1
|
Biosca-Brull J, Guardia-Escote L, Blanco J, Basaure P, Cabré M, Sánchez-Santed F, Domingo JL, Colomina MT. Prenatal, but not postnatal exposure to chlorpyrifos affects social behavior of mice and the excitatory-inhibitory balance in a sex-dependent manner. Food Chem Toxicol 2022; 169:113423. [PMID: 36113784 DOI: 10.1016/j.fct.2022.113423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
The balance between excitatory and inhibitory neurotransmitters is essential for proper brain development. An imbalance between these two systems has been associated with neurodevelopmental disorders. On the other hand, literature also associates the massive use of pesticides with the increase of these disorders, with a particular focus on chlorpyrifos (CPF) a world-wide used organophosphate pesticide. This study was aimed at assessing social autistic-like behaviors on mice pre or postnatally exposed to CPF (0 or 1 mg/kg/day), in both sexes. In prenatal exposure, C57BL/6J pregnant mice were exposed to CPF through the diet, between gestational days (GD) 12 and 18, while a positive control group for some autistic behaviors was exposed to valproic acid (VPA) on GD 12 and 13. To assess postnatal exposure, C57BL/6J mice were orally exposed to the vehicle (corn oil) or CPF, from postnatal days (PND) 10-15. Social behavior and gene expression analysis were assessed on PND 45. Results showed social alterations only in males prenatally treated. GABA system was upregulated in CPF-treated females, whereas an increase in both systems was observed in both treated males. These findings suggest that males are more sensitive to prenatal CPF exposure, favoring the sex bias observed in ASD.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain.
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain.
| |
Collapse
|
2
|
Kandel Gambarte PC, Wolansky MJ. The gut microbiota as a biomarker for realistic exposures to pesticides: A critical consideration. Neurotoxicol Teratol 2022; 91:107074. [DOI: 10.1016/j.ntt.2022.107074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
3
|
Dissanayake KN, Margetiny F, Whitmore CL, Chou RCC, Roesl C, Patel V, McArdle JJ, Webster R, Beeson D, Tattersall JEH, Wyllie DJA, Eddleston M, Ribchester RR. Antagonistic postsynaptic and presynaptic actions of cyclohexanol on neuromuscular synaptic transmission and function. J Physiol 2021; 599:5417-5449. [PMID: 34748643 DOI: 10.1113/jp281921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Some survivors develop a severe, acute or delayed myasthenic syndrome. In animal models, similar myasthenia has been associated with increasing plasma concentration of one insecticide solvent metabolite, cyclohexanol. We investigated possible mechanisms using voltage and current recordings from mouse neuromuscular junctions (NMJs) and transfected human cell lines. Cyclohexanol (10-25 mM) reduced endplate potential (EPP) amplitudes by 10-40% and enhanced depression during repetitive (2-20 Hz) stimulation by up to 60%. EPP decay was prolonged more than twofold. Miniature EPPs were attenuated by more than 50%. Cyclohexanol inhibited whole-cell currents recorded from CN21 cells expressing human postjunctional acetylcholine receptors (hnAChR) with an IC50 of 3.74 mM. Cyclohexanol (10-20 mM) also caused prolonged episodes of reduced-current, multi-channel bursting in outside-out patch recordings from hnAChRs expressed in transfected HEK293T cells, reducing charge transfer by more than 50%. Molecular modelling indicated cyclohexanol binding (-6 kcal/mol) to a previously identified alcohol binding site on nicotinic AChR α-subunits. Cyclohexanol also increased quantal content of evoked transmitter release by ∼50%. In perineurial recordings, cyclohexanol selectively inhibited presynaptic K+ currents. Modelling indicated cyclohexanol binding (-3.8 kcal/mol) to voltage-sensitive K+ channels at the same site as tetraethylammonium (TEA). TEA (10 mM) blocked K+ channels more effectively than cyclohexanol but EPPs were more prolonged in 20 mM cyclohexanol. The results explain the pattern of neuromuscular dysfunction following ingestion of organophosphorus insecticides containing cyclohexanol precursors and suggest that cyclohexanol may facilitate investigation of mechanisms regulating synaptic strength at NMJs. KEY POINTS: Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Survivors may develop a severe myasthenic syndrome or paralysis, associated with increased plasma levels of cyclohexanol, an insecticide solvent metabolite. Analysis of synaptic transmission at neuromuscular junctions in isolated mouse skeletal muscle, using isometric tension recording and microelectrode recording of endplate voltages and currents, showed that cyclohexanol reduced postsynaptic sensitivity to acetylcholine neurotransmitter (reduced quantal size) while simultaneously enhancing evoked transmitter release (increased quantal content). Patch recording from transfected cell lines, together with molecular modelling, indicated that cyclohexanol causes selective, allosteric antagonism of postsynaptic nicotinic acetylcholine receptors and block of presynaptic K+ -channel function. The data provide insight into the cellular and molecular mechanisms of neuromuscular weakness following intentional ingestion of agricultural organophosphorus insecticides. Our findings also extend understanding of the effects of alcohols on synaptic transmission and homeostatic synaptic function.
Collapse
Affiliation(s)
- Kosala N Dissanayake
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Filip Margetiny
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Robert C-C Chou
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Cornelia Roesl
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Vishwendra Patel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, State University of New Jersey, Newark, NJ, USA
| | - Joseph J McArdle
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, State University of New Jersey, Newark, NJ, USA
| | - Richard Webster
- Weatherall Institute for Molecular Medicine, Radcliffe Infirmary, Oxford, UK
| | - David Beeson
- Weatherall Institute for Molecular Medicine, Radcliffe Infirmary, Oxford, UK
| | | | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Michael Eddleston
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
4
|
Dissanayake KN, Chou RCC, Thompson A, Margetiny F, Davie C, McKinnon S, Patel V, Sultatos L, McArdle JJ, Clutton RE, Eddleston M, Ribchester RR. Impaired neuromuscular function by conjoint actions of organophosphorus insecticide metabolites omethoate and cyclohexanol with implications for treatment of respiratory failure. Clin Toxicol (Phila) 2021; 59:1239-1258. [PMID: 33988053 DOI: 10.1080/15563650.2021.1916519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ingestion of agricultural organophosphorus insecticides is a significant cause of death in rural Asia. Patients often show acute respiratory failure and/or delayed, unexplained signs of neuromuscular paralysis, sometimes diagnosed as "Intermediate Syndrome". We tested the hypothesis that omethoate and cyclohexanol, circulating metabolites of one agricultural formulation, cause muscle weakness and paralysis. METHODS Acetylcholinesterase activity of insecticide components and metabolites was measured using purified enzyme from eel electroplaque or muscle homogenates. Mechanomyographic recording of pelvic limb responses to nerve stimulation was made in anaesthetized pigs and isometric force was recorded from isolated nerve-muscle preparations from mice. Omethoate and cyclohexanol were administered intravenously or added to physiological saline bathing isolated muscle. We also assessed the effect of MgSO4 and cooling on neuromuscular function. RESULTS Omethoate caused tetanic fade in pig muscles and long-lasting contractions of the motor innervation zone in mouse muscle. Both effects were mitigated, either by i.v. administration of MgSO4 in vivo or by adding 5 mM Mg2+ to the medium bathing isolated preparations. Combination of omethoate and cyclohexanol initially potentiated muscle contractions but then rapidly blocked them. Cyclohexanol alone caused fade and block of muscle contractions in pigs and in isolated preparations. Similar effects were observed ex vivo with cyclohexanone and xylene. Cyclohexanol-induced neuromuscular block was temperature-sensitive and rapidly reversible. CONCLUSIONS The data indicate a crucial role for organophosphorus and solvent metabolites in muscle weakness following ingestion of agricultural OP insecticide formulations. The metabolites omethoate and cyclohexanol acted conjointly to impair neuromuscular function but their effects were mitigated by elevating extracellular Mg2+ and decreasing core temperature, respectively. Clinical studies of MgSO4 therapy and targeted temperature management in insecticide-poisoned patients are required to determine whether they may be effective adjuncts to treatment.
Collapse
Affiliation(s)
- Kosala N Dissanayake
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Adrian Thompson
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Filip Margetiny
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Charlotte Davie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Scott McKinnon
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Vishwendra Patel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Lester Sultatos
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Joseph J McArdle
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Richard E Clutton
- Wellcome Trust Critical Care Laboratory for Large Animals, Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Michael Eddleston
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
5
|
|
6
|
Deshpande LS, Blair RE, Halquist M, Kosmider L, DeLorenzo RJ. Intramuscular atenolol and levetiracetam reduce mortality in a rat model of paraoxon-induced status epilepticus. Ann N Y Acad Sci 2020; 1480:219-232. [PMID: 32961584 DOI: 10.1111/nyas.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/01/2022]
Abstract
Organophosphorus (OP) compounds are chemical threat agents and are irreversible inhibitors of the enzyme acetylcholinesterase that lead to a hypercholinergic response that could include status epilepticus (SE). SE particularly targets the heart and brain and despite existing therapies, it is still associated with significant mortality and morbidity. Here, we investigated the effect of intramuscular (i.m.) adjunct therapy consisting of atenolol (AT) and levetiracetam (LV) when administered after paraoxon (POX)-induced SE. The combination therapy was administered twice daily for 2, 7, or 14 days. POX exposure in rats produced rapid SE onset that was treated with atropine, pralidoxime chloride, and midazolam. Here, AT + LV therapy produced significant reductions in POX SE mortality assessed at 30 days post-SE. AT + LV therapy exhibited muscle pathology inflammation scores that were not significantly different from saline-treated controls. Pharmacokinetic analyses revealed that the i.m. route achieved faster and stabler plasma therapeutic levels for both AT and LV under OP SE conditions compared with oral administrations. Our data provide evidence of the safety and efficacy of i.m. AT + LV therapy for reducing mortality following POX SE.
Collapse
Affiliation(s)
- Laxmikant S Deshpande
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Robert E Blair
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew Halquist
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Leon Kosmider
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Robert J DeLorenzo
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Baş O, Çankaya S, Enginyurt Ö, Aslan A, Uydu HA, Odaci E, Yılmaz A, Demir A, Gul T. The effect of acute organophosphate intoxication on female rat hippocampus cornu ammonis region pyramidal neuron numbers, biochemistry and morphology. J Chem Neuroanat 2019; 100:101652. [DOI: 10.1016/j.jchemneu.2019.101652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/03/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
|
8
|
Ferreira PMP, Santos DB, Silva JDN, Goudinho AF, Ramos CLS, Souza PCD, Almeida RSCD, Moura DS, Oliveira RD, Grisolia CK, Cavalheiro AJ, Carvalho Melo-Cavalcante AAD, Ferreira JRDO, Moraes Filho MOD, Pessoa C. Toxicological findings about an anticancer fraction with casearins described by traditional and alternative techniques as support to the Brazilian Unified Health System (SUS). JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:112004. [PMID: 31152784 DOI: 10.1016/j.jep.2019.112004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts, essential oils and molecules from Casearia sylvestris have popularly shown pharmacological actions against chronic diseases, as anxiety, inflammation, cancer and dyslipidemia. In the context of antitumoral therapy, we investigated in vitro, ex vivo and in vivo toxicological changes induced by a Fraction with Casearins (FC) and its component Casearin X isolated from C. sylvestris on animal and vegetal cells, and upon invertebrates and mammals. MATERIAL AND METHODS Cytotoxicity was carried out using normal lines and absorbance and flow cytometry techniques, Artemia salina nauplii, Danio rerio embryos and meristematic cells from Allium cepa roots. Acute and 30 days-mice analysis were done by behavioral, hematological and histological investigations and DNA/chromosomal damages detected by alkaline Cometa and micronucleus assays. RESULTS FC was cytotoxic against lung and fibroblasts cells and caused DNA breaks, loss of integrity and mitochondrial depolarization on ex vivo human leukocytes. It revealed 24 h-LC50 values of 48.8 and 36.7 μg/mL on A. salina nauplii and D. rerio embryos, reduced mitotic index of A. cepa roots, leading to cell cycle arrest at metaphase and anaphase and micronuclei. FC showed i.p. and oral LD50 values of 80.9 and 267.1 mg/kg body weight. Subacute i.p. injections induced loss of weight, swelling of hepatocytes and tubules, tubular and glomerular hemorrhage, microvesicular steatosis, lung inflammatory infiltration, augment of GPT, decrease of albumin, alkaline phosphatase, glucose, erythrocytes, and lymphocytes, and neutrophilia (p > 0.05). FC-treated animals at 10 mg/kg/day i.p. caused micronuclei in bone marrow and DNA strand breaks in peripheral leukocytes. CONCLUSIONS This research postulated suggestive side effects after use of FC-related drugs, demonstrating FC as antiproliferative and genotoxic on mammal and meristematic cells, including human leukocytes, teratogenicity upon zebrafish embryos, myelosuppression, clastogenicity, and morphological and biochemical markers indicating liver as main target for FC-induced systemic toxicity.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil; Postgraduate Programs in Pharmaceutical Sciences and Biotechnology, Federal University of Piauí, Teresina, Brazil.
| | - Denise Barbosa Santos
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil; Postgraduate Programs in Pharmaceutical Sciences and Biotechnology, Federal University of Piauí, Teresina, Brazil
| | - Jurandy do Nascimento Silva
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil; Postgraduate Programs in Pharmaceutical Sciences and Biotechnology, Federal University of Piauí, Teresina, Brazil
| | - Amanda Freitas Goudinho
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil
| | - Carla Lorena Silva Ramos
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil; Postgraduate Programs in Pharmaceutical Sciences and Biotechnology, Federal University of Piauí, Teresina, Brazil
| | | | | | - Diego Sousa Moura
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Rhaul de Oliveira
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Cesar Koppe Grisolia
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | | | | | | | - Claudia Pessoa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
9
|
Chuang CS, Yang KW, Yen CM, Lin CL, Kao CH. Risk of Seizures in Patients with Organophosphate Poisoning: A Nationwide Population-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173147. [PMID: 31470499 PMCID: PMC6747140 DOI: 10.3390/ijerph16173147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/12/2022]
Abstract
Objective: Previous research has demonstrated that patients with a history of organophosphate poisoning tend to have a higher risk of neurological disorder. However, research on the rate of seizure development in patients after organophosphate poisoning is lacking. This study examined whether individuals with organophosphate poisoning have an increased risk of seizures through several years of follow-up. Patients and Methods: We conducted a retrospective study on a cohort of 45,060 individuals (9012 patients with a history of organophosphate poisoning and 36,048 controls) selected from the Taiwan National Health Insurance Research Database. The individuals were observed for a maximum of 12 years to determine the rate of new-onset seizure disorder. We selected a comparison cohort from the general population that was randomly frequency-matched by age, sex, and index year and further analyzed the risk of seizures using a Cox regression model adjusted for sex, age, and comorbidities. Results: During the study period, the risk of seizure development was 3.57 times greater in patients with organophosphate poisoning compared with individuals without, after adjustments for age, sex, and comorbidities. The absolute incidence of seizures was highest in individuals aged 20 to 34 years in both cohorts (adjusted hazard ratio = 13.0, 95% confidence interval = 5.40−31.4). A significantly higher seizure risk was also observed in patients with organophosphate poisoning and comorbidities other than cirrhosis. Conclusions: This nationwide retrospective cohort study demonstrates that seizure risk is significantly increased in patients with organophosphate poisoning compared with the general population.
Collapse
Affiliation(s)
- Chieh-Sen Chuang
- Department of Neurology, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Kai-Wei Yang
- Department of Emergency, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chia-Ming Yen
- Department of Anesthesiology, Buddhist Tzu Chi General Hospital, Taichung 40447, Taiwan
- Department of Graduate Institute of Acupuncture Science, China Medical University, Taichung 40447, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 40447, Taiwan
- College of Medicine, China Medical University, Taichung 40447, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung 40447, Taiwan.
| |
Collapse
|
10
|
Stenzel YP, Henschel J, Winter M, Nowak S. A new HILIC-ICP-SF-MS method for the quantification of organo(fluoro)phosphates as decomposition products of lithium ion battery electrolytes. RSC Adv 2019; 9:11413-11419. [PMID: 35520221 PMCID: PMC9063260 DOI: 10.1039/c9ra01291e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/05/2019] [Indexed: 11/29/2022] Open
Abstract
The lithium ion battery (LIB) is the most popular choice for powering consumer electronics, grid storage and electric vehicles. Decomposition reactions in LIBs, leading to so-called aging, are the main reason for loss of capacity and power and will affect LIB safety. Organo(fluoro)phosphates (O(F)Ps) as decomposition products of LIB electrolytes have been identified in several studies in the literature but quantitative data of O(F)Ps in LIBs are only scarcely available. In terms of toxicity, this substance class is highly relevant as it shows structural similarities to chemical warfare agents. Thus, approaches that can deliver quantitative data are in need. In this study, acidic O(F)Ps were quantified with an inductively coupled plasma-sector field-mass spectrometer (ICP-SF-MS) after separation of species with hydrophilic interaction liquid chromatography (HILIC). The formation of OFPs exceeds the amount of non-fluorine containing OPs by a factor of up to 15. A total of 16 different O(F)P compounds could successfully be quantified. Organic mass spectrometry was used for the assignment of quantitative data. The lithium ion battery (LIB) is the most popular choice for powering consumer electronics, grid storage and electric vehicles.![]()
Collapse
Affiliation(s)
| | - Jonas Henschel
- University of Münster
- MEET Battery Research Center
- 48149 Münster
- Germany
| | - Martin Winter
- University of Münster
- MEET Battery Research Center
- 48149 Münster
- Germany
- Helmholtz-Institute Münster (HI MS), IEK-12
| | - Sascha Nowak
- University of Münster
- MEET Battery Research Center
- 48149 Münster
- Germany
| |
Collapse
|
11
|
Kwon HC, Cha YS, An GJ, Lee Y, Kim H. Usefulness of serum lactate as a predictor of successful discontinuation of continuous atropine infusion in patients with severe acute organophosphate poisoning. Clin Exp Emerg Med 2018; 5:177-184. [PMID: 30269453 PMCID: PMC6166043 DOI: 10.15441/ceem.17.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/15/2018] [Indexed: 11/23/2022] Open
Abstract
Objective In severe organophosphate (OP) poisoning, administration of atropine via continuous intravenous infusion is typically considered. To date, there have been no studies on predicting successful atropine discontinuation through plasma cholinesterase (PChE) and serum lactate levels, which are monitored during critical care in severe acute OP poisoning. Therefore, we retrospectively evaluated the usefulness of serum lactate and PChE as predictors of successful discontinuation of atropine infusion. Methods This retrospective observational study was performed on consecutive adult patients treated for severe acute OP poisoning between March 2011 and December 2016. We sequentially evaluated serum lactate and PChE levels on emergency department arrival and before a discontinuation trial of atropine infusion. Discontinuation of atropine intravenous infusion was attempted in patients after clearance of respiratory secretions and cessation of bronchoconstriction. Discontinuation of atropine infusion attempts were divided into successful and failed trials. Results A total of 95 trials were conducted in 62 patients. Serum lactate levels before trials were significantly different between patients with successful and failed trials. The area under the curve for prediction of successful atropine discontinuation using serum lactate levels before trial discontinuation were 0.742 (95% confidence interval, 0.638 to 0.846). PChE level was not significantly different between two groups. Conclusion Serum lactate levels before the discontinuation trial of atropine infusion served to predict successful discontinuation in severe acute OP poisoning.
Collapse
Affiliation(s)
- Ho Chul Kwon
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yong Sung Cha
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Gyo Jin An
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yoonsuk Lee
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyun Kim
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
12
|
Impact of chlorpyrifos on human villous trophoblasts and chorionic villi. Toxicol Appl Pharmacol 2017; 329:26-39. [DOI: 10.1016/j.taap.2017.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/29/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
|
13
|
Voorhees JR, Rohlman DS, Lein PJ, Pieper AA. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds. Front Neurosci 2017; 10:590. [PMID: 28149268 PMCID: PMC5241311 DOI: 10.3389/fnins.2016.00590] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023] Open
Abstract
Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally.
Collapse
Affiliation(s)
- Jaymie R. Voorhees
- Department of Psychiatry, University of Iowa Carver College of MedicineIowa City, IA, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
| | - Diane S. Rohlman
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa College of Public HealthIowa City, IA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, DavisDavis, CA, USA
| | - Andrew A. Pieper
- Department of Psychiatry, University of Iowa Carver College of MedicineIowa City, IA, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Neurology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Free Radical and Radiation Biology Program, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Radiation Oncology Holden Comprehensive Cancer Center, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Veteran Affairs, University of Iowa Carver College of MedicineIowa City, IA, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical CollegeNew York, NY, USA
| |
Collapse
|
14
|
Stallones L, Beseler CL. Assessing the connection between organophosphate pesticide poisoning and mental health: A comparison of neuropsychological symptoms from clinical observations, animal models and epidemiological studies. Cortex 2016; 74:405-16. [DOI: 10.1016/j.cortex.2015.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023]
|
15
|
Pakravan N, Shokrzadeh M, Bari MAK, Shadboorestan A. Measurement of cholinesterase enzyme activity before and after exposure to organophosphate pesticides in farmers of a suburb region of Mazandaran, a northern province of Iran. Hum Exp Toxicol 2015; 35:297-301. [PMID: 25943120 DOI: 10.1177/0960327115584990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Accidental toxicity by organophosphate (OP) agents may occur among farmers during spraying season due to improper use and handling. Plasma cholinesterase (ChE) activity measurement is recommended to monitor the extent of exposure to the OP agent. The aim of the current study was to measure plasma ChE activity before and after exposure with OP pesticides. METHODS This was a prospective study conducted on 36 farmers working in the farm field. The plasma ChE level was measured before spraying and 2 days and 8 weeks after spraying season and exposure to OP agent. Farmers were observed for clinical signs and symptoms of toxicity after exposure. RESULTS Vertimac was the most common agent used by farmers followed by diazinon and chlorpyrifos. The plasma ChE level significantly decreased after exposure by over 50%. The level returned to preexposure level after 8 weeks. CONCLUSION Exposure to OP pesticide is a major concern in the developing countries. More than 50% reduction in the plasma ChE activity after spraying is an alarming message for health-care system and policy makers. Furthermore, workplace evaluation, serial ChE monitoring, and appropriate training and education to exposed individuals would be initial important steps to avoid the toxicity or reduce the severity of poisoning.
Collapse
Affiliation(s)
- N Pakravan
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - M Shokrzadeh
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - M A Khalat Bari
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy,Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Weber W, Kraft V, Grützke M, Wagner R, Winter M, Nowak S. Identification of alkylated phosphates by gas chromatography–mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte. J Chromatogr A 2015; 1394:128-36. [DOI: 10.1016/j.chroma.2015.03.048] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/12/2015] [Accepted: 03/15/2015] [Indexed: 10/23/2022]
|
17
|
|
18
|
Misik J, Pavlikova R, Cabal J, Kuca K. Acute toxicity of some nerve agents and pesticides in rats. Drug Chem Toxicol 2014; 38:32-6. [PMID: 24641243 DOI: 10.3109/01480545.2014.900070] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Highly toxic organophosphorus compounds (V- and G-nerve agents) were originally synthesized for warfare or as agricultural pesticides. Data on their acute toxicity are rare and patchy. Therefore, there is a need for integrated summary comparing acute toxicity of organophosphates using different administration routes in the same animal model with the same methodology. Based on original data, a summary of in vivo acute toxicity of selected V- and G-nerve agents (tabun, sarin, soman, VX, Russian VX) and organophosphates paraoxon (POX) and diisopropyl fluorophosphate (DFP) in rats has been investigated. MATERIALS AND METHODS Male Wistar rats were exposed to organophosphates in several administration routes (i.m., i.p., p.o, s.c., p.c.). The acute toxicity was evaluated by the assessment of median lethal dose (LD50, mg kg(-1)) 2, 4, and 24 hours post exposure. RESULTS V-agents were the most toxic presented with LD50 ranged from 0.0082 mg kg(-1) (VX, i.m.) to 1.402 mg kg(-1) (Russian VX, p.o.), followed by G-agents (LD50 = 0.069 mg kg(-1)/soman, i.m./ - 117.9 mg kg(-1)/sarin, p.c./), organophosphate POX and DFP (LD50 = 0.321 mg kg(-1)/POX, i.m./ - 420 mg kg(-1)/DFP, p.c./). Generally, i.m. administration was the most toxic throughout all tested agents and ways of administration (LD50 = 0.0082 mg kg(-1)/VX/ - 1.399 mg kg(-1)/DFP/) whereas p.c. way was responsible for lowest acute toxicity (LD50 = 0.085 mg kg(-1)/VX/ - 420 mg kg(-1)/DFP/). CONCLUSION The acute toxicity of selected organophosphorus compounds is summarized throughout this study. Although the data assessed in rats are rather illustrative prediction for human, it presents a valuable contribution, indicating the toxic potential and harmfulness of organophosphates.
Collapse
Affiliation(s)
- Jan Misik
- Faculty of Military Health Sciences, University of Defence , Trebesska, Hradec Kralove , Czech Republic and
| | | | | | | |
Collapse
|
19
|
Liu GX, Xuan N, Chu D, Xie HY, Fan ZX, Bi YP, Picimbon JF, Qin YC, Zhong ST, Li YF, Gao ZL, Pan WL, Wang GY, Rajashekar B. Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 85:137-151. [PMID: 24478049 DOI: 10.1002/arch.21148] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chemosensory proteins (CSPs) are a group of small soluble proteins found so far exclusively in arthropod species. These proteins act in chemical communication and perception. In this study, a gene encoding the Type 1 CSP (BtabCSP1) from the agricultural pest Bemisia tabaci (whitefly) was analyzed to understand sequence variation and expression specificity in different biotypes. Sequence analysis of BtabCSP1 showed significant differences between the two genetically characterized biotypes, B and Q. The B-biotype had a larger number of BtabCSP1 mutations than the Q-biotype. Similar to most other CSPs, BtabCSP1 was more expressed in the head than in the rest of the body. One-step RT-PCR and qPCR analysis on total messenger RNA showed that biotype-Q had higher BtabCSP1 expression levels than biotype-B. Females from a mixed field-population had high levels of BtabCSP1 expression. The interaction of BtabCSP1 with the insecticide thiamethoxam was investigated by analyzing the BtabCSP1 expression levels following exposure to the neonicotinoid, thiamethoxam, in a time/dose-response study. Insecticide exposure increased BtabCSP1 expression (up to tenfold) at 4 and 24 h following 50 or 100 g/ml treatments.
Collapse
Affiliation(s)
- Guo Xia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory for Genetic Improvement Cultivation and Physiology of Crops, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mohammad F, Al-Baggou B, Naser A, Fadel M. In vitroinhibition of plasma and brain cholinesterases of growing chicks by chlorpyrifos and dichlorvos. JOURNAL OF APPLIED ANIMAL RESEARCH 2014. [DOI: 10.1080/09712119.2013.875912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Rashedinia M, Hosseinzadeh H, Imenshahidi M, Lari P, Razavi BM, Abnous K. Effect of exposure to diazinon on adult rat’s brain. Toxicol Ind Health 2013; 32:714-20. [DOI: 10.1177/0748233713504806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diazinon (DZN), a commonly used agricultural organophosphate insecticide, is one of the major concerns for human health. This study was planned to investigate neurotoxic effects of subacute exposure to DZN in adult male Wistar rats. Animals received corn oil as control and 15 and 30 mg/kg DZN orally by gastric gavage for 4 weeks. The cerebrum malondialdehyde and glutathione (GSH) contents were assessed as biomarkers of lipid peroxidation and nonenzyme antioxidants, respectively. Moreover, activated forms of caspase 3, -9, and Bax/Bcl-2 ratios were evaluated as key apoptotic proteins. Results of this study suggested that chronic administration of DZN did not change lipid peroxidation and GSH levels significantly in comparison with control. Also, the active forms of caspase 3 and caspase 9 were not significantly altered in DZN-treated rat groups. Moreover, no significant changes were observed in Bax and Bcl-2 ratios. This study indicated that generation of reactive oxygen species was probably modulated by intracellular antioxidant system. In conclusion, subacute oral administration of DZN did not alter lipid peroxidation. Moreover, apoptosis induction was not observed in rat brain.
Collapse
Affiliation(s)
- Marzieh Rashedinia
- Department of Pharmacodynamy and Toxicology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamy and Toxicology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Parisa Lari
- Department of Pharmacodynamy and Toxicology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamy and Toxicology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry and Department of Biotechnology, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| |
Collapse
|
22
|
Dutta AL, Sahu CR. Emblica officinalis Garten fruits extract ameliorates reproductive injury and oxidative testicular toxicity induced by chlorpyrifos in male rats. SPRINGERPLUS 2013; 2:541. [PMID: 24255841 PMCID: PMC3824715 DOI: 10.1186/2193-1801-2-541] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/04/2013] [Indexed: 11/16/2022]
Abstract
Organophosphate pesticides have destroying properties on male reproduction and chlorpyrifos adversely affects the male reproductive system. Emblica offcinalis Garten plays a vital role to challenge many diseases in human body. We investigated the induction of oxidative stress in the male reproductive system of adult rats (Wistar Strain) exposed to widely used organophosphate pesticide, Chlorpyrifos, and tried to establish the ameliorative properties of Emblica officinalis Garten with respect to reproductive reconstruction in them. Rats were divided into 2 groups, control group and experimental group, and the experimental group was divided into 3 groups (G1-G3). All the groups had 5 rats each. Control group received water, experimental group, G1, received 20 mg/kg bw/day Emblica officinalis Garten, G2 received 12 mg/kg bw/day chlorpyrifos and G3 received 12 mg chlorpyrifos with 20 mg Emblica officinalis Garten /kg bw/day. Treatment was done orally from 30 days. Thereafter body weight, male reproductive organs weight, sperm count, sperm morphology, ACP, ALP, total protein, uric acid and testis and serum testosterone level were determined using standard methods. The changes recorded are indicative of infertility in male rats because of chlorpyrifos exposure. When the subjects were treated with Emblica officinalis Garten in conjunction with chlorpyrifos, these parameters exhibited recovery and when treated with Emblica officinalis Garten alone, these parameters were more or less near to the control group. This highlights the debilitating effect of chlorpyrifos and scavenging property of Emblica officinalis Garten.
Collapse
Affiliation(s)
- Abir Lal Dutta
- Cell and Developmental Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal pin- 741235 India
| | - Chitta Ranjan Sahu
- Cell and Developmental Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal pin- 741235 India
| |
Collapse
|
23
|
Li Z, Zhang H, GE X, Liang Y, An X, Yang C, Fang B, Xie H, Wei J. A nanocomposite of copper(ii) functionalized graphene and application for sensing sulfurated organophosphorus pesticides. NEW J CHEM 2013. [DOI: 10.1039/c3nj00528c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Wolansky MJ, Tornero-Velez R. Critical consideration of the multiplicity of experimental and organismic determinants of pyrethroid neurotoxicity: a proof of concept. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:453-490. [PMID: 24298913 DOI: 10.1080/10937404.2013.853607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pyrethroids (PYR) are pesticides with high insecticidal activity that may disrupt neuronal excitability in target and nontarget species. The accumulated evidence consistently showed that this neurophysiologic action is followed by alterations in motor, sensorimotor, neuromuscular, and thermoregulatory responses. Nevertheless, there are some equivocal results regarding the potency of PYR in lab animals. The estimation of potency is an important step in pesticide chemical risk assessment. In order to identify the variables influencing neurobehavioral findings across PYR studies, evidence on experimental and organismic determinants of acute PYR-induced neurotoxicity was reviewed in rodents. A comprehensive analysis of these studies was conducted focusing on test material and dosing conditions, testing conditions, animal models, and other determinants such as testing room temperature. Variations in the severity of the neurotoxicity, under lab-controlled conditions, was explained based upon factors including influence of animal species and age, test material features such as chemical structure and stereochemistry, and dosing conditions such as vehicle, route of exposure, and dose volume. If not controlled, the interplay of these factors may lead to large variance in potency estimation. This review examined the scope of acute toxicological data required to determine the safety of pesticide products, and factors and covariates that need to be controlled in order to ensure that predictivity and precaution are balanced in a risk assessment process within a reasonable time-frame, using acute PYR-induced neurotoxicity in rodents as an exemplar.
Collapse
Affiliation(s)
- M J Wolansky
- a Laboratorio de Toxicología de Mezclas Químicas, Instituto de Investigación IQUIBICEN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Ciudad Universitaria UBA, Ciudad Autónoma de Buenos Aires , Argentina
| | | |
Collapse
|
25
|
Jafari M, Salehi M, Ahmadi S, Asgari A, Abasnezhad M, Hajigholamali M. The role of oxidative stress in diazinon-induced tissues toxicity in Wistar and Norway rats. Toxicol Mech Methods 2012; 22:638-47. [DOI: 10.3109/15376516.2012.716090] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
26
|
Chlorpyrifos modifies the expression of genes involved in human placental function. Reprod Toxicol 2012; 33:331-8. [DOI: 10.1016/j.reprotox.2012.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/20/2011] [Accepted: 01/12/2012] [Indexed: 12/31/2022]
|
27
|
Acute toxicity of veterinary and agricultural formulations of organophosphates dichlorvos and diazinon in chicks. Arh Hig Rada Toksikol 2012; 62:317-23. [PMID: 22202465 DOI: 10.2478/10004-1254-62-2011-2139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formulation components of organophosphate insecticidal preparations might affect their toxic action in animals. The objective of this study was to examine and compare the acute toxicity and cholinesterase inhibition in seven to 14-day-old chicks dosed orally with dichlorvos and diazinon in standard veterinary and agricultural formulations. The acute (24 h) oral median lethal doses (LD50) of the formulations were determined using the up-and-down method. Respective LD50 of dichlorvos of the veterinary and agricultural formulations in chicks were 11.1 mg kg(-1) and 6.51 mg kg(-1) and those of diazinon 6.4 mg kg(-1) and 6.7 mg kg(-1). Plasma and brain cholinesterase activities were measured by electrometry after in vivo and in vitro exposure to organophosphates. The chicks showed signs of cholinergic toxicosis within one hour of dosing. Dichlorvos (8 mg kg(-1)) and diazinon (4 mg kg(-1)) in the veterinary and agricultural formulation significantly reduced both plasma and brain cholinesterase activities in the chicks. The veterinary formulation of dichlorvos reduced plasma ChE by 60% and agricultural by 40% and brain ChE by 93% and 87%, respectively. In contrast, ChE inhibition by diazinon in the agricultural formulation of diazinon was stronger than by the veterinary formulation; 72% vs. 64% in plasma and 97% vs. 80% in the brain, respectively. The highest in vitro inhibitions were observed with dichlorvos in the agricultural formulation (50%) in the brain samples and with diazinon in the agricultural formulation (52%) in the plasma samples. While they exist, differences between formulations cannot be taken as a rule and further investigations should inventory the toxicity of standard veterinary and agricultural organophosphate formulations in addition to the known data for pure forms.
Collapse
|
28
|
Pleil JD, Sheldon LS. Adapting concepts from systems biology to develop systems exposure event networks for exposure science research. Biomarkers 2010; 16:99-105. [DOI: 10.3109/1354750x.2010.541565] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Joachim D. Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27711
| | - Linda S. Sheldon
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27711
| |
Collapse
|
29
|
Shah MD, Iqbal M. Diazinon-induced oxidative stress and renal dysfunction in rats. Food Chem Toxicol 2010; 48:3345-53. [DOI: 10.1016/j.fct.2010.09.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 08/04/2010] [Accepted: 09/01/2010] [Indexed: 11/30/2022]
|
30
|
Concentration dependent effects of commonly used pesticides on activation versus inhibition of the quince (Cydonia Oblonga) polyphenol oxidase. Food Chem Toxicol 2010; 48:957-63. [DOI: 10.1016/j.fct.2010.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/28/2009] [Accepted: 01/04/2010] [Indexed: 11/20/2022]
|
31
|
Insecticides. Clin Toxicol (Phila) 2010. [DOI: 10.3109/9781420092264-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Cemek M, Emin Büyükokuroğlu M, Yürümez Y, Yavuz Y, Aslan A, Büyükben A, Aymelek F. Tissue trace and major element levels in organophosphate insecticide fenthion (Lebaycid) toxicity in rats: prophylactic and therapeutic effect of exogenous melatonin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:206-212. [PMID: 19800688 DOI: 10.1016/j.ecoenv.2009.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
Organophosphate compounds are very toxic chemicals and used in widespread applications. The present study was designed to examine the role of exogenous melatonin against organophosphate toxicity in tissues (brain, heart, jejunum, kidney, liver, lung, muscle and pancreas) trace and major element levels of rats. Trace and major element concentrations in the tissues were measured in the sham group, the control group, prophylaxis with the melatonin group and therapy with the melatonin group (TM) by inductively coupled plasma-optical emission spectroscopy. Statistically significant differences among the experimental groups were detected for some tissue trace and major element concentrations. In the brain tissue, the Al, Mn and Se concentrations in the sham group were significantly higher than those in the control group (p<0.05). In the heart tissue, the Cu, Mn and Se concentrations in the sham group were significantly increased than those in the control group (p<0.05). In the kidney tissue, trace and major element concentrations in the TM group were significantly lower than those in the sham group (Fe and Mn; p<0.05, Cu, Mo, Ni, Ti, V and Zn; p<0.01). In the liver, Mg, Al, Zn and Ca concentrations in the TM group were significantly higher than those in the fenthion-treated control group (p<0.01). In the muscle tissue, element concentrations in the TM group were significantly lower when compared with the sham groups (Ca and Si; p<0.01). The Al, Cr, Mo, Ni, Si and Zn element concentrations were markedly decreased in the control group as compared with the TM group in the pancreas tissue (p<0.01). In conclusion, according to the results of the present study the major findings are that the fenthion-treated rat's tissue element levels were effected and the melatonin may normalize the altered levels of some trace and major elements of the tissues in organophosphate toxicity.
Collapse
Affiliation(s)
- Mustafa Cemek
- Department of Chemistry (Biochemistry Division), Faculty of Sciences and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey.
| | | | | | | | | | | | | |
Collapse
|
33
|
Little S, Llewellyn H, Clarke SFJ. Sensory ataxia associated with chronic organophosphate pesticide exposure. Hum Exp Toxicol 2010; 29:689-93. [DOI: 10.1177/0960327109360365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organophosphorus compounds are widely used in agriculture and industry. Although the immediate and delayed effects of acute exposure have been well described, the clinical sequelae of chronic, low-dose exposure are less certain. This paper describes the case of a farmer who had been exposed to a variety of organophosphate pesticides over a 30-year period, and developed sensory ataxia, which has not previously been described. She was found to have an abnormal cholinesterase phenotype. Mechanisms of possible increased sensitivity to these compounds are discussed which may, in future, allow certain occupational groups to be screened.
Collapse
Affiliation(s)
- S. Little
- Department of Neurology, King's College Hospital, London, UK
| | | | - SFJ Clarke
- Emergency Department, Frimley Park NHS Foundation Trust, Surrey, UK, , Medical Toxicology Department, Guy's and St Thoma' NHS Foundation Trust, London, UK
| |
Collapse
|
34
|
Oostingh GJ, Wichmann G, Schmittner M, Lehmann I, Duschl A. The cytotoxic effects of the organophosphates chlorpyrifos and diazinon differ from their immunomodulating effects. J Immunotoxicol 2009; 6:136-45. [PMID: 19589100 DOI: 10.1080/15476910902977407] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Some organophosphate insecticides have immunomodulating capacities, but it is unknown whether different compounds within this class affect the immune system to the same extent. In this in vitro study, human immortalized T-lymphocytes or bronchial epithelial cells were treated with diazinon or chlorpyrifos in the absence or presence of cellular stress factors, thereby mimicking a stimulated immune system. Cytotoxicity was determined and cytokine release or cytokine-promoter studies were performed to study immunomodulatory effects of these chemicals, whereby the same concentrations of chlorpyrifos and diazinon were used. Results showed that chlor- pyrifos was cytotoxic at concentrations >/= 250 muM, whereas diazinon was not toxic at concentrations up to 1 mM. The immunomodulatory effects of these two compounds were similar for most cytokine promoters tested and induction of cellular stress enhanced these effects. The results were compared to data obtained with blood mononuclear cells, which confirmed the results of stably transfected cell lines, but refer to a higher sensitivity of primary cells. In conclusion, these two pesticides act in a different manner on cell viability and on some immune parameters, but cell viability was not linked to immunomodulation. The results also imply that healthy and diseased individuals are differentially affected by these pollutants.
Collapse
|
35
|
Eddleston M, Wijeratne T, Karalliedde L, Hurrell M, Dawson AH. Case Report Does Not Report Sufficient Data to Support a Diagnosis of Fatal Organophosphorus Poisoning. Clin Toxicol (Phila) 2009; 43:887-8. [PMID: 16440520 PMCID: PMC1940042 DOI: 10.1080/15563650500357651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Michael Eddleston
- South Asian Clinical Toxicology Research Collaboration, Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
36
|
Ferreira PM, Carvalho AF, Farias DF, Cariolano NG, Melo VM, Queiroz MG, Martins AM, Machado-Neto JG. Larvicidal activity of the water extract of Moringa oleifera seeds against Aedes aegypti and its toxicity upon laboratory animals. AN ACAD BRAS CIENC 2009; 81:207-16. [DOI: 10.1590/s0001-37652009000200007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 02/17/2009] [Indexed: 11/22/2022] Open
Abstract
In this work, biological effects of the water extract of Moringa oleifera seeds (WEMOS) were assessed on eggs and 3rd instar larvae of Aedes aegypti and on its toxicity upon laboratory animals (Daphnia magna, mice and rats). Crude WEMOS showed a LC50 value of 1260µg/mL, causing 99.2 ± 2.9% larvae mortality within 24 h at 5200µg/mL, though this larvicidal activity has been lost completely at 80ºC/10 min. WEMOS did not demonstrate capacity to prevent egg hatching. After extensive dialyses of the crude WEMOS into watersoluble dialyzable (DF) and nondyalizable (NDF) fractions, only DF maintained its efficacy to kill larvae. Acute toxicity evaluations on daphnids (EC50 of 188.7µg/mL) and mice (LD50 of 446.5 mg/kg body weight) pointed out to low toxicity. Despite the thymus hypertrophy, WEMOS revealed to be harmless in orally and subacutelytreated rats. In conclusion, WEMOS has thermostable bioactive compounds against Ae. aegypti larvae with apparent molecular mass lower than 12 kDa and moderately toxic potential.
Collapse
|
37
|
Simoniello MF, Kleinsorge EC, Scagnetti JA, Grigolato RA, Poletta GL, Carballo MA. DNA damage in workers occupationally exposed to pesticide mixtures. J Appl Toxicol 2009; 28:957-65. [PMID: 18636400 DOI: 10.1002/jat.1361] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pesticides are used in agriculture to protect crops but represent at the same time a potential risk to farmers and environment. The aim of this work is the evaluation of 54 subjects occupationally exposed to pesticides and 30 subjects as a control group using the quantification of DNA damage level by means of the alkaline Comet assay and the evaluation of repair processes. Damage index Comet assay (DICA) and damage index repair assay (DIRA) were studied in 27 pesticide applicator workers, 27 non-pesticide applicators and controls. Our results show that both exposed groups revealed significant increase in DICA when compared with controls (P < 0.0001), as well as in DIRA (P < 0.0001). However, the spraying group exhibited a marginally significant difference in DICA (P = 0.05) when years of exposure are considered and a significant difference (P < 0.05) when the personal protective equipment used by individuals was taken as a comparison factor. The influence of confounding factors on the genotoxic effects of occupational exposure to pesticides was investigated and no significant differences were observed considering age, gender, smoking and alcohol consumption in relation to DICA and DIRA. Since DNA damage is an important step in events leading from carcinogen exposure to cancer disease, our study highlights the potential health risk associated with agrochemical exposure in developing countries with vast cultivated areas, such as Argentina.
Collapse
Affiliation(s)
- M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|
38
|
Buyukokuroglu ME, Cemek M, Yurumez Y, Yavuz Y, Aslan A. Antioxidative role of melatonin in organophosphate toxicity in rats. Cell Biol Toxicol 2007; 24:151-8. [PMID: 17768667 DOI: 10.1007/s10565-007-9024-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 07/06/2007] [Indexed: 10/22/2022]
Abstract
Previous studies revealed that oxidative stress could be an important component of the mechanism of organophosphate (OP) compound toxicity. The aim of the present study was to investigate both prophylactic and therapeutic effects of melatonin against fenthion-induced oxidative stress in rats. Therefore, we determined the changes in the levels of reduced glutathione (GSH) and malondialdehyde (MDA) in the whole blood, brain, pectoral muscle, liver, lung, heart, kidney, pancreas, and jejunum. Also, the changes in the levels of serum nitrite and nitrate, ascorbic acid, retinal, b-carotene, and ceruloplasmin were measured. In addition, activities of enzymatic antioxidants superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in erythrocyte of normal and experimental animals were measured. It was found that fenthion administration increased the levels of MDA in all tissues and decreased or increased the levels of GSH in some tissues. In comparison to nitrate, nitrite and ascorbic acid levels in the serum of experimental groups, there was no significant difference between groups. However, fenthion toxicity led to decrease in retinol and beta-carotene levels; melatonin administration significantly prevented this decrease. Serum ceruloplasmin level was increased due to fenthion administration, but prophylactic and therapeutic melatonin administration inhibited the increase in ceruloplasmin level of serum. There was no significant change in SOD levels in melatonin-administered groups. Melatonin modulates the fenthion-induced changes in the activities of GPx and CAT. In conclusion, the results of the current study revealed that OP toxicity, induced by fenthion, activated oxidant systems in all antioxidant systems in some tissues. Melatonin administration led to a marked increase in antioxidant activity and inhibited lipid peroxidation in most of tissues.
Collapse
Affiliation(s)
- Mehmet Emin Buyukokuroglu
- Faculty of Medicine, Department of Pharmacology, Afyon Kocatepe University, Ali Cetinkaya Kampüsü, Afyonkarahisar, Turkey.
| | | | | | | | | |
Collapse
|
39
|
Yurumez Y, Cemek M, Yavuz Y, Birdane YO, Buyukokuroglu ME. Beneficial effect of N-acetylcysteine against organophosphate toxicity in mice. Biol Pharm Bull 2007; 30:490-4. [PMID: 17329844 DOI: 10.1248/bpb.30.490] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies showed that oxidative stress could be an important component of the mechanism of organophosphate (OP) compounds toxicity. The aim of present study was to investigate either prophylactic and therapeutic effects of N-acetylcysteine (NAC) against fenthion-induced oxidative stress in mice. Additionally, the effects on survival rates were investigated. Therefore, we determined the changes of the blood levels of glutathione (GSH), malondialdehyde (MDA), nitrite, and nitrate in blood or serum. Additionally, all animals were observed for 6 h and the survival rates were recorded. It was found that fenthion administration increased the levels of MDA, and decreased the levels of GSH, nitrite and nitrate. On the other hand, both prophylactic and therapeutic NAC treatment decreased the levels of MDA, and increased the levels of GSH, nitrite, and nitrate. The results showed that NAC is able to attenuate the fenthion-induced oxidative stress whereby NAC has not only prophylactic but also therapeutic activity in fenthion poisoning. On the other hand, we found that NAC can clearly improve survival rates in mice administered with an acute high dose of fenthion poisoning. In conclusion, NAC can decrease OP-induced oxidative stress and mortality rate, but the exact mechanism of its NAC protective effect needs to be explored further.
Collapse
Affiliation(s)
- Yusuf Yurumez
- Department of Emergency Medicine, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, 03200 Turkey.
| | | | | | | | | |
Collapse
|
40
|
Carter WG, Tarhoni M, Rathbone AJ, Ray DE. Differential protein adduction by seven organophosphorus pesticides in both brain and thymus. Hum Exp Toxicol 2007; 26:347-53. [PMID: 17615116 DOI: 10.1177/0960327107074617] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is a need for mechanistic understanding of the lasting ill health reported in several studies of workers exposed to organophosphorus (OP) pesticide. Although the acute toxicity is largely explicable by acetylcholinesterase inhibition and the lasting effects of frank poisoning by direct excitotoxicity or indirect consequences of the cholinergic syndrome, effects at lower levels of exposure would not be predicted from these mechanisms. Similarly, reversible interactions with nicotinic and muscarinic receptors in adults would not predict continuing ill health. Many OP pesticides produce protein adduction, and the lasting nature of this makes it a candidate mechanism for the production of continuing ill health. We found significant adduction of partially characterized protein targets in both rat brain and thymus by azamethiphos, chlorfenvinphos, chlorpyrifos-oxon, diazinon-oxon, dichlorvos and malaoxon, in vitro and pirimiphos-methyl in vivo. The diversity in the adduction pattern seen across these agents at low dose levels means that any longer term effects of adduction would be specific to specific organophosphates, rather than generic. This presents a challenge to epidemiology, as most exposures are to different agents over time. However, some adducted proteins are also expressed in blood, notably albumin, and so may provide exposure measures to increase the power of future epidemiological studies.
Collapse
Affiliation(s)
- Wayne G Carter
- Medical Research Council Applied Neuroscience Group, School of Biomedical Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
41
|
Abstract
The use of organophosphorus pesticides results in toxicity risk to non-target organisms. Organophosphorus compounds share a common mode of action, exerting their toxic effects primarily via acetylcholinesterase (AChE) inhibition. Consequently, acetylcholine accumulates in the synaptic clefts of muscles and nerves, leading to overstimulation of cholinergic receptors. Acute cholinergic crisis immediately follows exposure to organophosphate and includes signs and symptoms resulting from hyperstimulation of central and peripheral muscarinic and nicotinic receptors. The current view of the treatment of organophosphate poisoning includes three strategies, i.e. the use of an anticholinergic drug (e.g., atropine), cholinesterase-reactivating agents (e.g., oximes) and anticonvulsant drugs (e.g., benzodiazepines). Oximes, as a part of antidotal therapy, ensure the recovery of phosphylated enzymes via a process denoted as reactivation of inhibited AChE. However, both experimental results and clinical findings have demonstrated that different oximes are not equally effective against poisonings caused by structurally different organophosphorus compounds. Therefore, antidotal characteristics of conventionally used oximes can be evaluated regarding how close the certain substance is to the theoretical concept of the universal oxime. Pralidoxime (PAM-2), trimedoxime (TMB-4), obidoxime (LüH-6), HI-6 and HLö-7 have all been demonstrated to be very effective in experimental poisonings with sarin and VX. TMB-4 and LüH-6 may reactivate tabun-inhibited AChE, whereas HI-6 possesses the ability to reactivate the soman-inhibited enzyme. An oxime HLö-7 seems to be an efficient reactivator of AChE inhibited by any of the four organophosphorus warfare agents. According to the available literature, the oximes LüH-6 and TMB-4, although relatively toxic, are the most potent to induce reactivation of AChE inhibited by the majority of organophosphorus pesticides. Since there are no reports of controlled clinical trials on the use of TMB-4 in human organophosphate pesticide poisoning, LüH-6 may be a better option.
Collapse
Affiliation(s)
- Biljana Antonijevic
- Institute of Toxicological Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | | |
Collapse
|
42
|
Dorandeu F, Mikler JR, Thiermann H, Tenn C, Davidson C, Sawyer TW, Lallement G, Worek F. Swine models in the design of more effective medical countermeasures against organophosphorus poisoning. Toxicology 2006; 233:128-44. [PMID: 17092624 DOI: 10.1016/j.tox.2006.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/15/2006] [Accepted: 09/25/2006] [Indexed: 11/16/2022]
Abstract
Although the three most commonly used large mammal species in the safety assessment of drugs remain the dog, the macaque and the marmoset, swine, especially minipigs, have also been widely used over the years in many toxicological studies. Swine present a number of interesting biological and physiological characteristics. Similarities in skin properties with humans have led to extensive in vitro and in vivo studies. There is a specific interest in cardiovascular research, as well as in anaesthesiology and critical care medicine due to common features of swine and human physiology. Although knowledge of swine brain structure and functions remains incomplete, data does exist. The multiple blood sampling that is necessary in pharmacokinetic and toxicokinetic studies are possible, as well as multiparametric monitoring and interventions with equipment used in human clinical settings. Practicality (handling), scientific (stress reduction) and ethical (invasive monitoring) reasons have led research teams to incorporate anaesthesia into their paradigms which makes the analysis of data increasingly difficult. Although not substantiated by scientific data, the swine appears to have an intermediate position in the scale of public perception between non-human primates and animals commonly referred to as pets (i.e. dogs and cats) and rodents. The benefits of the swine model justify the use of these animals in the design of more effective medical countermeasures against known chemical warfare agents (nerve agents, vesicants and lung damaging agents). Exposure to organophosphorus (OP) pesticides represents a severe health issue in developing countries, while OP intoxication with the more lethal military nerve agents is not only of military concern but also a terrorist threat. Tailoring therapeutic regimens to the reality of OP poisoning is of the utmost importance when little experimental data and sparse human clinical data are available in the decision making process. We will present some of the advantages and disadvantages of the swine model in OP countermeasures elaborating on two examples. First, we will present the issues related to the use of anaesthesia during experimental OP poisoning and second we will show how results from experiments with swine can be integrated into a kinetic-based dynamic model to evaluate oxime efficacy. A better knowledge of OP poisoning in swine (comparative toxicokinetics, pharmacokinetics and biochemistry) is definitely necessary before accepting it as a first choice non-rodent model. However, there exists a large amount of data in the model on anaesthesia and different types of shock favouring their use for evaluation of complex situations such as the anaesthesia of OP poisoned patients and combined injuries.
Collapse
Affiliation(s)
- F Dorandeu
- Département de Toxicologie, Centre de Recherches du Service de Santé des Armées, 24 Avenue des Maquis du Gresivaudan, BP 87, F-38702 La Tronche Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Antonijević B, Bokonjić D, Stojiljković MP, Kilibarda V, Milovanović ZA, Nedeljković M, Maksimović M. Efficacy of Trimedoxime in Mice Poisoned with Dichlorvos, Heptenophos or Monocrotophos. Basic Clin Pharmacol Toxicol 2005; 96:111-7. [PMID: 15679473 DOI: 10.1111/j.1742-7843.2005.pto960204.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of the study was to examine antidotal potency of trimedoxime in mice poisoned with three direct dimethoxy-substituted organophosphorus inhibitors. In order to assess the protective efficacy of trimedoxime against dichlorvos, heptenophos or monocrotophos, median effective doses and efficacy half-times were calculated. Trimedoxime (24 mg/kg intravenously) was injected 5 min. before 1.3 LD50 intravenously of poisons. Activities of brain, diaphragmal and erythrocyte acetylcholinesterase, as well as of plasma carboxylesterases were determined at different time intervals (10, 40 and 60 min.) after administration of the antidotes. Protective effect of trimedoxime decreased according to the following order: monocrotophos > heptenophos > dichlorvos. Administration of the oxime produced a significant reactivation of central and peripheral acetylcholinesterase inhibited with dichlorvos and heptenophos, with the exception of erythrocyte acetylcholinesterase inhibited by heptenophos. Surprisingly, trimedoxime did not induce reactivation of monocrotophos-inhibited acetylcholinesterase in any of the tissues tested. These organophosphorus compounds produced a significant inhibition of plasma carboxylesterase activity, while administration of trimedoxime led to regeneration of the enzyme activity. The same dose of trimedoxime assured survival of experimental animals poisoned by all three organophosphorus compounds, although the biochemical findings were quite different.
Collapse
Affiliation(s)
- Biljana Antonijević
- Institute of Toxicological Chemistry, School of Pharmacy, University of Belgrade, Vojvode Stepe 450, Serbia and Montenegro.
| | | | | | | | | | | | | |
Collapse
|