1
|
Kojima R, Paslawski W, Lyu G, Arenas E, Zhang X, Svenningsson P. Secretome Analyses Identify FKBP4 as a GBA1-Associated Protein in CSF and iPS Cells from Parkinson's Disease Patients with GBA1 Mutations. Int J Mol Sci 2024; 25:683. [PMID: 38203854 PMCID: PMC10779269 DOI: 10.3390/ijms25010683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Mutations in the GBA1 gene increase the risk of developing Parkinson's disease (PD). However, most carriers of GBA1 mutations do not develop PD throughout their lives. The mechanisms of how GBA1 mutations contribute to PD pathogenesis remain unclear. Cerebrospinal fluid (CSF) is used for detecting pathological conditions of diseases, providing insights into the molecular mechanisms underlying neurodegenerative disorders. In this study, we utilized the proximity extension assay to examine the levels of metabolism-linked protein in the CSF from 17 PD patients carrying GBA1 mutations (GBA1-PD) and 17 idiopathic PD (iPD). The analysis of CSF secretome in GBA1-PD identified 11 significantly altered proteins, namely FKBP4, THOP1, GLRX, TXNDC5, GAL, SEMA3F, CRKL, APLP1, LRP11, CD164, and NPTXR. To investigate GBA1-associated CSF changes attributed to specific neuronal subtypes responsible for PD, we analyzed the cell culture supernatant from GBA1-PD-induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic (mDA) neurons. The secretome analysis of GBA1-PD iPSC-derived mDA neurons revealed that five differently regulated proteins overlapped with those identified in the CSF analysis: FKBP4, THOP1, GLRX, GAL, and CRKL. Reduced intracellular level of the top hit, FKPB4, was confirmed via Western Blot. In conclusion, our findings identify significantly altered CSF GBA1-PD-associated proteins with FKPB4 being firmly attributed to mDA neurons.
Collapse
Affiliation(s)
- Rika Kojima
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Guochang Lyu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| |
Collapse
|
2
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
3
|
Keller BN, Hajnal A, Browning KN, Arnold AC, Silberman Y. Involvement of the Dorsal Vagal Complex in Alcohol-Related Behaviors. Front Behav Neurosci 2022; 16:801825. [PMID: 35330845 PMCID: PMC8940294 DOI: 10.3389/fnbeh.2022.801825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
The neurobiological mechanisms that regulate the development and maintenance of alcohol use disorder (AUD) are complex and involve a wide variety of within and between systems neuroadaptations. While classic reward, preoccupation, and withdrawal neurocircuits have been heavily studied in terms of AUD, viable treatment targets from this established literature have not proven clinically effective as of yet. Therefore, examination of additional neurocircuitries not classically studied in the context of AUD may provide novel therapeutic targets. Recent studies demonstrate that various neuropeptides systems are important modulators of alcohol reward, seeking, and intake behaviors. This includes neurocircuitry within the dorsal vagal complex (DVC), which is involved in the control of the autonomic nervous system, control of intake of natural rewards like food, and acts as a relay of interoceptive sensory information via interactions of numerous gut-brain peptides and neurotransmitter systems with DVC projections to central and peripheral targets. DVC neuron subtypes produce a variety of neuropeptides and transmitters and project to target brain regions critical for reward such as the mesolimbic dopamine system as well as other limbic areas important for the negative reinforcing and aversive properties of alcohol withdrawal such as the extended amygdala. This suggests the DVC may play a role in the modulation of various aspects of AUD. This review summarizes the current literature on neurotransmitters and neuropeptides systems in the DVC (e.g., norepinephrine, glucagon-like peptide 1, neurotensin, cholecystokinin, thyrotropin-releasing hormone), and their potential relevance to alcohol-related behaviors in humans and rodent models for AUD research. A better understanding of the role of the DVC in modulating alcohol related behaviors may lead to the elucidation of novel therapeutic targets for drug development in AUD.
Collapse
|
4
|
Chandler MC, McGowan AL, Brascamp JW, Pontifex MB. Phasic activity of the locus-coeruleus is not a mediator of the relationship between fitness and inhibition in college-aged adults. Int J Psychophysiol 2021; 165:1-7. [PMID: 33774078 DOI: 10.1016/j.ijpsycho.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/08/2023]
Abstract
Aerobic fitness is consistently and robustly associated with superior performance on assessments of cognitive control. One potential mechanism underlying this phenomenon is activation of the locus-coeruleus. Specifically, individuals with greater aerobic fitness may be better able to sustain engagement in a cognitively demanding task via a superior ability to meet the metabolic demands of this neural system. Accordingly, the present investigation examined 1) the relationship between aerobic fitness and phasic activation of the locus-coeruleus (indexed using pupillometry) and 2) the potential mediating influence of locus-coeruleus activity on the relationship between aerobic fitness and cognitive task performance. Participants performed an inhibition task while their pupillary responses were measured using an infrared eye tracker. A VO2max test was then performed to determine individuals' aerobic fitness levels. Consistent with previous research, higher levels of aerobic fitness were related to shorter reaction time. However, phasic activity of the locus-coeruleus did not mediate this relationship - nor did it relate to aerobic fitness level. These results suggest that aerobic fitness does not relate to differences in locus-coeruleus activity in the context of cognitive control in college-aged adults.
Collapse
Affiliation(s)
- Madison C Chandler
- Department of Kinesiology, Michigan State University, United States of America.
| | - Amanda L McGowan
- Department of Kinesiology, Michigan State University, United States of America
| | - Jan W Brascamp
- Department of Psychology, Michigan State University, United States of America
| | - Matthew B Pontifex
- Department of Kinesiology, Michigan State University, United States of America
| |
Collapse
|
5
|
Li Y, Gao M, Zeng K, Xing JX, Xu FL, Xuan JF, Xia X, Liu YP, Yao J, Wang BJ. Association Between Polymorphisms in the 5' Region of the GALR1 Gene and Schizophrenia in the Northern Chinese Han Population: A Case-Control Study. Neuropsychiatr Dis Treat 2020; 16:1519-1532. [PMID: 32606704 PMCID: PMC7306470 DOI: 10.2147/ndt.s256644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/22/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Epidemiological studies have shown that genetic factors are among the causes of schizophrenia. Galanin receptor 1 is an inhibitory receptor of galanin that is widely distributed in the central nervous system. This study mainly explored the relationship between polymorphisms of the 5' region of the GALR1 gene and schizophrenia in the northern Chinese Han population. METHODS A 1545 bp fragment of the 5' regulatory region of the GALR1 gene was amplified and sequenced in 289 schizophrenia patients and 347 healthy controls. RESULTS Among the haplotypes composed of the 16 detected SNPs, the haplotype H3 was identified as conferring a risk of schizophrenia (p=0.011, OR=1.430, 95% CI=1.084-1.886). In addition, the haplotypes H4 and H7 were both protective against schizophrenia (p=0.024, OR=0.526, 95% CI=0.298-0.927; p=0.037, OR=0.197, 95% CI=0.044-0.885, respectively). In the subgroup analysis by sex, it was found that seven SNP alleles (rs72978691, rs11662010, rs11151014, rs11151015, rs13306374, rs5373, rs13306375) conferred a risk of schizophrenia in females (p<0.05), while allele G of rs7242919 (p=0.007) was protective against schizophrenia in females. Moreover, the rs72978691 AA+AC genotype (p=0.006, OR=1.874, 95% CI=1.196-2.937, power=0.780), rs7242919 CC+CG genotype (p=0.002, OR=2.027, 95% CI=1.292-3.180, power=0.861), rs11151014 GG+GT genotype (p=0.008, OR=1.834, 95% CI=1.168-2.879, power=0.735), rs11151015 GG+AG genotype (p=0.002, OR=2.013, 95% CI =1.291-3.137, power=0.843), rs13306374 CC+AC genotype (p=0.006, OR=1.881, 95% CI=1.198-2.953, power=0.788), and rs13306375 GG+AG genotype (p=0.006, OR=1.868, 95% CI=1.194-2.921, power=0.770) increased the risk of schizophrenia in females. The haplotype FH2 consisting of rs72978691, rs11662010, rs7242919, rs11151014, rs11151015, rs13306374, rs5373, and rs13306375 may also be associated with the risk of schizophrenia in females (p=0.024). CONCLUSION This study identified an association between polymorphisms in the 5' region of the GALR1 gene and schizophrenia, especially in females.
Collapse
Affiliation(s)
- Ya Li
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Meng Gao
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Kuo Zeng
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Yong-Ping Liu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
6
|
Eshragh J, Dhruva A, Paul SM, Cooper BA, Mastick J, Hamolsky D, Levine JD, Miaskowski C, Kober KM. Associations Between Neurotransmitter Genes and Fatigue and Energy Levels in Women After Breast Cancer Surgery. J Pain Symptom Manage 2017; 53:67-84.e7. [PMID: 27720787 PMCID: PMC5191954 DOI: 10.1016/j.jpainsymman.2016.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/19/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
CONTEXT Fatigue is a common problem in oncology patients. Less is known about decrements in energy levels and the mechanisms that underlie both fatigue and energy. OBJECTIVES In patients with breast cancer, variations in neurotransmitter genes between lower and higher fatigue latent classes and between the higher and lower energy latent classes were evaluated. METHODS Patients completed assessments before and monthly for six months after surgery. Growth mixture modeling was used to identify distinct latent classes for fatigue severity and energy levels. Thirty candidate genes involved in various aspects of neurotransmission were evaluated. RESULTS Eleven single-nucleotide polymorphisms or haplotypes (i.e., ADRB2 rs1042718, BDNF rs6265, COMT rs9332377, CYP3A4 rs4646437, GALR1 rs949060, GCH1 rs3783642, NOS1 rs9658498, NOS1 rs2293052, NPY1R Haplotype A04, SLC6A2 rs17841327, and 5HTTLPR + rs25531 in SLC6A4) were associated with latent class membership for fatigue. Seven single-nucleotide polymorphisms or haplotypes (i.e., NOS1 rs471871, SLC6A1 rs2675163, SLC6A1 Haplotype D01, SLC6A2 rs36027, SLC6A3 rs37022, SLC6A4 rs2020942, and TAC1 rs2072100) were associated with latent class membership for energy. Three of 13 genes (i.e., NOS1, SLC6A2, and SLC6A4) were associated with latent class membership for both fatigue and energy. CONCLUSIONS Molecular findings support the hypothesis that fatigue and energy are distinct, yet related symptoms. Results suggest that a large number of neurotransmitters play a role in the development and maintenance of fatigue and energy levels in breast cancer patients.
Collapse
Affiliation(s)
- Jasmine Eshragh
- School of Nursing, University of California, San Francisco, California, USA
| | - Anand Dhruva
- School of Medicine, University of California, San Francisco, California, USA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, California, USA
| | - Bruce A Cooper
- School of Nursing, University of California, San Francisco, California, USA
| | - Judy Mastick
- School of Nursing, University of California, San Francisco, California, USA
| | - Deborah Hamolsky
- School of Nursing, University of California, San Francisco, California, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, California, USA
| | | | - Kord M Kober
- School of Nursing, University of California, San Francisco, California, USA.
| |
Collapse
|
7
|
Alterations in the neuropeptide galanin system in major depressive disorder involve levels of transcripts, methylation, and peptide. Proc Natl Acad Sci U S A 2016; 113:E8472-E8481. [PMID: 27940914 DOI: 10.1073/pnas.1617824113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is a substantial burden to patients, families, and society, but many patients cannot be treated adequately. Rodent experiments suggest that the neuropeptide galanin (GAL) and its three G protein-coupled receptors, GAL1-3, are involved in mood regulation. To explore the translational potential of these results, we assessed the transcript levels (by quantitative PCR), DNA methylation status (by bisulfite pyrosequencing), and GAL peptide by RIA of the GAL system in postmortem brains from depressed persons who had committed suicide and controls. Transcripts for all four members were detected and showed marked regional variations, GAL and galanin receptor 1 (GALR1) being most abundant. Striking increases in GAL and GALR3 mRNA levels, especially in the noradrenergic locus coeruleus and the dorsal raphe nucleus, in parallel with decreased DNA methylation, were found in both male and female suicide subjects as compared with controls. In contrast, GAL and GALR3 transcript levels were decreased, GALR1 was increased, and DNA methylation was increased in the dorsolateral prefrontal cortex of male suicide subjects, however, there were no changes in the anterior cingulate cortex. Thus, GAL and its receptor GALR3 are differentially methylated and expressed in brains of MDD subjects in a region- and sex-specific manner. Such an epigenetic modification in GALR3, a hyperpolarizing receptor, might contribute to the dysregulation of noradrenergic and serotonergic neurons implicated in the pathogenesis of MDD. Thus, one may speculate that a GAL3 antagonist could have antidepressant properties by disinhibiting the firing of these neurons, resulting in increased release of noradrenaline and serotonin in forebrain areas involved in mood regulation.
Collapse
|
8
|
Abstract
Since the neuropeptide galanin’s discovery in 1983, information has accumulated that implicates it in a wide range of functions, including pain sensation, stress responses, appetite regulation, and learning and memory. This article reviews the evidence for specific functions of galanin in cognitive processes. Consistencies as well as gaps in the literature are organized around basic questions of methodology and theory. This review shows that although regularities are evident in the observed behavioral effects of galanin across several methods for measuring learning and memory, generalization from these findings is tempered with concerns about confounds and a restricted range of testing conditions. Furthermore, it is revealed that many noncognitive behavioral constructs that are relevant for assessing potential roles for galanin in cognition have not been thoroughly examined. The review concludes by laying out how future theory and experimental work can overcome these concerns and confidently define the nature of the association of galanin with particular cognitive constructs.
Collapse
|
9
|
Soares FRC, Silote GP, Almeida-Santos AF, Aguiar DC, Schenberg LC, Beijamini V. Galanin microinjection into the dorsal periaqueductal gray matter produces paradigm-dependent anxiolytic effects. Brain Res Bull 2016; 121:42-7. [PMID: 26751815 DOI: 10.1016/j.brainresbull.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 01/07/2023]
Abstract
Galanin is a peptide that is present in the central nervous system in mammals, including rodents and humans. The actions of galanin are mediated by three types of metabotropic receptors: GAL1, GAL2, and GAL3. GAL1 and GAL3 increase K(+) efflux, and GAL2 increases intracellular Ca(2+) levels. The distribution of galanin and its receptors suggests its involvement in fear and/or anxiety. The periaqueductal gray matter (PAG) is a key mediator of defensive behaviors that is both targeted by galaninergic projections and supplied with GAL1 receptors and, less markedly, GAL2 receptors. We examined the effects of galanin microinjections in the dorsal PAG (dPAG) on the performance of rats in different models of anxiety. Male Wistar rats (n=7-12) were implanted with guide cannulae in the dPAG. They received microinjections of either galanin (0.3, 1.0, and 3.0 nmol) or vehicle and were tested in the Vogel conflict test (VCT), elevated plus maze (EPM), and elevated T-maze (ETM). Rats that were tested in the ETM were further evaluated for exploratory activity in the open field test (OFT). Galanin microinjections had no effects on anxiety-like behavior in the EPM or VCT or exploratory activity in the EPM or OFT. In the ETM, however, microinjections of 3 nmol galanin impaired learned anxiety (i.e., avoidance of the open arms) without changing unconditioned fear (i.e., escape from the open arms). The present data suggest that galanin transmission in the dPAG inhibits the acquisition of anxiety-like responses in the ETM.
Collapse
Affiliation(s)
- F R C Soares
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil
| | - G P Silote
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil
| | - A F Almeida-Santos
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - D C Aguiar
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - L C Schenberg
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil
| | - V Beijamini
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil.
| |
Collapse
|
10
|
Mufson EJ, Mahady L, Waters D, Counts SE, Perez SE, DeKosky ST, Ginsberg SD, Ikonomovic MD, Scheff SW, Binder LI. Hippocampal plasticity during the progression of Alzheimer's disease. Neuroscience 2015; 309:51-67. [PMID: 25772787 PMCID: PMC4567973 DOI: 10.1016/j.neuroscience.2015.03.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/05/2015] [Accepted: 03/04/2015] [Indexed: 11/27/2022]
Abstract
Neuroplasticity involves molecular and structural changes in central nervous system (CNS) throughout life. The concept of neural organization allows for remodeling as a compensatory mechanism to the early pathobiology of Alzheimer's disease (AD) in an attempt to maintain brain function and cognition during the onset of dementia. The hippocampus, a crucial component of the medial temporal lobe memory circuit, is affected early in AD and displays synaptic and intraneuronal molecular remodeling against a pathological background of extracellular amyloid-beta (Aβ) deposition and intracellular neurofibrillary tangle (NFT) formation in the early stages of AD. Here we discuss human clinical pathological findings supporting the concept that the hippocampus is capable of neural plasticity during mild cognitive impairment (MCI), a prodromal stage of AD and early stage AD.
Collapse
Affiliation(s)
- E J Mufson
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States.
| | - L Mahady
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States
| | - D Waters
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States
| | - S E Counts
- Department of Translational Science & Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - S E Perez
- Division of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - S T DeKosky
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - S D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Departments of Psychiatry and Physiology & Neuroscience, New York University Langone Medical Center, Orangeburg, NY, United States
| | - M D Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - S W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - L I Binder
- Department of Translational Science & Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| |
Collapse
|
11
|
Alteration of behavioral changes and hippocampus galanin expression in chronic unpredictable mild stress-induced depression rats and effect of electroacupuncture treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:179796. [PMID: 25530777 PMCID: PMC4233667 DOI: 10.1155/2014/179796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
Abstract
To explore new noninvasive treatment options for depression, this study investigated the effects of electric acupuncture (EA) for depression rat models. Depression in rats was induced by unpredictable chronic mild stress (UCMS) combined with isolation for 21 days. Eighteen male Sprague-Dawley rats were randomly assigned into three groups: control, model, and EA groups. Rats were treated by EA once daily for 21 days. The results showed that body weight and sucrose consumption were significantly increased in EA group than in the model group. The crossing numbers and rearing numbers in the open field test significantly decreased in the model group but not in the EA group. And EA treatments upregulated levels of hippocampus galanin (Gal) in UCMS rats back to relative normal levels. The present study suggested that EA had antidepressant effects on UCMS model rats. The potential antidepressant effect may be related to upregulating Gal expression in hippocampus.
Collapse
|
12
|
Brain galanin system genes interact with life stresses in depression-related phenotypes. Proc Natl Acad Sci U S A 2014; 111:E1666-73. [PMID: 24706871 DOI: 10.1073/pnas.1403649111] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin is a stress-inducible neuropeptide and cotransmitter in serotonin and norepinephrine neurons with a possible role in stress-related disorders. Here we report that variants in genes for galanin (GAL) and its receptors (GALR1, GALR2, GALR3), despite their disparate genomic loci, conferred increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events in a European white population cohort totaling 2,361 from Manchester, United Kingdom and Budapest, Hungary. Bayesian multivariate analysis revealed a greater relevance of galanin system genes in highly stressed subjects compared with subjects with moderate or low life stress. Using the same method, the effect of the galanin system genes was stronger than the effect of the well-studied 5-HTTLPR polymorphism in the serotonin transporter gene (SLC6A4). Conventional multivariate analysis using general linear models demonstrated that interaction of galanin system genes with life stressors explained more variance (1.7%, P = 0.005) than the life stress-only model. This effect replicated in independent analysis of the Manchester and Budapest subpopulations, and in males and females. The results suggest that the galanin pathway plays an important role in the pathogenesis of depression in humans by increasing the vulnerability to early and recent psychosocial stress. Correcting abnormal galanin function in depression could prove to be a novel target for drug development. The findings further emphasize the importance of modeling environmental interaction in finding new genes for depression.
Collapse
|
13
|
Silote GP, Rosal AB, de Souza MM, Beijamini V. Infusion of galanin into the mid-caudal portion of the dorsal raphe nucleus has an anxiolytic effect on rats in the elevated T-maze. Behav Brain Res 2013; 252:312-7. [PMID: 23791934 DOI: 10.1016/j.bbr.2013.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/14/2013] [Accepted: 06/16/2013] [Indexed: 11/19/2022]
Abstract
Galanin and 5-HT coexist in dorsal raphe nucleus (DRN) neurons. Microinjection of galanin into the DRN reduces the firing rate of serotonin neurons. Serotonergic neurons projecting from the DRN to the amygdala facilitate learned anxiety producing an anxiogenic effect, while those projecting from the periaqueductal grey affect innate anxiety producing a panicolytic effect. We tested the hypothesis that injection of galanin into rat DRN would induce anxiolytic/panicogenic effects in the elevated T-maze (ETM), a model that allows for the evaluation of both of these effects. Galanin infusion into the mid-caudal DRN, but not into the rostral DRN, impaired inhibitory avoidance, suggesting an anxiolytic effect. The effective dose of galanin (0.3 nmol) did not modify locomotor activity in the open field. Contrary to expectations, microinjection of galanin into the DRN did not facilitate the latency of one-way escape in the ETM. Pretreatment with a galanin antagonist, M40, attenuated galanin-induced impairment of inhibitory avoidance. The results show that microinjection of a low dose of galanin only into the mid-caudal DRN has an anxiolytic effect. This effect seems to be mediated, at least in part, by galanin receptors. Further investigation is necessary to identify the receptor subtypes and the DRN subregion involved in the anxiolytic effect of galanin.
Collapse
Affiliation(s)
- Gabriela Pandini Silote
- Department of Pharmaceutical Sciences, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil
| | | | | | | |
Collapse
|
14
|
Li L, Yu L, Kong Q. Exogenous galanin attenuates spatial memory impairment and decreases hippocampal beta-amyloid levels in rat model of Alzheimer's disease. Int J Neurosci 2013; 123:759-65. [DOI: 10.3109/00207454.2013.800976] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Podlasz P, Sallinen V, Chen YC, Kudo H, Fedorowska N, Panula P. Galanin gene expression and effects of its knock-down on the development of the nervous system in larval zebrafish. J Comp Neurol 2013; 520:3846-62. [PMID: 22522977 DOI: 10.1002/cne.23131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite the known importance of galanin in the nervous system of vertebrates, the galanin gene structure and expression and the consequences of galanin deficiency in developing zebrafish are unknown. We cloned the galanin gene and analyzed its expression by using in situ hybridization, PCR, and immunocytochemistry throughout the early development of zebrafish until the end of the first week of life. The single zebrafish galanin gene encoded for a single amidated galanin peptide and a galanin message-associated peptide. Two forms resulting from alternative processing were identified. Galanin mRNA was maternally expressed and found in developing fish throughout early development. In situ hybridization showed the first positive neurons in three groups in the brain at 28 hours postfertilization. At 2 days postfertilization, three prosencephalic neuron groups were seen in the preoptic area and in rostral and caudal periventricular hypothalamus. In addition, two other groups of weakly stained neurons were visible, one in the midbrain and another in the hindbrain. Translation inhibition of galanin mRNA with morpholino oligonucleotides caused complete disappearance of galanin immunoreactivity in the brain until 7 dpf and did not induce known cascades of nonspecific pathways or morphological abnormalities. A minor disturbance of sensory ganglia was found. Galanin knockdown did not alter the expression of tyrosine hydroxylases 1 and 2, choline acetyltransferase, histidine decarboxylase, or orexin mRNA. The results suggest that galanin does not regulate the development of these key markers of specific neurons, although galanin-expressing fibers were in a close spatial proximity to several neurons of these neuronal populations.
Collapse
Affiliation(s)
- P Podlasz
- Neuroscience Center and Institute of Biomedicine, Anatomy, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
16
|
Jurkowski W, Yazdi S, Elofsson A. Ligand binding properties of human galanin receptors. Mol Membr Biol 2012; 30:206-16. [DOI: 10.3109/09687688.2012.750384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Gene expression changes in the septum: possible implications for microRNAs in sculpting the maternal brain. PLoS One 2012; 7:e38602. [PMID: 22701680 PMCID: PMC3368935 DOI: 10.1371/journal.pone.0038602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/12/2012] [Indexed: 01/08/2023] Open
Abstract
The transition from the non-maternal to the maternal state is characterized by a variety of CNS alterations that support the care of offspring. The septum (including lateral and medial portions) is a brain region previously linked to various emotional and motivational processes, including maternal care. In this study, we used microarrays (PLIER algorithm) to examine gene expression changes in the septum of postpartum mice and employed gene set enrichment analysis (GSEA) to identify possible regulators of altered gene expression. Genes of interest identified as differentially regulated with microarray analysis were validated with quantitative real-time PCR. We found that fatty acid binding protein 7 (Fabp7) and galanin (Gal) were downregulated, whereas insulin-like growth factor binding protein 3 (Igfbp3) was upregulated in postpartum mice compared to virgin females. These genes were previously found to be differentially regulated in other brain regions during lactation. We also identified altered expression of novel genes not previously linked to maternal behavior, but that could play a role in postpartum processes, including glutamate-ammonia ligase (Glul) and somatostatin receptor 1 (Sstr1) (both upregulated in postpartum). Genes implicated in metabolism, cell differentiation, or proliferation also exhibited altered expression. Unexpectedly, enrichment analysis revealed a high number of microRNAs, transcription factors, or conserved binding sites (177 with corrected P-value <0.05) that were significantly linked to maternal upregulated genes, while none were linked to downregulated genes. MicroRNAs have been linked to placenta and mammary gland development, but this is the first indication they may also play a key role in sculpting the maternal brain. Together, this study provides new insights into genes (along with possible mechanisms for their regulation) that are involved in septum-mediated adaptations during the postpartum period.
Collapse
|
18
|
Xu X, Jiang H, Liu H, Zhang W, Xu X, Li Z. The effects of galanin on dorsal root ganglion neurons with high glucose treatment in vitro. Brain Res Bull 2011; 87:85-93. [PMID: 22051611 DOI: 10.1016/j.brainresbull.2011.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 09/21/2011] [Accepted: 10/20/2011] [Indexed: 12/20/2022]
Abstract
The exposure of neurons to high glucose concentrations is considered a determinant of diabetic neuropathy. The extracellular high concentration of glucose can cause neuronal cellular damage. Galanin (Gal) not only plays a role in processing of sensory information but also participates in energy homeostasis and glucoregulation. However, the effects of Gal on dorsal root ganglion (DRG) neurons with high glucose are not clear. Using an in vitro model of high glucose-treated DRG neurons in culture, the effects of Gal on intracellular reactive oxygen species (ROS) expression, cell viability, apoptosis, expression of Gal and its receptors (GalR1 and GalR2) of DRG neurons were investigated. Neurons were dissociated from embryonic day 15 (E15) rat DRG and cultured for 48 h and then maintained in serum-free neurobasal medium containing high glucose (45 mmol/L) or normal glucose (25 mmol/L) for 24h. Mannitol (20 mmol/L) was also used to create a high osmotic pressure mimicking the high glucose condition. The results showed that high glucose caused a rapid increasing of intracellular ROS, decreases of cell viability, and upregulation of Gal and its mRNA. Exogenous Gal (1 μmol/L) inhibited the above effects caused by high glucose. Interestingly, high glucose caused downregulation of GalR1 and its mRNA and administration of exogenous Gal could further decrease their expression, whereas expression of GalR2 and its mRNA was not affected at different experimental conditions. The results of the present study indicate for the first time that Gal and its receptor system are involved in high glucose-induced DRG neuronal injury. The contribution of exogenous Gal on neuroprotection appears to be quite significant. These results provide rationale and experimental evidence for development and further studies of Gal on therapeutic strategy for improving diabetic neuropathy.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China.
| | | | | | | | | | | |
Collapse
|
19
|
Elliott-Hunt CR, Holmes FE, Hartley DM, Perez S, Mufson EJ, Wynick D. Endogenous galanin protects mouse hippocampal neurons against amyloid toxicity in vitro via activation of galanin receptor-2. J Alzheimers Dis 2011; 25:455-62. [PMID: 21471641 PMCID: PMC3145121 DOI: 10.3233/jad-2011-110011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Expression of the neuropeptide galanin is known to be upregulated in the brain of patients with Alzheimer's disease (AD). We and others have shown that galanin plays a neuroprotective role in a number of excitotoxic injury paradigms, mediated by activation of the second galanin receptor subtype (GAL2). In the present study, we investigated whether galanin/GAL2 plays a similar protective role against amyloid-β(Aβ) toxicity. Here we report that galanin or the GAL2/3-specific peptide agonist Gal2-11, both equally protect primary dispersed mouse wildtype (WT) neonatal hippocampal neurons from 250 nM Aβ1-42 toxicity in a dose dependent manner. The amount of Aβ1-42 induced cell death was significantly greater in mice with loss-of-function mutations in galanin (Gal-KO) or GAL2 (GAL2-MUT) compared to strain-matched WT controls. Conversely, cell death was significantly reduced in galanin over-expressing (Gal-OE) transgenic mice compared to strain-matched WT controls. Exogenous galanin or Gal2-11 rescued the deficits in the Gal-KO but not the GAL2-MUT cultures, confirming that the protective effects of endogenous or exogenous galanin are mediated by activation of GAL2. Despite the high levels of endogenous galanin in the Gal-OE cultures, the addition of exogenous 100 nM or 50 nM galanin or 100 nM Gal2-11 further significantly reduced cell death, implying that GAL2-mediated neuroprotection is not at maximum in the Gal-OE mice. These data further support the hypothesis that galanin over-expression in AD is a neuroprotective response and imply that the development of a drug-like GAL2 agonist might reduce the progression of symptoms in patients with AD.
Collapse
Affiliation(s)
- Caroline R. Elliott-Hunt
- Schools of Physiology and Pharmacology and Clinical Sciences, University of Bristol, Bristol, UK
| | - Fiona E. Holmes
- Schools of Physiology and Pharmacology and Clinical Sciences, University of Bristol, Bristol, UK
| | - Dean M. Hartley
- Department of Neurological Sciences, Rush University Medical Center, Chicago University, Chicago, IL, USA
| | - Sylvia Perez
- Department of Neurological Sciences, Rush University Medical Center, Chicago University, Chicago, IL, USA
| | - Elliott J. Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago University, Chicago, IL, USA
| | - David Wynick
- Schools of Physiology and Pharmacology and Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
20
|
Unschuld PG, Ising M, Roeske D, Erhardt A, Specht M, Kloiber S, Uhr M, Müller-Myhsok B, Holsboer F, Binder EB. Gender-specific association of galanin polymorphisms with HPA-axis dysregulation, symptom severity, and antidepressant treatment response. Neuropsychopharmacology 2010; 35:1583-92. [PMID: 20237460 PMCID: PMC3055457 DOI: 10.1038/npp.2010.30] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Galanin (GAL) is an estrogen-inducible neuropeptide, highly expressed in brain regions reported to be involved in regulation of mood and anxiety. GAL possibly has a direct modulatory effect on hypothalamic-pituitary-adrenal (HPA)-axis regulation. Recent data from pharmacological and genetic studies indicate a significant function of GAL in stress-related disorders. By using a tag SNP approach covering the locus encoding preprogalanin (PPGAL), earlier findings of female-specific associations of polymorphisms in this locus with panic disorder were expanded to a larger sample of 268 outpatients with anxiety disorders (ADs). Within a larger sample of 541 inpatients with major depressive disorder (MDD), we then tested associations of one PPGAL tag SNP with specific depression symptom clusters and HPA-axis activity assessed by the combined dexamethasone-suppression/CRH-stimulation test both at inpatient admission and discharge (n=298). Gender specificity as well as dependence of the association on levels of circulating estrogens was analyzed. Genotyping revealed high linkage disequilibrium in the promoter area of the PPGAL gene, which includes several estrogen-response elements. Confirming earlier results, rs948854, tagging this promoter region, was associated with more severe anxiety pathology in female AD patients, but not in males. In premenopausal female MDD patients, the same allele of rs948854 was associated with more severe vegetative but not cognitive depressive symptoms at discharge and worse treatment response on antidepressant medication. Furthermore, this allele was associated with higher HPA-axis activity at admission. No significant case-control associations could be observed. However, because of power limitations of both patient samples, small effects cannot be excluded. The reported associations in independent samples of AD and MDD support an estrogen-dependent function of GAL in pathophysiology of anxiety and depression, affecting response to antidepressant treatment.
Collapse
Affiliation(s)
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Kraepelinstrasse, München, Germany
| | - Darina Roeske
- Max Planck Institute of Psychiatry, Kraepelinstrasse, München, Germany
| | - Angelika Erhardt
- Max Planck Institute of Psychiatry, Kraepelinstrasse, München, Germany
| | - Michael Specht
- Max Planck Institute of Psychiatry, Kraepelinstrasse, München, Germany
| | - Stefan Kloiber
- Max Planck Institute of Psychiatry, Kraepelinstrasse, München, Germany
| | - Manfred Uhr
- Max Planck Institute of Psychiatry, Kraepelinstrasse, München, Germany
| | | | - Florian Holsboer
- Max Planck Institute of Psychiatry, Kraepelinstrasse, München, Germany
| | | |
Collapse
|
21
|
Counts SE, Perez SE, Ginsberg SD, Mufson EJ. Neuroprotective role for galanin in Alzheimer's disease. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:143-62. [PMID: 21299067 DOI: 10.1007/978-3-0346-0228-0_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Galanin (GAL) and GAL receptors (GALR) are overexpressed in degenerating brain regions associated with cognitive decline in Alzheimer's disease (AD). The functional consequences of GAL plasticity in AD are unclear. GAL inhibits cholinergic transmission in the hippocampus and impairs spatial memory in rodent models, suggesting that GAL overexpression exacerbates cognitive impairment in AD. By contrast, gene expression profiling of individual cholinergic basal forebrain (CBF) neurons aspirated from AD tissue revealed that GAL hyperinnervation positively regulates mRNAs that promote CBF neuronal function and survival. GAL also exerts neuroprotective effects in rodent models of neurotoxicity. These data support the growing concept that GAL overexpression preserves CBF neuron function, which may in turn delay the onset of symptoms of AD. Further elucidation of GAL activity in selectively vulnerable brain regions will help gauge the therapeutic potential of GALR ligands in the treatment of AD.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
22
|
Galanin impairs cognitive abilities in rodents: relevance to Alzheimer's disease. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:133-41. [PMID: 21299066 DOI: 10.1007/978-3-0346-0228-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The neuropeptide galanin and its receptors are localized in brain pathways that mediate learning and memory. Central microinjection of galanin impairs performance of a variety of cognitive tasks in rats. Transgenic mice overexpressing galanin display deficits in some learning and memory tests. The inhibitory role of galanin in cognitive processes, taken together with the fact that overexpression of galanin occurs in Alzheimer's disease, suggests that galanin antagonists may offer a novel therapeutic approach to treat memory loss in patients suffering from Alzheimer's.
Collapse
|
23
|
Paschos KA, Veletza S, Chatzaki E. Neuropeptide and sigma receptors as novel therapeutic targets for the pharmacotherapy of depression. CNS Drugs 2009; 23:755-72. [PMID: 19689166 DOI: 10.2165/11310830-000000000-00000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among the most prevalent of mental illnesses, depression is increasing in incidence in the Western world. It presents with a wide variety of symptoms that involve both the CNS and the periphery. Multiple pharmacological observations led to the development of the monoamine theory as a biological basis for depression, according to which diminished neurotransmission within the CNS, including that of the dopamine, noradrenaline (norepinephrine) and serotonin systems, is the leading cause of the disorder. Current conventional pharmacological antidepressant therapies, using selective monoamine reuptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors, aim to enhance monoaminergic neurotransmission. However, the use of these agents presents severe disadvantages, including a delay in the alleviation of depressive symptoms, significant adverse effects and high frequencies of non-responding patients. Neuroendocrinological data of recent decades reveal that depression and anxiety disorders may occur simultaneously due to hypothalamus-pituitary-adrenal (HPA) axis hyperactivity. As a result, the stress-diathesis model was developed, which attempts to associate genetic and environmental influences in the aetiology of depression. The amygdala and the hippocampus control the activity of the HPA axis in a counter-balancing way, and a plethora of regulatory neuropeptide signalling pathways are involved. Intervention at these molecular targets may lead to alternative antidepressant therapeutic solutions that are expected to overcome the limitations of existing antidepressants. This prospect is based on preclinical evidence from pharmacological and genetic modifications of the action of neuropeptides such as corticotropin-releasing factor, substance P, galanin, vasopressin and neuropeptide Y. The recent synthesis of orally potent non-peptide micromolecules that can selectively bind to various neuropeptide receptors permits the onset of clinical trials to evaluate their efficacy against depression.
Collapse
Affiliation(s)
- Konstantinos A Paschos
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace (DUTH), Alexandroupolis 68100, Thrace, Greece
| | | | | |
Collapse
|
24
|
León LA, Landeira-Fernandez J, Cardenas FP. Effects of chronic intracerebroventricular 3,4-methylenedioxy-N-methamphetamine (MDMA) or fluoxetine on the active avoidance test in rats with or without exposure to mild chronic stress. Behav Brain Res 2009; 205:259-64. [PMID: 19589359 DOI: 10.1016/j.bbr.2009.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 06/24/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
Abstract
In despite the similarity of mechanisms of action between both selective serotonin reuptake inhibitors (SSRI) and MDMA (main compound of "Ecstasy") there are relatively few reports on the effects of the later on animal models of depression. There are many animal models designed to create or to assess depression. Mild chronic stress (MCS) is a procedure designed to create depression. MCS includes the chronic exposure of the animal to several stressors. After that, rats show behavioural changes associated to depression. In the other hand, the active avoidance task (AAT) is an experimental situation in which an animal has to accomplish a particular behaviour in order to avoid the application of a stressor. Animals exhibiting depression fail to acquire avoidance responses as rapidly as normal animals do. In order to assess the effect of MDMA on the acquisition of an active avoidance response, forty-five rats were divided in two groups exposed or not exposed to MCS. Rats also received chronic intracerebroventricular MDMA (0.2microg/microl; 1microl), fluoxetine (2.0microg/microl; 1microl) or saline solution (0.9%; 1microl). Our results showed that the effect of MDMA depends upon the level of stress. MDMA treated animals showed better acquisition (F([2,37])=7.046; P=0.003) and retention (F([2,37])=3.900; P=0.029) of the avoidance response than fluoxetine or saline treated animals when exposed to MCS. This finding suggests that MDMA (and no fluoxetine) was able to change the aversive valence of the stressors maybe enhancing coping strategies. This effect could serve as a protective factor against helplessness and maybe post-traumatic stress.
Collapse
Affiliation(s)
- Laura A León
- Laboratory of Neuroscience and Behaviour, Department of Psychology, Universidad de los Andes, Cra 1 #18A-12, Bogotá, Colombia
| | | | | |
Collapse
|
25
|
Kinney JW, Sanchez-Alavez M, Barr AM, Criado JR, Crawley JN, Behrens MM, Henriksen SJ, Bartfai T. Impairment of memory consolidation by galanin correlates with in vivo inhibition of both LTP and CREB phosphorylation. Neurobiol Learn Mem 2009; 92:429-38. [PMID: 19531380 DOI: 10.1016/j.nlm.2009.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/19/2009] [Accepted: 06/08/2009] [Indexed: 11/30/2022]
Abstract
Changes in the state of CREB phosphorylation and in LTP in the hippocampus have been associated with learning and memory. Here we show that galanin, the neuropeptide released in the hippocampal formation from cholinergic and noradrenergic fibers, that has been shown to produce impairments in memory consolidation in the Morris water maze task inhibits both LTP and CREB phosphorylation in the rat hippocampus in vivo. While there are many transmitters regulating CREB phosphorylation none has been shown to suppress behaviorally-induced hippocampal CREB phosphorylation as potently as galanin. The in vivo inhibition of dentate gyrus-LTP and of CREB phosphorylation by the agonist occupancy of GalR1 and GalR2-type galanin receptors provides strong in vivo cellular and molecular correlates to galanin-induced learning deficits and designates galanin as a major regulator of the memory consolidation process.
Collapse
Affiliation(s)
- Jefferson W Kinney
- Department of Psychology, University of Nevada, Las Vegas, NV 89154-5030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jones M, Perumal P, Vrontakis M. Presence of Galanin-Like Immunoreactivity in Mesenchymal and Neural Crest Origin Tissues During Embryonic Development in the Mouse. Anat Rec (Hoboken) 2009; 292:481-7. [DOI: 10.1002/ar.20850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Mitsukawa K, Lu X, Bartfai T. Bidirectional regulation of stress responses by galanin in mice: involvement of galanin receptor subtype 1. Neuroscience 2009; 160:837-46. [PMID: 19272414 DOI: 10.1016/j.neuroscience.2009.02.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/24/2009] [Accepted: 02/27/2009] [Indexed: 02/08/2023]
Abstract
The neuropeptide galanin has been shown to play a role in psychiatric disorders as well as in other biological processes including regulation of pain threshold through interactions with three G-protein coupled receptors, galanin receptor subtypes 1-3 (GalR1-3). While most of the pharmacological studies on galanin in stress-related disorders have been done with rats, the continuous development of genetically engineered mice involving galanin or its receptor subtype(s) validates the importance of mouse pharmacological studies. The present study on mice examined the homeostatic, endocrinological and neuroanatomical effects of the galanin, injected intracerebroventricularly (i.c.v.), in regulation of stress responses after restraint stress. Furthermore, the roles of GalR1 on these effects were studied using GalR1 knockout (KO) mice. The core body temperature and the locomotor activity were monitored with radio telemetry devices. Galanin (i.c.v.) decreased locomotor activity and exerted a bidirectional effect on the restraint stress-induced hyperthermia; a high dose of galanin significantly attenuated the stress-induced hyperthermic response, while a low dose of galanin moderately enhanced this response. The bidirectional effect of galanin was correlated with changes in stress hormone levels (adrenocorticotropic hormone and corticosterone). To neuroanatomically localize the effects of galanin on stress response, cFos immunoreactivity was assessed in galanin receptor rich areas; paraventricular nucleus (PVN) of the hypothalamus and the locus coeruleus (LC), respectively. A high dose of galanin significantly induced cFos activity in the LC but not in the PVN. In GalR1KO mice, a high dose of galanin failed to induce any of the above effects, suggesting the pivotal role of GalR1 in decreased locomotor activity and stress-resistant effects caused by galanin i.c.v. injection studied here.
Collapse
Affiliation(s)
- K Mitsukawa
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
28
|
Endoh T, Sato D, Wada Y, Shibukawa Y, Ishihara K, Hashimoto S, Yoshinari M, Matsuzaka K, Tazaki M, Inoue T. Galanin inhibits calcium channels via Gαi-protein mediated by GalR1 in rat nucleus tractus solitarius. Brain Res 2008; 1229:37-46. [DOI: 10.1016/j.brainres.2008.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 02/04/2023]
|
29
|
Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, Gago B, Roberts D, Langel U, Genedani S, Ferraro L, de la Calle A, Narvaez J, Tanganelli S, Woods A, Agnati L. Receptor–receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. ACTA ACUST UNITED AC 2008; 58:415-52. [DOI: 10.1016/j.brainresrev.2007.11.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/26/2007] [Accepted: 11/29/2007] [Indexed: 01/01/2023]
|
30
|
Abstract
The neuropeptide galanin and its receptors are localized in brain pathways mediating learning and memory. Central microinjection of galanin impairs performance of a variety of cognitive tasks in rats. Transgenic mice overexpressing galanin display deficits in some learning and memory tests. The inhibitory role of galanin in cognitive processes, taken together with the overexpression of galanin in Alzheimer's disease, suggests that galanin antagonists may offer a novel therapeutic approach to treat memory loss in Alzheimer's patients.
Collapse
Affiliation(s)
- J N Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Porter Neuroscience Research, Center Building 35, Room 1C-903, Mail Code 3730, Bethesda, Maryland 20892-3730, USA.
| |
Collapse
|
31
|
Abstract
Galanin (GAL) and GAL receptors (GALRs) are overexpressed in degenerating brain regions associated with cognitive decline in Alzheimer's disease (AD). The functional consequences of GAL plasticity in AD are unclear. GAL inhibits cholinergic transmission in the hippocampus and impairs spatial memory in rodent models, suggesting GAL overexpression exacerbates cognitive impairment in AD. By contrast, gene expression profiling of individual cholinergic basal forebrain (CBF) neurons aspirated from AD tissue revealed that GAL hyperinnervation positively regulates mRNAs that promote CBF neuronal function and survival. GAL also exerts neuroprotective effects in rodent models of neurotoxicity. These data support the growing concept that GAL overexpression preserves CBF neuron function which in turn may slow the onset of AD symptoms. Further elucidation of GAL activity in selectively vulnerable brain regions will help gauge the therapeutic potential of GALR ligands for the treatment of AD.
Collapse
Affiliation(s)
- S. E. Counts
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street Suite 300, Chicago, Ilinois 60612 USA
| | - S. E. Perez
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street Suite 300, Chicago, Ilinois 60612 USA
| | - E. J. Mufson
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street Suite 300, Chicago, Ilinois 60612 USA
| |
Collapse
|
32
|
Alexander JL, Richardson G, Grypma L, Hunkeler EM. Collaborative depression care, screening, diagnosis and specificity of depression treatments in the primary care setting. Expert Rev Neurother 2008; 7:S59-80. [PMID: 18039069 DOI: 10.1586/14737175.7.11s.s59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification, referral and specific treatment of midlife patients in primary care who are distressed by mood, anxiety, sleep and stress-related symptoms, with or without clinically confirmed menopausal symptoms, are confounded by many structural issues in the delivery of women's healthcare. Diagnosis, care delivery, affordability of treatment, time commitment for treatment, treatment specificity for a particular patient's symptoms and patient receptiveness to diagnosis and treatment all play roles in the successful amelioration of symptoms in this patient population. The value of screening for depression in primary care, the limitations of commonly used screening instruments relative to culture and ethnicity, and which clinical care systems make best use of diagnostic screening programs will be discussed in the context of the midlife woman. The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) program illustrates the relatively high rate of unremitted patients, regardless of clinical setting, who are receiving antidepressants. Nonmedication treatment approaches, referred to in the literature as 'nonsomatic treatments', for depression, anxiety and stress, include different forms of cognitive-behavioral therapy, interpersonal therapy, structured daily activities, mindfulness therapies, relaxation treatment protocols and exercise. The specificity of these treatments, their mechanisms of action, the motivation and time commitment required of patients, and the availability of trained practitioners to deliver them are reviewed. Midlife women with menopausal symptoms and depression/anxiety comorbidity represent a challenging patient population for whom an individualized treatment plan is often necessary. Treatment for depression comorbid with distressing menopausal symptoms would be facilitated by the implementation of a collaborative care program for depression in the primary care setting.
Collapse
|
33
|
Unschuld PG, Ising M, Erhardt A, Lucae S, Kohli M, Kloiber S, Salyakina D, Thoeringer CK, Kern N, Lieb R, Uhr M, Binder EB, Müller-Myhsok B, Holsboer F, Keck ME. Polymorphisms in the galanin gene are associated with symptom-severity in female patients suffering from panic disorder. J Affect Disord 2008; 105:177-84. [PMID: 17573119 DOI: 10.1016/j.jad.2007.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 05/08/2007] [Accepted: 05/09/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Galanin (GAL) is a neuropeptide, which is expressed primarily in limbic nuclei in the brain and mediates miscellaneous physiological processes and behaviors. In animal studies, both the application of GAL and antagonism of its receptors have been shown to affect anxiety-like and depression-related behavior. In humans, intravenous administration of the neuropeptide galanin has been reported to have fast antidepressant efficacy. Furthermore, GAL is involved in hypothalamic-hypophysiotropic signalling and cosecreted with luteinizing hormone-releasing hormone (LHRH), possibly acting as a mediator of estrogen action. METHODS In this study six single nucleotide polymorphisms (SNPs) within the gene coding for GAL were analyzed for possible associations with diagnosis and severity of symptoms in 121 male and female patients suffering from panic disorder (PD). RESULTS Our results suggest an association between genetic variations in the GAL-gene and severity of PD-symptoms in female patients. The most pronounced effects could be observed for two haplotypes containing the closely linked, non-protein-coding SNPs rs948854 and rs4432027. Both polymorphisms are located within CpG-dinucleotides in the promoter region of GAL and thus might be involved in epigenetic regulation of the GAL-gene. LIMITATIONS A relatively small patient sample was analyzed in this study, the herein presented results need to be validated in independent studies. CONCLUSIONS The results of this study underline the potential of further genetic research concerning GAL and a possible role of this neuropeptide in the pathogenesis of female PD. In this regard, GAL and its receptors appear to be a promising target for pharmacological therapy of anxiety and affective disorders.
Collapse
Affiliation(s)
- Paul G Unschuld
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 München, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol 2007; 75:266-322. [PMID: 17764663 DOI: 10.1016/j.bcp.2007.07.030] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 02/08/2023]
Abstract
Evidence that psychoactive substance use disorders, bulimia nervosa, pathological gambling, and sexual addiction share an underlying biopsychological process is summarized. Definitions are offered for addiction and addictive process, the latter being the proposed designation for the underlying biopsychological process that addictive disorders are hypothesized to share. The addictive process is introduced as an interaction of impairments in three functional systems: motivation-reward, affect regulation, and behavioral inhibition. An integrative review of the literature that addresses the neurobiology of addiction is then presented, organized according to the three functional systems that constitute the addictive process. The review is directed toward identifying candidate neurochemical substrates for the impairments in motivation-reward, affect regulation, and behavioral inhibition that could contribute to an addictive process.
Collapse
Affiliation(s)
- Aviel Goodman
- Minnesota Institute of Psychiatry, 1347 Summit Avenue, St. Paul, MN 55105, USA.
| |
Collapse
|
35
|
Puskas L, Puskas N, Malobabić S, Krivokuća D, Stanković G, Radonjić V. [Characteristics of galanin and vasoactive intestinal peptide immunoreactivity in the rat amygdala complex]. MEDICINSKI PREGLED 2007; 60:19-24. [PMID: 17853706 DOI: 10.2298/mpns0702019p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Morphological features and morphometric parameters of galanin (GAL) and vasoactive intestinal peptide (VIP) immunoreactive neurons and neuronal fibres were studied in all nuclei of adult male rat amygdala. MATERIAL AND METHODS After perfusion and fixation, rat brains were immunohistochemically stained with antibodies against GAL and VIP and then visualized by avidin-biotin-peroxidase complex. RESULTS AND DISCUSSION The greatest number of galanin-immunoreactive neurons were identified in the medial part of the central nucleus and in the dorsal part of the medial nucleus. In the first case, most neurons were bipolar (37%), and in the second, they were ovoid (45%). GAL-immunoreactive fibers were identified in the medial nucleus, "bed nucleus" of the accessory olfactory tract, fiontal cortical nucleus, amygdalo-hippocampal area and basolateral nucleus. VIP-immunoreactive neurons were diffusely distributed in more nuclei than the previous, mostly in the lateral, basolateral, and basomedial nucleus. They were mostly ovoid (40%). VIP-immunoreactive fibers were observed in the lateral part oJ'the central nucleus, while long and radially oriented fibers were present in the frontal and dorsal cortical nucleus. CONCLUSION By distribution analysis of GAL and VIP immunoreactive neurons and fibers, and according to literature data, it can be assumed that the medial part of the central nucleus receives VIP fibers from other parts of the amygdaloid body, and then sends GAL fibers to the medial nucleus.
Collapse
Affiliation(s)
- Laslo Puskas
- Medicinski fakultet, Institut za anatomiju, Beograd.
| | | | | | | | | | | |
Collapse
|
36
|
A novel, systemically active, selective galanin receptor type-3 ligand exhibits antidepressant-like activity in preclinical tests. Neurosci Lett 2006; 405:111-5. [PMID: 16854525 DOI: 10.1016/j.neulet.2006.06.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/11/2006] [Accepted: 06/15/2006] [Indexed: 11/30/2022]
Abstract
The neuropeptide galanin is widely expressed in limbic nuclei in the brain, and plays an important role in the regulation of homeostatic and affective behaviors, in part through its modulation of central monoamine pathways. Recent evidence suggests that galanin and its receptors may be involved in the efficacy of various modalities of antidepressant treatments. We have previously demonstrated that systemically active, non-peptide galanin receptor type-1/2 agonists exhibit antidepressant-like effects in the rat forced swim test. Here we evaluate a novel galanin receptor type-3 (GalR3) antagonist in preclinical tests of anxiety and depression. At multiple doses, the compound displayed no effects in the elevated plus maze in mice. By contrast, the compound decreased time spent immobile in the tail suspension test by mice. Additionally, the GalR3 drug decreased time spent immobile in the forced swim test in rats, similarly to the effects of desipramine, yet did not increase locomotor activity in an open field test. These combined data from two species indicate that GalR3 receptor antagonists may exhibit antidepressant-like effects.
Collapse
|
37
|
Karlsson RM, Holmes A. Galanin as a modulator of anxiety and depression and a therapeutic target for affective disease. Amino Acids 2006; 31:231-9. [PMID: 16733616 DOI: 10.1007/s00726-006-0336-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/06/2006] [Indexed: 12/31/2022]
Abstract
Galanin is a 29 amino-acid (30 in humans) neuropeptide with a close functional relationship with neurotransmitter systems implicated in the pathophysiology and treatment of depression and anxiety disorders. In rodent models of depression-related behavior, treatment with galanin or compounds with agonist actions at galanin receptors has been shown to affect depression-related behaviors and the behavioral and neurochemical effects of antidepressants. Treatment with clinically efficacious antidepressants alters galanin and galanin receptor gene expression in rodents. Rodent anxiety-like behaviors appear to be modulated by galanin in a complex manner, with studies showing either increases, decreases and no effects of galanin treatments and galanin mutations on anxiety-like behavior in various tasks. One concept to emerge from this literature is that galanin recruitment during extreme behavioral and physiological provocations such as stress and opiate withdrawal may serve to attenuate negative emotional states caused by noradrenergic hyperactivation. The specific galanin receptor subtypes mediating the anxiety- and depression-related effects of galanin remains to be determined, with evidence supporting a possible contribution of GalR1, GalR2 and GalR3. While our understanding of the role of galanin as a modulator of emotion remains at an early stage, recent progress in this rapidly evolving field raise possibility of that galanin may represent a target for the development of novel antidepressant and anxiolytic drug treatments.
Collapse
Affiliation(s)
- R-M Karlsson
- Laboratory of Clinical and Translational Science, National Institute of Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20892, U.S.A.
| | | |
Collapse
|
38
|
Wrenn CC, Turchi JN, Schlosser S, Dreiling JL, Stephenson DA, Crawley JN. Performance of galanin transgenic mice in the 5-choice serial reaction time attentional task. Pharmacol Biochem Behav 2006; 83:428-40. [PMID: 16626795 DOI: 10.1016/j.pbb.2006.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 02/22/2006] [Accepted: 03/05/2006] [Indexed: 01/21/2023]
Abstract
The neuropeptide galanin impairs learning and memory in rodents. The mechanism underlying the cognitive effects of galanin may be related to inhibitory effects of galanin on cholinergic transmission. As cholinergic function is thought to modulate sustained attention, the present study examined whether galanin-overexpressing transgenic mice have impairments in sustained attention. Galanin transgenic (GAL-tg) mice and wild-type (WT) littermate controls were trained in a 5-choice serial reaction time task, modified to assess sustained attention. GAL-tg and WT mice performed similarly during acquisition with respect to accuracy, total omissions, and response speed. Attentional mechanisms were challenged by parametric changes including increased event rate, event asynchrony, or decreased stimulus duration. Singly, these challenges did not differentially affect performance between genotypes. Concurrent administration of these challenges, which represents an optimal test of sustained attention, also had similar effects on GAL-tg and WT mice. When stimulus discriminability was reduced by constant illumination of the house light, GAL-tg mice omitted more trials than WT mice, but other measures of performance did not differ by genotype. Moreover, intraventricular injection of galanin in WT mice did not affect sustained attention. These data indicate that previously reported learning and memory effects of galanin are not secondary to attentional dysfunction.
Collapse
Affiliation(s)
- Craige C Wrenn
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Belfer I, Hipp H, McKnight C, Evans C, Buzas B, Bollettino A, Albaugh B, Virkkunen M, Yuan Q, Max MB, Goldman D, Enoch MA. Association of galanin haplotypes with alcoholism and anxiety in two ethnically distinct populations. Mol Psychiatry 2006; 11:301-11. [PMID: 16314872 PMCID: PMC2748409 DOI: 10.1038/sj.mp.4001768] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/20/2005] [Accepted: 10/03/2005] [Indexed: 11/08/2022]
Abstract
The neuropeptide galanin (GAL) is widely expressed in the central nervous system. Animal studies have implicated GAL in alcohol abuse and anxiety: chronic ethanol intake increases hypothalamic GAL mRNA; high levels of stress increase GAL release in the central amygdala. The coding sequence of the galanin gene, GAL, is highly conserved and a functional polymorphism has not yet been found. The aim of our study was, for the first time, to identify GAL haplotypes and investigate associations with alcoholism and anxiety. Seven single-nucleotide polymorphisms (SNPs) spanning GAL were genotyped in 65 controls from five populations: US and Finnish Caucasians, African Americans, Plains and Southwestern Indians. A single haplotype block with little evidence of historical recombination was observed for each population. Four tag SNPs were then genotyped in DSM-III-R lifetime alcoholics and nonalcoholics from two population isolates: 514 Finnish Caucasian men and 331 Plains Indian men and women. Tridimensional Personality Questionnaire harm avoidance (HA) scores, a dimensional measure of anxiety, were obtained. There was a haplotype association with alcoholism in both the Finnish (P=0.001) and Plains Indian (P=0.004) men. The SNPs were also significantly associated. Alcoholics were divided into high and low HA groups (>or= and
Collapse
Affiliation(s)
- I Belfer
- Pain and Neurosensory Mechanisms Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Echevarria DJ, Hernandez A, Diogenes A, Morilak DA. Administration of the galanin antagonist M40 into lateral septum attenuates shock probe defensive burying behavior in rats. Neuropeptides 2005; 39:445-51. [PMID: 16084587 DOI: 10.1016/j.npep.2005.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 06/06/2005] [Indexed: 11/21/2022]
Abstract
Galanin (GAL) has been implicated in modulating anxiety, although a precise role remains unclear. Previous studies revealed anxiolytic effects, anxiogenic effects, or no effect, depending on the test, brain region, route of drug administration and context. We have shown previously that microinjection of the GAL antagonist M40 into central amygdala blocked an anxiolytic response to acute stress on the elevated plus maze when rats were pretreated with yohimbine, suggesting an anxiolytic effect of GAL. By contrast, we also showed that microinjection of M40 into the lateral bed nucleus of the stria terminalis attenuated anxiety-like behavioral responses to stress on the plus maze and social interaction tests, implying an anxiogenic effect for GAL. The behavioral response to stress on both these tests is a reduction of an ongoing behavior (open-arm exploration or social interaction, respectively). To better understand the anxiety-modulating role of GAL, it is also important to ascertain its effect on a response that represents an activation rather than suppression of behavior. Thus, in this study, we investigated an active behavioral response to acute stress in rats, the shock-probe defensive burying response. Bilateral microinjections of M40 into lateral septum (LS), a region important to this response and innervated by GAL, dose-dependently decreased burying without affecting immobility. No change was seen in hindpaw withdrawal latency on a thermosensitivity assay, suggesting that the reduction in burying behavior was not attributable to changes in cutaneous pain sensitivity. These results indicate that in LS, GAL facilitates the active anxiety-like behavioral response on the defensive burying test, similar to its facilitatory effect on anxiety-like stress-induced suppression of behavior in the lateral bed nucleus. These results highlight the fact that, rather than a unified system-like role in modulating anxiety, the effects of GAL can be either facilitating or attenuating, and are region-specific, context-specific and response-specific.
Collapse
Affiliation(s)
- David J Echevarria
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| | | | | | | |
Collapse
|
41
|
He B, Counts SE, Perez SE, Hohmann JG, Koprich JB, Lipton JW, Steiner RA, Crawley JN, Mufson EJ. Ectopic galanin expression and normal galanin receptor 2 and galanin receptor 3 mRNA levels in the forebrain of galanin transgenic mice. Neuroscience 2005; 133:371-80. [PMID: 15885921 DOI: 10.1016/j.neuroscience.2005.01.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 01/21/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
The functional interactions of the neuropeptide galanin (GAL) occur through its binding to three G protein-coupled receptor subtypes: galanin receptor (GALR) 1, GALR2 and GALR3. Previously, we demonstrated that GALR1 mRNA expression was increased in the CA1 region of the hippocampus and discrete hypothalamic nuclei in galanin transgenic (GAL-tg) mice. This observation suggested a compensatory adjustment in cognate receptors in the face of chronic GAL exposure. To evaluate the molecular alterations to GALR2 and GALR3 in the forebrain of GAL overexpressing mice, we performed complementary quantitative, real-time PCR (qPCR), in situ hybridization, and immunohistochemistry in select forebrain regions of GAL-tg mice to characterize the neuronal distribution and magnitude of GAL mRNA and peptide expression and the consequences of genetically manipulating the neuropeptide GAL on the expression of GALR2 and GALR3 receptors. We found that GAL-tg mice displayed dramatic increases in GAL mRNA and peptide in the frontal cortex, posterior cortex, hippocampus, septal diagonal band complex, amygdala, piriform cortex, and olfactory bulb. Moreover, there was evidence for ectopic neuronal GAL expression in forebrain limbic regions that mediate cognitive and affective behaviors, including the piriform and entorhinal cortex and amygdala. Interestingly, regional qPCR analysis failed to reveal any changes in GALR2 or GALR3 expression in the GAL-tg mice, suggesting that, contrary to GALR1, these receptor genes are not under ligand-mediated regulatory control. The GAL-tg mouse model may provide a useful tool for the investigation of GAL ligand-receptor relationships and their role in normal cognitive and affective functions as well as in the onset of neurological disease.
Collapse
MESH Headings
- Animals
- Galanin/genetics
- Galanin/metabolism
- Gene Expression Regulation/genetics
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Prosencephalon/anatomy & histology
- Prosencephalon/metabolism
- RNA, Messenger/metabolism
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Receptor, Galanin, Type 3/genetics
- Receptor, Galanin, Type 3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- B He
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Badie-Mahdavi H, Lu X, Behrens MM, Bartfai T. Role of galanin receptor 1 and galanin receptor 2 activation in synaptic plasticity associated with 3',5'-cyclic AMP response element-binding protein phosphorylation in the dentate gyrus: studies with a galanin receptor 2 agonist and galanin receptor 1 knockout mice. Neuroscience 2005; 133:591-604. [PMID: 15885916 DOI: 10.1016/j.neuroscience.2005.02.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 02/16/2005] [Accepted: 02/20/2005] [Indexed: 11/25/2022]
Abstract
The neuropeptide galanin was shown to impair cognitive performance and reduce hippocampal CA1 long-term potentiation (LTP) in rodents. However, the contribution of the two main galanin receptors; GalR1 and GalR2, present in the hippocampus to these effects is not known. In the present study, we determined the protein expression levels of GalR1 and GalR2 in the mouse dentate gyrus (DG) and used galanin (2-11), a recently introduced GalR2 agonist, and GalR1 knockout mice to examine the contribution of GalR1 and GalR2 to the modulation of LTP and 3',5'-cyclic AMP response element-binding protein (CREB)-dependent signaling cascades. In the DG, 57+/-5% of the galanin binding sites were GalR2, and the remaining population corresponded to GalR1. In hippocampal slices, galanin (2-11) fully blocked the induction of DG LTP, whereas galanin (1-29), a high affinity agonist for both GalR1 and GalR2, strongly but not fully attenuated the late phase of LTP by 80+/-1.5%. Application of galanin (1-29) or galanin (2-11) after LTP induction caused a transient reduction in the maintenance phase of LTP, with the larger effect displayed by superfusion of galanin (2-11). The induction and maintenance of DG LTP was not altered in the GalR1 knockout mice. Superfusion of galanin (1-29) or galanin (2-11) blocked the LTP induction to the same degree indicating a role for GalR2 in the induction phase of DG LTP. Furthermore, we analyzed the effects of GalR1 and/or GalR2 activation on DG LTP-induced CREB phosphorylation, associated with the late transcriptional effects of LTP. In the lateral part of the granule cell layer, high-frequency trains stimulation caused a significant increase in the level of CREB phosphorylation, which was significantly reduced by application of either galanin (1-29) or galanin (2-11), indicating that both GalR1 and/or GalR2 can mediate some of their effects on LTP through inhibition of CREB-related signaling cascades.
Collapse
MESH Headings
- Animals
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dentate Gyrus/metabolism
- Electric Stimulation/methods
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Excitatory Postsynaptic Potentials/radiation effects
- Fluorescent Antibody Technique/methods
- Galanin/chemistry
- Galanin/pharmacokinetics
- Galanin/pharmacology
- In Vitro Techniques
- Iodine Isotopes/pharmacokinetics
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Long-Term Potentiation/radiation effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Peptide Fragments/pharmacology
- Phosphorylation
- Protein Binding
- Receptor, Galanin, Type 1/deficiency
- Receptor, Galanin, Type 1/physiology
- Receptor, Galanin, Type 2/agonists
- Receptor, Galanin, Type 2/physiology
- Time Factors
Collapse
Affiliation(s)
- H Badie-Mahdavi
- The Scripps Research Institute, Department of Neuropharmacology, The Harold L. Dorris Neurological Research Center, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
43
|
Badie-Mahdavi H, Behrens MM, Rebek J, Bartfai T. Effect of galnon on induction of long-term potentiation in dentate gyrus of C57BL/6 mice. Neuropeptides 2005; 39:249-51. [PMID: 15944018 DOI: 10.1016/j.npep.2004.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
The impairment of cognitive performance by galanin administration in rodents indicates a possible modulating effect of this neuropeptide on long-term potentiation (LTP) induction in the hippocampal formation. Galnon is a non-peptide, systemically active galanin receptor agonist which has been tested in feeding, seizure and forced swim task in in vivo rodent experimental models. Similarly to galanin (1-29) (i.c.v.), galnon (i.p.) has exhibited anticonvulsant effects in rats. We have investigated the effect of galnon on the synaptic transmission and plasticity in hippocampal dentate gyrus (DG) of C57Bl/6 mice and compared the galnon effects to the effect of galanin (1-29) and galmic, a non-peptide galanin receptor agonist. Similarly to galanin (1-29) and galmic, superfusion of galnon did not alter the input-output responses in DG. Administration of galnon (1 microM) significantly attenuated the LTP induction by 85.5 +/- 1% by 51 min after high frequency trains stimulation. This result was very similar to the effect of galanin (1-29) and galmic, which caused an 80 +/- 1.5% and 94 +/- 2% reduction in the level of field potentiation, respectively. The PPF responses, however, were not altered due to galnon superfusion which is in contrast to the effect of galanin (1-29) or galmic. In summary, these data indicate that the systemically active, non-peptide galanin receptor agonist, galnon can exert similar effects to galanin (1-29) in attenuation of DG LTP in mice.
Collapse
Affiliation(s)
- H Badie-Mahdavi
- The Scripps Research Institute, Harold L. Dorris Neurological Research Institute, Department of Neuropharmacology, 10550 North Torrey Pines Road, SR307, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
44
|
Zheng K, Kuteeva E, Xia S, Bartfai T, Hökfelt T, Xu ZQD. Age-related impairments of synaptic plasticity in the lateral perforant path input to the dentate gyrus of galanin overexpressing mice. Neuropeptides 2005; 39:259-67. [PMID: 15944020 DOI: 10.1016/j.npep.2005.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 02/15/2005] [Indexed: 11/17/2022]
Abstract
In the present study, electrophysiological recordings were made from hippocampal slices obtained from mice overexpressing galanin under the promoter for the platelet-derived growth factor-B (GalOE mice). In these mice, a particularly strong galanin expression is seen in the granule cell layer/mossy fibers. Paired-pulse facilitation (PPF) of excitatory postsynaptic field potentials (fEPSPs) at the lateral perforant path (LPP)-dentate gyrus synapses was elicited in the dentate gyrus after stimulation with different interpulse intervals. Slices from young adult wild-type (WT) animals showed significant PPF of the 2nd EPSP evoked with paired-pulse stimuli, while PPF was reduced in slices from young adult GalOE mice, as well as aged WT mice, but were not observed at all in slices from aged GalOE animals. Application of the putative galanin antagonist M35 increased PPF in slices from aged WT mice as well as from adult and aged GalOE mice, but had no effect in slices taken from young adult WT mice. These data indicate that galanin is involved in hippocampal synaptic plasticity, in particular in age-related reduction of synaptic plasticity in the LPP input to the dentate gyrus. Galaninergic mechanisms may therefore represent therapeutic targets for treatment of age-related memory deficits and Alzheimer's disease.
Collapse
Affiliation(s)
- Kang Zheng
- Department of Neuroscience, Karolinska Institutet, S-171 71, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Pirondi S, Kuteeva E, Giardino L, Ferraro L, Antonelli T, Bartfai T, Ogren SO, Hökfelt T, Calzà L. Behavioral and neurochemical studies on brain aging in galanin overexpressing mice. Neuropeptides 2005; 39:305-12. [PMID: 15944027 DOI: 10.1016/j.npep.2005.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 02/15/2005] [Indexed: 01/20/2023]
Abstract
To study possible involvement of galanin in brain aging quality, we have investigated behavioral, neurochemical and morphological parameters in aged mice overexpressing galanin under the platelet-derived growth factor B promoter (GalOE mice) compared to wild-type littermates (WT mice). The behavioral analysis in the forced swim test showed that old GalOE animals spent more time in immobility compared to WT. In the activity cage test, galanin overexpression counteracted the age-induced decrease in exploratory behavior. The neurochemical analysis showed a 30% decrease in noradrenaline overflow in the cerebral cortex of WT old mice that was not present in age-matched GalOE mice. Our results indicate that overexpression of galanin can influence several behavioral and neurochemical parameters in old mice.
Collapse
Affiliation(s)
- S Pirondi
- Department of Veterinary Morphophysiology and Animal Production, University of Bologna, Bologna 40064, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Díaz-Cabiale Z, Parrado C, Vela C, Coveñas R, Yanaihara N, Fuxe K, González-Barón S, Narváez JA. Intracisternal galanin/angiotensin II interactions in central cardiovascular control. ACTA ACUST UNITED AC 2005; 127:133-40. [PMID: 15680479 DOI: 10.1016/j.regpep.2004.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 10/29/2004] [Accepted: 11/13/2004] [Indexed: 11/19/2022]
Abstract
The aim of this work was to investigate the interactions between angiotensin II (Ang II) and galanin(1-29) [GAL(1-29)] or its N-terminal fragment galanin(1-15) [GAL(1-15)] on central cardiovascular control. The involvement of angiotensin type1 (AT1) receptor subtype was analyzed by the AT1 antagonist, DuP 753. Anesthesized male Sprague-Dawley rats received intracisternal microinjections of Ang II (3 nmol) with GAL(1-29) (3 nmol) or GAL(1-15) (0.1 nmol) alone or in combination. The changes in mean arterial pressure (MAP) and heart rate (HR) recorded from the femoral artery were analyzed. The injection of Ang II and GAL(1-15) alone did not produce any change in MAP. However, coinjections of both Ang II and GAL(1-15) elicited a significant vasopressor response. This response was blocked by DuP 753. Ang II and GAL(1-15) alone produced an increase in HR. The coinjections of Ang II with GAL(1-15) induced an increase in HR not significantly different from the tachycardia produced by each peptide. The presence of DuP 753 counteracted this response. GAL(1-29) alone elicited a transient vasopressor response that disappeared in the presence of Ang II. The coinjections of Ang II with GAL(1-29) and with DuP 753 restored the transient vasopressor effect produced by GAL(1-29). GAL(1-29) produced a slight but significant tachycardic effect that was not modified in the presence of Ang II. The presence of DuP 753 did not modify the tachycardic response produced by Ang II and GAL(1-29). These results give indications for the existence of a differential modulatory effect of Ang II with GAL(1-15) and GAL(1-29) on central blood pressure response that might be dependent on the activity of the angiotensin AT1 receptor subtype.
Collapse
Affiliation(s)
- Zaida Díaz-Cabiale
- Departamento de Fisiología, Facultad de Medicina, Campus de Teatinos s/n, Málaga 29080, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hood SD, Argyropoulos SV, Nutt DJ. New directions in the treatment of anxiety disorders. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.4.401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
|
49
|
|
50
|
Holmes A, Li Q, Koenig EA, Gold E, Stephenson D, Yang RJ, Dreiling J, Sullivan T, Crawley JN. Phenotypic assessment of galanin overexpressing and galanin receptor R1 knockout mice in the tail suspension test for depression-related behavior. Psychopharmacology (Berl) 2005; 178:276-85. [PMID: 15365683 DOI: 10.1007/s00213-004-1997-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 07/14/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE Galanin and its receptors exert inhibitory neuromodulatory control over brain monoamines. Rat studies revealed that galanin expression is upregulated by exposure to stressors and that galanin manipulations modify neuroendocrine and behavioral responses to stress, leading to the hypothesis that galanin mediates depression-related behaviors. METHODS In the present study, we examined the role of galanin in modulating antidepressant-related behavior in galanin overexpressing transgenic (GAL-tg) mice and galanin receptor R1 knockout (GAL-R1 KO) mice, using the tail suspension test (TST). Quantitative autoradiography for 5-HT(1A)-R and serotonin transporter binding density tested for changes in these two major regulatory components of the 5-HT system in galanin mutant mice. RESULTS Baseline TST behavior was normal in GAL-tg and GAL-R1 KO mice, and intracerebroventricular administration of galanin failed to alter TST behavior in normal C57BL/6J mice. The TST anti-immobility effects of acute treatment with the serotonin reuptake inhibitor, fluoxetine (0-30 mg/kg), and the norepinephrine reuptake inhibitor, desipramine (0-30 mg/kg), were unaltered in galanin mutant mice. Hippocampal 5-HT(1A)-R density was significantly elevated in GAL-tg and GAL-R1 KO mice, while hippocampal 5-HTT density was reduced in GAL-R1 KO mice, relative to controls. CONCLUSION Neither pharmacological nor molecular genetic manipulations of galanin altered depression-related profiles in the TST. Possible functional alterations in hippocampal 5-HT neurotransmission may have contributed to these negative results. These preliminary findings provide evidence against the hypothesis that galanin plays a central role in mouse depression-related behaviors. It remains possible that galanin modulates depression-related responses in other experimental paradigms and species.
Collapse
Affiliation(s)
- Andrew Holmes
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Building 10, Room 3C217, Bethesda, MD 20892-1375, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|