1
|
Brannon JR, Hadjifrangiskou M. The arsenal of pathogens and antivirulence therapeutic strategies for disarming them. Drug Des Devel Ther 2016; 10:1795-806. [PMID: 27313446 PMCID: PMC4890686 DOI: 10.2147/dddt.s98939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pathogens deploy an arsenal of virulence factors (VFs) to establish themselves within their infectious niche. The discovery of antimicrobial compounds and their development into therapeutics has made a monumental impact on human and microbial populations. Although humans have used antimicrobials for medicinal and agricultural purposes, microorganism populations have developed and shared resistance mechanisms to persevere in the face of classical antimicrobials. However, a positive substitute is antivirulence therapy; antivirulence therapeutics prevent or interrupt an infection by counteracting a pathogen's VFs. Their application can reduce the use of broad-spectrum antimicrobials and dampen the frequency with which resistant strains emerge. Here, we summarize the contribution of VFs to various acute and chronic infections. In correspondence with this, we provide an overview of the research and development of antivirulence strategies.
Collapse
Affiliation(s)
- John R Brannon
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Urologic Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
2
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 895] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
3
|
Liu J, Wang W, Liu Y, Liu S, Zhou B, Zhu L, Ji X, Sun Y, Feng S. Mice vaccinated with enteropathogenic Escherichia coli ghosts show significant protection against lethal challenges. Lett Appl Microbiol 2012; 54:255-62. [DOI: 10.1111/j.1472-765x.2011.03202.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Liu J, Wang W, Liu Y, Liu S, Zhou B, Zhu L, Ji X, Sun Y, Feng S. Mice vaccinated with enteropathogenic Escherichia coli ghosts show significant protection against lethal challenges. Lett Appl Microbiol 2012. [DOI: 10.1111/j.1472-765x.2012.03202.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Humphries RM, Armstrong GD. Sticky situation: localized adherence of enteropathogenic Escherichia coli to the small intestine epithelium. Future Microbiol 2011; 5:1645-61. [PMID: 21133687 DOI: 10.2217/fmb.10.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) primarily cause gastrointestinal illness in neonates. They accomplish this by a complex coordinated multistage strategy, whereby the organisms colonize the epithelial lining of the small intestine. This process can be divided into four stages: first, localized, nonintimate adherence; second, type III secretion-mediated injection of effector proteins, third effacement of microvilli and, finally, intimate adherence. In this article, we review the history and current state of knowledge, as well as present potential future directions for further investigating the fascinating processes by which EPEC and related organisms colonize the human intestine and cause disease.
Collapse
Affiliation(s)
- Romney M Humphries
- University of Calgary, Department of Microbiology and Infectious Diseases, Calgary, Alberta, Canada
| | | |
Collapse
|
6
|
Melo AR, Lasunskaia EB, de Almeida CMC, Schriefer A, Kipnis TL, Dias da Silva W. Expression of the virulence factor, BfpA, by enteropathogenic Escherichia coli is essential for apoptosis signalling but not for NF-kappaB activation in host cells. Scand J Immunol 2005; 61:511-9. [PMID: 15963045 DOI: 10.1111/j.1365-3083.2005.01626.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Localized adherence (LA) of enteropathogenic Escherichia coli (EPEC) to epithelial cells results in attaching and effacing of the surface of these cells. LA depends on the gene bfpA, which codes for the BfpA protein. We found that EPEC-E. coli adherence factor (EAF)((+)), expressing BfpA, significantly reduced HeLa cell viability in comparison with EPEC-EAF((-)), as evaluated by the mitochondrial-dependent succinate dehydrogenase conversion of 3'-[4,5,-dimethylthiazol-2yl]2,5-diphenyltetrazolium bromide (MTT) to its formazan. Apoptosis accounts for a substantial loss of the cell viability, because the cells incubated with EPEC-EAF((+)) or with cloned BfpA (data not shown), but not with EPEC-EAF((-)), were positive for annexin-V binding, demonstrated chromatin condensation and nuclei fragmentation and exhibited a high level of caspase-3 activity. Because the blockade of bacterial cell-surface-associated BfpA by anti-BfpA immunoglobulin (Ig)Y antibody suppressed apoptotic death induced by EPEC-EAF((+)), BfpA may be the trigger for apoptosis. Both EPEC-EAF((+)) and EPEC-EAF((-)), as well as recombinant BfpA (data not shown), activated nuclear factor (NF)-kappaB in a similar manner as analysed by the electrophoretic mobility shift assay (EMSA). EMSA supershift analysis demonstrated the presence of p65/RelA in a DNA-binding complex. In contrast to DNA binding, NF-kappaB-dependent reporter gene transactivation was stimulated more strongly by EPEC B171/EAF((+)), suggesting a role for this virulence factor in the regulation of transcriptional activity of NF-kappaB. Because suppression of NF-kappaB activation by BAY11-7085, a NF-kappaB inhibitor, neither induced apoptosis by itself nor blocked apoptosis induction by EPEC-EAF((+)), it may be suggested that apoptosis is not regulated by the NF-kappaB pathway in HeLa cells.
Collapse
Affiliation(s)
- A R Melo
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Antigen Delivery Systems II: Development of Live Recombinant Attenuated Bacterial Antigen and DNA Vaccine Delivery Vector Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
de Almeida CMC, Quintana-Flores VM, Medina-Acosta E, Schriefer A, Barral-Netto M, Dias da Silva W. Egg yolk anti-BfpA antibodies as a tool for recognizing and identifying enteropathogenic Escherichia coli. Scand J Immunol 2003; 57:573-82. [PMID: 12791096 DOI: 10.1046/j.1365-3083.2003.01243.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major aetiological agent of childhood diarrhoea in developing countries. The structural repeating protein A subunit, BfpA, found in the bundle-forming pilus, is one of the virulent factors for EPEC pathogenesis. Recombinant BfpA in laying hens elicited sustained and vigorous antibody production. Immunoglobulin Y (IgY) anti-BfpA antibodies were recovered from egg yolk, purified and characterized. Immunoadsorption with whole extracts of the isogenic E. coli EPEC adherence factor (EAF) strain that lacks BfpA rendered the resulting IgY preparations capable of: (a) recognizing purified or recombinant BfpA proteins in a dose-dependent fashion; (b) blocking the colonization of HeLa cells by EPEC EAF+, in vitro; (c) specifically identifying E. coli bearing EAF+; and (d) inhibiting the growth of E. coli EAF+ but not the EAF strain. IgY anti-BfpA is potentially useful as a specific, low-cost immunobiological reagent to screen human faecal specimens for the presence of EPEC.
Collapse
Affiliation(s)
- C M C de Almeida
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense-Darci Ribeiro-UENF, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
de Souza Campos Fernandes RC, Quintana Flores VM, Sousa de Macedo Z, Medina-Acosta E. Coproantibodies to the enteropathogenic Escherichia coli vaccine candidates BfpA and EspB in breastfed and artificially fed children. Vaccine 2003; 21:1725-31. [PMID: 12639496 DOI: 10.1016/s0264-410x(02)00525-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A diagnostic test was developed to discriminate active from past enteropathogenic Escherichia coli (EPEC) infection, which uses the affinity-purified recombinant proteins BfpA (bundle-forming pilus (BFP) structural repeating subunit A) and EspB (pore-forming secreted protein B) as reliable markers of virulence to detect antigen-specific coproantibodies by immunoblot analysis, and verification of active typical EPEC infection by gene-specific (bfpA and espB) PCR amplification using DNA extracted directly from specimens and/or culture-enriched preparations. To begin addressing the potential protective role of anti-EPEC antibodies at early age, the prevalence of IgA coproantibodies to these antigens was determined in either breastfed or artificially fed children <2 years of age hospitalized for watery diarrhea.
Collapse
|
10
|
Horne C, Vallance BA, Deng W, Finlay BB. Current progress in enteropathogenic and enterohemorrhagic Escherichia coli vaccines. Expert Rev Vaccines 2002; 1:483-93. [PMID: 12901587 DOI: 10.1586/14760584.1.4.483] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enteropathogenic and enterohemorrhagic Escherichia coli are important causal agents of infectious diarrhea, particularly amongst pediatric populations. While enteropathogenic E. coli is a significant health threat in developing countries, enterohemorrhagic E. coli causes sporadic, sometimes deadly outbreaks of hemorrhagic colitis, with a serious complication, hemolytic uremic syndrome, ocurring in a proportion of cases. This review discusses the pathogenesis of enterohemorrhagic and enteropathogenic E. coli, the host immune response and the current application of this knowledge towards efficacious vaccine strategies. Several lines of investigation indicate the feasibility of such strategies and justify further development of a vaccine targeting these significant intestinal pathogens.
Collapse
Affiliation(s)
- Cathy Horne
- Biochemistry Labouratory, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
11
|
Quintana Flores VM, Campos de Souza Fernandes RC, Sousa de Macedo Z, Medina-Acosta E. Expression and purification of the recombinant enteropathogenic Escherichia coli vaccine candidates BfpA and EspB. Protein Expr Purif 2002; 25:16-22. [PMID: 12071694 DOI: 10.1006/prep.2001.1604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BfpA, the structural repeating protein subunit A of the bundle-forming pilus and EspB, a type-III-secreted pore-forming protein of enteropathogenic Escherichia coli (EPEC), both virulence factors central for EPEC pathogenesis, were overexpressed in E. coli DH5alpha and M15 laboratory strains, respectively, using the pQE-30 cloning expression system, as chimeric fusions to a NH(2)-terminal histidine hexapeptide (His(6)-tag) sequence. After isopropyl beta-d-thiogalactoside induction, the expression levels achieved were 11 and 40% of total soluble protein for BfpA and EspB, respectively. The His(6)-tagged recombinant proteins were purified (up to 98% homogeneity) by Ni-agarose affinity chromatography and produced yields varying from 0.65 to 3.1 mg of recombinant protein per gram of wet weight cells. The immunogenicity and antigenicity of the final products were tested in rabbits and using fecal specimens obtained from children suffering from acute watery diarrhea, respectively. The recombinant products correspond to antigenically authentic protein standards, useful in future epidemiological and neonatal vaccinology studies.
Collapse
|
12
|
Vieira da Silva J, Garcia AB, Vieira Flores VMQ, Sousa de Macedo Z, Medina-Acosta E. Phytosecretion of enteropathogenic Escherichia coli pilin subunit A in transgenic tobacco and its suitability for early life vaccinology. Vaccine 2002; 20:2091-101. [PMID: 11972978 DOI: 10.1016/s0264-410x(02)00057-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A plant expression cassette system was engineered to efficiently target proteins to the default secretory pathway, allowing the expression of DNA inserts in three frames as fusion proteins containing a synthetic tobacco calreticulin cleavable signal peptide sequence, with the advantage of producing the recombinant proteins by phytosecretion. As one approach to develop a vaccine to enteropathogenic Escherichia coli (EPEC) infection, the oral immunogenicity of phytosecreted BfpA, the structural subunit A of the bundle-forming pilus, expressed at high levels (7.7% of soluble protein) in transgenic tobacco tissues, was demonstrated in BALB/c mice by the induction and detection of fecal anti-BfpA antibodies.
Collapse
Affiliation(s)
- Jeferson Vieira da Silva
- Plant Biotechnology Section, Laboratory of Biotechnology, Center for Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, Horto, Campos dos Goytacazes, RJ CEP 28015-620, Brazil
| | | | | | | | | |
Collapse
|
13
|
Blank TE, Zhong H, Bell AL, Whittam TS, Donnenberg MS. Molecular variation among type IV pilin (bfpA) genes from diverse enteropathogenic Escherichia coli strains. Infect Immun 2000; 68:7028-38. [PMID: 11083828 PMCID: PMC97813 DOI: 10.1128/iai.68.12.7028-7038.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typical enteropathogenic Escherichia coli (EPEC) strains produce bundle-forming pili (BFP), type IVB fimbriae that have been implicated in EPEC virulence, antigenicity, autoaggregation, and localized adherence to epithelial cells (LA). BFP are polymers of bundlin, a pilin protein that is encoded by the bfpA gene found on a large EPEC plasmid. Striking sequence variation has previously been observed among type IV pilin genes of other gram-negative bacterial pathogens (e.g., Pseudomonas and Neisseria spp.). In contrast, the established sequences of bfpA genes from two distantly related prototype EPEC strains vary by only a single base pair. To determine whether bundlin sequences vary more extensively, we used PCR to amplify the bfpA genes from 19 EPEC strains chosen for their various serotypes and sites and years of isolation. Eight different bfpA alleles were identified by sequencing of the PCR products. These alleles can be classified into two major groups. The alpha group contains three alleles derived from strains carrying O55, O86, O111, O119, O127, or O128 somatic antigens. The beta group contains five alleles derived from strains carrying O55, O110, O128ab, O142, or nontypeable antigens. Sequence comparisons show that bundlin has highly conserved and variable regions, with most of the variation occurring in the C-terminal two-thirds of the protein. The results of multilocus enzyme electrophoresis support the hypothesis that bfpA sequences have spread horizontally across distantly related clonal lineages. Strains with divergent bundlin sequences express bundlin protein, produce BFP, and carry out autoaggregation and LA. However, four strains lack most or all of these phenotypes despite having an intact bfpA gene. These results have important implications for our understanding of bundlin structure, transmission of the bfp gene cluster among EPEC strains, and the role of bundlin variation in the evasion of host immune system responses.
Collapse
Affiliation(s)
- T E Blank
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Bacterial infections of the small and large intestine are widespread and continue to be topics of active research. Surveys document the importance of diarrheal disease in many settings. Major breakthroughs in the understanding of pathogenic mechanisms (especially the interactions of bacteria and intestinal cells) continue, particularly with respect to shigella, salmonella, Yersinia species, and enteropathogenic Escherichia coli. Pathogenic mechanisms of other bacteria, such as campylobacter and entero-aggregative E. coli, are not well defined. Vaccines for cholera and typhoid fever are available, and new vaccines are in various stages of development ranging from synthesis of novel constructs to large-scale field trials. Several candidate vaccines are being exploited as carriers of antigens from other pathogens. Extraintestinal complications from salmonella, shigella, campylobacter, Yersinia species, and Shiga toxin-expressing E. coli are receiving much attention. Genomic sequencing of several of these pathogens is underway. The impact of this work is hard to predict, but expectations are high.
Collapse
Affiliation(s)
- M K Wolf
- Walter Reed Army Institute of Research, Department of Enteric Infections, Washington, DC 20307, USA.
| |
Collapse
|