1
|
Gomes A, Cangussu LB, Cunha RL, de Oliveira LS, Franca AS, Costa ALR. Investigating the Impact of Chlorogenic Acid Content and Cellulose Nanoparticles on Sunflower Protein-Based Emulsions and Films. Foods 2025; 14:824. [PMID: 40077528 PMCID: PMC11899123 DOI: 10.3390/foods14050824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
This study explores how varying chlorogenic acid levels (low-yellowish, Y; high-greenish, G) in sunflower proteins (SFs) affect the properties of eugenol-loaded oil-in-water emulsions and the resulting films, while examining the interaction of cellulose nanoparticles (from commercial (CNC) and banana peel sources (CNF)) with the film-forming matrix. This research fills gaps in literature by demonstrating how interactions among proteins, lipids, phenolic compounds, and cellulose nanoparticles influence film properties. The high chlorogenic acid content in SF reduced electrostatic repulsion between protein molecules, causing aggregation, oil droplet flocculation, and increased emulsion viscosity. The mechanical properties of emulsion-based films were significantly lower than those made with SF dispersions. Films made from low chlorogenic acid (yellowish SF) emulsions showed lower tensile strength and Young's modulus but higher elongation at break compared to those made from high chlorogenic acid (greenish SF) emulsions. Water vapor permeability (WVP) decreased in films containing oil phases, but adding cellulose nanoparticles increased WVP. Despite this, the cellulose nanoparticles could not fully overcome the negative effects of lipid-protein interactions on mechanical properties and WVP. However, films containing eugenol exhibited significant antioxidant activity. The findings provide insights into developing sustainable, active packaging with antioxidant functionality and reduced environmental impact, opening new avenues for applications in food and other sectors requiring eco-friendly materials.
Collapse
Affiliation(s)
- Andresa Gomes
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| | - Lais Brito Cangussu
- Instituto Federal do Mato Grosso do Sul (IFMS), Rua Salime Tanure, S/N, Coxim 79400-000, MS, Brazil;
| | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas 13083-862, SP, Brazil;
| | - Leandro Soares de Oliveira
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.S.d.O.); (A.S.F.)
- Departamento de Engenharia Mecânica (DEMEC), Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Adriana Silva Franca
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.S.d.O.); (A.S.F.)
- Departamento de Engenharia Mecânica (DEMEC), Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Letícia Rodrigues Costa
- Institute of Exact and Technological Sciences, Campus Florestal, Federal University of Vicosa (UFV), Rodovia LMG 818, km 6, Florestal 35690-000, MG, Brazil;
| |
Collapse
|
2
|
Singh G, Passari AK, Kumar NS, Kumar B, Nayak SC, Ram H, Singh BP. UPLC-ESI MS/MS- and GC-MS-Based Altitudinal Variations in the Bioactive Potential of Mikania micrantha and Ageratum houstonianum. Appl Biochem Biotechnol 2025; 197:335-354. [PMID: 39115787 DOI: 10.1007/s12010-024-05005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Traditional medicinal plants have attracted scientific interest due to their bioactive compounds, and the levels of their constituents vary with location and altitude. The present study was designed to evaluate the pharmacological potential of two selected traditional medicinal plants, Mikania micrantha and Ageratum houstonianum collected from two sites, Murlen National Park (MNP) and Dampa Tiger Reserve (DTR), located at different altitudes. Both plant species are used by local traditional healers in Mizoram, Northeast India, to treat various health problems. We hypothesized that altitudinal variation would affect these plants' chemical composition and bioactive potential. Plant extracts were evaluated for antioxidant and cytotoxic activities. The results show that the plants located at a higher altitude, i.e., MNP, showed higher TPC (615.7 ± 0.58 and 453.80 ± 0.95 µg gallic acid equivalents/mg of plant extract dry weight (µg GAE/mg) for M. micrantha and A. houstonianum , respectively) and TFC (135.4 ± 0.46 and 120.66 ± 1.93 µg quercetin equivalents/mg of plant extract dry weight (µg GE/mg) for M. micrantha and A. houstonianum, respectively). The extract of A. houstonianum. (MNP) exhibited significantly greater antioxidant activity against ABTS radicals (IC50 241.6 µg/mL) as compared to the extract of A. houstonianum (DTR) (IC50 371.2 µg/mL). The composition of the bioactive compounds present in the plants was determined using UPLC-ESI MS/MS and GC/MS, which detected five and ten compounds in the A. houstonianum and M. micrantha extracts, respectively. Plant species collected from the Murlen National Park site had high bioactivity potential and contained several bioactive compounds. A distinct variation between the volatile and non-volatile compounds was revealed. The collective data in this study show the influence of altitude on the biological compound production of selected medicinal plants. The findings will be utilized in the plant material needed for developing bioactive formulations.
Collapse
Affiliation(s)
- Garima Singh
- Department of Botany, Pachhunga University College, Mizoram University, Aizawl, Mizoram, India
| | - Ajit Kumar Passari
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, 31350, Chihuahua, Chihuahua, Mexico
| | - N Senthil Kumar
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India
| | - Brijesh Kumar
- Sophisticated Analytical Instrument Facility Division, CSIR, Lucknow, 226031, India
| | - S Chandra Nayak
- DOS in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570005, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, 342001, India.
| | - Bhim Pratap Singh
- Department of Agriculture and Environmental Sciences, NIFTEM-Kundli, Sonepat, 131028, Haryana, India.
| |
Collapse
|
3
|
Wang T, Zheng S, Ke F, Zhang S, Xiao J, Sun X, Zhang S, Zhang L, Gong J. Cytological and metabolomic analysis of Citrus fruit to elucidate puffing disorder. Food Chem 2024; 459:140356. [PMID: 38981384 DOI: 10.1016/j.foodchem.2024.140356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Puffiness, a physiological disorder commonly observed during the ripening and post-harvest processes of fruits in Citrus reticulata, significantly affects the quality and shelf-life of citrus fruits. The complex array of factors contributing to puffiness has obscured the current understanding of its mechanistic basis. This study examined the puffing index (PI) of 12 citrus varieties at full ripeness, focusing on the albedo layer as a crucial tissue, and investigated the correlation between cellular structural characteristics, key primary metabolites and PI. The findings revealed that the cell gap difference and the number of lipid droplets were closely linked to PI. Chlorogenic acid, Ferulic acid, D-Galacturonic acid, D-Glucuronic acid, (9Z,11E)-Octadecadienoic acid, and 9(10)-EpOME were identified as pivotal primary metabolites for rind puffing. Determination of lignin, protopectin, cellulose and lipoxygenase content further validated the relationship between cell wall, lipid metabolism and rind puffing. This study furnishes novel insights into the mechanisms underlying puffing disorder.
Collapse
Affiliation(s)
- Ting Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Shuqi Zheng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Fuzhi Ke
- Zhejiang Academy of Agricultural Sciences, Citrus Research Institute, Taizhou, 318026, China
| | - Shiyi Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Jinping Xiao
- Zhejiang Academy of Agricultural Sciences, Institute of horticulture, Hangzhou, 310021, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Shuning Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Lanlan Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| | - Jinli Gong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
4
|
Himshweta, Verma N, Trehan N, Singh M. Molecularly imprinted polymers in the analysis of chlorogenic acid: A review. Anal Biochem 2024; 694:115616. [PMID: 38996900 DOI: 10.1016/j.ab.2024.115616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Chlorogenic acid, a phenolic compound, is prevalent across various plant species and has been known for its pharmacological advantages. Health care experts have identified chlorogenic acid as a potential biomarker for treatment of a wide range of illnesses. Therefore, achieving efficient extraction and analysis of chlorogenic acid from plants and their products has become essential. Molecularly imprinted polymers (MIPs) are highly effective adsorbent for the extraction of chlorogenic acid from complex matrices. Currently, there is a lack of comprehensive review article that consolidate the methods utilized for the purification of chlorogenic acid through molecular imprinting. In this context, we have surveyed the common approaches employed in preparing MIPs specifically designed for the analysis of chlorogenic acid, including both conventional and newly developed. This review discusses the advantages, limitations of polymerization techniques and proposed strategies to produce more efficient MIPs for chlorogenic acid enrichment in complex samples. Additionaly, we present advanced imprinting methods for designing MIPs, which improve the adsorption capacity, sensitivity and selectivity towards chlorogenic acid.
Collapse
Affiliation(s)
- Himshweta
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Neelam Verma
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Nitu Trehan
- Department of Biotechnology, Mata Gujri College Fatehgarh Sahib-140407, Punjab, India.
| | - Minni Singh
- Functional Food and Nanotechnology Group, Department of Biotechnology & Food Technology, Punjabi University Patiala-147002, Punjab, India.
| |
Collapse
|
5
|
Kruczek M, Gumul D, Korus A, Buksa K, Ziobro R. Phenolic Compounds and Antioxidant Status of Cookies Supplemented with Apple Pomace. Antioxidants (Basel) 2023; 12:antiox12020324. [PMID: 36829883 PMCID: PMC9952554 DOI: 10.3390/antiox12020324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The post-production leftovers after the pressing of apple juice are a rich source of health-promoting compounds, which could be used in the food industry for the manufacture of dietary foods, applicable also for people with celiac disease. This raw material is currently little used, and the cost of its disposal is considerable. Therefore, an attempt was made to enrich gluten-free cookies with different proportions of apple pomace. The content of individual polyphenols determined by the UPLC-PDA-MS/MS method, basic chemical composition, physical properties of cookies with 15%, 30%, 45%, and 60% apple pomace, were evaluated. It was found that apple pomace in gluten-free cookies caused an increase in the content of phenolic acids, quercetin derivatives, flavan-3-ols and dihydrochalcones. An elevation in protein, fat, and minerals was also observed. The growing share of apple pomace caused a significant increase in the content of total fiber, soluble, and insoluble fractions, but resulted in an increase in the hardness and darkening of the cookies while reducing their volume.
Collapse
Affiliation(s)
- Marek Kruczek
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Dorota Gumul
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Anna Korus
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Krzysztof Buksa
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Rafał Ziobro
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
- Correspondence:
| |
Collapse
|
6
|
Efficient and selective extraction of chlorogenic acid in juice samples using magnetic molecularly imprinted polymers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Kitic D, Miladinovic B, Randjelovic M, Szopa A, Sharifi-Rad J, Calina D, Seidel V. Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:1885. [PMID: 35890519 PMCID: PMC9325146 DOI: 10.3390/plants11141885] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 05/02/2023]
Abstract
Prunus armeniaca L. (Rosaceae)-syn. Amygdalus armeniaca (L.) Dumort., Armeniaca armeniaca (L.) Huth, Armeniaca vulgaris Lam is commonly known as the apricot tree. The plant is thought to originate from the northern, north-western, and north-eastern provinces of China, although some data show that it may also come from Korea or Japan. The apricot fruit is used medicinally to treat a variety of ailments, including use as an antipyretic, antiseptic, anti-inflammatory, emetic, and ophthalmic remedy. The Chinese and Korean pharmacopeias describe the apricot seed as an herbal medicinal product. Various parts of the apricot plant are used worldwide for their anticancer properties, either as a primary remedy in traditional medicine or as a complementary or alternative medicine. The purpose of this review was to provide comprehensive and up-to-date information on ethnobotanical data, bioactive phytochemicals, anticancer potential, pharmacological applications, and toxicology of the genus Prunus armeniaca, thus providing new perspectives on future research directions. Included data were obtained from online databases such as PubMed/Medline, Google Scholar, Science direct, and Wiley Online Library. Multiple anticancer mechanisms have been identified in in vitro and in vivo studies, the most important mechanisms being apoptosis, antiproliferation, and cytotoxicity. The anticancer properties are probably mediated by the contained bioactive compounds, which can activate various anticancer mechanisms and signaling pathways such as tumor suppressor proteins that reduce the proliferation of tumor cells. Other pharmacological properties resulting from the analysis of experimental studies include neuroprotective, cardioprotective, antioxidant, immunostimulatory, antihyperlipidemic, antibacterial, and antifungal effects. In addition, data were provided on the toxicity of amygdalin, a compound found in apricot kernel seeds, which limits the long-term use of complementary/alternative products derived from P. armeniaca. This updated review showed that bioactive compounds derived from P. armeniaca are promising compounds for future research due to their important pharmacological properties, especially anticancer. A detailed analysis of the chemical structure of these compounds and their cytotoxicity should be carried out in future research. In addition, translational pharmacological studies are required for the correct determination of pharmacologically active doses in humans.
Collapse
Affiliation(s)
- Dusanka Kitic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Bojana Miladinovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Milica Randjelovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK
| |
Collapse
|
8
|
Rojas-González A, Figueroa-Hernández CY, González-Rios O, Suárez-Quiroz ML, González-Amaro RM, Hernández-Estrada ZJ, Rayas-Duarte P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022; 27:3400. [PMID: 35684338 PMCID: PMC9181911 DOI: 10.3390/molecules27113400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
The demand of foods with high antioxidant capacity have increased and research on these foods continues to grow. This review is focused on chlorogenic acids (CGAs) from green coffee, which is the most abundant source. The main CGA in coffee is 5-O-caffeoylquinic acid (5-CQA). Coffee extracts are currently the most widely used source to enhance the antioxidant activity of foods. Due to the solubility of CGAs, their extraction is mainly performed with organic solvents. CGAs have been associated with health benefits, such as antioxidant, antiviral, antibacterial, anticancer, and anti-inflammatory activity, and others that reduce the risk of cardiovascular diseases, type 2 diabetes, and Alzheimer's disease. However, the biological activities depend on the stability of CGAs, which are sensitive to pH, temperature, and light. The anti-inflammatory activity of 5-CQA is attributed to reducing the proinflammatory activity of cytokines. 5-CQA can negatively affect colon microbiota. An increase in anthocyanins and antioxidant activity was observed when CGAs extracts were added to different food matrices such as dairy products, coffee drinks, chocolate, and bakery products. The fortification of foods with coffee CGAs has the potential to improve the functionality of foods.
Collapse
Affiliation(s)
- Alexis Rojas-González
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Oscar González-Rios
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, Mexico;
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| |
Collapse
|
9
|
Narayanaperumal J, D'souza A, Miriyala A, Sharma B, Gopal G. A randomized double blinded placebo controlled clinical trial for the evaluation of green coffee extract on immune health in healthy adults. J Tradit Complement Med 2022; 12:455-465. [PMID: 36081816 PMCID: PMC9446042 DOI: 10.1016/j.jtcme.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/08/2023] Open
Abstract
Background The immune system functions to protect the host from a broad array of infectious diseases. Here, we evaluated the in vitro immunomodulatory effects of green coffee extract (GCE), and conducted a double-blinded, randomized and placebo-controlled trial among apparently healthy individuals. Methods We determined the levels and functions of inflammatory and immune markers viz., phospho-NF-κB p65 ser536, chemotaxis, phagocytosis, TH1/TH2 cytokines and IgG production. We also evaluated several immunological markers such as total leukocyte counts, differential leukocyte counts, NK cell activity, CD4/CD8 ratio, serum immunoglobulin, C-reactive protein (CRP) and pro-inflammatory cytokines (IL-6 and TNF-α). Results and conclusion GCE significantly inhibited LPS-induced NF-κB p65 ser536 phosphorylation, MCP-1-induced chemotaxis and significantly enhanced phagocytosis and IgG production. In addition, GCE modulated PMA/PHA-induced TH1/TH2 cytokine production. Clinical investigations suggested that the expression of CD56 and CD16 was markedly augmented on NK cells following GCE treatment. GCE significantly enhanced IgA production before and after influenza vaccination. Similarly, IL-6, TNF-α and CRP levels were significantly inhibited by GCE. Together, GCE confers several salubrious immunomodulatory effects at different levels attributing to optimal functioning of immune responses in the host. Taxonomy Cell biology, Clinical study, Clinical Trial. GCE showed an anti-inflammatory effect by inhibiting the NF-κB phosphorylation. GCE enhances innate immune response by activating NK cells and phagocytosis. GCE is an immunomodulator.
Collapse
Affiliation(s)
- Jeyaparthasarathy Narayanaperumal
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
| | - Avin D'souza
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
| | - Amarnath Miriyala
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
| | - Bhavna Sharma
- ITC Limited - Foods Division, ITC Green Centre, No. 18 Banaswadi, Main Road, Maruthiseva Nagar, Bangalore, 560 005, India
| | - Ganesh Gopal
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
- Corresponding author.
| |
Collapse
|
10
|
Atalar MN, Aras A, Türkan F, Barlak N, Yildiko Ü, Karatas OF, Alma MH. The effects of Daucus carota extract against PC3, PNT1a prostate cells, acetylcholinesterase, glutathione S-transferase, and α-glycosidase; an in vitro-in silico study. J Food Biochem 2021; 45:e13975. [PMID: 34676566 DOI: 10.1111/jfbc.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/26/2022]
Abstract
Daucus carota L. ssp. major (DCM) plant is widely used in traditional medicine to treat some types of cancer and various diseases. Therefore, we evaluated the biological activities of this plant to define its effects against prostate cancer (PCa), Alzheimer's disease (AD), oxidation, and diabetes mellitus (DM) as well as identified its phenolic composition. To determine the anti-cancer properties of the plant extract, we treated PCa cells with the extract at a concentration range of 0.25, 0.5, 1, 2, and 4 mg/ml. Significant results were obtained against the PC3 cells compared to normal PNT1a prostate epithelial cells. As a result of precise measurements at the millimolar level, it was observed that the plant extract showed an effective inhibition (IC50 ) against glutathione S-transferase (GST; 12.84 mM), acetyl cholinesterase (AChE; 15.07 mM), and α-Gly (11.75 mM) enzymes when compared with standard inhibitors. Antioxidant activities of DCM methanol extract were determined via two well-known in vitro techniques. The extracts showed antioxidant activities against the DPPH and ABTS+ . The LC-ESI-MS/MS was used to determine the phenolic compounds of methanol extract from DCM. Chlorogenic acid (2,089.096 µg/g), shikimic acid (193.14 µg/g), and coumarin (113.604 µg/g) were characterized as major phenolic compounds. In addition, the interactions of chlorogenic acid, chrysin, coumarin, and shikimic acid with the used three enzymes have been calculated using molecular docking simulation. PRACTICAL APPLICATIONS: Plant natural phenolic compounds have protective effects such as anti-inflammatory, antioxidant, anticarcinogen, and enzyme inhibitory. Therefore, it has an important place in the food and pharmaceutical industry. The present study aims to reveal the enzyme inhibitory, antioxidant, and anticarcinogenic properties of the Daucus carota ssp. Major (DCM) plant extract. Significant results were obtained against the PC3 cells compared to normal PNT1a prostate epithelial cells. DCM extract demonstrated considerable antioxidant activity and inhibitory potential on used metabolic enzymes. These biological effects are thought to have a relationship with rich chemical composition.
Collapse
Affiliation(s)
- Mehmet Nuri Atalar
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
| | - Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Igdır University, Igdır, Turkey
| | - Neslisah Barlak
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Cancer Therapeutics Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ümit Yildiko
- Department of Environmental Engineering, Faculty of Engineering, Igdir University, Igdir, Turkey.,Department of Bioengineering, Kafkas University, Kars, Turkey
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Cancer Therapeutics Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Mehmet Hakkı Alma
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
| |
Collapse
|
11
|
Phytochemical Composition, Antibacterial Activity, and Antioxidant Properties of the Artocarpus altilis Fruits to Promote Their Consumption in the Comoros Islands as Potential Health-Promoting Food or a Source of Bioactive Molecules for the Food Industry. Foods 2021; 10:foods10092136. [PMID: 34574246 PMCID: PMC8468414 DOI: 10.3390/foods10092136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/03/2022] Open
Abstract
The present study aimed to evaluate the health-promoting potential of breadfruit (Artocarpus altilis (Parkinson) Fosberg, Moraceae family), a traditional Comorian food, considering the sample variability according to geographic localisation. Moreover, the main aims of this research were also to promote its consumption in the Comoros Islands as potential health-promoting food and evaluate it as a source of bioactive molecules for the food industry thanks to its antioxidant and antibacterial properties. Investigations on biologically active substances were carried out on the extracts obtained from breadfruit flours from five regions of Grande Comore (Ngazidja), the main island in Comoros. Phytochemical screening revealed the presence of tannins and polyphenols, flavonoids, leucoanthocyanins, steroids, and triterpenes. The considered secondary metabolites were phenolic compounds, vitamin C, monoterpenes, and organic acids. The contents of total phenolic compounds (mgGAE/100 g of dry weight—DW) in the extracts ranged from 29.69 ± 1.40 (breadfruit from Mbadjini—ExMBA) to 96.14 ± 2.07 (breadfruit from Itsandra—ExITS). These compounds included flavanols, flavonols, cinnamic acid and benzoic acid derivatives, and tannins which were detected at different levels in the different extracts. Chlorogenic acid presented the highest levels between 26.57 ± 0.31 mg/100 g DW (ExMIT) and 43.80 ± 5.43 mg/100 g DW (ExMBA). Quercetin was by far the most quantitatively important flavonol with levels ranging from 14.68 ± 0.19 mg/100 g DW (ExMIT) to 29.60 ± 0.28 mg/100 g DW (ExITS). The extracts were also rich in organic acids and monoterpenes. Quinic acid with contents ranging from 77.25 ± 6.04 mg/100 g DW (ExMBA) to 658.56 ± 0.25 mg/100 g DW of ExHAM was the most important organic acid in all the breadfruit extracts, while limonene was quantitatively the main monoterpene with contents between 85.86 ± 0.23 mg/100 g DW (ExMIT) and 565.45 ± 0.24 mg/100 g DW (ExITS). The antibacterial activity of the extracts was evaluated on twelve pathogens including six Gram (+) bacteria and six Gram (−) bacteria. By the solid medium disc method, except for Escherichia coli and Pseudomonas aeruginosa, all the bacteria were sensitive to one or more extracts. Inhibitory Halo Diameters (IHDs) ranged from 8 mm to 16 mm. Salmonella enterica, Clostridium perfringens, and Vibrio fischeri were the most sensitive with IHD > 14 mm for ExITS. By the liquid microdilution method, MICs ranged from 3.12 mg/mL to 50 mg/mL and varied depending on the extract. Bacillus megaterium was the most sensitive with MICs ≤ 12.5 mg/mL. Pseudomonas aeruginosa, Shigella flexneri, and Vibrio fischeri were the least sensitive with all MICs ≥ 12.5 mg/mL. ExHAM was most effective with a MIC of 3.12 mg/mL on Staphylococcus aureus and 6.25 mg/mL on Salmonella enterica. The antioxidant power of the extracts was evaluated by the FRAP method. The activity ranged from 5.44 ± 0.35 (ExMBA) to 14.83 ± 0.11 mmol Fe2+/kg DW (ExHAM). Breadfruit from different regions of Comoros contained different classes of secondary metabolites well known for their important pharmacological properties. The results of this study on phenolics, monoterpenes, and organic acids have provided new data on these fruits. The obtained results showed that breadfruit from the biggest island of the Union of Comoros also presented antimicrobial and antioxidant properties, even if some differences in effectiveness existed between fruits from different regions.
Collapse
|
12
|
Munyendo LM, Njoroge DM, Owaga EE, Mugendi B. Coffee phytochemicals and post-harvest handling—A complex and delicate balance. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Li CX, Lin ZX, Zhao XH, Zuo WF, Wang N, Zhang ZY, Chen XS. Differential effects of phenolic extracts from red-fleshed apple peels and flesh induced G1 cell cycle arrest and apoptosis in human breast cancer MDA-MB-231 cells. J Food Sci 2021; 86:4209-4222. [PMID: 34392532 DOI: 10.1111/1750-3841.15863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022]
Abstract
Red-fleshedapples are preferredbecause of their high content of phenolics and antioxidants in peel and pulp. Herein, we evaluated the mechanisms of apple peel polyphenolic extracts (APP) and apple flesh polyphenolic extracts (AFP) from the new red-fleshed apple in inhibiting cell proliferation and inducing apoptosis on human breast cancer MDA-MB-231 cells. The antiproliferative activities were determined by the CCK8 assay. The expression of proteins was determined using Western blot. We found that the content of polyphenols and flavonoids in APP was significantly higher than that in AFP, and 14 main phenolic compounds in APP and AFP were quantified using UPLC-MS/MS techniques. Besides, the significant inhibition effects of APP and AFP were achieved through Akt pathway by inducing apoptosis (significantly upregulating reactive oxygen species [ROS] levels, and downregulating expression of pAkt, pBad, Bcl-2, promoting Cytochrome c release, activating Cle-Caspase 9, and inducing expressions of Cle-Caspase 3 and Cle-PARP), and inducing G0/G1 cell cycle arrest (increased expressions of p-p53 and p21 and decreased expressions of PCNA and Cyclin D1). And the inhibition effect of APP was stronger than that of AFP. These results suggest that AFP and APP may be excellent sources of natural chemicals for treating triple-negative breast cancer MDA-MB-231 cells. PRACTICAL APPLICATION: The effects of antiproliferation of phenolic extracts from red-fleshed apple peels and flesh on human breast cancer MDA-MB-231 cells were evaluated. The data may clarify the functional parts of red-fleshed apple and provide some basis for scientific researchers and consumers to recognize and exploit red-fleshed apple.
Collapse
Affiliation(s)
- Cui Xia Li
- College of Life Sciences and Enology, Taishan University, Tai'an, Shandong, China.,State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhen Xian Lin
- College of Life Sciences and Enology, Taishan University, Tai'an, Shandong, China
| | - Xian Hua Zhao
- College of Life Sciences and Enology, Taishan University, Tai'an, Shandong, China
| | - Wei Fang Zuo
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zong Ying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xue Sen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
14
|
Biological Impact of Phenolic Compounds from Coffee on Colorectal Cancer. Pharmaceuticals (Basel) 2021; 14:ph14080761. [PMID: 34451858 PMCID: PMC8401378 DOI: 10.3390/ph14080761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is one of the leading death-related diseases worldwide, usually induced by a multifactorial and complex process, including genetic and epigenetic abnormalities and the impact of diet and lifestyle. In the present study, we evaluated the biological impact of two of the main coffee polyphenols, chlorogenic acid (CGA) and caffeic acid (CA), as well as two polyphenol-rich coffee extracts (green coffee extract and toasted coffee Extract) against SW480 and SW620 colorectal cancer cells. First, the total phenolic content and the antioxidant capability of the extracts were determined. Then, cytotoxicity was evaluated by MTT and SBR. Finally, a wound healing assay was performed to determine the impact on the cell migration process. The results showed a cytotoxic effect of all treatments in a time and dose-dependent manner, which decreased the viability in both cell lines at 24 h and 48 h; likewise, the migration capability of cells decreased with low doses of treatments. These results suggest the potential of coffee to modulate biological mechanisms involved in colorectal cancer development; however, more studies are required to understand the mechanistic insights of these observations.
Collapse
|
15
|
Chlorogenic acid alleviates neurobehavioral disorders and brain damage in focal ischemia animal models. Neurosci Lett 2021; 760:136085. [PMID: 34174343 DOI: 10.1016/j.neulet.2021.136085] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
Cerebral ischemia leads to neuronal cell death, causes neurological disorder and permanent disability. Chlorogenic acid has antioxidant, anti-inflammatory, and anti-apoptotic properties. This study investigated the neuroprotective effects of chlorogenic acid against cerebral ischemia. Focal cerebral ischemia was induced in male adult rats via middle cerebral artery occlusion (MCAO). Chlorogenic acid (30 mg/kg) or vehicle was injected in the intraperitoneal cavity 2 h after MCAO operation. Neurological behavior tests were performed 24 h after MCAO, brain edema and infarction were measured. Oxidative stress was assessed by investigating the levels of reactive oxygen species (ROS) and lipid peroxidation (LPO) levels. MCAO damage leaded to severe neurobehavioral deficits, increased ROS and LPO levels, and induced brain edema and infarction. MCAO damage caused histopathological damages and increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the cerebral cortex. However, chlorogenic acid treatment improved neurological behavioral deficits caused by MCAO and attenuated the increase in ROS and LPO levels. It also alleviated MCAO-induced brain edema, infarction, and histopathological lesion. Chlorogenic acid treatment attenuated the increase in the number of TUNEL-positive cells in the cerebral cortex of MCAO animals. We also investigated caspase proteins expression to elucidate the neuroprotective mechanism of chlorogenic acid. Caspase-3, caspase-7, and poly ADP-ribose polymerase expression levels were increased in the MCAO damaged cortex, while chlorogenic acid mitigated these increases. These results showed that MCAO injury leads to severe neurological damages and chlorogenic acid exerts neuroprotective effects by regulating oxidative stress and caspase proteins expressions. Thus, our findings suggest that chlorogenic acid acts as a potent neuroprotective agent by modulating the apoptotic-related proteins.
Collapse
|
16
|
Gumul D, Ziobro R, Korus J, Kruczek M. Apple Pomace as a Source of Bioactive Polyphenol Compounds in Gluten-Free Breads. Antioxidants (Basel) 2021; 10:807. [PMID: 34069723 PMCID: PMC8161145 DOI: 10.3390/antiox10050807] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Gluten-free products based on starch and hydrocolloids are deficient in nutrients and do not contain pro-health substances. Therefore, they should be enriched in raw materials naturally rich in antioxidants, especially if they are intended for celiac patients, prone to high oxidative stress. Apart from the traditionally used pseudo-cereals, seeds, vegetables and fruits, innovative substrates such as the by-product (especially in Poland) dry apple pomace could be applied. The study material consisted of gluten-free bread enriched with apple pomace. The content of individual polyphenols, the content of total polyphenol and flavonoids, and also the antioxidant potential of the bread were determined by the UPLC-PDA-MS/MS methods. It was observed that apple pomace was a natural concentrate of bioactive substances from the group of polyphenols. In summary, gluten-free bread with 5% content of apple pomace showed the highest organoleptic scores and contained high levels of phenolic compounds. The values of total phenolic content, and the amounts of flavonoids, phenolic acids and phloridzin in this bread were 2.5, 8, 4 and 21 times higher in comparison to control.
Collapse
Affiliation(s)
- Dorota Gumul
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122 Street, 30-149 Krakow, Poland; (R.Z.); (J.K.); (M.K.)
| | | | | | | |
Collapse
|
17
|
Cheng D, Song Q, Ding Y, Yu Q, Liu Y, Tian X, Wang M, Wang G, Wang S. Comparative Study on the Protective Effect of Chlorogenic Acid and 3-(3-Hydroxyphenyl) Propionic Acid against Cadmium-Induced Erythrocyte Cytotoxicity: In Vitro and In Vivo Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3859-3870. [PMID: 33570935 DOI: 10.1021/acs.jafc.0c04735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolism of chlorogenic acid (CGA) through the intestinal tract was studied. As cadmium is a well-known toxic heavy metal, this study was carried out to investigate the comparative protective effect of CGA and its representative intestinal metabolite (3-(3-hydroxyphenyl) propionic acid, HPPA) against Cd-induced erythrocyte cytotoxicity in vitro and in vivo. We found that CGA and its intestinal metabolite appreciably prevented erythrocyte hemolysis, osmotic fragility, and oxidative stress induced by Cd. Also, we found that HPPA had a stronger protective ability than CGA against Cd-induced erythrocyte injury in vivo, such as increasing the ratio of protein kinase C from 7.7% (CGA) to 12.0% (HPPA). Therefore, we hypothesized that CGA and its microbial metabolite had protective effects against Cd-induced erythrocyte damage via multiple actions including antioxidation and chelation. For humans, CGA supplementation may be favorable for avoiding Cd-induced biotoxicity.
Collapse
Affiliation(s)
- Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qi Song
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yixin Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Qianqian Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yutong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Xuena Tian
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Meng Wang
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Guangliang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C, Johnson R. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother 2020; 131:110785. [PMID: 33152943 DOI: 10.1016/j.biopha.2020.110785] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide, as it affects up to 30 % of adults in Western countries. Moreover, NAFLD is also considered an independent risk factor for cardiovascular diseases. Insulin resistance and inflammation have been identified as key factors in the pathophysiology of NAFLD. Although the mechanisms associated with the development of NAFLD remain to be fully elucidated, a complex interaction between adipokines and cytokines appear to play a crucial role in the development of this condition. Adiponectin is the most common adipokine known to be inversely linked with insulin resistance, lipid accumulation, inflammation and NAFLD. Consequently, the focus has been on the use of new therapies that may enhance hepatic expression of adiponectin downstream targets or increase the serum levels of adiponectin in the treatment NAFLD. While currently used therapies show limited efficacy in this aspect, accumulating evidence suggest that various dietary polyphenols may stimulate adiponectin levels, offering potential protection against the development of insulin resistance, inflammation and NAFLD as well as associated conditions of metabolic syndrome. As such, this review provides a better understanding of the role polyphenols play in modulating adiponectin signaling to protect against NAFLD. A brief discussion on the regulation of adiponectin during disease pathophysiology is also covered to underscore the potential protective effects of polyphenols against NAFLD. Some of the prominent polyphenols described in the manuscript include aspalathin, berberine, catechins, chlorogenic acid, curcumin, genistein, piperine, quercetin, and resveratrol.
Collapse
Affiliation(s)
- Samukelisiwe C Shabalala
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| |
Collapse
|
19
|
Arora I, Sharma M, Sun LY, Tollefsbol TO. The Epigenetic Link between Polyphenols, Aging and Age-Related Diseases. Genes (Basel) 2020; 11:genes11091094. [PMID: 32962067 PMCID: PMC7565986 DOI: 10.3390/genes11091094] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/15/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Aging is a complex process mainly categorized by a decline in tissue, cells and organ function and an increased risk of mortality. Recent studies have provided evidence that suggests a strong association between epigenetic mechanisms throughout an organism’s lifespan and age-related disease progression. Epigenetics is considered an evolving field and regulates the genetic code at several levels. Among these are DNA changes, which include modifications to DNA methylation state, histone changes, which include modifications of methylation, acetylation, ubiquitination and phosphorylation of histones, and non-coding RNA changes. As a result, these epigenetic modifications are vital targets for potential therapeutic interventions against age-related deterioration and disease progression. Dietary polyphenols play a key role in modulating these modifications thereby delaying aging and extending longevity. In this review, we summarize recent advancements linking epigenetics, polyphenols and aging as well as critical findings related to the various dietary polyphenols in different fruits and vegetables. In addition, we cover studies that relate polyphenols and their epigenetic effects to various aging-related diseases such as cardiovascular diseases, neurodegenerative diseases, autoimmune disorders, diabetes, osteoporosis and cancer.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
| | - Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
| | - Liou Y. Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573; Fax: +1-205-975-6097
| |
Collapse
|
20
|
Li CX, Zhao XH, Zuo WF, Zhang TL, Zhang ZY, Chen XS. Phytochemical profiles, antioxidant, and antiproliferative activities of red-fleshed apple as affected by in vitro digestion. J Food Sci 2020; 85:2952-2959. [PMID: 32790197 DOI: 10.1111/1750-3841.15358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/15/2023]
Abstract
The aim of this study was to characterize the phenolic profiles in the extracts and digesta (after in vitro digestion) of different red-fleshed apple fruit parts and to assess the effects of digestion on the in vitro antioxidant capacity and antiproliferative activity. The main polyphenols were identified by UPLC-MS/MS and HPLC. Our results indicate that the digesta had less total phenolics, flavonoids, and anthocyanins, but more free phenolic acids, than the extracts. An analysis of the in vitro antioxidant capacity (including ABTS radical scavenging activity, DPPH radical-scavenging capacity, ferric reducing antioxidant power [FRAP], and cellular antioxidant activity [CAA]) revealed that the digestion decreased the ABTS, DPPH, and FRAP values, but increased the CAA values, relative to the corresponding values for extracts. These results suggest that the digestion improved the effectiveness of the phenolic substances. Moreover, our findings imply that the digestion promoted the antiproliferative activity of red-fleshed apple peels and flesh relative to the extracts. Future in vivo investigations are warranted based on the results of the current study. PRACTICAL APPLICATION: The effects of an in vitro digestion on the phenolic compounds as well as the antioxidative and antiproliferative activities of red-fleshed apple were evaluated. The resulting data may clarify the bioavailability of the polyphenols in red-fleshed apple and enable scientists and consumers to exploit natural polyphenols.
Collapse
Affiliation(s)
- Cui Xia Li
- College of Life Sciences and Enology, Taishan University, Tai'an, Shandong, 271021, China.,State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271018, China
| | - Xian Hua Zhao
- College of Life Sciences and Enology, Taishan University, Tai'an, Shandong, 271021, China
| | - Wei Fang Zuo
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271018, China
| | - Tian Liang Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271018, China
| | - Zong Ying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271018, China
| | - Xue Sen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271018, China
| |
Collapse
|
21
|
Li CX, Zhao XH, Zuo WF, Zhang TL, Zhang ZY, Chen XS. Phytochemical profiles, antioxidant, and antiproliferative activities of four red-fleshed apple varieties in China. J Food Sci 2020; 85:718-726. [PMID: 32064624 DOI: 10.1111/1750-3841.15056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 01/06/2023]
Abstract
Red-fleshed apples are preferred because of their high content of phenolics and antioxidants. In this study, the phenolic characteristics, antioxidant properties, and antihuman cancer cell properties of the four hybrids of Malus sieversii f. niedzwetzkyana (Ledeb.) M. Roem were analyzed. In addition, the antioxidant and anti-proliferation properties of these apples were measured. Compared to "Fuji" apples, the red-fleshed apples were rich in phenolic and flavonoid chemicals, ranging from 1.5- to 2.6-fold and 1.4- to 2.4-fold, respectively. In all antioxidant methods (DPPH radical-scavenging capacity, ABTS radical scavenging activity, ferric reducing antioxidant power, and cell antioxidant capacity), "A38" obtained the highest antioxidant value, whereas "Fuji" got the lowest antioxidant value. The IC50 values ranged from 33.44 ("A38") to 73.36 mg/mL ("Fuji") for MCF-7 and 20.94 ("A38") to 39.39 mg/mL ("Fuji") for MAD-MB-231. The red-fleshed "A38" and "Meihong" exhibited higher antioxidant and antiproliferative activities in vitro because of the higher levels of phenolics, and the higher potential for development and utilization value. PRACTICAL APPLICATION: The phenolic compounds, antioxidant activity, and antiproliferative activity in vitro of four red-fleshed apple cultivars and one white-fleshed apple cultivar were compared in this study. This information should assist to give a reasonable evaluation for scientists to breed new cultivars with high phenolics and to exploit the natural polyphenol.
Collapse
Affiliation(s)
- Cui Xia Li
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,College of Life Sciences and Enology, Taishan University, Tai'an, Shandong, 271021, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Xian Hua Zhao
- College of Life Sciences and Enology, Taishan University, Tai'an, Shandong, 271021, China
| | - Wei Fang Zuo
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Tian Liang Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Zong Ying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Xue Sen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.,Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| |
Collapse
|
22
|
Chen Z, Yang Y, Mi S, Fan Q, Sun X, Deng B, Wu G, Li Y, Zhou Q, Ruan Z. Hepatoprotective effect of chlorogenic acid against chronic liver injury in inflammatory rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103540] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Molecular Insights into Potential Contributions of Natural Polyphenols to Lung Cancer Treatment. Cancers (Basel) 2019; 11:cancers11101565. [PMID: 31618955 PMCID: PMC6826534 DOI: 10.3390/cancers11101565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022] Open
Abstract
Naturally occurring polyphenols are believed to have beneficial effects in the prevention and treatment of a myriad of disorders due to their anti-inflammatory, antioxidant, antineoplastic, cytotoxic, and immunomodulatory activities documented in a large body of literature. In the era of molecular medicine and targeted therapy, there is a growing interest in characterizing the molecular mechanisms by which polyphenol compounds interact with multiple protein targets and signaling pathways that regulate key cellular processes under both normal and pathological conditions. Numerous studies suggest that natural polyphenols have chemopreventive and/or chemotherapeutic properties against different types of cancer by acting through different molecular mechanisms. The present review summarizes recent preclinical studies on the applications of bioactive polyphenols in lung cancer therapy, with an emphasis on the molecular mechanisms that underlie the therapeutic effects of major polyphenols on lung cancer. We also discuss the potential of the polyphenol-based combination therapy as an attractive therapeutic strategy against lung cancer.
Collapse
|
24
|
Kavi Rajan R, Hussein MZ, Fakurazi S, Yusoff K, Masarudin MJ. Increased ROS Scavenging and Antioxidant Efficiency of Chlorogenic Acid Compound Delivered via a Chitosan Nanoparticulate System for Efficient In Vitro Visualization and Accumulation in Human Renal Adenocarcinoma Cells. Int J Mol Sci 2019; 20:ijms20194667. [PMID: 31547100 PMCID: PMC6801874 DOI: 10.3390/ijms20194667] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 11/16/2022] Open
Abstract
Naturally existing Chlorogenic acid (CGA) is an antioxidant-rich compound reported to act a chemopreventive agent by scavenging free radicals and suppressing cancer-causing mechanisms. Conversely, the compound’s poor thermal and pH (neutral and basic) stability, poor solubility, and low cellular permeability have been a huge hindrance for it to exhibit its efficacy as a nutraceutical compound. Supposedly, encapsulation of CGA in chitosan nanoparticles (CNP), nano-sized colloidal delivery vector, could possibly assist in enhancing its antioxidant properties, in vitro cellular accumulation, and increase chemopreventive efficacy at a lower concentration. Hence, in this study, a stable, monodispersed, non-toxic CNP synthesized via ionic gelation method at an optimum parameter (600 µL of 0.5 mg/mL of chitosan and 200 µL of 0.7 mg/mL of tripolyphosphate), denoted as CNP°, was used to encapsulate CGA. Sequence of physicochemical analyses and morphological studies were performed to discern the successful formation of the CNP°-CGA hybrid. Antioxidant property (studied via DPPH (1,1-diphenyl-2-picrylhydrazyl) assay), in vitro antiproliferative activity of CNP°-CGA, and in vitro accumulation of fluorescently labeled (FITC) CNP°-CGA in cancer cells were evaluated. Findings revealed that successful formation of CNP°-CGA hybrid was reveled through an increase in particle size 134.44 ± 18.29 nm (polydispersity index (PDI) 0.29 ± 0.03) as compared to empty CNP°, 80.89 ± 5.16 nm (PDI 0.26 ± 0.01) with a maximal of 12.04 μM CGA loaded per unit weight of CNP° using 20 µM of CGA. This result correlated with Fourier-Transform Infrared (FTIR) spectroscopic analysis, transmission Electron Microscopy (TEM) and field emission scanning (FESEM) electron microscopy, and ImageJ evaluation. The scavenging activity of CNP°-CGA (IC50 5.2 ± 0.10 µM) were conserved and slightly higher than CNP° (IC50 6.4±0.78 µM). An enhanced cellular accumulation of fluorescently labeled CNP°-CGA in the human renal cancer cells (786-O) as early as 30 min and increased time-dependently were observed through fluorescent microscopic visualization and flow cytometric assessment. A significant concentration-dependent antiproliferation activity of encapsulated CGA was achieved at IC50 of 16.20 µM as compared to CGA itself (unable to determine from the cell proliferative assay), implying that the competent delivery vector, chitosan nanoparticle, is able to enhance the intracellular accumulation, antiproliferative activity, and antioxidant properties of CGA at lower concentration as compared to CGA alone.
Collapse
Affiliation(s)
- Revathi Kavi Rajan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Cancer Research Laboratory Institute of Biosciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Cancer Research Laboratory Institute of Biosciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
25
|
Yang J, Kwon YS, Kim MJ. Antimicrobial activity and active compounds of a Rhus verniciflua Stokes extract. ACTA ACUST UNITED AC 2019; 73:457-463. [PMID: 30183668 DOI: 10.1515/znc-2018-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/04/2018] [Indexed: 11/15/2022]
Abstract
The Rhus verniciflua Stokes (RVS) extract is used as a traditional herbal medicine in Southeast Asian countries such as Korea and China. In the present study, one phenolic acid and six flavonoids were isolated from an 80% ethanol RVS extract to examine their antimicrobial activities. These compounds were identified as 3',4',7-trihydroxyflavone (1), methyl gallate (2), gallic acid (3), fusti (4), fisetin (5), butin (6), and sulfuretin (7) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy. The antimicrobial activities of compounds 5 and 6 (at a dose of 16 μg/mL each) were superior to that of the control, cycloheximide (at a dose of 25 μg/mL), against Hypocrea nigricans; additionally, the activities of compounds 1 and 2 (at a dose of 8 μg/mL each) were superior to the control against Penicillium oxalicum. Also, chemical compounds 1 and 5 (at a dose of 16 μg/mL each) had higher activities than the control (25 μg/mL) against Trichoderma virens. Chemical compound 1 (at a dose of 8 μg/mL) had a similar activity to that of the control against Bacillus subtilis. The obtained results suggest that the RVS extract could be a promising food and nutraceutical source because of the antimicrobial properties of its phenolic compounds.
Collapse
Affiliation(s)
- Jinfeng Yang
- Research Institute of Food Science and Engineering Technology, Hezhou University, Hezhou, Guangxi 542899, China
| | - Yong Soo Kwon
- Department of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myong Jo Kim
- Department of Applied Plant Sciences, Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
26
|
Yao J, Peng S, Xu J, Fang J. Reversing ROS-mediated neurotoxicity by chlorogenic acid involves its direct antioxidant activity and activation of Nrf2-ARE signaling pathway. Biofactors 2019; 45:616-626. [PMID: 30951611 DOI: 10.1002/biof.1507] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/23/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023]
Abstract
Chlorogenic acid (CA), the ester of caffeic acid and quinic acid, is one of the most abundant polyphenols in coffee, and has multiple pharmacological functions. The present study is designed to explore the protection provided by CA against hydrogen peroxide (H2 O2 )-induced oxidative damages in the rat pheochromocytoma cells, and the underlying mechanisms engaged in this process. CA displays robust free radical-scavenging activity in vitro. More importantly, CA strikingly rescues the cells from the H2 O2 -mediated oxidative insults. Mechanistic studies revealed that CA upregulates a panel of phase II cytoprotective species, such as heme oxygenase-1, NAD(P)H: quinone oxidoreductase 1, glutathione, thioredoxin reductase 1, and thioredoxin 1. This neuroprotection is dependent on the activation of the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), as knockdown of Nrf2 abolishes such effect. Our results demonstrate that CA provides dual neuroprotection via directly neutralizing free radicals and indirectly inducing expression of Nrf2-driven cytoprotective enzymes, and suggest a potential therapeutic usage of CA as a neuroprotective agent. Coffee is one of the most popular drinks in the world, and our discovery may also contribute to understanding the beneficial effects of regular coffee consumption. © 2019 BioFactors, 45 (4):616-626, 2019.
Collapse
Affiliation(s)
- Juan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jianqiang Xu
- School of Life Science and Medicine, Panjin Industrial Technology Institute, Dalian University of Technology, Panjin, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
27
|
The effect of green coffee extract supplementation on serum oxidized LDL cholesterol and total antioxidant capacity in patients with dyslipidemia: A randomized, double-blind, placebo-controlled trial. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Neela S, Fanta SW. Review on nutritional composition of orange-fleshed sweet potato and its role in management of vitamin A deficiency. Food Sci Nutr 2019; 7:1920-1945. [PMID: 31289641 PMCID: PMC6593376 DOI: 10.1002/fsn3.1063] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/13/2019] [Accepted: 04/13/2019] [Indexed: 01/09/2023] Open
Abstract
A wide variety of the roots and tubers plays a major role in human diet, animal feed, and industrial raw materials. Sweet potatoes (SPs) play an immense role in human diet and considered as second staple food in developed and underdeveloped countries. Moreover, SP production and management need low inputs compared to the other staple crops. The color of SP flesh varied from white, yellow, purple, and orange. Scientific studies reported the diversity in SP flesh color and connection with nutritional and sensory acceptability. Among all, orange-fleshed sweet potato (OFSP) has been attracting food technologists and nutritionists due to its high content of carotenoids and pleasant sensory characteristics with color. Researchers reported the encouraging health effects of OFSP intervention into the staple food currently practicing in countries such as Uganda, Mozambique, Kenya, and Nigeria. Scientific reviews on the OFSP nutritional composition and role in vitamin A management (VAM) are hardly available in the published literature. So, this review is conducted to address the detailed nutritional composition (proximate, mineral, carotenoids, vitamins, phenolic acids, and antioxidant properties), role in vitamin A deficiency (VAD) management, and different food products that can be made from OFSP.
Collapse
Affiliation(s)
- Satheesh Neela
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology Bahir Dar University Bahir Dar Ethiopia
| | - Solomon W Fanta
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology Bahir Dar University Bahir Dar Ethiopia
| |
Collapse
|
29
|
Chen Y, Huang W, Chen K, Zhang T, Wang Y, Wang J. A novel electrochemical sensor based on core-shell-structured metal-organic frameworks: The outstanding analytical performance towards chlorogenic acid. Talanta 2019; 196:85-91. [DOI: 10.1016/j.talanta.2018.12.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
|
30
|
Urbanaviciute I, Liaudanskas M, Seglina D, Viskelis P. Japanese Quince Chaenomeles Japonica (Thunb.) Lindl. ex Spach Leaves a New Source of Antioxidants for Food. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1609984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ieva Urbanaviciute
- Biochemistry and Technology Laboratory, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas, Lithuania
| | - Mindaugas Liaudanskas
- Institute of Pharmaceutical Technologies of the Faculty of Pharmacy of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalija Seglina
- Institute of Horticulture, Latvia University of Agriculture, Jelgava, Latvia
| | - Pranas Viskelis
- Biochemistry and Technology Laboratory, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas, Lithuania
| |
Collapse
|
31
|
Dual Drugs Anticancer Nanoformulation using Graphene Oxide-PEG as Nanocarrier for Protocatechuic Acid and Chlorogenic Acid. Pharm Res 2019; 36:91. [PMID: 31020429 DOI: 10.1007/s11095-019-2621-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The chemotherapy of cancer has been complicated by poor bioavailability, adverse side effects, high dose requirement, drug resistance and low therapeutic indices. Cancer cells have different ways to inhibit the chemotherapeutic drugs, use of dual/multiple anticancer agents may be achieve better therapeutic effects in particular for drug resistant tumors. Designing a biocompatible delivery system, dual or multiple drugs could addressing these chemotherapy drawbacks and it is the focus of many current biomedical research. METHODS In the present study, graphene oxide-polyethylene glycol (GOPEG) nanocarrier is designed and loaded with two anticancer drugs; Protocatechuic acid (PCA) and Chlorogenic acid (CA). The designed anticancer nanocomposite was further coated with folic acid to target the cancer cells, as their surface membranes are overexpressed with folate receptors. RESULTS The particle size distribution of the designed nanocomposite was found to be narrow, 9-40 nm. The release profiles of the loaded drugs; PCA and CA was conducted in human body simulated PBS solutions of pH 7.4 (blood pH) and pH 4.8 (intracellular lysosomal pH). Anticancer properties were evaluated against cancerous cells i.e. liver cancer, HEPG2 and human colon cancer, HT-29 cells. The cytocompatbility was assessed on normal 3T3 fibroblasts cells. CONCLUSION The size of the final designed anticancer nanocomposite formulation, GOPEG-PCACA-FA was found to be distributed at 9-40 nm with a median of 8 nm. The in vitro release of the drugs PCA and CA was found to be of sustained manner which took more than 100 h for the release. Furthermore, the designed formulation was biocompatible with normal 3T3 cells and showed strong anticancer activity against liver and colon cancer cells.
Collapse
|
32
|
Desai NM, Haware DJ, Basavaraj K, Murthy PS. Microencapsulation of antioxidant phenolic compounds from green coffee. Prep Biochem Biotechnol 2019; 49:400-406. [PMID: 30794052 DOI: 10.1080/10826068.2019.1575858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Green coffee is a prime source of antioxidants to functional food and nutraceuticals. Arabica and Robusta varieties were screened and decaffeinated using ethyl lactate and extracted with a polar solvent to obtain chlorogenic acid (CGA) enriched green coffee extract (GCE). The physicochemical qualities (moisture, pH, particle size, and color) and bioactive compounds (total phenolics, chlorogenic acid, and caffeine) of GCE were assessed. The GCE had 12.78 ± 2.1 mg GAE g-1 phenolics and 10.98 mg g-1 chlorogenic acid (CGA). To improve the stability of CGA, the GCE encapsulated by spray drying using maltodextrin (MD) and skim milk (SM) as coating agent individually and in combination. Physicochemical, antioxidant properties, and biofunctionalities of microparticles were evaluated. Highest encapsulation efficiency of GCE with maltodextrin (1:1) was 86%±3 with the smaller particle size (2.3 ± 0.1 µm). Under the simulated gastric juice and bile salts solution, microencapsulation provided significantly better protection compared to non-encapsulated GCE. MGE elicits use as adjuvant/supplements in food, fortified for nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Nivas M Desai
- a Department of Spice and Flavour Science , CSIR-Central Food Technological Research Institute , Mysore , India
| | - Devendra J Haware
- b Food safety and Analytical Quality Control Laboratory , CSIR-Central Food Technological Research Institute , Mysore , India
| | - K Basavaraj
- c Quality Evaluation Centre , Coffee Board , Bangalore , India
| | - Pushpa S Murthy
- a Department of Spice and Flavour Science , CSIR-Central Food Technological Research Institute , Mysore , India
| |
Collapse
|
33
|
Abstract
Chlorogenic acids (CGA) are the main antioxidant compounds in the Western diet, due to their high concentrations in coffee associated with the high consumption of the beverage. Until about 10 years ago, like many other phenolic compounds, CGA were thought to be poorly absorbed in the human digestive system. Along the years, large amounts of information on the absorption and metabolism of these compounds have been unveiled, and today, it is known that, on average, about one third of the consumed CGA from coffee is absorbed in the human gastrointestinal tract, although large inter-individual variation exists. Considering results from in vitro animal and human studies, it is possible to conclude that the antioxidant and anti-inflammatory effects of coffee CGA are responsible for, at least to a certain extent, the association between coffee consumption and lower incidence of various degenerative and non-degenerative diseases, in addition to higher longevity.
Collapse
|
34
|
Zhang Y, Wang Y, Chen D, Yu B, Zheng P, Mao X, Luo Y, Li Y, He J. Dietary chlorogenic acid supplementation affects gut morphology, antioxidant capacity and intestinal selected bacterial populations in weaned piglets. Food Funct 2019; 9:4968-4978. [PMID: 30183786 DOI: 10.1039/c8fo01126e] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chlorogenic acid (CGA), an ester formed between caffeic acid and quinic acid, is one of the most abundant phenolic acids and is widespread in fruits, vegetables, cereals and tuber crops. Therefore, the present study was conducted to test the hypothesis that dietary supplementation with CGA could improve intestinal health and regulate intestinal selected microbiota in weaned piglets. A total of twenty-four piglets (21 d of age) were randomly assigned to one of four groups according to their initial BW and sex and fed a basal diet (control group) or a basal diet containing 250, 500 and 1000 mg kg-1 CGA, respectively. The whole trial lasted for 28 d. Dietary CGA supplementation increased (P < 0.05) the duodenal villous height and villous height : crypt depth ratio, but decreased (P < 0.05) the F/G ratio and duodenal crypt depth when compared with the control group. Meanwhile, an increase (P < 0.05) in the jejunal villous height and in the ileal villous height : crypt depth ratio were also observed in CGA-fed piglets. Supplementation with CGA significantly increased (P < 0.05) the activity of serum GSH-Px and the activities of duodenal GSH-Px and CAT, upregulated (P < 0.05) the expression of OCLN in the duodenum and jejunum, and decreased (P < 0.05) the ileal MDA content when compared to the control group. In addition, an increase (P < 0.05) in the population of Lactobacillus and a decrease (P < 0.05) in the population of Escherichia coli were observed in the colon of pigs fed CGA diets. Furthermore, pigs fed CGA diets had higher (P < 0.05) propionic and butyric acid concentrations in the colon. Altogether, our results provide evidence that dietary CGA is beneficial for preserving intestinal morphological integrity and selectively regulating intestinal microbiota, which can provide a means to improve gut health and growth performance post-weaning.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Agunloye OM, Oboh G, Ademiluyi AO, Ademosun AO, Akindahunsi AA, Oyagbemi AA, Omobowale TO, Ajibade TO, Adedapo AA. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed Pharmacother 2018; 109:450-458. [PMID: 30399581 DOI: 10.1016/j.biopha.2018.10.044] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
Caffeic acid (CAA) and chlorogenic acid (CHA) are important members of hydroxycinnamic acid with natural antioxidant and cardio-protective properties. The present study aimed to determine the effect of CAA and CHA on systolic blood pressure, heart rates (HR) as well as on the activity of the angiotensin-1-converting enzyme (ACE), acetylcholinesterase (AChE), butrylcholinesterase (BChE) and arginase in cyclosporine-induced hypertensive rats. Experimental rats were distributed into 7 groups (n = 6): normotensive control rats; hypertensive rats (induced rats) as well as hypertensive- treated groups with captopril (10 mg/kg/day), CAA (10 and 15 mg/kg/day) and CHA (10 and 15 mg/kg/day), respectively. The experiment lasted for 7 days and the systolic blood pressure (SBP) and heart rates were recorded using tail-cuff method. Oral administration of captopril, caffeic acid and chlorogenic acid normalized hypertensive effect caused by cyclosporine administration. CAA and CHA significantly (P < 0.05) reduced SBP and HR, activity of ACE, AChE, BChE and arginase in the treated hypertensive rats compared with cyclosporine induced-hypertensive rats. Likewise, CAA and CHA improved nitric oxide (NO) bioavailability, increased catalase activity and reduced glutathione content while malondialdehyde (MDA) level was reduced compared with cyclosporine hypertensive rats. Findings from this study shows that CAA and CHA exhibited blood pressure lowering properties and reduced activities of key enzymes linked to the pathogenesis of hypertension in cyclosporine-induced rats. These might be some of the possible mechanisms of action by which their cardio-protective properties are exhibited.
Collapse
Affiliation(s)
- Odunayo Michael Agunloye
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, P.M.B 704, Akure 340001, Nigeria.
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, P.M.B 704, Akure 340001, Nigeria
| | - Adedayo Oluwaseun Ademiluyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, P.M.B 704, Akure 340001, Nigeria
| | - Ayokunle Olubode Ademosun
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, P.M.B 704, Akure 340001, Nigeria
| | - Akintunde Afolabi Akindahunsi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, P.M.B 704, Akure 340001, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| |
Collapse
|
36
|
Frezza C, Venditti A, Sciubba F, Tomai P, Antonetti M, Franceschin M, Di Cocco ME, Gentili A, Delfini M, Serafini M, Bianco A. Phytochemical profile of Euphorbia peplus L. collected in Central Italy and NMR semi-quantitative analysis of the diterpenoid fraction. J Pharm Biomed Anal 2018; 160:152-159. [PMID: 30086508 DOI: 10.1016/j.jpba.2018.07.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 07/30/2018] [Indexed: 11/12/2022]
Abstract
In this work, the phytochemical profile of the ethanolic extract of Euphorbia peplus L. collected in Central Italy, was reported. This specimen had never been studied before and the analysis was accomplished by means of Column Chromatography for the separation procedure and by means of NMR Spectroscopy and Mass Spectrometry for the identification step. In particular, fourteen compounds were evidenced belonging to five different classes of natural compounds i.e. triterpenoids (pentacyclic and saponin), peculiar diterpenoids (jatrophanes and pepluanes), flavonoids (flavonols), caffeoyl-quinic acids and rare disaccharides. In addition to this, a semi-quantitative analysis on the diterpenoid fraction, by means of NMR Spectroscopy, was also performed in order to provide the real quantities of these compounds in the same fraction and in the total extract. Due to the pronounced chemo variability observed in Euphorbia spp., the availability of a reliable and quick analytical technique, such as that reported in the present study, could be a useful tool in the standardization of plant materials to be used in pharmacological studies or for ethnomedicinal purposes. The technical details for both the general phytochemical analysis and the specific quantitative one, were inserted in this paper. Moreover, the chemotaxonomic and ethnopharmacological relevance of these compounds was also discussed.
Collapse
Affiliation(s)
- Claudio Frezza
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Venditti
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Fabio Sciubba
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Pierpaolo Tomai
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marika Antonetti
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Franceschin
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Enrica Di Cocco
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Gentili
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maurizio Delfini
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Mauro Serafini
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Armandodoriano Bianco
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
37
|
Parit SB, Dawkar VV, Tanpure RS, Pai SR, Chougale AD. Nutritional Quality and Antioxidant Activity of Wheatgrass (Triticum aestivum) Unwrap by Proteome Profiling and DPPH and FRAP assays. J Food Sci 2018; 83:2127-2139. [PMID: 30059150 DOI: 10.1111/1750-3841.14224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/14/2018] [Accepted: 05/25/2018] [Indexed: 11/27/2022]
Abstract
Precious contribution of plants in the field of medicine is very well known. Wheat (Triticum aestivum) seeds and seedlings are an important source of food and feed due to the presence of various health-promoting compounds. Proteomic analysis of three seed developmental stages (0, 8, and 16 days after germination [DAG]) of wheat was carried out using liquid chromatography-mass spectrometry. A total of 297 proteins were identified and their functional annotation revealed that a majority of them were involved in preventing many diseases, oxidative stress, primary metabolism, storage, and energy related mechanisms. Particularly to mention, peroxidases, superoxide dismutases, and cytochromes are abundantly present in wheatgrass. In the ferric-reducing antioxidant power assay, antioxidant activity was increased by 1.55 times after 16 DAG as compared to 0 DAG, however it was decreased after 8 DAG. The antioxidant activity of the plant extracts by DPPH had an increasing trend after all the three time points. The percent radical scavenging activity of extract by DPPH was 15, 22, and 30 after 0, 8, and 16 DAG, respectively. Observations obtained revealed that antioxidant power of the plants is directly proportional to the age of seedlings. Data attained on wheatgrass showing that it can be a strong antioxidant agent due to its free radical scavenging activity and could be used in stress and nourishing human health. PRACTICAL APPLICATION Wheatgrass contains minerals, phytochemicals, active enzymes, and vitamins that can be easily absorbed. The consumption of wheatgrass juice can give better health benefits. Information about beneficial properties of wheat grass juice is clearly mentioned in this work. Proteins found in wheatgrass are known to be involved in preventing many diseases, oxidative stress, primary metabolism, storage, and energy-related mechanisms. Results of this work revealed that Triticum aestivum seedlings can act as an antioxidant agent due to their free radical scavenging activity and can be constructive to control or treat many health complications. From all these results we believed that wheatgrass can be used for the nourishment of humans.
Collapse
Affiliation(s)
- Santosh B Parit
- The New College, Shivaji Peth, Kolhapur, 416012, Maharashtra, India
| | - Vishal V Dawkar
- Plant Molecular Biology Unit, Div. of Biochemical Sciences, CSIR-Nat. Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Rahul S Tanpure
- Plant Molecular Biology Unit, Div. of Biochemical Sciences, CSIR-Nat. Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Sandeep R Pai
- Amity Inst. of Biotechnology (AIB), Amity Univ., Mumbai-Pune Expressway, Bhatan, Post-Somathne, Panvel, Mumbai, 410206, Maharashtra, India
| | - Ashok D Chougale
- The New College, Shivaji Peth, Kolhapur, 416012, Maharashtra, India
| |
Collapse
|
38
|
Surface imprinted polymers based on amino-hyperbranched magnetic nanoparticles for selective extraction and detection of chlorogenic acid in Honeysuckle tea. Talanta 2018; 181:271-277. [DOI: 10.1016/j.talanta.2018.01.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
|
39
|
Preetha Rani MR, Anupama N, Sreelekshmi M, Raghu KG. Chlorogenic acid attenuates glucotoxicity in H9c2 cells via inhibition of glycation and PKC α upregulation and safeguarding innate antioxidant status. Biomed Pharmacother 2018; 100:467-477. [PMID: 29477910 DOI: 10.1016/j.biopha.2018.02.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022] Open
Abstract
A series of cardiovascular complications associated with hyperglycemia is a critical threat to the diabetic population. Here we elucidate the link between hyperglycemia and cardiovascular diseases onset, focusing on oxidative stress and associated cardiac dysfunctions. The contribution of advanced glycation end products (AGE) and protein kinase C (PKC) signaling is extensively studied. For induction of hyperglycemia, H9c2 cells were incubated with 33 mM glucose for 48 h to simulate the diabetic condition in in vitro system. Development of cardiac dysfunction was confirmed with the significant increase of lactate dehydrogenase (LDH) release to the medium and associated decrease in cell viability. Various parameters like free radical generation, alteration in innate antioxidant system, lipid peroxidation, AGE production and PKC α -ERK axis were investigated during hyperglycemia and with chlorogenic acid. Hyperglycemia has significantly enhanced reactive oxygen species (ROS- 4 fold) generation, depleted SOD activity (1.3 fold) and expression of enzymes particularly CuZnSOD (SOD1) and MnSOD (SOD2), increased production of AGE (2.18 fold). Besides, PKC α dependent ERK signaling pathway was found activated (1.43 fold) leading to cardiac dysfunction during hyperglycemia. Chlorogenic acid (CA) was found beneficial against hyperglycemia most probably through its antioxidant mediated activity. The outcome of this preliminary study reveals the importance of integrated approach emphasizing redox status, glycation and signaling pathways like PKC α - ERK axis for control and management of diabetic cardiomyopathy (DCM) and potential of bioactives like CA.
Collapse
Affiliation(s)
- M R Preetha Rani
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - Nair Anupama
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - Mohan Sreelekshmi
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India.
| |
Collapse
|
40
|
Uysal S, Ugurlu A, Zengin G, Baloglu MC, Altunoglu YC, Mollica A, Custodio L, Neng NR, Nogueira JMF, Mahomoodally MF. Novel in vitro and in silico insights of the multi-biological activities and chemical composition of Bidens tripartita L. Food Chem Toxicol 2017; 111:525-536. [PMID: 29217268 DOI: 10.1016/j.fct.2017.11.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 01/19/2023]
Abstract
Bidens tripartita L. is a traditional phyto-remedy used in several countries, yet there is still a paucity of data on its biological potential. We aimed to provide new insights on the pharmacological potential of extracts prepared from B. tripartita via highlighting its antioxidant, key enzymes inhibitory potency, and DNA protecting effects. Phytochemical profile was established using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) and bioactive compound(s) docked against target enzymes using in silico methods. Cytotoxicity against three cancer cell lines was assessed using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) cell viability test. The main compounds were luteolin-7-glucoside (cynaroside), chlorogenic acid, and epicatechin in the extracts. The methanol extract exhibited the highest radical scavenging activity. Ethyl acetate extract showed strongest α-amylase inhibitory activity, while the best α-glucosidase inhibitory effect recorded for the methanol extract. Molecular docking showed that cynaroside strongly interact to α-glucosidase cavity by establishing six hydrogen bonds. B. tripartita extracts were found to protect supercoiled form of pUC19 plasmid (>70%) and also showed anti-proliferative properties. Results amassed in the present study add on to a growing body of literature on the multi-pharmacological potency of B. tripartita which can be applied to bio-products development geared towards management of common diseases.
Collapse
Affiliation(s)
- Sengul Uysal
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey.
| | - Asli Ugurlu
- Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu, Turkey.
| | - Gokhan Zengin
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Adriano Mollica
- Department of Pharmacy University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Luisa Custodio
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, Faro, Portugal
| | - Nuno R Neng
- Faculty of Sciences of the University of Lisbon, Centre of Chemistry and Biochemistry/Department of Chemistry and Biochemistry, Building C8, Floor 5, Campo Grande, 1749-016 Lisbon, Portugal
| | - José M F Nogueira
- Faculty of Sciences of the University of Lisbon, Centre of Chemistry and Biochemistry/Department of Chemistry and Biochemistry, Building C8, Floor 5, Campo Grande, 1749-016 Lisbon, Portugal
| | - M Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
41
|
Song J, Guo D, Bi H. Chlorogenic acid attenuates hydrogen peroxide‑induced oxidative stress in lens epithelial cells. Int J Mol Med 2017; 41:765-772. [PMID: 29207051 PMCID: PMC5752158 DOI: 10.3892/ijmm.2017.3302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/27/2017] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress has an important role in the degradation, oxidation, cross‑linking and aggregation of lens proteins, and can trigger lens epithelial cell apoptosis. To investigate the protective effect of chlorogenic acid (CGA) against hydrogen peroxide (H2O2)‑induced oxidative stress, human lens epithelial cells (hLECs) were exposed to various concentrations of H2O2 in the presence and absence of CGA. Using MTT assay, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and ELISA techniques, cell viability, and protein/mRNA levels of BCL2 apoptosis regulator (Bcl‑2) and BCL2 associated X apoptosis regulator (Bax) were investigated. Additionally, the levels of intracellular reactive oxygen species (ROS) and apoptosis within cells were measured using flow cytometry to determine the protective effect of CGA on H2O2‑induced oxidative stress. Furthermore, the protective effect of CGA on H2O2‑induced apoptosis was also examined using rabbit lenses ex vivo. The results indicated that CGA reduced H2O2‑induced cytotoxicity in a dose‑dependent manner. Flow cytometry analysis demonstrated that simultaneous exposure of hLECs to H2O2 and CGA significantly decreased apoptosis and the levels of ROS. RT‑qPCR analysis revealed a decrease in Bcl‑2 and an increase in Bax in hLECs following exposure to H2O2 for 24 h, regardless of CGA presence. Furthermore, ELISA results indicate that CGA increased Bcl‑2 expression and decreased Bax expression following treatment with H2O2 for 24 h and the Bax/Bcl-2 ratio was significantly decreased by CGA treatment. Lens organ culture experiments indicated a dose‑dependent decrease in H2O2‑induced lens opacity following CGA treatment. These results suggest that CGA suppresses hLECs apoptosis and prevents lens opacity induced by H2O2 via Bax/Bcl‑2 signaling pathway. CGA may provide effective defenses against oxidative stress and, thus, haσ potential as treatment for a variety of diseases in clinical practice.
Collapse
Affiliation(s)
- Jike Song
- Medical College of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| |
Collapse
|
42
|
Ren T, Wang Y, Wang C, Zhang M, Huang W, Jiang J, Li W, Zhang J. Isolation and identification of human metabolites from a novel anti-tumor candidate drug 5-chlorogenic acid injection by HPLC-HRMS/MS n and HPLC-SPE-NMR. Anal Bioanal Chem 2017; 409:7035-7048. [PMID: 29116355 DOI: 10.1007/s00216-017-0657-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/04/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
A novel anti-tumor candidate drug, 5-chlorogenic acid (5-CQA) injection, was used for the treatment of malignant glioma in clinical trial (phase I) in China. The isolation and identification of the metabolites of 5-CQA injection in humans were investigated in the present study. Urine and feces samples obtained after intramuscular administration of 5-CQA injection to healthy adults have been analyzed by high-performance liquid chromatography coupled with high-resolution mass and multiple-stage mass spectrometry (HPLC-HRMS/MSn). No metabolite was detected in human feces; however, in human urine, a total of six metabolites were identified including isomerized 5-CQA (P1 and P2), hydrolyzed 5-CQA (M1and M2), and methylated 5-CQA (M3 and M4). Among them, M3 and M4 were the main metabolites and target analytes for human mass balance study. Additionally, the structure of M3 and M4 was characterized by high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance (HPLC-SPE-NMR), and the results demonstrated that the methoxy group of M3 and M4 was exclusively attributed to C-3' and C-4', respectively. Due to the unavailability of commercial reference, the pure products of M3 and M4 were synthesized by 5-CQA methylation and followed by isolation and purification. Moreover, the potential activity of M3 and M4 on malignant glioma was predicted using a reverse molecular docking analysis on eight malignant glioma-related pathways. The results showed that M3 and M4 had various interactions against malignant glioma-related targets. Our study provides an insight into the metabolism of 5-CQA injection in humans and supports the clinical human mass balance study. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Tiankun Ren
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 2 Nanwei Street, Xicheng District, Beijing, 100050, China
| | - Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 2 Nanwei Street, Xicheng District, Beijing, 100050, China
| | - Caihong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 2 Nanwei Street, Xicheng District, Beijing, 100050, China
| | - Mengtian Zhang
- Jiuzhang Biochemical Engineering Science and Technology Development Co., Ltd., Chengdu, Sichuan, 610041, China
| | - Wang Huang
- Jiuzhang Biochemical Engineering Science and Technology Development Co., Ltd., Chengdu, Sichuan, 610041, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 2 Nanwei Street, Xicheng District, Beijing, 100050, China.
| | - Wenbin Li
- Department of Glioma, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 2 Nanwei Street, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
43
|
Jo H, Zhou Y, Viji M, Choi M, Lim JY, Sim J, Rhee J, Kim Y, Seo SY, Kim WJ, Hong JT, Lee H, Lee K, Jung JK. Synthesis, biological evaluation, and metabolic stability of chlorogenic acid derivatives possessing thiazole as potent inhibitors of α-MSH-stimulated melanogenesis. Bioorg Med Chem Lett 2017; 27:4854-4857. [PMID: 28964634 DOI: 10.1016/j.bmcl.2017.09.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022]
Abstract
A series of catechol and dioxolane analogs containing thiazole CGA derivatives have been synthesized and evaluated for their inhibitory activity against α-MSH. The inhibitory activity was improved by replacing an α,β-unsaturated carbonyl of previously reported caffeamides with thiazole motif. Surprisingly, compound 7d, one of the derivatives of dioxolane analogs, displayed the most potent inhibitory activity with an IC50 of 0.90μM. Further studies on metabolic stability and bioactivation potential were also accomplished.
Collapse
Affiliation(s)
- Hyeju Jo
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yuanyuan Zhou
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Minho Choi
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae Young Lim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jeongtae Rhee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Youngsoo Kim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seung-Yong Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Wun-Jae Kim
- College of Medicines, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Heesoon Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea.
| |
Collapse
|
44
|
Alarcón-Herrera N, Flores-Maya S, Bellido B, García-Bores AM, Mendoza E, Ávila-Acevedo G, Hernández-Echeagaray E. Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food Chem Toxicol 2017; 109:1018-1025. [DOI: 10.1016/j.fct.2017.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 01/28/2023]
|
45
|
Tewari D, Nabavi SF, Nabavi SM, Sureda A, Farooqi AA, Atanasov AG, Vacca RA, Sethi G, Bishayee A. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res 2017; 128:366-375. [PMID: 28951297 DOI: 10.1016/j.phrs.2017.09.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 12/29/2022]
Abstract
Activator protein 1 (AP-1) is a key transcription factor in the control of several cellular processes responsible for cell survival proliferation and differentiation. Dysfunctional AP-1 expression and activity are involved in several severe diseases, especially inflammatory disorders and cancer. Therefore, targeting AP-1 has recently emerged as an attractive therapeutic strategy for cancer prevention and therapy. This review summarizes our current understanding of AP-1 biology and function as well as explores and discusses several natural bioactive compounds modulating AP-1-associated signaling pathways for cancer prevention and intervention. Current limitations, challenges, and future directions of research are also critically discussed.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital, 263 136, Uttarakhand, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN Physiopathology of Obesity and Nutrition, University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, 54000, Pakistan
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, 1090, Vienna, Austria; Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, I-70126, Bari, Italy
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA.
| |
Collapse
|
46
|
Karpinska J, Świsłocka R, Lewandowski W. A mystery of a cup of coffee; an insight look by chemist. Biofactors 2017; 43:621-632. [PMID: 28613019 DOI: 10.1002/biof.1371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/22/2017] [Indexed: 12/29/2022]
Abstract
Fruits, vegetables as well as processed food products of plant origin are a rich source of beneficial for human health constituents. Among them the polyphenols constitute a large group of compounds. The presented literature survey is devoted to chlorogenic acid the most abundant representative of cinnamate acids esters. Its chemical as well as biological properties are described. © 2017 BioFactors, 43(5):621-632, 2017.
Collapse
Affiliation(s)
- Joanna Karpinska
- Institute of Chemistry, University of Bialystok, Bialystok, 15-245, Poland
| | - Renata Świsłocka
- Division of Chemistry, Bialystok University of Technology, Bialystok, 15-351, Poland
| | | |
Collapse
|
47
|
Yamagata K, Izawa Y, Onodera D, Tagami M. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol Cell Biochem 2017; 441:9-19. [DOI: 10.1007/s11010-017-3171-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023]
|
48
|
Ballesteros LF, Ramirez MJ, Orrego CE, Teixeira JA, Mussatto SI. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem 2017; 237:623-631. [PMID: 28764044 DOI: 10.1016/j.foodchem.2017.05.142] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/27/2022]
Abstract
Freeze-drying and spray-drying techniques were evaluated for encapsulation of phenolic compounds (PC) extracted from spent coffee grounds. Additionally, the use of maltodextrin, gum arabic and a mixture of these components (ratio 1:1) as wall material to retain the PC and preserve their antioxidant activity was also assessed. The contents of PC and flavonoids (FLA), as well as the antioxidant activity of the encapsulated samples were determined in order to verify the efficiency of each studied condition. Additional analyses for characterization of the samples were also performed. Both the technique and the coating material greatly influenced the encapsulation of antioxidant PC. The best results were achieved when PC were encapsulated by freeze-drying using maltodextrin as wall material. Under these conditions, the amount of PC and FLA retained in the encapsulated sample corresponded to 62% and 73%, respectively, and 73-86% of the antioxidant activity present in the original extract was preserved.
Collapse
Affiliation(s)
- Lina F Ballesteros
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Monica J Ramirez
- Instituto de Biotecnología y Agroindustria, Universidad Nacional de Colombia sede Manizales, Km 7, via sl Magdalena, Campus La Nubia, Manizales, Colombia
| | - Carlos E Orrego
- Instituto de Biotecnología y Agroindustria, Universidad Nacional de Colombia sede Manizales, Km 7, via sl Magdalena, Campus La Nubia, Manizales, Colombia
| | - José A Teixeira
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Solange I Mussatto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
49
|
Tošović J, Marković S, Dimitrić Marković JM, Mojović M, Milenković D. Antioxidative mechanisms in chlorogenic acid. Food Chem 2017; 237:390-398. [PMID: 28764012 DOI: 10.1016/j.foodchem.2017.05.080] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/26/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022]
Abstract
Although chlorogenic acid (5CQA) is an important ingredient of various foods and beverages, mechanisms of its antioxidative action have not been fully clarified. Besides electron spin resonance experiment, this study includes thermodynamic and mechanistic investigations of the hydrogen atom transfer (HAT), radical adduct formation (RAF), sequential proton loss electron transfer (SPLET), and single electron transfer - proton transfer (SET-PT) mechanisms of 5CQA in benzene, ethanol, and water solutions. The calculations were performed using the M06-2X/6-311++G(d,p) level of theory and CPCM solvation model. It was found that SET-PT is not a plausible antioxidative mechanism of 5CQA. RAF pathways are faster, but HAT yields thermodynamically more stable radical products, indicating that in acidic and neutral media 5CQA can take either HAT or RAF pathways. In basic environment (e.g. at physiological pH) SPLET is the likely antioxidative mechanism of 5CQA with extremely high rate.
Collapse
Affiliation(s)
- Jelena Tošović
- University of Kragujevac, Faculty of Science, Department of Chemistry, 12 Radoja Domanovića, 34000 Kragujevac, Serbia.
| | - Svetlana Marković
- University of Kragujevac, Faculty of Science, Department of Chemistry, 12 Radoja Domanovića, 34000 Kragujevac, Serbia
| | | | - Miloš Mojović
- Faculty of Physical Chemistry, University of Belgrade, 12-16 Studentski trg, 11000 Belgrade, Serbia
| | - Dejan Milenković
- Bioengineering Research and Development Centre, 6 Prvoslava Stojanovića, 34000 Kragujevac, Serbia
| |
Collapse
|
50
|
Design of microparticles containing natural antioxidants: Preparation, characterization and controlled release studies. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|