1
|
Adamek M, Kavčič A, Debeljak M, Šala M, Grdadolnik J, Vogel-Mikuš K, Kroflič A. Toxicity of nitrophenolic pollutant 4-nitroguaiacol to terrestrial plants and comparison with its non-nitro analogue guaiacol (2-methoxyphenol). Sci Rep 2024; 14:2198. [PMID: 38272996 PMCID: PMC10811240 DOI: 10.1038/s41598-024-52610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Phenols, and especially their nitrated analogues, are ubiquitous pollutants and known carcinogens which have already been linked to forest decline. Although nitrophenols have been widely recognized as harmful to different aquatic and terrestrial organisms, we could not find any literature assessing their toxicity to terrestrial plants. Maize (monocot) and sunflower (dicot) were exposed to phenolic pollutants, guaiacol (GUA) and 4-nitroguaiacol (4NG), through a hydroponics system under controlled conditions in a growth chamber. Their acute physiological response was studied during a two-week root exposure to different concentrations of xenobiotics (0.1, 1.0, and 10 mM). The exposure visibly affected plant growth and the effect increased with increasing xenobiotic concentration. In general, 4NG affected plants more than GUA. Moreover, sunflower exhibited an adaptive response, especially to low and moderate GUA concentrations. The integrity of both plant species deteriorated during the exposure: biomass and photochemical pigment content were significantly reduced, which reflected in the poorer photochemical efficiency of photosystem II. Our results imply that 4NG is taken up by sunflower plants, where it could enter a lignin biosynthesis pathway.
Collapse
Affiliation(s)
- Maksimiljan Adamek
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Anja Kavčič
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Marta Debeljak
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Jože Grdadolnik
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Ana Kroflič
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Sumalan RL, Nescu V, Berbecea A, Sumalan RM, Crisan M, Negrea P, Ciulca S. The Impact of Heavy Metal Accumulation on Some Physiological Parameters in Silphium perfoliatum L. Plants Grown in Hydroponic Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:1718. [PMID: 37111941 PMCID: PMC10146597 DOI: 10.3390/plants12081718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Heavy metals like cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn), resulting from anthropogenic activities, are elements with high persistence in nature, being able to accumulate in soils, water, and plants with significant impact to human and animal health. This study investigates the phytoremediation capacity of Silphium perfoliatum L. as a specific heavy metal hyperaccumulator and the effects of Cu, Zn, Cd, and Pb on some physiological and biochemical indices by growing plants under floating hydroponic systems in nutrient solutions under the presence of heavy metals. One-year-old plants of S. perfoliatum grown for 20 days in Hoagland solution with the addition of (ppm) Cu-400, Zn-1200, Cd-20, Pb-400, and Cu+Zn+Cd+Pb (400/1200/20/400) were investigated with respect to the control. The level of phytoremediation, manifested by the ability of heavy metal absorption and accumulation, was assessed. In addition, the impact of stress on the proline content, photosynthetic pigments, and enzymatic activity, as being key components of metabolism, was determined. The obtained results revealed a good absorption and selective accumulation capacity of S. perfoliatum plants for the studied heavy metals. Therefore, Cu and Zn mainly accumulate in the stems, Cd in the roots and stems, while Pb mainly accumulates in the roots. The proline tended to increase under stress conditions, depending on the pollutant and its concentration, with higher values in leaves and stems under the associated stress of the four metals and individually for Pb and Cd. In addition, the enzymatic activity recorded different values depending on the plant organ, its type, and the metal concentration on its substrate. The obtained results indicate a strong correlation between the metal type, concentration, and the mechanisms of absorption/accumulation of S. perfoliatum species, as well as the specific reactions of metabolic response.
Collapse
Affiliation(s)
- Radu Liviu Sumalan
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| | - Vlad Nescu
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| | - Adina Berbecea
- Faculty of Agriculture, 119 Calea Aradului, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Renata Maria Sumalan
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| | - Manuela Crisan
- “Coriolan Dragulescu” Institute of Chemistry, 24 Mihai Viteazul Blvd., 300223 Timisoara, Romania;
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, 6 Bv. Vasile Parvan, 300223 Timisoara, Romania;
| | - Sorin Ciulca
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| |
Collapse
|
3
|
Kardel F, Wuyts K, De Wael K, Samson R. Assessing atmospheric dry deposition via water-soluble ionic composition of roadside leaves. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:903-911. [PMID: 32312150 DOI: 10.1080/10934529.2020.1752589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
This study focuses on the water-soluble ion concentrations in the washing solution of leaves of different roadside tree species at three sites in Iran to estimate the ionic composition of the dry deposition of ambient air particulates. All considered water-soluble ion concentrations were significantly higher next to the roads with high traffic density compared to the reference site with low traffic density. The PCA results showed that Ca2+, Mg2+, [Formula: see text] and [Formula: see text] originated mainly from traffic activities and geological sources, and Na+, Cl-, K+ and F- from sea salts. In addition to sea salt, K+ and F- were also originated from anthropogenic sources i.e. industrial activities, biomass burning and fluorite mining. Moreover, the concentration of the water-soluble ions depended on species and site. C. lawsoniana had significantly higher ion concentrations in its leaf washing solution compared to L. japonicum and P. brutia which indicates C. lawsoniana is the most suitable species for accumulating of atmospheric dry deposition. From our results, it can be concluded that sites with similar traffic density can have different particle loads and water-soluble ion species, and that concentrations in leaf-washing solutions depend on site conditions and species-specific leaf surface characteristics.
Collapse
Affiliation(s)
- Fatemeh Kardel
- Department of Environmental Sciences, Faculty of Sciences, University of Mazandaran, Babolsar, Iran
| | - Karen Wuyts
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Antwerpen, Belgium
| | - Karolien De Wael
- AXES research group, Department of Chemistry, Faculty of Sciences, University of Antwerp, Antwerpen, Belgium
| | - Roeland Samson
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
4
|
Kavčič A, Budič B, Vogel-Mikuš K. The effects of selenium biofortification on mercury bioavailability and toxicity in the lettuce-slug food chain. Food Chem Toxicol 2020; 135:110939. [PMID: 31697969 DOI: 10.1016/j.fct.2019.110939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/26/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
The effects of foliar Se biofortification (Se+) of the lettuce on the transfer and toxicity of Hg from soil contaminated with HgCl2 (H) and soil collected near the former Hg smelter in Idrija (I), to terrestrial food chain are explored, with Spanish slug as a primary consumer. Foliar application of Se significantly increased Se content in the lettuce, with no detected toxic effects. Mercury exerted toxic effects on plants, decreasing plant biomass, photochemical efficiency of the photosystem II (Fv/Fm) and the total chlorophyll content. Selenium biofortification (Se+ test group) had no effect on Hg bioaccumulation in plants. In slugs, different responses were observed in H and I groups; the I/Se+ subgroup was the most strongly affected by Hg toxicity, exhibiting lower biomass, feeding and growth rate and a higher hepatopancreas/ muscle Hg translocation, pointing to a higher Hg mobility in comparison to H group. Selenium increased Hg bioavailability for slugs, but with opposite physiological responses: alleviating stress in H/Se+ and inducing it in I/Se+ group, indicating different mechanisms of Hg-Se interactions in the food chain under HgCl2 and Idrija soil exposures that can be mainly attributed to different Hg speciation and ligand environment in the soil.
Collapse
Affiliation(s)
- Anja Kavčič
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Bojan Budič
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia; Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Fourati E, Vogel-Mikuš K, Bettaieb T, Kavčič A, Kelemen M, Vavpetič P, Pelicon P, Abdelly C, Ghnaya T. Physiological response and mineral elements accumulation pattern in Sesuvium portulacastrum L. subjected in vitro to nickel. CHEMOSPHERE 2019; 219:463-471. [PMID: 30551113 DOI: 10.1016/j.chemosphere.2018.12.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Sesuvium portulacastrum, a halophyte with high tolerance to heavy metals like Cd, Pb and Ni is considered for phytoremediation of metal contaminated saline soils. The tolerance to a selected metal ion could, by hypothesis, be stimulated through in vitro adaptation and regeneration of the plant. Seedlings obtained by in vitro micro-propagation, were exposed to 0, 25 and 50 μM Ni, as NiCl2, in agar-based medium for 30 days. Growth parameters, plant water content, the concentration of photosynthetic pigments, proline and malondialdehyde (MDA) concentrations were determined. Nickel and nutrients distribution in leaves was studied by micro-Proton-Induced-X-ray-Emission (μ-PIXE). The results showed that Ni was mainly accumulated in vascular bundles, next in water storage tissues and chlorenchyma. Ni concentrations in chlorenchyma increased with increasing Ni in culturing medium, in direct relation to decrease of photosynthetic pigments and increase of oxidative stress. As compared to control plants, Ni induced substantial increase in MDA and proline accumulation. Plants exposed to 50 μM Ni accumulated up to 650 μg g-1 of Ni in the shoots, exhibiting chlorosis and necrosis and a drastically reduced plant growth. Perturbations in uptake and distribution of nutrients were observed, inducing mineral deficiency, probably through membrane leakage. The mineral nutrient disturbances induced by Ni could be highly implicated in the restriction of S. portulacastrum development under the acute 50 μM Ni level.
Collapse
Affiliation(s)
- Emna Fourati
- Université de Tunis El Manar, Tunisia; Centre de Biotechnologie de Borj Cedria (LR15CBBC02), Laboratoire des Plantes Extrèmophiles, BP 901 2050 Hammam-Lif, Tunisia; Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101, SI-1000 Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101, SI-1000 Ljubljana, Slovenia; Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Taoufik Bettaieb
- Département Agronomie et Biotechnologies Végétales, Institut National Agronomique de Tunisie, 43 Avenue Charles Nicolle, 1082 Tunis, Tunisia
| | - Anja Kavčič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101, SI-1000 Ljubljana, Slovenia
| | - Mitja Kelemen
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Primož Vavpetič
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Primož Pelicon
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Chedly Abdelly
- Centre de Biotechnologie de Borj Cedria (LR15CBBC02), Laboratoire des Plantes Extrèmophiles, BP 901 2050 Hammam-Lif, Tunisia
| | - Tahar Ghnaya
- Centre de Biotechnologie de Borj Cedria (LR15CBBC02), Laboratoire des Plantes Extrèmophiles, BP 901 2050 Hammam-Lif, Tunisia.
| |
Collapse
|
6
|
Debeljak M, van Elteren JT, Špruk A, Izmer A, Vanhaecke F, Vogel-Mikuš K. The role of arbuscular mycorrhiza in mercury and mineral nutrient uptake in maize. CHEMOSPHERE 2018; 212:1076-1084. [PMID: 30286537 DOI: 10.1016/j.chemosphere.2018.08.147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
This work aimed to study the role of arbuscular mycorrhizal fungi (AMF) in Hg and major mineral nutrient uptake and tissue localization of these elements in the roots of maize plants. Maize plants were grown in pots filled with non- and Hg-contaminated substrate (50 μg Hg g-1 as HgCl2) and inoculated with two types of AMF inocula: a) Glomus sp. originating from Hg-polluted soil of a former Hg smelting site in Idrija, Slovenia, and b) commercial AM inoculum Symbivit. Controls were inoculated by corresponding bacterial extracts only. Tissue localization of Hg and major mineral nutrients was performed by laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) on cryofixed and freeze-dried root cross-sections. AMF colonization increased plant biomass in non-contaminated substrate, while this effect was not seen in Hg-contaminated substrate. Hg increased total plant biomass more than AMF inoculation, possibly through hormetic effects. AMF increased Hg uptake into the roots, as well as Hg transfer to the shoots. AMF affected plant mineral nutrient uptake, depending on the type of AMF inoculum and the presence of Hg. In the roots, Hg was mainly localized in rhizodermis and endodermis, followed by the cortex and the central cylinder. Higher Hg concentrations were detected in the central cylinder of AM plants than in that of the controls, pointing to a higher Hg mobility and potential bioavailability in AMF inoculated plants.
Collapse
Affiliation(s)
- Marta Debeljak
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Johannes T van Elteren
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Ana Špruk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Andrei Izmer
- Department of Chemistry, Atomic & Mass Spectrometry A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, BE-9000 Ghent, Belgium
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, BE-9000 Ghent, Belgium
| | - Katarina Vogel-Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Majid NA, Phang IC, Darnis DS. Characteristics of Pelargonium radula as a mercury bioindicator for safety assessment of drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22827-22838. [PMID: 28150147 DOI: 10.1007/s11356-017-8484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Identification of Pelargonium radula as bioindicator for mercury (Hg) detection confers a new hope for monitoring the safety of drinking water consumption. Hg, like other non-essential metals, inflicts the deterioration of biological functions in human and other creatures. In the present study, effects of Hg on the physiology and biochemical content of P. radula were undertaken to understand the occurrence of the morphological changes observed. Young leaves of P. radula were treated with different concentrations of Hg-containing solution (0.5, 1.0 and 2.0 ppb) along with controls for 4 h, prior to further analysis. Elevated Hg concentration in treatment solution significantly prompted an increased accumulation of Hg in the leaf tissues. Meanwhile, total protein, chlorophyll and low molecular mass thiol contents (cysteine, glutathione and oxidized glutathione) decreased as Hg accumulation increased. However, phytochelatin 2 productions were induced in the treated leaves, in comparison to the control. Based on these findings, it is postulated that as low as 0.5 ppb of Hg interferes with the metabolic processes of plant cells, which was reflected from the morphological changes exhibited on P. radula leaves-the colour of the Hg-treated leaves changed from green to yellowish-brown, became chlorosis and wilted. Changes in the tested characteristics of plant are closely related to the Hg-induced morphological changes on P. radula leaves, a potential bioindicator for detecting Hg in drinking water.
Collapse
Affiliation(s)
- N A Majid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - I C Phang
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.
| | - D S Darnis
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| |
Collapse
|
8
|
Xiong T, Austruy A, Pierart A, Shahid M, Schreck E, Mombo S, Dumat C. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J Environ Sci (China) 2016; 46:16-27. [PMID: 27521932 DOI: 10.1016/j.jes.2015.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 05/23/2023]
Abstract
At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles (PM). Different leafy vegetables (lettuces and cabbages) cultivated in RHIZOtest® devices were, therefore, exposed in a greenhouse for 5, 10 and 15days to various PbO PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves (up to 7392mg/kg dry weight (DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth (up to 68.2% in lettuce) and net photosynthesis (up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities (in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption.
Collapse
Affiliation(s)
- TianTian Xiong
- Université de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique de Toulouse (INP-ENSAT), 31326 Castanet-Tolosan, France; Centre National de la Recherche Scientifique, EcoLab, 31326 Castanet-Tolosan, France.
| | - Annabelle Austruy
- Institut Ecocitoyen, Centre de Vie la Fossette RD 268, 13270 Fos-sur-Mer, France
| | - Antoine Pierart
- Université de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique de Toulouse (INP-ENSAT), 31326 Castanet-Tolosan, France; Centre National de la Recherche Scientifique, EcoLab, 31326 Castanet-Tolosan, France
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Eva Schreck
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, F-31400 Toulouse, France
| | - Stéphane Mombo
- Université de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique de Toulouse (INP-ENSAT), 31326 Castanet-Tolosan, France; Centre National de la Recherche Scientifique, EcoLab, 31326 Castanet-Tolosan, France
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Universite J. Jaurès - Toulouse II, 31058 Toulouse Cedex 9, France.
| |
Collapse
|
9
|
Sabeen M, Mahmood Q, Irshad M, Fareed I, Khan A, Ullah F, Hussain J, Hayat Y, Tabassum S. Cadmium phytoremediation by Arundo donax L. from contaminated soil and water. BIOMED RESEARCH INTERNATIONAL 2013; 2013:324830. [PMID: 24459667 PMCID: PMC3888719 DOI: 10.1155/2013/324830] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/08/2013] [Accepted: 12/08/2013] [Indexed: 11/18/2022]
Abstract
The potential of Arundo donax L. for phytoextraction of cadmium (Cd) from contaminated soil and water was probed. The plants were grown under greenhouse conditions in pots containing a nutrient solution or soil with increasing doses of Cd (0, 50, 100, 250, 500, 750, and 1000 μg L(-1)) for 21 days. The growth and physiology of plants were evaluated at the end of the experiment. The maximum Cd content in root was 300 μg g(-1) during hydroponics experiments over 230 μg g(-1) in soil experiment. Cd concentration in stem was 262 μg g(-1) at 750 μg L(-1) supplied Cd in hydroponics over 191.2 μg g(-1) at 1000 in soil experiment. The maximum Cd concentration in leaves from hydroponics was 187 μg g(-1). Relatively low Cd uptake occurred during soil experiment with low translocation factor (TF) values. Both Bioaccumulation Factor (BF) and TF values for hydroponics were greater than 1. The IC50 values of ABTS and DPPH showed that both time and increasing Cd concentrations affected the production of antioxidants with lower half maximal inhibitory concentration (IC50) value on the 21st days. A. donax showed better potential for Cd remediation of aquatic environments.
Collapse
Affiliation(s)
- Maria Sabeen
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Iftikhar Fareed
- Department of Natural Resource Engineering and Management, University of Kurdistan Hewlêr, Kurdistan, Iraq
| | - Afsar Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Farid Ullah
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Jamshaid Hussain
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Yousaf Hayat
- Department of Mathematics, Statistics and Computer Sciences, KPK Agricultural University, Peshawar, Pakistan
| | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Defence Road, Off Raiwind Road, Lahore, Pakistan
| |
Collapse
|
10
|
Chapman EEV, Dave G, Murimboh JD. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 179:326-342. [PMID: 23688951 DOI: 10.1016/j.envpol.2013.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/26/2013] [Accepted: 04/17/2013] [Indexed: 06/02/2023]
Abstract
To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests.
Collapse
Affiliation(s)
- E Emily V Chapman
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden.
| | | | | |
Collapse
|
11
|
|
12
|
Gomes MP, Marques TCLLSEM, Martins GA, Carneiro MMLC, Soares ÂM. Cd-tolerance markers of Pfaffia glomerata (Spreng.) Pedersen plants: anatomical and physiological features. ACTA ACUST UNITED AC 2012. [DOI: 10.1590/s1677-04202012000400008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Study on trace elements (using energy dispersive X-ray fluorescence technique) of edible seeds from Cicer arietinum L. plants developed from gamma irradiated seeds and variation of yielding capacity. J Radioanal Nucl Chem 2009. [DOI: 10.1007/s10967-009-0234-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Papazoglou EG, Karantounias GA, Vemmos SN, Bouranis DL. Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni. ENVIRONMENT INTERNATIONAL 2005; 31:243-249. [PMID: 15661290 DOI: 10.1016/j.envint.2004.09.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Giant reed (Arundo donax L.) was grown on surface soil and irrigated with mixed heavy metal solutions of Cd(II) and Ni(II) to study the impact of these heavy metals on its growth and photosynthesis. The tested concentrations were 5, 50, and 100 ppm for each heavy metal against the control and resulted in high cadmium and nickel (DTPA extractable) concentrations in the top zone of the pot soil. The examined parameters, namely, stem height and diameter, number of nodes, fresh and dry weight of leaves, and net photosynthesis (Pn) were not affected, indicating that plants tolerate the high concentrations of Cd and Ni. As giant reed plants are very promising energy plants, they can be cultivated in contaminated soils to provide biomass for energy production purposes.
Collapse
Affiliation(s)
- E G Papazoglou
- Faculty of Natural Resources Management and Agricultural Engineering, Agricultural Hydraulics Laboratory, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | | | | | | |
Collapse
|
15
|
Uhlig C, Salemaa M, Vanha-Majamaa I, Derome J. Element distribution in Empetrum nigrum microsites at heavy metal contaminated sites in Harjavalta, western Finland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2001; 112:435-442. [PMID: 11291450 DOI: 10.1016/s0269-7491(00)00140-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Small-scale element distribution in soil-plant-systems in patches of Empetrum nigrum (microsites) at heavy metal contaminated sites located 0.5 and 4 km from the copper-nickel smelter at Harjavalta was investigated. The Cu concentrations of E. nigrum varied between 12 and 2300 mg/kg dw and showed increasing accumulation with increasing tissue age. Stems contained more Cu than leaves of the same age. The distribution pattern of Ni and Pb in the above-ground biomass followed that of Cu. Roots contained relatively low concentrations of all airborne heavy metals. In the soil, the highest concentrations of total Cu occurred in the humus (Oh) layer: on average 49,450 mg/kg dw at 0.5 km distance and 12,025 mg/kg dw at 4.0 km. Despite the extremely high Cu concentrations in the topsoil, the concentrations in the mineral soil below a depth of 10 cm did not exceed 2.5 mg/kg dw at any site.
Collapse
Affiliation(s)
- C Uhlig
- Department of Biology, Faculty of Science, University of Tromsø, 9037 Tromsø, Norway.
| | | | | | | |
Collapse
|