1
|
Jiang Z, Merits A, Qin Y, Xing G, Zhang L, Chen J, Wang N, Varjak M, Zhai X, Li D, Song W, Su S. Attenuated Getah virus confers protection against multiple arthritogenic alphaviruses. PLoS Pathog 2024; 20:e1012700. [PMID: 39556619 PMCID: PMC11630583 DOI: 10.1371/journal.ppat.1012700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/10/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024] Open
Abstract
Alphaviruses are important arthropod-transmitted pathogens of humans and livestock. Getah virus (GETV) is an arthritogenic alphavirus that causes disease in horses and piglets; it also poses a potential threat to humans. A live attenuated vaccine candidate named GETV-3ΔS2-CM1, harbouring a deletion in nonstructural protein 3 and substitutions in the capsid protein, is genetically stable and exhibits robust immunogenicity. It was shown to confer passive protection to piglets born to immunized sows. In mice, a single dose of GETV-3ΔS2-CM1 protected against infection with different strains of GETV, Semliki Forest virus, Ross River virus, o'nyong'nyong virus, chikungunya virus, and Barmah Forest virus. Chimaeras based on the GETV-3ΔS2-CM1 backbone maintained both the attenuated phenotype and high immunogenicity. The safety, efficacy, and ability to induce protection against multiple alphaviruses highlights the potential of GETV-3ΔS2-CM1 and chimaeras using this backbone as promising vaccine candidates. By contributing simultaneously to the wellbeing of animals and humans, our universal next generation vaccine strategy helps to achieve "One Health" goals.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Ying Qin
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gang Xing
- MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, China
| | - Letian Zhang
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jie Chen
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ningning Wang
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Margus Varjak
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Xiaofeng Zhai
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dongyan Li
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wanjie Song
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Pushko P, Lukashevich IS, Johnson DM, Tretyakova I. Single-Dose Immunogenic DNA Vaccines Coding for Live-Attenuated Alpha- and Flaviviruses. Viruses 2024; 16:428. [PMID: 38543793 PMCID: PMC10974764 DOI: 10.3390/v16030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Single-dose, immunogenic DNA (iDNA) vaccines coding for whole live-attenuated viruses are reviewed. This platform, sometimes called immunization DNA, has been used for vaccine development for flavi- and alphaviruses. An iDNA vaccine uses plasmid DNA to launch live-attenuated virus vaccines in vitro or in vivo. When iDNA is injected into mammalian cells in vitro or in vivo, the RNA genome of an attenuated virus is transcribed, which starts replication of a defined, live-attenuated vaccine virus in cell culture or the cells of a vaccine recipient. In the latter case, an immune response to the live virus vaccine is elicited, which protects against the pathogenic virus. Unlike other nucleic acid vaccines, such as mRNA and standard DNA vaccines, iDNA vaccines elicit protection with a single dose, thus providing major improvement to epidemic preparedness. Still, iDNA vaccines retain the advantages of other nucleic acid vaccines. In summary, the iDNA platform combines the advantages of reverse genetics and DNA immunization with the high immunogenicity of live-attenuated vaccines, resulting in enhanced safety and immunogenicity. This vaccine platform has expanded the field of genetic DNA and RNA vaccines with a novel type of immunogenic DNA vaccines that encode entire live-attenuated viruses.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA;
| | - Dylan M. Johnson
- Department of Biotechnology & Bioengineering, Sandia National Laboratories, Livermore, CA 945501, USA;
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| |
Collapse
|
3
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
4
|
Tretyakova I, Plante KS, Rossi SL, Lawrence WS, Peel JE, Gudjohnsen S, Wang E, Mirchandani D, Tibbens A, Lamichhane TN, Lukashevich IS, Comer JE, Weaver SC, Pushko P. Venezuelan equine encephalitis vaccine with rearranged genome resists reversion and protects non-human primates from viremia after aerosol challenge. Vaccine 2020; 38:3378-3386. [PMID: 32085953 DOI: 10.1016/j.vaccine.2020.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Live-attenuated V4020 vaccine for Venezuelan equine encephalitis virus (VEEV) containing attenuating rearrangement of the virus structural genes was evaluated in a non-human primate model for immunogenicity and protective efficacy against aerosol challenge with wild-type VEEV. The genomic RNA of V4020 vaccine virus was encoded in the pMG4020 plasmid under control of the CMV promoter and contained the capsid gene downstream from the glycoprotein genes. It also included attenuating mutations from the VEE TC83 vaccine, with E2-120Arg substitution genetically engineered to prevent reversion mutations. The population of V4020 vaccine virus derived from pMG4020-transfected Vero cells was characterized by next generation sequencing (NGS) and indicated no detectable genetic reversions. Cynomolgus macaques were vaccinated with V4020 vaccine virus. After one or two vaccinations including by intramuscular route, high levels of virus-neutralizing antibodies were confirmed with no viremia or apparent adverse reactions to vaccinations. The protective effect of vaccination was evaluated using an aerosol challenge with VEEV. After challenge, macaques had no detectable viremia, demonstrating a protective effect of vaccination with live V4020 VEEV vaccine.
Collapse
Affiliation(s)
- Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| | - Kenneth S Plante
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Shannan L Rossi
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - William S Lawrence
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer E Peel
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sif Gudjohnsen
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Eryu Wang
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Divya Mirchandani
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander Tibbens
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Tek N Lamichhane
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA
| | - Jason E Comer
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| |
Collapse
|
5
|
Novel DNA-launched Venezuelan equine encephalitis virus vaccine with rearranged genome. Vaccine 2019; 37:3317-3325. [PMID: 31072736 DOI: 10.1016/j.vaccine.2019.04.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 11/23/2022]
Abstract
Novel live-attenuated V4020 vaccine was prepared for Venezuelan equine encephalitis virus (VEEV), an alphavirus from the Togaviridae family. The genome of V4020 virus was rearranged, with the capsid gene expressed using a duplicate subgenomic promoter downstream from the glycoprotein genes. V4020 also included both attenuating mutations from the TC83 VEEV vaccine secured by mutagenesis to prevent reversion mutations. The full-length infectious RNA of V4020 vaccine virus was expressed from pMG4020 plasmid downstream from the CMV promoter and launched replication of live-attenuated V4020 in vitro or in vivo. BALB/c mice vaccinated with a single dose of V4020 virus or with pMG4020 plasmid had no adverse reactions to vaccinations and developed high titers of neutralizing antibodies. After challenge with the wild type VEEV, vaccinated mice survived with no morbidity, while all unvaccinated controls succumbed to lethal infection. Intracranial injections in mice showed attenuated replication of V4020 vaccine virus as compared to the TC83. We conclude that V4020 vaccine has safety advantage over TC83, while provides equivalent protection in a mouse VEEV challenge model.
Collapse
|
6
|
White JP, Xiong S, Malvin NP, Khoury-Hanold W, Heuckeroth RO, Stappenbeck TS, Diamond MS. Intestinal Dysmotility Syndromes following Systemic Infection by Flaviviruses. Cell 2018; 175:1198-1212.e12. [PMID: 30293866 DOI: 10.1016/j.cell.2018.08.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
Although chronic gastrointestinal dysmotility syndromes are a common worldwide health problem, underlying causes for these disorders are poorly understood. We show that flavivirus infection of enteric neurons leads to acute neuronal injury and cell death, inflammation, bowel dilation, and slowing of intestinal transit in mice. Flavivirus-primed CD8+ T cells promote these phenotypes, as their absence diminished enteric neuron injury and intestinal transit delays, and their adoptive transfer reestablished dysmotility after flavivirus infection. Remarkably, mice surviving acute flavivirus infection developed chronic gastrointestinal dysmotility that was exacerbated by immunization with an unrelated alphavirus vaccine or exposure to a non-infectious inflammatory stimulus. This model of chronic post-infectious gastrointestinal dysmotility in mice suggests that viral infections with tropism for enteric neurons and the ensuing immune response might contribute to the development of bowel motility disorders in humans. These results suggest an opportunity for unique approaches to diagnosis and therapy of gastrointestinal dysmotility syndromes.
Collapse
Affiliation(s)
- James P White
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole P Malvin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Robert O Heuckeroth
- Department of Pediatrics, the Children's Hospital of Philadelphia Research Institute, the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Pushko P, Lukashevich IS, Weaver SC, Tretyakova I. DNA-launched live-attenuated vaccines for biodefense applications. Expert Rev Vaccines 2016; 15:1223-34. [PMID: 27055100 PMCID: PMC5033646 DOI: 10.1080/14760584.2016.1175943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc. 8420 Gas House Pike Suite S, Frederick, MD 21701, USA
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Microbiology and Immunology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555, USA
| | - Irina Tretyakova
- Medigen, Inc. 8420 Gas House Pike Suite S, Frederick, MD 21701, USA
| |
Collapse
|
8
|
Taylor A, Herrero LJ, Rudd PA, Mahalingam S. Mouse models of alphavirus-induced inflammatory disease. J Gen Virol 2014; 96:221-238. [PMID: 25351726 DOI: 10.1099/vir.0.071282-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Part of the Togaviridae family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.
Collapse
Affiliation(s)
- Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| |
Collapse
|
9
|
Tretyakova I, Lukashevich IS, Glass P, Wang E, Weaver S, Pushko P. Novel vaccine against Venezuelan equine encephalitis combines advantages of DNA immunization and a live attenuated vaccine. Vaccine 2012; 31:1019-25. [PMID: 23287629 DOI: 10.1016/j.vaccine.2012.12.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022]
Abstract
DNA vaccines combine remarkable genetic and chemical stability with proven safety and efficacy in animal models, while remaining less immunogenic in humans. In contrast, live-attenuated vaccines have the advantage of inducing rapid, robust, long-term immunity after a single-dose vaccination. Here we describe novel iDNA vaccine technology that is based on an infectious DNA platform and combines advantages of DNA and live attenuated vaccines. We applied this technology for vaccination against infection with Venezuelan equine encephalitis virus (VEEV), an alphavirus from the Togaviridae family. The iDNA vaccine is based on transcription of the full-length genomic RNA of the TC-83 live-attenuated virus from plasmid DNA in vivo. The in vivo-generated viral RNA initiates limited replication of the vaccine virus, which in turn leads to efficient immunization. This technology allows the plasmid DNA to launch a live-attenuated vaccine in vitro or in vivo. Less than 10 ng of pTC83 iDNA encoding the full-length genomic RNA of the TC-83 vaccine strain initiated replication of the vaccine virus in vitro. In order to evaluate this approach in vivo, BALB/c mice were vaccinated with a single dose of pTC83 iDNA. After vaccination, all mice seroconverted with no adverse reactions. Four weeks after immunization, animals were challenged with the lethal epidemic strain of VEEV. All iDNA-vaccinated mice were protected from fatal disease, while all unvaccinated controls succumbed to infection and died. To our knowledge, this is the first example of launching a clinical live-attenuated vaccine from recombinant plasmid DNA in vivo.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Female
- Mice
- Mice, Inbred BALB C
- Survival Analysis
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Irina Tretyakova
- Medigen, Inc., 4539 Metropolitan Court, Frederick, MD 21704, USA
| | | | | | | | | | | |
Collapse
|
10
|
Rülker T, Voß L, Thullier P, O' Brien LM, Pelat T, Perkins SD, Langermann C, Schirrmann T, Dübel S, Marschall HJ, Hust M, Hülseweh B. Isolation and characterisation of a human-like antibody fragment (scFv) that inactivates VEEV in vitro and in vivo. PLoS One 2012; 7:e37242. [PMID: 22666347 PMCID: PMC3364240 DOI: 10.1371/journal.pone.0037242] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of the anti-VEEV single chain Fragment variable (scFv), ToR67-3B4, from a non-human primate (NHP) antibody gene library. We report its recloning into the bivalent scFv-Fc format and further immunological and biochemical characterisation.The scFv-Fc ToR67-3B4 recognised viable as well as formalin and ß-propionolactone (ß-Pl) inactivated virus particles and could be applied for immunoblot analysis of VEEV proteins and immuno-histochemistry of VEEV infected cells. It detected specifically the viral E1 envelope protein of VEEV but did not react with reduced viral glycoprotein preparations suggesting that recognition depends upon conformational epitopes. The recombinant antibody was able to detect multiple VEEV subtypes and displayed only marginal cross-reactivity to other Alphavirus species except for EEEV. In addition, the scFv-Fc fusion described here might be of therapeutic use since it successfully inactivated VEEV in a murine disease model. When the recombinant antibody was administered 6 hours post challenge, 80% to 100% of mice survived lethal VEEV IA/B or IE infection. Forty to sixty percent of mice survived when scFv-Fc ToR67-3B4 was applied 6 hours post challenge with VEEV subtypes II and former IIIA. In combination with E2-neutralising antibodies the NHP antibody isolated here could significantly improve passive protection as well as generic therapy of VEE.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Cloning, Molecular
- Encephalitis Virus, Venezuelan Equine/immunology
- Gene Library
- Genetic Vectors/genetics
- Humans
- Immunization, Passive
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Sequence Analysis
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/isolation & purification
Collapse
Affiliation(s)
- Torsten Rülker
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Luzie Voß
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Philippe Thullier
- Centre de Recherche du Service de Santé des Armées (CRSSA-IRBA), La Tronche, France
| | - Lyn M. O' Brien
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Thibaut Pelat
- Centre de Recherche du Service de Santé des Armées (CRSSA-IRBA), La Tronche, France
| | - Stuart D. Perkins
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Claudia Langermann
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Hans-Jürgen Marschall
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Birgit Hülseweh
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| |
Collapse
|
11
|
O'Brien LM, Goodchild SA, Phillpotts RJ, Perkins SD. A humanised murine monoclonal antibody protects mice from Venezuelan equine encephalitis virus, Everglades virus and Mucambo virus when administered up to 48 h after airborne challenge. Virology 2012; 426:100-5. [PMID: 22341308 DOI: 10.1016/j.virol.2012.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/03/2012] [Accepted: 01/30/2012] [Indexed: 11/18/2022]
Abstract
Currently there are no licensed antiviral treatments for the Alphaviruses Venezuelan equine encephalitis virus (VEEV), Everglades virus and Mucambo virus. We previously developed a humanised version of the mouse monoclonal antibody 1A3B-7 (Hu1A3B-7) which exhibited a wide range of reactivity in vitro and was able to protect mice from infection with VEEV. Continued work with the humanised antibody has now demonstrated that it has the potential to be a new human therapeutic. Hu1A3B-7 successfully protected mice from infection with multiple Alphaviruses. The effectiveness of the humanisation process was determined by assessing proliferation responses in human T-cells to peptides derived from the murine and humanised versions of the V(H) and V(L) domains. This analysis showed that the number of human T-cell epitopes within the humanised antibody had been substantially reduced, indicating that Hu1A3B-7 may have reduced immunogenicity in vivo.
Collapse
Affiliation(s)
- Lyn M O'Brien
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | | | | | | |
Collapse
|
12
|
A recombinant humanized monoclonal antibody completely protects mice against lethal challenge with Venezuelan equine encephalitis virus. Vaccine 2010; 28:5558-64. [PMID: 20600509 DOI: 10.1016/j.vaccine.2010.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/20/2010] [Accepted: 06/10/2010] [Indexed: 11/22/2022]
Abstract
A recombinant humanized antibody to Venezuelan equine encephalitis virus (VEEV) was constructed in a monocistronic adenoviral expression vector with a foot-and-mouth-disease virus-derived 2A self-cleavage oligopeptide inserted between the antibody heavy and light chains. After expression in mammalian cells, the heavy and light chains of the humanized antibody (hu1A4A1IgG1-2A) were completely cleaved and properly dimerized. The purified hu1A4A1IgG1-2A retained VEEV binding affinity and neutralizing activity similar to its parental murine antibody. The half-life of hu1A4A1IgG1-2A in mice was approximately 2 days. Passive immunization of hu1A4A1IgG1-2A in mice (50 microg/mouse) 24 h before or after virulent VEEV challenge provided complete protection, indicating that hu1A4A1IgG1-2A has potent prophylactic and therapeutic effects against VEEV infection.
Collapse
|
13
|
Martin SS, Bakken RR, Lind CM, Garcia P, Jenkins E, Glass PJ, Parker MD, Hart MK, Fine DL. Evaluation of formalin inactivated V3526 virus with adjuvant as a next generation vaccine candidate for Venezuelan equine encephalitis virus. Vaccine 2010; 28:3143-51. [PMID: 20193792 DOI: 10.1016/j.vaccine.2010.02.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 01/29/2010] [Accepted: 02/15/2010] [Indexed: 12/26/2022]
Abstract
V3526, a genetically modified strain of Venezuelan equine encephalitis virus (VEEV), was formalin inactivated for evaluation as a next generation vaccine candidate for VEEV. In this study, we tested formalin-inactivated V3526 (fV3526) with and without adjuvant for immunogenicity and efficacy in BALB/c mice and results were compared to the existing inactivated VEEV vaccine, C84. Mice were vaccinated intramuscularly (IM) or subcutaneously (SC) with fV3526 formulations and challenged with VEEV IAB Trinidad donkey (VEEV TrD) strain by SC or aerosol exposure. Efficacy following SC or aerosol challenge was not significantly different between the fV3526 formulations or compared to C84 despite C84 being administered in more doses and higher concentration of viral protein per dose. These data support further evaluation of fV3526 formulations as a next generation VEEV vaccine.
Collapse
Affiliation(s)
- Shannon S Martin
- DynPort Vaccine Company LLC, A CSC Company, 64 Thomas Johnson Drive, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Improved efficacy of a gene optimised adenovirus-based vaccine for venezuelan equine encephalitis virus. Virol J 2009; 6:118. [PMID: 19646224 PMCID: PMC2732613 DOI: 10.1186/1743-422x-6-118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 07/31/2009] [Indexed: 01/03/2023] Open
Abstract
Background Optimisation of genes has been shown to be beneficial for expression of proteins in a range of applications. Optimisation has increased protein expression levels through improved codon usage of the genes and an increase in levels of messenger RNA. We have applied this to an adenovirus (ad)-based vaccine encoding structural proteins (E3-E2-6K) of Venezuelan equine encephalitis virus (VEEV). Results Following administration of this vaccine to Balb/c mice, an approximately ten-fold increase in antibody response was elicited and increased protective efficacy compared to an ad-based vaccine containing non-optimised genes was observed after challenge. Conclusion This study, in which the utility of optimising genes encoding the structural proteins of VEEV is demonstrated for the first time, informs us that including optimised genes in gene-based vaccines for VEEV is essential to obtain maximum immunogenicity and protective efficacy.
Collapse
|
15
|
Perkins SD, Williams AJ, O'Brien LM, Laws TR, Phillpotts RJ. CpG used as an adjuvant for an adenovirus-based Venezuelan equine encephalitis virus vaccine increases the immune response to the vector, but not to the transgene product. Viral Immunol 2009; 21:451-7. [PMID: 19115934 DOI: 10.1089/vim.2008.0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An adenovirus-based (ad-based) vaccine delivering antigens from the Alphavirus Venezuelan equine encephalitis virus (VEEV) is a strategy that offers clinical potential. A vaccine against VEEV is desirable because of the re-emerging nature of this virus, and also the potential that it may be used as a biological weapon. This study was designed to investigate whether the co-administration of CpG oligodeoxynucleotides (ODNs) with an ad-based VEEV vaccine could enhance the protective efficacy of the vaccine. We report that the co-administration of CpG ODN was unable to increase VEEV-specific antibody responses in mice, and was unable to increase the protective efficacy of the vaccine against aerosol challenge with virulent VEEV. However, it was noted that antibody responses directed against the adenovirus vaccine vector were increased, which may be detrimental, particularly in the context of homologous boosting.
Collapse
Affiliation(s)
- Stuart D Perkins
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Wiltshire, UK.
| | | | | | | | | |
Collapse
|
16
|
Griffin K, Bedford R, Townson K, Phillpotts R, Funnell S, Morton M, Williamson D, Titball R. Protective efficacy of a recombinant plague vaccine when co-administered with another sub-unit or live attenuated vaccine. ACTA ACUST UNITED AC 2005; 43:425-30. [PMID: 15708318 DOI: 10.1016/j.femsim.2004.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 10/26/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
Vaccines against bioterrorism agents offer the prospect of providing high levels of protection against airborne pathogens. However, the diversity of the bioterrorism threat means that it may be necessary to use several vaccines simultaneously. In this study we have investigated whether there are changes to the protective immune response to a recombinant sub-unit plague vaccine when it is co-administered with other sub-unit or live attenuated vaccines. Our results indicate that the co-administration of these vaccines did not influence the protection afforded by the plague vaccine. However, the co-administration of the plague sub-unit vaccine with a live vaccine resulted in markedly increased levels of IgG2a subclass antibodies, and markedly reduced levels of IgG1 subclass antibodies, to the plague sub-unit vaccine. This finding might have implications when considering the co-administration of other vaccine combinations.
Collapse
Affiliation(s)
- Kate Griffin
- Defence Science and Technology Laboratories, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Phillpotts RJ, O'brien L, Appleton RE, Carr S, Bennett A. Intranasal immunisation with defective adenovirus serotype 5 expressing the Venezuelan equine encephalitis virus E2 glycoprotein protects against airborne challenge with virulent virus. Vaccine 2005; 23:1615-23. [PMID: 15694514 DOI: 10.1016/j.vaccine.2004.06.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 06/15/2004] [Indexed: 11/18/2022]
Abstract
There is no vaccine licensed for human use to protect laboratory or field workers against infection with Venezuelan equine encephalitis virus (VEEV). Infection of these groups is most likely to occur via the airborne route and there is evidence to suggest that protection against airborne infection may require high antibody levels and the presence of antibody on the mucosal surface of the respiratory tract. Recombinant defective type 5 adenoviruses, expressing the E3E26K structural genes of VEEV were examined for their ability to protect mice against airborne challenge with virulent virus. After intranasal administration, good protection was achieved against the homologous serogroup 1A/B challenge virus (strain Trinidad donkey). There was less protection against enzootic serogroup II and III viruses, indicating that inclusion of more than one E3E26K sequence in a putative vaccine may be necessary. These studies confirm the potential of recombinant adenoviruses as vaccine vectors for VEEV and will inform the development of a live replicating adenovirus-based VEEV vaccine, deliverable by a mucosal route and suitable for use in humans.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Administration, Intranasal
- Animals
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cell Line, Tumor
- Defective Viruses/classification
- Defective Viruses/genetics
- Encephalitis Virus, Venezuelan Equine/genetics
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/virology
- Humans
- Immunization Schedule
- Mice
- Mice, Inbred BALB C
- Serotyping
- Species Specificity
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/biosynthesis
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virulence
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- R J Phillpotts
- Biomedical Sciences, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | | | | | | | | |
Collapse
|
18
|
Jones LD, Bennett AM, Moss SR, Gould EA, Phillpotts RJ. Cytotoxic T-cell activity is not detectable in Venezuelan equine encephalitis virus-infected mice. Virus Res 2003; 91:255-9. [PMID: 12573505 DOI: 10.1016/s0168-1702(02)00275-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previously published research has established that the immune response to the Venezuelan equine encephalitis virus (VEEV) vaccine strain TC-83 is Th 1-mediated, with local activation of both CD4+ and CD8+ T cells. This suggests that cytotoxic lymphocytes CTL may play a role in protection against virulent VEEV. Studies involving a variety of immunisation schedules with either TC-83 or strain CAAR 508 (serogroup 5) of VEEV, and six different haplotypes of mice, failed to reveal functional CTL activity against VEEV-infected targets in secondary antigen-stimulated lymphocyte cultures from either the draining lymph nodes (LN) or spleen. Nor were VEEV-specific CTL detected after immunisation of mice (three haplotypes) with recombinant vaccinia viruses (VV) expressing either the non-structural (nsP1-4) or the structural (C-E3-E2-6K-E1) genes of TC-83. Reciprocal experiments in which mice were immunised with TC-83, and their lymphocytes tested against VV recombinant-infected targets also failed to detect CTL activity. These data suggest that VEEV infection of mice does not elicit detectable CTL activity, and that CTL are unlikely to play a role in protection against virulent VEEV.
Collapse
Affiliation(s)
- L D Jones
- CEH Institute of Virology, Mansfield Road, OX1 3SR, Oxford, UK.
| | | | | | | | | |
Collapse
|
19
|
Elvin SJ, Bennett AM, Phillpotts RJ. Role for mucosal immune responses and cell-mediated immune functions in protection from airborne challenge with Venezuelan equine encephalitis virus. J Med Virol 2002; 67:384-93. [PMID: 12116032 DOI: 10.1002/jmv.10086] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Venezuelan equine encephalitis virus (VEEV) replicates in lymphoid tissues following peripheral inoculation and a high titre viraemia develops. Encephalitis develops after the virus enters the central nervous system from the blood, with the earliest neuronal involvement being via the olfactory nerve. Following aerosol challenge with virulent VEEV, the virus is thought to replicate in the nasal mucosa and there could be direct entry into the olfactory nerve via infected neuroepithelial cells. Protection from VEEV infection is believed to be primarily mediated by virus specific antibody. The correlation between protection and neutralising serum antibody titres is, however, inconsistent when the virulent virus is administered by the airborne route. This study demonstrates a link between antibody in serum and the nasal mucosa and protection by means of passive immunisation studies. Intra-nasal administration of antibody increased protection against airborne virus in Balb/c mice. Vaccination of mu MT strain mice that do not have functional B cells and cannot produce antibody revealed normal proliferation of spleen cells in vitro and robust cytokine production. Aerosol challenge of mu MT mice demonstrated that complete protection was only achieved when passive immunisation with antibody was supplemented with active immunisation with the TC-83 vaccine strain of the virus. This implies that cell-mediated immune functions are required for protection against airborne challenge with virulent VEEV.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody Specificity
- Cell Line
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/virology
- Immunity, Cellular
- Immunity, Mucosal
- Immunization, Passive
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nasal Mucosa/immunology
- Spleen/cytology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Stephen J Elvin
- Defence Science and Technology Laboratories, Chemical and Biological Sciences, Porton Down, Salisbury, Wiltshire, United Kingdom.
| | | | | |
Collapse
|
20
|
Phillpotts RJ, Jones LD, Howard SC. Monoclonal antibody protects mice against infection and disease when given either before or up to 24 h after airborne challenge with virulent Venezuelan equine encephalitis virus. Vaccine 2002; 20:1497-504. [PMID: 11858855 DOI: 10.1016/s0264-410x(01)00505-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Airborne infection with Venezuelan equine encephalitis virus (VEEV) is a significant hazard for laboratory workers, who may not be immunised against VEEV infection as there is no vaccine currently available suitable for human use. We describe a potential alternative strategy that could protect workers exposed to VEEV or similar viruses. VEEV-specific murine monoclonal antibodies (MAB), given by intraperitoneal (i.p.) injection to mice as a single dose of 100 microg, have a half-life of 6-10 days in serum and spread by transudation to respiratory secretions. Administration of MAB (approximately 4 mg/kg) to mice 24h before challenge with approximately 100LD50 of virulent VEEV protected up to 100% animals. The same dose of MAB delivered up to 24h after challenge protected approximately 50%. Two MAB that were synergistic in vitro in plaque reduction neutralisation tests were not synergistic in vivo in protection assays. An examination of virus multiplication, in the blood and internal organs (brain, spleen, lung) of MAB-treated mice infected by the airborne route with VEEV, suggested that therapeutic activity depended both upon the prevention of virus infection of the brain, and the rapid clearance of virus from the periphery. Antiviral therapy with VEEV-specific human or "humanised" MAB, providing that they are administered early, may offer an alternative means of specific medical intervention for those with a known exposure to VEEV.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Antibodies, Viral/metabolism
- Antibodies, Viral/pharmacology
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/virology
- Humans
- Medical Laboratory Personnel
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Occupational Diseases/immunology
- Occupational Diseases/prevention & control
- Zoonoses
Collapse
Affiliation(s)
- R J Phillpotts
- Dstl, Medical Sciences Department, Porton Down, Wiltshire SP4 0JQ, UK
| | | | | |
Collapse
|
21
|
Bennett AM, Elvin SJ, Wright AJ, Jones SM, Phillpotts RJ. An immunological profile of Balb/c mice protected from airborne challenge following vaccination with a live attenuated Venezuelan equine encephalitis virus vaccine. Vaccine 2000; 19:337-47. [PMID: 10930689 DOI: 10.1016/s0264-410x(00)00123-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The live attenuated vaccine strain of Venezuelan equine encephalitis virus (VEEV), TC-83, protects mice against challenge (subcutaneous and aerosol) with virulent VEEV but is not suitable for widescale human use. Elucidation of the immune response profile of protected mice should assist in the development of an improved vaccine. We determined the optimum dose of TC-83 required to consistently protect Balb/c mice from airborne challenge with the virulent Trinidad Donkey strain of VEEV and studied the development of humoral and cellular immune responses in protected mice between 6 h and 21 days post-vaccination. The most dramatic immune responses occurred in draining lymph nodes 24 h following vaccination with increased levels of activated B cells and T cells of both CD4(+) and CD8(+) subtypes. Activated monocyte/macrophages and natural killer cells were also seen between 6 h and 7 days post-vaccination. Serum contained detectable VEEV-specific IgG on day 5 post-vaccination with titres continuing to rise on days 7, 14 and 21. Isotypes of IgG measured on days 7 and 21 were predominantly of the IgG2a subclass, indicating that the immune response was Th1-mediated. Cytokine mRNA was quantified by RT-PCR and revealed production of the Th1 cytokine IFN-gamma and the inflammatory cytokine TNF-alpha, whereas the Th2 cytokine IL4 was not detected above control levels at any of the time points studied. This data describes key cellular immune responses at early times post-vaccination and is consistent with previous data demonstrating protection against aerosol challenge with VEEV in the absence of detectable levels of specific IgG or IgA antibody.
Collapse
Affiliation(s)
- A M Bennett
- Defence Evaluation and Research Agency, CBD n Down, Salisbury SP4 0JQ, Porto, UK
| | | | | | | | | |
Collapse
|
22
|
Lukaszewski RA, Brooks TJ. Pegylated alpha interferon is an effective treatment for virulent venezuelan equine encephalitis virus and has profound effects on the host immune response to infection. J Virol 2000; 74:5006-15. [PMID: 10799574 PMCID: PMC110852 DOI: 10.1128/jvi.74.11.5006-5015.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a highly infectious alphavirus endemic in parts of Central and South America. The disease is transmitted by mosquitoes, and the natural reservoir is the small rodent population, with epidemics occurring in horses and occasionally humans. Following infection, VEEV replicates in lymphoid tissues prior to invasion of the central nervous system. Treatment of VEEV-infected BALB/c mice with polyethylene glycol-conjugated alpha interferon (PEG IFN-alpha) results in a greatly enhanced survival from either a subcutaneous or an aerosol infection. Virus is undetectable within PEG IFN-alpha-treated individuals by day 30 postinfection (p.i.). Treatment results in a number of changes to the immune response characteristics normally associated with VEEV infection. Increased macrophage activation occurs in PEG IFN-alpha-treated BALB/c mice infected with VEEV. The rapid activation of splenic CD4, CD8, and B cells by day 2 p.i. normally associated with VEEV infection is absent in PEG IFN-alpha-treated mice. The high tumor necrosis factor alpha production by macrophages from untreated mice is greatly diminished in PEG IFN-alpha-treated mice. These results suggest key immunological mechanisms targeted by this lethal alphavirus that can be modulated by prolonged exposure to IFN-alpha.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antiviral Agents/therapeutic use
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line
- Cricetinae
- Encephalitis Virus, Venezuelan Equine/drug effects
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalomyelitis, Venezuelan Equine/drug therapy
- Encephalomyelitis, Venezuelan Equine/immunology
- Female
- Inhalation Exposure
- Injections, Subcutaneous
- Interferon alpha-2
- Interferon-alpha/therapeutic use
- Interleukin-12/therapeutic use
- Interleukin-4/therapeutic use
- Lectins, C-Type
- Mice
- Mice, Inbred BALB C
- Polyethylene Glycols/therapeutic use
- Recombinant Proteins
- Virulence
Collapse
Affiliation(s)
- R A Lukaszewski
- CBD, Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom.
| | | |
Collapse
|
23
|
Phillpotts RJ. Immunity to airborne challenge with Venezuelan equine encephalitis virus develops rapidly after immunization with the attenuated vaccine strain TC-83. Vaccine 1999; 17:2429-35. [PMID: 10392625 DOI: 10.1016/s0264-410x(99)00022-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mice vaccinated subcutaneously with the attenuated vaccine strain of Venezuelan equine encephalitis virus (VEEV) rapidly develop immunity to subcutaneous or airborne challenge with virulent VEEV. The specificity of this immune response was demonstrated by challenge with a heterologous virus (St. Louis encephalitis virus). Examination of the levels of VEEV-specific antibody classes in serum and respiratory secretions suggested that the rapid development of immunity was coincident with the appearance of specific IgM and IgG (but not IgA) in the respiratory tract. In order to confirm the role of respiratory tract antibody, mice were passively immunised either intraperitoneally or intranasally with polyclonal VEEV-specific IgG. Intranasal administration of specific IgG significantly enhanced protection against airborne challenge. These results confirm the need to emphasise local antibody production in the development of improved VEEV vaccines.
Collapse
Affiliation(s)
- R J Phillpotts
- D.E.R.A., Microbiology Department, Chemical and Biological Defence Sector, Porton Down, Wiltshire, UK
| |
Collapse
|