surface glycoprotein G. The G protein is important for virus attachment and G-specific antibodies can protect against infection. We expressed the surface-exposed part of A2 strain-derived G (A2-G) in baculovirus-infected insect cells and synthesized overlapping peptides spanning complete A2-G. The investigation of the natural IgG response of adult subjects during a period of one year showed that IgG antibodies (i) recognize G significantly stronger than the fusion protein F0, (ii) target mainly non-conformational, sequential peptide epitopes from the exposed conserved region but also buried peptides, and (iii) exhibit a scattered but constant recognition profile during the observation period. The IgG subclass reactivity profile (IgG1 > IgG2 > IgG4 = IgG3) was indicative of a mixed Th1/Th2 response. Two strongly RSV-neutralizing sera including the 1st WHO standard contained high IgG anti-G levels. G-specific IgG increased strongly in children after wheezing attacks suggesting RSV as trigger factor. Our study shows that RSV G and G-derived peptides are useful for serological diagnosis of RSV-triggered exacerbations of respiratory diseases and underlines the importance of G for development of RSV-neutralizing vaccines.
Collapse
Affiliation(s)
- Kristina Borochova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarina Stenberg Hammar
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden;
| | - Gunilla Hedlin
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- Correspondence: ; Tel.: +431-40400-51130; Fax: +431-40400-51300
| |
Collapse
|
4
|
The Central Conserved Region (CCR) of Respiratory Syncytial Virus (RSV) G Protein Modulates Host miRNA Expression and Alters the Cellular Response to Infection. Vaccines (Basel) 2017; 5:vaccines5030016. [PMID: 28671606 PMCID: PMC5620547 DOI: 10.3390/vaccines5030016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) infects respiratory epithelial cells and deregulates host gene expression by many mechanisms including expression of RSV G protein (RSV G). RSV G protein encodes a central conserved region (CCR) containing a CX3C motif that functions as a fractalkine mimic. Disruption of the CX3C motif (a.a. 182-186) located in the CCR of the G protein has been shown to affect G protein function in vitro and the severity of RSV disease pathogenesis in vivo. We show that infection of polarized Calu3 respiratory cells with recombinant RSV having point mutations in Cys173 and 176 (C173/176S) (rA2-GC12), or Cys186 (C186S) (rA2-GC4) is associated with a decline in the integrity of polarized Calu-3 cultures and decreased virus production. This is accompanied with downregulation of miRNAs let-7f and miR-24 and upregulation of interferon lambda (IFNλ), a primary antiviral cytokine for RSV in rA2-GC12/rA2-GC4 infected cells. These results suggest that residues in the cysteine noose region of RSV G protein can modulate IFN λ expression accompanied by downregulation of miRNAs, and are important for RSV G protein function and targeting.
Collapse
|
5
|
Nguyen TN, Power UF, Robert A, Haeuw JF, Helffer K, Perez A, Asin MA, Corvaia N, Libon C. The respiratory syncytial virus G protein conserved domain induces a persistent and protective antibody response in rodents. PLoS One 2012; 7:e34331. [PMID: 22479601 PMCID: PMC3315535 DOI: 10.1371/journal.pone.0034331] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/26/2012] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130-230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130-230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 µg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation.
Collapse
Affiliation(s)
- Thien N Nguyen
- Microbiotechnologie, Centre de Recherche and Développement Pierre Fabre, Toulouse, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Anderson R, Huang Y, Langley JM. Prospects for defined epitope vaccines for respiratory syncytial virus. Future Microbiol 2010; 5:585-602. [DOI: 10.2217/fmb.10.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The history of vaccines for respiratory syncytial virus (RSV) illustrates the complex immunity and immunopathology to this ubiquitous virus, starting from the failed formalin-inactivated vaccine trials performed in the 1960s. An attractive alternative to traditional live or killed virus vaccines is a defined vaccine composed of discrete antigenic epitopes for which immunological activities have been characterized as comprehensively as possible. Here we present cumulative data on murine and human CD4, CD8 and neutralization epitopes identified in RSV proteins along with information regarding their associated immune responses and host-dependent variability. Identification and characterization of RSV epitopes is a rapidly expanding topic of research with potential contributions to the tailored design of improved safe and effective vaccines.
Collapse
Affiliation(s)
- Robert Anderson
- Department of Microbiology & Immunology, Pediatrics and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Yan Huang
- Department of Microbiology & Immunology and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Joanne M Langley
- Department of Pediatrics, Community Health & Epidemiology and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| |
Collapse
|
7
|
Hansbro NG, Horvat JC, Wark PA, Hansbro PM. Understanding the mechanisms of viral induced asthma: new therapeutic directions. Pharmacol Ther 2008; 117:313-53. [PMID: 18234348 PMCID: PMC7112677 DOI: 10.1016/j.pharmthera.2007.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 12/12/2022]
Abstract
Asthma is a common and debilitating disease that has substantially increased in prevalence in Western Societies in the last 2 decades. Respiratory tract infections by respiratory syncytial virus (RSV) and rhinovirus (RV) are widely implicated as common causes of the induction and exacerbation of asthma. These infections in early life are associated with the induction of wheeze that may progress to the development of asthma. Infections may also promote airway inflammation and enhance T helper type 2 lymphocyte (Th2 cell) responses that result in exacerbations of established asthma. The mechanisms of how RSV and RV induce and exacerbate asthma are currently being elucidated by clinical studies, in vitro work with human cells and animal models of disease. This research has led to many potential therapeutic strategies and, although none are yet part of clinical practise, they show much promise for the prevention and treatment of viral disease and subsequent asthma.
Collapse
Key Words
- aad, allergic airways disease
- ahr, airway hyperresponsiveness
- apc, antigen-presenting cell
- asm, airway smooth muscle
- balf, broncho-alveolar lavage fluid
- bec, bronchoepithelial cell
- bfgf, basic fibroblast growth factor
- cam, cellular adhesion molecules
- ccr, cc chemokine receptor
- cgrp, calcitonin gene-related peptide
- crp, c reactive protein
- dsrna, double stranded rna
- ecp, eosinophil cationic protein
- ena-78, epithelial neutrophil-activating peptide-78
- fev1, forced expiratory volume
- fi, formalin-inactivated
- g-csf and gm-csf, granulocyte and granulocyte-macrophage colony stimulating factor
- ics, inhaled corticosteroid
- ifn, interferon, ifn
- il, interleukin
- ip-10, ifn-γ inducible protein-10
- laba, long acting beta agonist
- ldh, lactate dehydrogenase
- ldlpr, low density lipoprotein receptor
- lrt, lower respiratory tract
- lt, leukotriene
- mab, monoclonal antibody
- mcp, monocyte chemoattractant proteins
- mdc, myeloid dendritic cell
- mhc, major histocompatibility
- mip, macrophage inhibitory proteins
- mpv, metapneumovirus
- nf-kb, nuclear factor (nf)-kb
- nk cells, natural killer cells
- nk1, neurogenic receptor 1
- or, odds ratio
- paf, platelet-activating factor
- pbmc, peripheral blood mononuclear cell
- pdc, plasmacytoid dendritic cell
- pef, peak expiratory flow
- penh, enhanced pause
- pfu, plaque forming units
- pg, prostaglandin
- pkr, protein kinase r
- pvm, pneumonia virus of mice
- rad, reactive airway disease
- rantes, regulated on activation normal t cell expressed and secreted
- rr, relative risk
- rsv, respiratory syncytial virus
- rv, rhinovirus (rv)
- ssrna, single stranded rna
- tgf, transforming growth factor
- th, t helper lymphocytes
- tlr, toll-like receptors
- tnf, tumor necrosis factor
- urt, upper respiratory tract
- vegf, vascular endothelial growth factor
- vs, versus
- wbc, white blood cell
- respiratory syncytial virus
- rhinovirus
- induction
- exacerbation
- asthma
- allergy
- treatment
- prevention
Collapse
Affiliation(s)
- Nicole G. Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
| | - Jay C. Horvat
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
| | - Peter A. Wark
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
- Department of Respiratory & Sleep Medicine, John Hunter Hospital & Sleep Medicine, School of Medical Practice, University of Newcastle, Newcastle, Australia
| | - Philip M. Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
| |
Collapse
|
8
|
Meyer G, Deplanche M, Schelcher F. Human and bovine respiratory syncytial virus vaccine research and development. Comp Immunol Microbiol Infect Dis 2007; 31:191-225. [PMID: 17720245 DOI: 10.1016/j.cimid.2007.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/23/2022]
Abstract
Human (HRSV) and bovine (BRSV) respiratory syncytial viruses (RSV) are two closely related viruses, which are the most important causative agents of respiratory tract infections of young children and calves, respectively. BRSV vaccines have been available for nearly 2 decades. They probably have reduced the prevalence of RSV infection but their efficacy needs improvement. In contrast, despite decades of research, there is no currently licensed vaccine for the prevention of HRSV disease. Development of a HRSV vaccine for infants has been hindered by the lack of a relevant animal model that develops disease, the need to immunize immunologically immature young infants, the difficulty for live vaccines to find the right balance between attenuation and immunogenicity, and the risk of vaccine-associated disease. During the past 15 years, intensive research into a HRSV vaccine has yielded vaccine candidates, which have been evaluated in animal models and, for some of them, in clinical trials in humans. Recent formulations have focused on subunit vaccines with specific CD4+ Th-1 immune response-activating adjuvants and on genetically engineered live attenuated vaccines. It is likely that different HRSV vaccines and/or combinations of vaccines used sequentially will be needed for the various populations at risk. This review discusses the recent advances in RSV vaccine development.
Collapse
Affiliation(s)
- Gilles Meyer
- INRA-ENVT, UMR1225 IHAP, Interactions Hôtes-Virus et Vaccinologie, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, BP 87614, 31076 Toulouse Cedex, France.
| | | | | |
Collapse
|
9
|
Mekseepralard C, Toms GL, Routledge EG. Protection of mice against Human respiratory syncytial virus by wild-type and aglycosyl mouse–human chimaeric IgG antibodies to subgroup-conserved epitopes on the G glycoprotein. J Gen Virol 2006; 87:1267-1273. [PMID: 16603529 DOI: 10.1099/vir.0.81660-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monoclonal antibodies (mAbs) to conserved epitopes on the G glycoprotein of human respiratory syncytial virus (HRSV) subgroup A fail to neutralize the virus in cell culture in the absence of complement, but are protective in rodent models of infection. They may have potential as prophylactic agents in human infants. In order to investigate the role of Fc-dependent pathways in protection by one such antibody, 1C2, the VH and VL genes were isolated by RT-PCR and assembled with human κ light-chain and human γ1 heavy-chain constant-region genes to form two mouse–human chimaeras, which were expressed in NS0 cells. One of the chimaeras carried a wild-type γ1 chain, whilst the other had an aglycosyl mutation in the CH2 domain rendering the antibody defective in complement activation and FcγR binding. Whilst both chimaeric antibodies exhibited similar avidity for HRSV in ELISA, only the fully glycosylated wild type was capable of neutralizing the virus in the presence of complement. In mice passively immunized with either murine or wild-type γ1 chimaeric antibody, no virus could be recovered from the lungs 4 days after intranasal inoculation of HRSV. In mice immunized with the aglycosyl γ1 chimaera, however, virus was present in the lungs following challenge, although virus titres were significantly reduced compared with controls (P<0·005). These results indicate that the protective effect of this antibody is mediated by both Fc-dependent and Fc-independent pathways.
Collapse
Affiliation(s)
- C Mekseepralard
- The Schools of Clinical Medical Sciences and Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - G L Toms
- The Schools of Clinical Medical Sciences and Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - E G Routledge
- The Schools of Clinical Medical Sciences and Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
Gorman JJ, McKimm-Breschkin JL, Norton RS, Barnham KJ. Antiviral activity and structural characteristics of the nonglycosylated central subdomain of human respiratory syncytial virus attachment (G) glycoprotein. J Biol Chem 2001; 276:38988-94. [PMID: 11487583 DOI: 10.1074/jbc.m106288200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Segments of the cystine noose-containing nonglycosylated central subdomain, residues 149-197, of the attachment (G) glycoprotein of human respiratory syncytial virus (HRSV) have been assessed for impact on the cytopathic effect (CPE) of respiratory syncytial virus (RSV). Nalpha-acetyl residues 149-197-amide (G149-197), G149-189, and G149-177 of the A2 strain of HRSV protected 50% of human epithelial HEp-2 cells from the CPE of the A2 strain at concentrations (IC(50)) between 5 and 80 microm. Cystine noose-containing peptides G171-197 and G173-197 did not inhibit the CPE even at concentrations above 150 microm. Systematic C- and N-terminal truncations from G149-189 and G149-177 and alanine substitutions within G154-177 demonstrated that residues 166-170 (EVFNF), within a sequence that is conserved in HRSV strains, were critical for inhibition. Concordantly, G154-177 of bovine RSV and of an antibody escape mutant of HRSV with residues 166-170 of QTLPY and EVSNP, respectively, were not inhibitory. Surprisingly, a variant of G154-177 with an E166A substitution had an IC(50) of 750 nm. NMR analysis demonstrated that G149-177 adopted a well-defined conformation in solution, clustered around F168 and F170. G154-170, particularly EVFNF, may be important in binding of RSV to host cells. These findings constitute a promising platform for the development of antiviral agents for RSV.
Collapse
Affiliation(s)
- J J Gorman
- Biomolecular Research Institute, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
11
|
Yip YL, Smith G, Koch J, Dübel S, Ward RL. Identification of epitope regions recognized by tumor inhibitory and stimulatory anti-ErbB-2 monoclonal antibodies: implications for vaccine design. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5271-8. [PMID: 11290813 DOI: 10.4049/jimmunol.166.8.5271] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The self-oncoprotein ErbB-2 is overexpressed in a number of malignancies. The presence of endogenous anti-ErbB-2 Ab and T cell immune responses to this protein in cancer patients has made ErbB-2 an attractive target for active immunization. However, the finding that murine anti-ErbB-2 Abs can have stimulatory, inhibitory, or no effects on cancer cell growth suggests that an inappropriately induced immune response may have an adverse effect. To ensure the induction of a beneficial Ab response, it is important to identify the epitopes recognized by these Abs. In this study we have used phage-displayed ErbB-2 gene fragment libraries and synthetic peptides to epitope-map a panel of anti-ErbB-2 mAbs. The epitopes of three mAbs, N12, N28, and L87, were successfully located to C531-A586, T216-C235, and C220-C235 of ErbB-2, respectively. It was found that while N12 inhibited tumor cell proliferation, N28 stimulated the proliferation of a subset of breast cancer cell lines overexpressing ErbB-2. The peptide region recognized by N12, (C531-A586; EP531), was used as an immunogen to selectively induce an inhibitory immune response in mice. Mice immunized with the GST fusion peptide (GST-EP531) recognized the peptide region EP531 as well as native ErbB-2. More importantly, Igs purified from mouse sera were able to inhibit up to 85% of tumor cell proliferation. In conclusion, our study provides direct evidence of the function-epitope relationship of anti-ErbB-2 Abs and also emphasizes the value of inducing a potent tumor inhibitory polyclonal Ab response by rationally selecting regions of ErbB-2 used for immunization.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neoplasm/metabolism
- Antibodies, Neoplasm/pharmacology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Binding, Competitive/immunology
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Female
- Gene Library
- Growth Inhibitors/metabolism
- Growth Inhibitors/pharmacology
- Growth Substances/metabolism
- Growth Substances/pharmacology
- Humans
- Immune Sera/biosynthesis
- Injections, Intraperitoneal
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Peptide Mapping
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y L Yip
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
12
|
Belanger H, Fleysh N, Cox S, Bartman G, Deka D, Trudel M, Koprowski H, Yusibov V. Human respiratory syncytial virus vaccine antigen produced in plants. FASEB J 2000; 14:2323-8. [PMID: 11053254 DOI: 10.1096/fj.00-0144com] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2000] [Accepted: 05/24/2000] [Indexed: 11/11/2022]
Abstract
Human respiratory syncytial virus (RSV) is the primary cause of respiratory infection in infants worldwide. Currently there is no available vaccine, although studies in animal models have demonstrated protective immunity induced by an epitope of the RSV G-protein representing amino acids 174-187. Two peptides containing amino acids 174-187 of the G-protein of the human RSV A2 strain (NF1-RSV/172-187 and NF2-RSV/170-191) were separately engineered as translational fusions with the alfalfa mosaic virus coat protein and individually expressed in Nicotiana tabacum cv. Samsun NN plants through virus infection. RSV G-protein peptides were expressed in infected plant tissues at significant levels within 2 wk of inoculation and purified as part of recombinant alfalfa mosaic virions. BALB/c mice immunized intraperitoneally with three doses of the purified recombinant viruses showed high levels of serum antibody specific for RSV G-protein and were protected against infection with RSV Long strain.
Collapse
Affiliation(s)
- H Belanger
- Biotechnology Foundation Laboratories at Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bäyon-Auboyer MH, Arnauld C, Toquin D, Eterradossi N. Nucleotide sequences of the F, L and G protein genes of two non-A/non-B avian pneumoviruses (APV) reveal a novel APV subgroup. J Gen Virol 2000; 81:2723-2733. [PMID: 11038385 DOI: 10.1099/0022-1317-81-11-2723] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequence analysis was performed of all or part of the genes encoding the fusion (F), polymerase (L) and attachment (G) proteins of two French non-A/non-B avian pneumovirus (APV) isolates (Fr/85/1 and Fr/85/2). The two isolates shared at least 99.7% nt and 99.0% aa sequence identity. Comparison with the F genes from subgroup A, subgroup B or Colorado APVs revealed nt and aa identities of 70.0-80. 5% and 77.6-97.2%, respectively, with the L gene sharing 76.1% nt and 85.3% aa identity with that of a subgroup A isolate. The Fr/85/1 and Fr/85/2 G genes comprised 1185 nt, encoding a protein of 389 aa. Common features with subgroup A and subgroup B G proteins included an amino-terminal membrane anchor, a high serine and threonine content, conservation of cysteine residues and a single extracellular region of highly conserved sequence proposed to be the functional domain involved in virus attachment to cellular receptors. However, the Fr/85/1 and Fr/85/2 G sequences shared at best 56.6% nt and 31.2% aa identity with subgroup A and B APVs, whereas these isolates share 38% aa identity. Phylogenetic analysis of the F, G and L genes of pneumoviruses suggested that isolates Fr/85/1 and Fr/85/2 belong to a previously unrecognized APV subgroup, tentatively named D. G-based oligonucleotide primers were defined for the specific molecular identification of subgroup D. These are the first G protein sequences of non-A/non-B APVs to be determined.
Collapse
Affiliation(s)
- Marie-Hélène Bäyon-Auboyer
- Unité de Virologie, Immunologie et Parasitologie Aviaires et Cunicoles1 and Laboratoire de Biologie Moléculaire2, Agence Française de Sécurité Sanitaire des Aliments (AFSSA), BP 53, 22440 Ploufragan, France
| | - Claire Arnauld
- Unité de Virologie, Immunologie et Parasitologie Aviaires et Cunicoles1 and Laboratoire de Biologie Moléculaire2, Agence Française de Sécurité Sanitaire des Aliments (AFSSA), BP 53, 22440 Ploufragan, France
| | - Didier Toquin
- Unité de Virologie, Immunologie et Parasitologie Aviaires et Cunicoles1 and Laboratoire de Biologie Moléculaire2, Agence Française de Sécurité Sanitaire des Aliments (AFSSA), BP 53, 22440 Ploufragan, France
| | - Nicolas Eterradossi
- Unité de Virologie, Immunologie et Parasitologie Aviaires et Cunicoles1 and Laboratoire de Biologie Moléculaire2, Agence Française de Sécurité Sanitaire des Aliments (AFSSA), BP 53, 22440 Ploufragan, France
| |
Collapse
|
14
|
Graham BS, Johnson TR, Peebles RS. Immune-mediated disease pathogenesis in respiratory syncytial virus infection. IMMUNOPHARMACOLOGY 2000; 48:237-47. [PMID: 10960663 DOI: 10.1016/s0162-3109(00)00233-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Respiratory syncytial virus (RSV) is an important cause of severe respiratory disease in persons at both extremes of age. Wheezing is a cardinal sign of infection and the illness is associated with an increased incidence of childhood asthma. Data from both humans and animal models have linked severe disease in infants and the syndrome of vaccine-enhanced illness with an aberrant composition of CD4+ T cells, suggestive of an exaggerated Th2 response. Studies in murine models have shown that prior vaccination, coexisting allergic inflammation, or direct modulation of the cytokine milieu can profoundly influence the immune response to RSV and thereby affect the expression of disease. In addition, there are intrinsic antigenic properties of the RSV G glycoprotein that promote Th2 responses and eosinophilia. This paper proposes an integrated working model of how host and virus factors interact to determine the characteristics of RSV-induced illness. This model suggests strategies for the development of new vaccine and immunotherapeutic interventions, and creates a framework for asking additional questions about the immunopathogenesis of RSV.
Collapse
Affiliation(s)
- B S Graham
- Department of Medicine, A-4103 MCN, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232-2582, USA.
| | | | | |
Collapse
|
15
|
Abstract
Respiratory syncytial virus (RSV) is a major cause of viral lower respiratory tract infections among infants and young children in both developing and developed countries. There are two major antigenic groups of RSV, A and B, and additional antigenic variability occurs within the groups. The most extensive antigenic and genetic diversity is found in the attachment glycoprotein, G. During individual epidemic periods, viruses of both antigenic groups may cocirculate or viruses of one group may predominate. When there are consecutive annual epidemics in which the same group predominates, the dominant viruses are genetically different from year to year. The antigenic differences that occur among these viruses may contribute to the ability of RSV to establish reinfections throughout life. The differences between the two groups have led to vaccine development strategies that should provide protection against both antigenic groups. The ability to discern intergroup and intragroup differences has increased the power of epidemiologic investigations of RSV. Future studies should expand our understanding of the molecular evolution of RSV and continue to contribute to the process of vaccine development.
Collapse
|
16
|
Sullender WM. Respiratory syncytial virus genetic and antigenic diversity. Clin Microbiol Rev 2000; 13:1-15, table of contents. [PMID: 10627488 PMCID: PMC88930 DOI: 10.1128/cmr.13.1.1] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of viral lower respiratory tract infections among infants and young children in both developing and developed countries. There are two major antigenic groups of RSV, A and B, and additional antigenic variability occurs within the groups. The most extensive antigenic and genetic diversity is found in the attachment glycoprotein, G. During individual epidemic periods, viruses of both antigenic groups may cocirculate or viruses of one group may predominate. When there are consecutive annual epidemics in which the same group predominates, the dominant viruses are genetically different from year to year. The antigenic differences that occur among these viruses may contribute to the ability of RSV to establish reinfections throughout life. The differences between the two groups have led to vaccine development strategies that should provide protection against both antigenic groups. The ability to discern intergroup and intragroup differences has increased the power of epidemiologic investigations of RSV. Future studies should expand our understanding of the molecular evolution of RSV and continue to contribute to the process of vaccine development.
Collapse
Affiliation(s)
- W M Sullender
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama 35233, USA.
| |
Collapse
|
17
|
Beck A, Zorn N, Bussat MC, Haeuw JF, Corvaïa N, Nguyen TN, Bonnefoy JY, Van Dorsselaer A. Synthesis and characterization of Respiratory Syncytial Virus protein G related peptides containing two disulfide bridges. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 55:24-35. [PMID: 10667858 DOI: 10.1034/j.1399-3011.2000.00148.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Respiratory Syncytial Virus (RSV) is the most important cause of bronchiolitis and viral pneumonia in infants and young children. Approximately 100000 children are hospitalized in the USA each year as a result of RSV infections. During the research and development of subunit human Respiratory Syncytial Virus vaccines (hRSV), we have produced numerous synthetic peptides and recombinant proteins containing the four cysteines of the highly conserved central region of the G attachment protein. For several of these disulfide-containing peptides, all possible oxidized isomers were synthesized using various oxidation conditions and resulting in different ratios of isomers. Each isolated isomer was fully characterized by RP-HPLC, FZCE and ES-MS after purification by preparative RP-HPLC. The different cysteine pairings were unambiguously established after enzymatic digestion, LC-MS analysis and peptide microsequencing. These synthesis and analytical methods were developed for the characterization on one hand, of recombinant fusion protein BBG2Na which is currently being investigated in advanced clinical phases as a very promising vaccine candidate, and on the other hand, for peptides which were synthesized to be evaluated as conjugate vaccines or as immunochemical tools, after covalent coupling to carrier proteins. Furthermore, these studies allowed us to determine which of the different possible isomers was the most stable and probably the preferred form in native conditions. Finally, the different oxidation and analysis conditions, should be useful for disulfide pairing studies of other peptides and proteins having the same 'xCxxCxxxxxCxxxCx' framework, such as G proteins of non-human RSV strains, developed by other groups as veterinary vaccine candidates for example.
Collapse
Affiliation(s)
- A Beck
- Department of Physical-Chemistry, Center d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
RSV is a major cause of respiratory illness in infants under 2 years of age. Evidence is accumulating that it is also underestimated as a cause of respiratory infection in adults, the elderly and immunocompromised individuals. Active interventions to control the impact of RSV infection have been hampered by a lack of understanding of the immune response to RSV in different age groups. A number of different strategies for developing RSV vaccines have been pursued, including live attenuated vaccines, genetically engineered live and subunit vaccines and peptide vaccines with varying degrees of success. The target populations for RSV vaccines include infants, the elderly and women of childbearing age, but the efficacy of different vaccines may differ according to age. Desirable immune responses and immune correlates of protection to RSV in humans remain uncertain and determining these is critical for introduction of any vaccines. Prophylaxis and treatment of RSV in infants using human immunoglobulin containing high titres of RSV specific neutralising antibody (RSV-Ig) has shown limited success in different infant populations. Prophylaxis of premature infants with RSV-Ig, particularly those with bronchopulmonary dysplasia, has demonstrated limited clinical efficacy against RSV. In contrast, there are significant safety concerns for use of this preparation for prophylaxis in infants with congenital heart disease and no demonstrable efficacy in treatment of RSV disease in healthy infants. The cost of the preparation will limit use to highly selected infant groups. Production of humanized monoclonal antibodies to RSV offers another potential passive immunotherapy intervention for RSV, with increased specific activity and reduced side effects, although its use remains experimental.
Collapse
Affiliation(s)
- M Zambon
- Enteric and Respiratory Virus Laboratory, Central Public Health Laboratory, 61 Colindale Avenue, Colindale, London NW9 5HT, UK
| |
Collapse
|
19
|
Liljeqvist S, Ståhl S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 1999; 73:1-33. [PMID: 10483112 DOI: 10.1016/s0168-1656(99)00107-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first scientific attempts to control an infectious disease can be attributed to Edward Jenner, who, in 1796 inoculated an 8-year-old boy with cowpox (vaccinia), giving the boy protection against subsequent challenge with virulent smallpox. Thanks to the successful development of vaccines, many major diseases, such as diphtheria, poliomyelitis and measles, are nowadays kept under control, and in the case of smallpox, the dream of eradication has been fulfilled. Yet, there is a growing need for improvements of existing vaccines in terms of increased efficacy and improved safety, besides the development of completely new vaccines. Better technological possibilities, combined with increased knowledge in related fields, such as immunology and molecular biology, allow for new vaccination strategies. Besides the classical whole-cell vaccines, consisting of killed or attenuated pathogens, new vaccines based on the subunit principle, have been developed, e.g. the Hepatitis B surface protein vaccine and the Haemophilus influenzae type b vaccine. Recombinant techniques are now dominating in the strive for an ideal vaccine, being safe and cheap, heat-stable and easy to administer, preferably single-dose, and capable of inducing broad immune response with life-long memory both in adults and in infants. This review will describe different recombinant approaches used in the development of novel subunit vaccines, including design and production of protein immunogens, the development of live delivery systems and the state-of-the-art for nucleic acids vaccines.
Collapse
Affiliation(s)
- S Liljeqvist
- Department of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | |
Collapse
|
20
|
Langedijk JP, de Groot BL, Berendsen HJ, van Oirschot JT. Structural homology of the central conserved region of the attachment protein G of respiratory syncytial virus with the fourth subdomain of 55-kDa tumor necrosis factor receptor. Virology 1998; 243:293-302. [PMID: 9568029 DOI: 10.1006/viro.1998.9066] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The attachment protein G of respiratory syncytial virus (RSV) has a modular architecture. The ectodomain of the protein comprises a small folded conserved region which is bounded by two mucin-like regions. In this study, a sequence and structural homology is described between this central conserved region of RSV-G and the fourth subdomain of the 55-kDa tumor necrosis factor receptor (TNFr). The three-dimensional structures of RSV-G and human TNFr were previously determined with NMR spectroscopy and X-ray crystallography, respectively. The C-terminal part of both subdomains fold into a cystine noose connected by two cystine bridges with the same spacing between cysteine residues and the same topology. Although a general structural similarity is observed, there are differences in secondary structure and other structural features. Molecular Dynamics calculations show that the BRSV-G NMR structure of the cystine noose is stable and that the TNFr crystal structure of the cystine noose drifts towards the BRSV-G NMR structure in the simulated solution environment. By homology modelling a model was built for the unresolved N-terminal part of the central conserved region of RSV-G. The functions for both protein domains are not known but the structural similarity of both protein domains suggests a similar function. Although the homology suggests that the cystine noose of RSV-G may interfere with the antiviral and apoptotic effect of TNF, the biological activity remains to be proven.
Collapse
Affiliation(s)
- J P Langedijk
- Department of Mammalian Virology, Institute for Animal Science and Health (ID-DLO), Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Bastien N, Taylor G, Thomas LH, Wyld SG, Simard C, Trudel M. Immunization with a peptide derived from the G glycoprotein of bovine respiratory syncytial virus (BRSV) reduces the incidence of BRSV-associated pneumonia in the natural host. Vaccine 1997; 15:1385-90. [PMID: 9302749 DOI: 10.1016/s0264-410x(97)00033-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous reports demonstrate that synthetic peptides corresponding to the amino acid region 174-187 of G glycoprotein from subgroups A and B human respiratory syncytial virus (HRSV), containing a Cys-->Ser substitution at position 186, confer complete resistance to immunized BALB/c mice against infection with the respective virus. In this report, we show that a Cys186-->Ser substituted peptide (BG/174-187) representing the corresponding region of the bovine (B) RSV G glycoprotein conferred complete protection of mice against BRSV challenge, suggesting that the 174-187 region of RSV G glycoproteins constitutes a dominant protective epitope which has been maintained throughout evolution. Furthermore, immunization of calves with peptide BG/174-187 efficiently induced the production of antibodies capable of recognizing both the parental G glycoprotein and peptide BG/174-187. Following challenge with live BRSV, although none of the animals were protected from upper respiratory tract disease, there were little or no gross pneumonic lesions in the four peptide-immunized calves. In contrast, moderate to extensive pneumonic lesions were observed in 2 out of 3 calves in the control group. Our results thus suggest that peptide BG/174-187 efficiently prevented BRSV-associated pneumonia in the natural host. The use of this system as a model is quite promising with regard to the development of a human synthetic vaccine.
Collapse
Affiliation(s)
- N Bastien
- Centre de recherche en virologie, Université du Québec, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Bastien N, Trudel M, Simard C. Protective immune responses induced by the immunization of mice with a recombinant bacteriophage displaying an epitope of the human respiratory syncytial virus. Virology 1997; 234:118-22. [PMID: 9234952 DOI: 10.1006/viro.1997.8632] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated whether a recombinant bacteriophage displaying a disease-specific protective epitope could be experimentally used as a vaccine to confer protection of immunized animals against infection. We genetically engineered a recombinant phage, fd, displaying at its surface a chimeric pIII coat protein fused to the previously identified protective epitope 173-187 from the glycoprotein G of the human respiratory syncytial virus (RSV). A selected recombinant fd phage elicited a strong immune response in mice, inducing a high level of circulating RSV-specific antibodies. Mice immunized with the recombinant phage acquired a complete resistance to RSV infection as evidenced by the lack of detectable virus particles in their lungs following intranasal challenge with live RSV. In contrast, a high level of virus particles was found in the lungs of either animals immunized with the wild-type fd phage or nonimmunized mice. To our knowledge, this is the first study to report the ability of a phage presenting an immunogenic peptide to prevent infection of immunized animals by a pathogen. This finding should facilitate the identification of pathogen-specific protective epitopes selected from random phage peptide libraries, as it is simpler and less expensive than the conventional method of synthesis and coupling of phage-specific peptide ligand sequences for immunization.
Collapse
Affiliation(s)
- N Bastien
- Centre de recherche en virologie, Institut Armand-Frappier, Laval des Rapides, Ville de Laval, Québec, Canada
| | | | | |
Collapse
|