1
|
Cao C, Cai M, Zhao L, Li G. Improving Water Stability of Soil Aggregates with Polyvinyl Alcohol as a Polymeric Binder. Polymers (Basel) 2024; 16:1758. [PMID: 39000614 PMCID: PMC11243888 DOI: 10.3390/polym16131758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Soil degradation threatens agricultural productivity and food supply, leading to hunger issues in some developing regions. To address this challenge, we developed a low-cost, highly efficient, and long-term stable soil improvement method. We chose polyvinyl alcohol (PVA), a commercially available polymer that is safe and non-degradable, to serve as a soil adhesive. We mixed PVA solution into the soil and applied a drying treatment to enhance the bonding between PVA and the soil, achieving highly water-stable soil. This PVA-stabilized soil exhibits low bulk density, high porosity, and high permeability, making it an ideal substrate for planting. In a germination test, the PVA-stabilized soil revealed a higher germination rate and growth rate compared to those of the non-treated soil. We believe this simple and efficient soil improvement method can restore degraded soil and contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Chunyan Cao
- School of Electrics and Computer Engineering, Nanfang College, Guangzhou, Guangzhou 510970, China
| | - Minkun Cai
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lingyu Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Lei Z, Liang H, Sun W, Chen Y, Huang Z, Yu B. A biodegradable PVA coating constructed on the surface of the implant for preventing bacterial colonization and biofilm formation. J Orthop Surg Res 2024; 19:175. [PMID: 38459593 PMCID: PMC10921624 DOI: 10.1186/s13018-024-04662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Bone implant infections pose a critical challenge in orthopedic surgery, often leading to implant failure. The potential of implant coatings to deter infections by hindering biofilm formation is promising. However, a shortage of cost-effective, efficient, and clinically suitable coatings persists. Polyvinyl alcohol (PVA), a prevalent biomaterial, possesses inherent hydrophilicity, offering potential antibacterial properties. METHODS This study investigates the PVA solution's capacity to shield implants from bacterial adhesion, suppress bacterial proliferation, and thwart biofilm development. PVA solutions at concentrations of 5%, 10%, 15%, and 20% were prepared. In vitro assessments evaluated PVA's ability to impede bacterial growth and biofilm formation. The interaction between PVA and mCherry-labeled Escherichia coli (E. coli) was scrutinized, along with PVA's therapeutic effects in a rat osteomyelitis model. RESULTS The PVA solution effectively restrained bacterial proliferation and biofilm formation on titanium implants. PVA solution had no substantial impact on the activity or osteogenic potential of MC3T3-E1 cells. Post-operatively, the PVA solution markedly reduced the number of Staphylococcus aureus and E. coli colonies surrounding the implant. Imaging and histological scores exhibited significant improvements 2 weeks post-operation. Additionally, no abnormalities were detected in the internal organs of PVA-treated rats. CONCLUSIONS PVA solution emerges as an economical, uncomplicated, and effective coating material for inhibiting bacterial replication and biofilm formation on implant surfaces, even in high-contamination surgical environments.
Collapse
Affiliation(s)
- Zhonghua Lei
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Orthopedics, The Sixth Peoples Hospital of Huizhou, Huizhou, 516211, China
| | - Haifeng Liang
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Wei Sun
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yan Chen
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhi Huang
- Institute of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China.
| | - Bo Yu
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
3
|
Nayan MU, Panja S, Sultana A, Zaman LA, Vora LK, Sillman B, Gendelman HE, Edagwa B. Polymer Delivery Systems for Long-Acting Antiretroviral Drugs. Pharmaceutics 2024; 16:183. [PMID: 38399244 PMCID: PMC10892262 DOI: 10.3390/pharmaceutics16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients' needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Sudipta Panja
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lubaba A. Zaman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK;
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| |
Collapse
|
4
|
Bai X, Tang S, Butterworth S, Tirella A. Design of PLGA nanoparticles for sustained release of hydroxyl-FK866 by microfluidics. BIOMATERIALS ADVANCES 2023; 154:213649. [PMID: 37820459 DOI: 10.1016/j.bioadv.2023.213649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
The use of nanoparticle (NP) delivery systems in cancer treatment has received significant interest, however use of such systems in delivery of cytotoxic chemotherapy agents can be limited by low encapsulation efficiency and burst release of the cytotoxin, as well issues with throughput and reproducibility during the fabrication of drug-loaded NPs. In this study, we used a hydrodynamic flow-focusing microfluidic system to successfully produce poly(lactic-co-glycolic acid) (PLGA) NPs. The physico-chemical properties of PLGA NPs were controlled by changing the manufacturing parameters, such as flow rate ratio, total flow rate, PLGA and surfactant concentration. The NAMPT inhibitor-polymer conjugate, hydroxyl-FK866-PLGA, was synthesized and used to fabricate hydroxyl-FK866-PLGA NPs for the formulation of localized delivery systems able to release low doses of cytotoxins and enhance the efficacy of NAMPT inhibitors. Hydroxyl-FK866-PLGA NPs were prepared with optimized fabrication parameters, having average Z-size of 128 ± 8 nm (PDI < 0.2), ζ-potential of -14.8 ± 5.3 mV and high encapsulation efficiency (98.6 ± 5.8 %). The pH-dependent release of hydroxyl-FK866 was monitored over time in conditions mimicking the normal (pH 7.4) and inflamed/tumor (pH 6.4) microenvironments, observing a sustained release pattern (over two months) without any initial burst release. Finally, toxicity of hydroxyl-FK866-PLGA NPs were tested in selected human cell lines, the human leukemia monocytic cell line (THP-1), and the human triple negative breast cancer cell line (MDA-MB-231). Our work suggests that microfluidic systems are a promising technology for a rapid and efficient manufacturing of PLGA-based NPs for the controlled release of cytotoxins. Moreover, the use of drug-polymer conjugates is an effective approach for the manufacturing of polymeric NPs enabling high encapsulation efficiency and a prolonged and sustained pH-dependent drug release.
Collapse
Affiliation(s)
- Xue Bai
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Siyuan Tang
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK; BIOtech Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, 38123 Trento, Italy.
| |
Collapse
|
5
|
Canatar İ, Zenger O, Özdaş S, Baydemir Peşint G. Pterostilbene loaded poly(vinyl alcohol)-gelatin cryogels as potential bioactive wound dressing material. J Biomed Mater Res B Appl Biomater 2023; 111:1259-1270. [PMID: 36863724 DOI: 10.1002/jbm.b.35230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
Cryogels are support materials which are good at mimicking extracellular matrix due to their excellent hydrophilicity, biocompatibility, and macroporous structure, thus they are useful in facilitating cell activities during healing process. In this study, polyvinyl alcohol-gelatin (PVA-Gel) based cryogel membranes loaded with pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene; PTS) (PVA-Gel/PTS) was synthesized as wound dressing materials. PVA-Gel and PVA-Gel/PTS were synthesized with the polymerization yields of 96% ± 0.23% and 98% ± 0.18%, respectively, and characterized by swelling tests, Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) analysis. The swelling ratios were calculated as 98.6% ± 4.93% and 102% ± 5.1%, macroporosities were determined as 85% ± 2.13% and 88% ± 2.2%, for PVA-Gel and PVA-Gel/PTS, respectively. It was determined that PVA-Gel and PVA-Gel/PTS have 17 m2 /g ± 0.76 m2 /g and 20 m2 /g ± 0.92 m2 /g surface areas, respectively. SEM studies were demonstrated that they have ~100 μm pore sizes. According to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), trypan blue exclusion and live-dead assay results, it was observed that cell proliferation, cell number and cell viability were higher in PVA-Gel/PTS cryogel at 24, 48, and 72 h compared to PVA-Gel. A strong and transparent fluorescent light intensity was observed indicating higher cell population in PVA-Gel/PTS in comparison with PVA-Gel, according to 4',6-diamidino-2-phenylindole (DAPI) staining. SEM, F-Actin, Giemsa staining and inverted-phase microscope image of fibroblasts in PVA-Gel/PTS cryogels revealed that dense fibroblast proliferation and spindle-shaped morphology of cells were preserved. Moreover, DNA agarose gel data demonstrated that PVA-Gel/PTS cryogels had no effect on DNA integrity. Consequently, produced PVA-Gel/PTS cryogel can be used as wound dressing material to promote wound therapies, inducing cell viability and proliferation.
Collapse
Affiliation(s)
- İpek Canatar
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Okan Zenger
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Sibel Özdaş
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Gözde Baydemir Peşint
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| |
Collapse
|
6
|
Use of Polyvinyl Alcohol-Porcine Small Intestine Submucosa Stent in the Prevention of Anastomotic Leaks in the Porcine Colon. J Surg Res 2022; 276:354-361. [DOI: 10.1016/j.jss.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
|
7
|
Kapourani A, Palamidi A, Kontogiannopoulos KN, Bikiaris ND, Barmpalexis P. Drug Amorphous Solid Dispersions Based on Poly(vinyl Alcohol): Evaluating the Effect of Poly(propylene Succinate) as Plasticizer. Polymers (Basel) 2021; 13:polym13172922. [PMID: 34502962 PMCID: PMC8434550 DOI: 10.3390/polym13172922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/03/2023] Open
Abstract
Although significant actions have been taken towards the utilization of poly(vinyl alcohol) (PVA) in the preparation of drug amorphous solid dispersions (ASDs) using fusion-based techniques (such as melt-quench cooling and hot-melt extrusion), several drawbacks regarding its rather high melting temperature and its thermal degradation profile make the use of the polymer extremely challenging. This is especially important when the active pharmaceutical ingredient (API) has a lower melting temperature (than PVA) or when it is thermally labile. In this vein, a previous study showed that newly synthesized polyester-based plasticizers may improve the processability and the thermal properties of PVA. However, the effects of such polyester-based plasticizers on the drug’s physicochemical and pharmaco-technical properties are yet unknown. Hence, the aim of the present study is to extend our previous findings and evaluate the use of poly(propylene succinate) (PPSu, i.e., the most promising plasticizer in regard to PVA) in the preparation of drug-loaded PVA-based ASDs. Dronedarone (DRN), a poorly water-soluble API, was selected as a model drug, and drug ASDs (using either neat PVA or PVA-PPSu) were prepared using the melt-mixing/quench cooling approach at low melting temperatures (i.e., 170 °C). DSC and pXRD analysis showed that a portion of the API remained crystalline in the ASDs prepared only with the use of neat PVA, while the samples having PPSu as a plasticizer were completely amorphous. Further evaluation with ATR-FTIR spectroscopy revealed the formation of significant intermolecular interactions between the API and the PVA-PPSu matrix, which could explain the system’s physical stability during storage. Finally, dissolution studies, conducted under nonsink conditions, revealed that the use of PVA-PPSu is able to maintain DRN’s sustained supersaturation for up to 8 h.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (A.P.); (K.N.K.)
| | - Artemis Palamidi
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (A.P.); (K.N.K.)
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos N. Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (A.P.); (K.N.K.)
| | - Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (A.P.); (K.N.K.)
- Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
8
|
Ceylan S. Propolis loaded and genipin-crosslinked PVA/chitosan membranes; characterization properties and cytocompatibility/genotoxicity response for wound dressing applications. Int J Biol Macromol 2021; 181:1196-1206. [PMID: 33991555 DOI: 10.1016/j.ijbiomac.2021.05.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/18/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Loading propolis by a simple process using genipin as a crosslinking agent and fabrication of a novel PVA/Chitosan-Propolis membrane scaffolds were reported for wound dressing applications. The research is focused on the effects of propolis on characterization properties of membrane such as chemical structure, surface morphology, degradation ratio, crystallinity, hydrophilicity, water uptake capacity, water vapour transmission rate and mechanical aspect. It was noticed that water uptake capacity and hydrophilicity properties of membrane considerably affected by the propolis. By addition of (0.50, % v/v) propolis, the contact angle of the PVA/Chitosan membrane was remarkably decreased from 86.29° ± 3 to 45 ± 2°. 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenylte-trazolium (MTT) bromide test and SEM were used to analyse the cytocompatibility of the membranes and morphology of cells on membrane. The propolis incorporated membrane showed cell proliferation rate 176 ± 13%, 775 ± 1%, and 853 ± 23%, at 24 h, 27 h and 120 h, respectively. SEM images also supported the cell behaviour on membrane. DNA fragmentation was also investigated with genotoxicity test. The studies on the interactions between membranes and MEF cells revealed that the incorporation of propolis into membrane promoted cell proliferation. These overall results presented that propolis incorporated membranes could have potentially appealing application as scaffolds for wound healing applications.
Collapse
Affiliation(s)
- Seda Ceylan
- Bioengineering Department, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey.
| |
Collapse
|
9
|
de Oliveira JPJ, Estrela FN, Rodrigues ASDL, Guimarães ATB, Rocha TL, Malafaia G. Behavioral and biochemical consequences of Danio rerio larvae exposure to polylactic acid bioplastic. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124152. [PMID: 33068943 DOI: 10.1016/j.jhazmat.2020.124152] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The literature has largely shown the toxicity of petroleum-based PLA biomicroplastics (PLABioMPs) and encouraged the production of alternative materials to replace their use, such as biopolymers. However, knowledge concerning the effects of biopolymers on aquatic organisms remains under development. The hypothesis that the acute exposure (five days) to polylactic acid (PLA) biopolymers may lead to behavioral and biochemical changes and to their accumulation in Danio rerio larvae was tested. Based on the results, PLA biomicroplastics (PLA BioMPs) at concentration of 3 and 9 mg/L decreased swimming distance and speed of larvae in the open field test. This outcome suggests effects on animals' locomotor and exploration activities. Larvae's longer immobility time and greater permanence in the peripheral zone of the apparatus is indicative of anxiety-like behavior caused by the exposure to PLA BioMPs. Zebrafish larvae accumulated PLA BioMPs and their acetylcholinesterase activity was inhibited by their presence, which reinforces the accumulative potential of biopolymers and their direct or indirect role as anxiogenic agents, even at sublethal concentrations. The decreased activity of acetylcholinesterase reinforces the neurotoxic action in groups exposed to PLA BioMPs. The current study has confirmed the initial hypothesis and is an insight about the toxicity of these biopolymers in D. rerio larvae, since it deepens the discussion about the environmental risk of these substances in freshwater ecosystems.
Collapse
Affiliation(s)
| | - Fernanda Neves Estrela
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | | | - Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Goiás, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil.
| |
Collapse
|
10
|
CEYLAN S, ALATEPELİ B. Evaluation of PVA/Chitosan Cryogels as Potential Tissue Engineering Scaffolds; Synthesis, cytotoxicity and genotoxicity investigations. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.825115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
CEYLAN S. Evaluation of PVA/Chitosan Cryogels as Potential Tissue Engineering Scaffolds; Synthesis, cytotoxicity and genotoxicity investigations. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.710725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Andreani T, Fernandes PMV, Nogueira V, Pinto VV, Ferreira MJ, Rasteiro MG, Pereira R, Pereira CM. The critical role of the dispersant agents in the preparation and ecotoxicity of nanomaterial suspensions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19845-19857. [PMID: 32227304 DOI: 10.1007/s11356-020-08323-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
This work reports the role of different dispersants, namely, polyethylene glycol (PEG 200 2%), ethylene glycol 5%, ethanol 2%, dimethyl sulfoxide (DMSO 5%), and polyvinyl alcohol (PVA 5%) in the toxicity profile of several commercial nanomaterials (NM), such as hydrophilic and hydrophobic TiO2, hydrophilic SiO2, SiO2 in aqueous suspension (aq), and ZnO towards the bioluminescent bacterium Aliivibrio fischeri. The majority of NM showed tendency to form agglomerates in the different dispersants. Although some particle agglomeration could be detected, DMSO at 5% was the best dispersant for hydrophobic TiO2 NM while PVA at 5% was the most effective dispersant for the other types of NM. Average size was not the most relevant aspect accounting for their toxicity. A remarkable reduction in average size was followed by a decrease in NM toxicity, as demonstrated for SiO2 aq. in PVA 5%. Contrarily, despite of high particle agglomeration, ZnO NM showed a higher toxicity to bacteria when compared with other tested NM. Independently of the average particle size or surface charge, the dispersant either enhanced the toxicity to bacteria or acted as physical barrier decreasing the NM harmful effect to A. fischeri.
Collapse
Affiliation(s)
- Tatiana Andreani
- Research Center in Chemistry (CIQ), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CITAB - Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal.
| | - Paula M V Fernandes
- Research Center in Chemistry (CIQ), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Verónica Nogueira
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Vera V Pinto
- Research Center in Chemistry (CIQ), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- Centro Tecnológico do Calçado de Portugal, Rua de Fundões - Devesa Velha, 3700-121, São João Madeira, Portugal
| | - Maria José Ferreira
- Centro Tecnológico do Calçado de Portugal, Rua de Fundões - Devesa Velha, 3700-121, São João Madeira, Portugal
| | - Maria Graça Rasteiro
- Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-290, Coimbra, Portugal
| | - Ruth Pereira
- GreenUPorto - Research Centre on Sustainable Agrifood Production, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Carlos M Pereira
- Research Center in Chemistry (CIQ), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
13
|
Li D, Qin J, Sun M, Yan G, Tang R. pH-sensitive, dynamic graft polymer micelles via simple synthesis for enhanced chemotherapeutic efficacy. J Biomater Appl 2019; 34:1059-1070. [DOI: 10.1177/0885328219894695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To promote chemotherapeutic efficacy and easier clinical transformation, a series of pH-sensitive and dynamic drug delivery systems with facile two-step synthesis and simple structure have been successfully constructed by the tunable grafting reaction between pH-sensitive ortho ester and poly(vinyl alcohol). The amphipathic graft macromolecules (PVA- g-OE x, x represents the percentage of feed between ortho esters and hydroxyl groups of polyvinyl alcohol) could self-assemble into micelles and doxorubicin was embedded. These micelles exhibited pH-sensitivity to both extracellular and intracellular pH and demonstrated the following characteristics: (i) maintaining long-term storage and blood circulation stability at pH 7.4; (ii) responding to tumoral extracellular pH value following gradually larger nanoparticles for improved drug accumulation and retention; (iii) being sensitive to tumoral intracellular pH value following disintegration for rapid drug release to improve toxicity to tumor cells. Moreover, the doxorubicin-loaded micelle (PVA- g-OE30-DOX) showed similar cytotoxicity to free doxorubicin in vitro, but stronger tumor penetration and inhibition ability in vitro human liver carcinoma cell line multicellular tumor spheroids. In vivo biodistribution and tumor inhibition examinations demonstrated that PVA- g-OE30-DOX had more superior efficacy in significantly enhancing drug accumulation in tumor, restraining tumor growth while decreasing drug concentration in normal tissues. The pH-sensitive, dynamic graft polymer micelles via simple synthesis could be considered as a promising and effective drug carrier in tumor therapy.
Collapse
Affiliation(s)
- Dapeng Li
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Jiejie Qin
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Min Sun
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Guoqing Yan
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| |
Collapse
|
14
|
Yang HW, Ju SP, Chen HY, Cheng YC, Hsu WL. Ovalbumin-Loaded Gelation Microneedles Made of Predictive Formulation by Molecular Dynamics Simulation for Enhancement of Skin Immunization. ACS Biomater Sci Eng 2019; 5:6012-6021. [PMID: 33405723 DOI: 10.1021/acsbiomaterials.9b01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gelation microneedle (GMNs) based vaccinations with tumor antigens have been considered to be an attractive method for transcutaneous immunization because of their superior ability to deliver vaccines through the stratum corneum (SC) in a minimally invasive manner, which subsequently induces adaptive antitumor immunity. In this study, molecular dynamics (MD) uniaxial tension simulations were conducted to predict the formulation of poly(vinyl alcohol) (PVA; possesses high water solubility) and poly(methyl vinyl ether-altmaleic anhydride) (PMVEMA; possesses high mechanical strength) blend that has the strongest mechanical properties. To validate the accuracy of the Dreiding potential for these two polymers, their densities and Hildebrand solubility parameters were first predicted using MD simulations. These values exhibited good agreement with the corresponding experimental results, indicating the accuracy of the Dreiding potential for the polymers. Regarding the simulation results, the number density of H-bonds between PVA and PMVEMA was the highest at 50% PMVEMA, which can significantly enhance the mechanical strength of pristine PVA for enhanced skin immunization. In terms of further experimental validation, evidence from mechanical strength, solubility, in vitro porcine skin penetration tests, and in vivo immunization were consistent with our simulation predictions. In addition, our results indicated that delivery of ovalbumin (OVA) using GMN patches fabricated using PVA/PMVEMA (50%/50%) provided even stronger immune responses. Using this molecular simulation procedure, the optimal fraction of PVA/PMVEMA composite for the strongest mechanical properties can be rapidly predicted to reduce research time and costs in related experiments.
Collapse
Affiliation(s)
- Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, Republic of China
| | - Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, Republic of China.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Yi-Chi Cheng
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, Republic of China
| | - Wen-Lin Hsu
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, Republic of China
| |
Collapse
|
15
|
Oliveira CR, Garcia TD, Franco-Belussi L, Salla RF, Souza BFS, de Melo NFS, Irazusta SP, Jones-Costa M, Silva-Zacarin ECM, Fraceto LF. Pyrethrum extract encapsulated in nanoparticles: Toxicity studies based on genotoxic and hematological effects in bullfrog tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:1009-1020. [PMID: 31434178 DOI: 10.1016/j.envpol.2019.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The environment receives about 2.7 kg.ha-1 annually of pesticides, used in crop production. Pesticides may have a negative impact on environmental biodiversity and potentially induce physiological effects on non-target species. Advances in technology and nanocarrier systems for agrochemicals led to new alternatives to minimize these impacts, such as nanopesticides, considered more efficient, safe and sustainable. However, it is important to evaluate the risk potential, action and toxicity of nanopesticides in aquatic and terrestrial organisms. This study aims to evaluate genotoxic and hematological biomarkers in bullfrog tadpoles (Lithobates catesbeianus) submitted to acute exposure (48 h) to pyrethrum extract (PYR) and solid lipid nanoparticles loaded with PYR. Results showed increased number of leukocytes during acute exposure, specifically eosinophils in nanoparticle-exposed groups, and basophil in PYR-exposed group. Hematological analysis showed that PYR encapsulated in nanoparticles significantly increased the erythrocyte number compared to the other exposed groups. Data from the comet assay indicated an increase in frequency of the classes that correspond to more severe DNA damages in exposed groups, being that the PYR-exposed group showed a high frequency of class-4 DNA damage. Moreover, erythrocyte nuclear abnormalities were triggered by short-time exposure in all treatments, which showed effects significantly higher than the control group. These results showed genotoxic responses in tadpoles, which could trigger cell death pathways. Concluding, these analyses are important for applications in assessment of contaminated aquatic environments and their biomonitoring, which will evaluate the potential toxicity of xenobiotics, for example, the nanoparticles and pyrethrum extract in frog species. However, further studies are needed to better understand the effects of nanopesticides and botanical insecticides on non-target organisms, in order to contribute to regulatory aspects of future uses for these systems.
Collapse
Affiliation(s)
- C R Oliveira
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia de Sorocaba, Laboratório de Nanotecnologia Ambiental, Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - T D Garcia
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - L Franco-Belussi
- Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Biociências, Laboratório de Patologia Experimental, Avenida Costa e Silva, s/n, Bairro Universitário, 79002-970, Campo Grande, MS, Brazil
| | - R F Salla
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Animal, R. Monteiro Lobato, 255, Cidade Universitária, 13083-862, Campinas, SP, Brazil
| | - B F S Souza
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - N F S de Melo
- Faculdade de Medicina São Leopoldo Mandic, Campus Araras, Av. Dona Renata, 71, Santa Cândida, 13600-001, Araras, SP, Brazil
| | - S P Irazusta
- Faculdade de Tecnologia de Sorocaba (FATEC), Centro Estadual de Educação Tecnológica Paula Souza, Campus Sorocaba, Laboratório de Ecotoxicologia, Av. Eng. Carlos R. Mendes, 2015, Além Ponte, 18013-280, Sorocaba, SP, Brazil
| | - M Jones-Costa
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil.
| | - E C M Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - L F Fraceto
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia de Sorocaba, Laboratório de Nanotecnologia Ambiental, Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| |
Collapse
|
16
|
Xu W, Lin Z, Li G, Long H, Du M, Fu G, Pu L. Linear PVA–DTPA–Gd conjugate for magnetic resonance imaging. RSC Adv 2019; 9:37052-37056. [PMID: 35539082 PMCID: PMC9075117 DOI: 10.1039/c9ra05607f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we report the preparation and characterization of the PVA–DTPA–Gd conjugate as a potential MRI contrast agent (CA). The r1 value and the r2/r1 ratio were about 5.6 mM−1 s−1 and 1.31, respectively. In vitro toxicity studies not only demonstrated that the polymeric system possessed good biocompatibility, but also proved that the conjugate could be an attractive candidate for CA. In this study, we report the preparation and characterization of the PVA–DTPA–Gd conjugate as a potential MRI contrast agent (CA).![]()
Collapse
Affiliation(s)
- Weibing Xu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Zhiyan Lin
- Clinical Medical College
- Gansu University of Chinese Medicine
- Lanzhou 730000
- China
| | - Guichen Li
- Gansu Provincial Key Laboratory of Aridland Crop Science
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Haitao Long
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Mingyuan Du
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Guorui Fu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Lumei Pu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
17
|
Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv 2018; 37:109-131. [PMID: 30472307 DOI: 10.1016/j.biotechadv.2018.11.008] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 01/12/2023]
Abstract
Poly(vinyl alcohol) (PVA) has attracted considerable research interest and is recognized among the largest volume of synthetic polymers that have been produced worldwide for almost one century. This is due to its exceptional properties which dictated its extensive use in a wide variety of applications, especially in medical and pharmaceutical fields. However, studies revealed that PVA-based biomaterials present some limitations that can restrict their use or performances. To overcome these limitations, various methods have been reported, among which blending with poly(vinylpyrrolidone) (PVP) showed promising results. Thus, our aim was to offer a systematic overview on the current state concerning the preparation, properties and various applications of biomaterials based on synergistic effect of mixtures between PVA and PVP. Future trends towards where the biomaterials research is headed were discussed, showing the promising opportunities that PVA and PVP can offer.
Collapse
|
18
|
Affiliation(s)
- Christina L. Burnett
- Senior Scientific Writer/Analyst, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
19
|
Ceylan S, Göktürk D, Demir D, Damla Özdemir M, Bölgen N. Comparison of additive effects on the PVA/starch cryogels: Synthesis, characterization, cytotoxicity, and genotoxicity studies. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1383254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Seda Ceylan
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
- Department of Bioengineering, Adana Science and Technology University, Adana, Turkey
| | - Dilek Göktürk
- Department of Bioengineering, Adana Science and Technology University, Adana, Turkey
| | - Didem Demir
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - M. Damla Özdemir
- Department of Bioengineering, Adana Science and Technology University, Adana, Turkey
| | - Nimet Bölgen
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
20
|
Paswan SK, Saini TR. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique. Pharm Res 2017; 34:2779-2786. [DOI: 10.1007/s11095-017-2257-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
21
|
Rostagno M, Shen S, Ghiviriga I, Miller SA. Sustainable polyvinyl acetals from bioaromatic aldehydes. Polym Chem 2017. [DOI: 10.1039/c7py00205j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Water-degradable polyvinyl acetals with high glass transition temperatures (114–157 °C) were made via acetalization of polyvinyl alcohol (PVA) with bioaromatic aldehydes.
Collapse
Affiliation(s)
- Mayra Rostagno
- The George and Josephine Butler Laboratory for Polymer Research
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | - Steven Shen
- The George and Josephine Butler Laboratory for Polymer Research
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | - Ion Ghiviriga
- The George and Josephine Butler Laboratory for Polymer Research
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | - Stephen A. Miller
- The George and Josephine Butler Laboratory for Polymer Research
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| |
Collapse
|
22
|
Zhi H, Fei X, Tian J, Jing M, Xu L, Wang X, Liu D, Wang Y, Liu J. A novel transparent luminous hydrogel with self-healing property. J Mater Chem B 2017; 5:5738-5744. [DOI: 10.1039/c7tb00975e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A Luminous hydrogel with self-healing properties and biocompatibility was synthesized by a Eu-containing PVA with boric acid as a cross-linking agent.
Collapse
Affiliation(s)
- Hui Zhi
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- School of Biological Engineering
| | - Xu Fei
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jing Tian
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Muzi Jing
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Longquan Xu
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Xiuying Wang
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Dongmei Liu
- People's Liberation Army of China 93015 Troop
- Force Medical Team
- P. R. China
| | - Yi Wang
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jingyun Liu
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| |
Collapse
|
23
|
Naveed Ul Haq A, Nadhman A, Ullah I, Mustafa G, Yasinzai M, Khan I. Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. JOURNAL OF NANOMATERIALS 2017; 2017:1-14. [DOI: 10.1155/2017/8510342] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Human’s quest for innovation, finding solutions of problems, and upgrading the industrial yield with energy efficient and cost-effective materials has opened the avenues of nanotechnology. Among a variety of nanoparticles, zinc oxide nanoparticles (ZnO) have advantages because of the extraordinary physical and chemical properties. It is one of the cheap materials in cosmetic industry, nanofertilizers, and electrical devices and also a suitable agent for bioimaging and targeted drug and gene delivery and an excellent sensor for detecting ecological pollutants and environmental remediation. Despite inherent toxicity of nanoparticles, synthetic routes are making use of large amount of chemical and stringent reactions conditions that are contributing as environmental contaminants in the form of high energy consumption, heat generation, water consumption, and chemical waste. Further, it is also adding to the innate toxicity of nanoparticles (NPs) that is either entirely ignored or poorly investigated. The current review illustrates a comparison between pollutants and hazards spawned from chemical, physical, and biological methods used for the synthesis of ZnO. Further, the emphasis is on devising eco-friendly techniques for the synthesis of ZnO especially biological methods which are comparatively less hazardous and need to be optimized by controlling the reaction conditions in order to get desired yield and characteristics.
Collapse
Affiliation(s)
- Ayesha Naveed Ul Haq
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| | - Akhtar Nadhman
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
- Institute of Integrative Biosciences, CECOS University, Peshawar, Pakistan
| | - Ikram Ullah
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| | - Ghulam Mustafa
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| | - Masoom Yasinzai
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| | - Imran Khan
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| |
Collapse
|
24
|
The study of properties and nutrient determination of hydrogel made of soybean meal (okara) using microwave-assisted heating. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.06.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Paefgen V, Doleschel D, Kiessling F. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol 2015; 6:197. [PMID: 26441654 PMCID: PMC4584939 DOI: 10.3389/fphar.2015.00197] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/31/2015] [Indexed: 12/21/2022] Open
Abstract
Ultrasound (US) is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents (CAs). There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular CAs enable functional analyses, e.g., to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles' shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by US pulses to locally release the entrapped agent. Recent studies show that US CAs are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of US CAs and introduces the current clinical applications of contrast-enhanced US. Additionally, an overview of the recent developments in US probe design for functional and molecular diagnosis as well as for drug delivery is given.
Collapse
Affiliation(s)
| | | | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, AachenGermany
| |
Collapse
|
26
|
Hrabalikova M, Merchan M, Ganbold S, Sedlarik V, Valasek P, Saha P. Flexible polyvinyl alcohol/2-hydroxypropanoic acid films: effect of residual acetyl moieties on mechanical, thermal and antibacterial properties. JOURNAL OF POLYMER ENGINEERING 2015. [DOI: 10.1515/polyeng-2014-0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This work ascertains the effect of the degree of hydrolysis of polyvinyl alcohol under extended interaction with 2-hydroxypropanoic acid (lactic acid). Systems based on three different types of polyvinyl alcohol matrices (of hydrolysis degree 80, 88 and 98 mol%) and lactic acid were characterized according to their physicochemical, mechanical and thermal properties. An agar diffusion test and the dilution and spread plate technique were conducted to facilitate antibacterial activity to counteract Staphylococcus aureus and Escherichia coli. A mathematical model was applied to the experimental data to estimate the antibacterial efficacy of the resultant flexible films.
Collapse
|
27
|
Franco RA, Sadiasa A, Lee BT. Utilization of PVPA and its effect on the material properties and biocompatibility of PVA electrospun membrane. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rose Ann Franco
- Department of Biomedical Science; Soonchunhyang University; Cheonan-si 330-090 Korea
| | - Alexander Sadiasa
- Department of Biomedical Science; Soonchunhyang University; Cheonan-si 330-090 Korea
| | - Byong-Taek Lee
- Department of Biomedical Science; Soonchunhyang University; Cheonan-si 330-090 Korea
| |
Collapse
|
28
|
Prudente A, Riccetto CLZ, Simões MMDSG, Pires BM, Oliveira MGD. Impregnation of implantable polypropylene mesh with S-nitrosoglutathione-loaded poly(vinyl alcohol). Colloids Surf B Biointerfaces 2013; 108:178-84. [DOI: 10.1016/j.colsurfb.2013.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/14/2013] [Accepted: 02/11/2013] [Indexed: 02/07/2023]
|
29
|
Functional benefits of PLGA particulates carrying VEGF and CoQ10 in an animal of myocardial ischemia. Int J Pharm 2013; 454:784-90. [PMID: 23639291 DOI: 10.1016/j.ijpharm.2013.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 02/05/2023]
Abstract
Myocardial ischemia (MI) remains one of the leading causes of death worldwide. Angiogenic therapy with the vascular endothelial growth factor (VEGF) is a promising strategy to overcome hypoxia and its consequences. However, from the clinical data it is clear that fulfillment of the potential of VEGF warrants a better delivery strategy. On the other hand, the compelling evidences of the role of oxidative stress in diseases like MI encourage the use of antioxidant agents. Coenzyme Q10 (CoQ10) due to its role in the electron transport chain in the mitochondria seems to be a good candidate to manage MI but is associated with poor biopharmaceutical properties seeking better delivery approaches. The female Sprague Dawley rats were induced MI and were followed up with VEGF microparticles intramyocardially and CoQ10 nanoparticles orally or their combination with appropriate controls. Cardiac function was assessed by measuring ejection fraction before and after three months of therapy. Results demonstrate significant improvement in the ejection fraction after three months with both treatment forms individually; however the combination therapy failed to offer any synergism. In conclusion, VEGF microparticles and CoQ10 nanoparticles can be considered as promising strategies for managing MI.
Collapse
|
30
|
Effect of chemical crosslinking degree on mechanical properties of bacterial cellulose/poly(vinyl alcohol) composite membranes. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-013-0968-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
|
32
|
Yang L, Zhang HY, Yang Q, Lu DN. Bacterial cellulose-poly(vinyl alcohol) nanocomposite hydrogels prepared by chemical crosslinking. J Appl Polym Sci 2012. [DOI: 10.1002/app.36854] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
López-de-Dicastillo C, Jordá M, Catalá R, Gavara R, Hernández-Muñoz P. Development of active polyvinyl alcohol/β-cyclodextrin composites to scavenge undesirable food components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11026-33. [PMID: 21905652 DOI: 10.1021/jf200749f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Active food packaging systems based on the incorporation of agents into polymeric package walls are being designed to purposely release or retain compounds to maintain or even increase food quality. The objective of this work was to develop polyvinyl alcohol (PVOH)/β-cyclodextrin (βCD) composite films that can be applied to reduce undesirable component content such as cholesterol in foods through active retention of the compounds in the package walls during storage. Cyclodextrins were added to PVOH in a proportion of 1:1 and cross-linked with glyoxal under acidic media to reduce its water-soluble character. Three different cross-linking procedures were used: cross-linking of the polymer/polysaccharide mixture in solution and film casting, PVOH. βCD*; cross-linking of the polymer, addition of βCD, and casting of the mixture, PVOH*.CD; and casting of a PVOH film, addition of a βCD/glyoxal solution onto the film, and cross-linking during drying, PVOH.CD*. Characterization studies showed that the PVOH*.CD and PVOH.CD* films provided the best physical characteristics with the lowest release values and the highest barrier properties. As a potential application, materials were tested as potential cholesterol-scavenging films. There was a significant reduction in the cholesterol concentration in milk samples when they were exposed to the materials developed.
Collapse
Affiliation(s)
- Carol López-de-Dicastillo
- Packaging Laboratory, Instituto de Agroquímica y tecnología de Alimentos, IATA-CSIC, Avenida Agustín Escardino 7, 46980 Paterna, Spain
| | | | | | | | | |
Collapse
|
34
|
Nelson CP, Patton GW, Arvidson K, Lee H, Twaroski ML. Assessing the toxicity of polymeric food-contact substances. Food Chem Toxicol 2011; 49:1877-97. [DOI: 10.1016/j.fct.2011.06.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 11/29/2022]
|
35
|
Alves MH, Jensen BEB, Smith AAA, Zelikin AN. Poly(Vinyl Alcohol) Physical Hydrogels: New Vista on a Long Serving Biomaterial. Macromol Biosci 2011; 11:1293-313. [DOI: 10.1002/mabi.201100145] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Indexed: 12/16/2022]
|
36
|
Tsai YM, Jan WC, Chien CF, Lee WC, Lin LC, Tsai TH. Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem 2011; 127:918-25. [PMID: 25214079 DOI: 10.1016/j.foodchem.2011.01.059] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/23/2010] [Accepted: 01/19/2011] [Indexed: 12/17/2022]
Abstract
This study has optimised the poly lactic-co-glycolic acid (PLGA) nano-formulation of curcumin to prolong its retention time in the body and improve bioavailability. High-pressure emulsification-solvent-evaporation was designed to obtain curcumin-loaded PLGA nanoparticles (C-NPs) prepared with 2% of PVA containing 20% sucrose as aqueous phase and dichloromethane as oil phase. The size and entrapment efficiency of C-NPs was 158±10nm and 46.6±13.5%, respectively. The stable storage time of C-NPs was one month at 4°C. When curcumin was formulated, a significant increase of curcumin exposure in rat plasma was revealed from the intravenous study (AUC/Dose raised 55%) and the oral study (AUC/Dose increased 21-fold). The oral bioavailability of curcumin at C-NPs was 22-fold higher than conventional curcumin. Excretion results support oral study that absorption of curcumin was significantly increased by nano-formulation. These findings demonstrate that PLGA nano-formulation could potentially be applied to increase bioavailability of hydrophobic polyphenols.
Collapse
Affiliation(s)
- Yin-Meng Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Woan-Ching Jan
- Department of Nursing, Mackay Medicine, Nursing and Management College, Taiwan
| | - Chao-Feng Chien
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Wen-Chuan Lee
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Lie-Chwen Lin
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
37
|
Yang SY, Huang CY. Plasma treatment for enhancing mechanical and thermal properties of biodegradable PVA/starch blends. J Appl Polym Sci 2008. [DOI: 10.1002/app.28338] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Cavalieri F, Chiessi E, Paradossi G. Chaperone-like activity of nanoparticles of hydrophobized poly(vinyl alcohol). SOFT MATTER 2007; 3:718-724. [PMID: 32900134 DOI: 10.1039/b618779j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amphiphilic poly(vinyl alcohol) randomly grafted with hydrophobic methacryloyl groups can form micelle-like particles by intra and interpolymeric association. Self-aggregation behaviour of the hydrophobically-modified polymer was investigated. The hydrophobized nanoparticles assist carbonic anhydrase B (CAB) refolding in a manner similar to the mechanism of molecular chaperones, namely by catching and releasing the protein. Irreversible CAB thermal denaturation is prevented by nanoparticle complexation and recovery of almost 100% of enzymatic activity is triggered by the ability of β-cyclodextrin to interact with the hydrophobic moieties. Structural and functional properties of micelle-like particles were discussed and interpreted in view of the stability and architecture of hydrophobic nanodomains.
Collapse
Affiliation(s)
- Francesca Cavalieri
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Ester Chiessi
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
39
|
Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to the use of polyvinyl alcohol as a coating agent for food supplements. EFSA J 2006. [DOI: 10.2903/j.efsa.2006.294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Cavalieri F, El Hamassi A, Chiessi E, Paradossi G. Stable polymeric microballoons as multifunctional device for biomedical uses: synthesis and characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:8758-64. [PMID: 16142958 DOI: 10.1021/la050287j] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gas filled hollow microparticles, i.e., microbubbles and microballoons, are soft matter devices used in a number of diverse applications ranging from protein separation and purification in food science to drilling technology and ultrasound imaging. Aqueous dispersions of these mesoscopic systems are characterized by the stabilization of the air/water interface by a thin shell of phospholipid bilayer or multilayers or by a denatured and cross-linked proteic matrix. We present a study of a type of microballoons based on modified poly(vinyl alcohol), PVA, a synthetic biocompatible polymer, with new structural features. A cross-linking reaction carried out at the air/water interface provides polymeric air-filled microbubbles with average dimensions depending on the reaction temperature. Characterization of diameters and shell thicknesses for microbubbles obtained at different temperatures has been carried out. Conversion to solvent-filled hollow microcapsules is possible by soaking microbubbles in dimethyl sulfoxide. Microcapsules permeability to fluorescent labeled dextran molecular weight standards was correlated to the mesh size of the polymer network of the shell. Microbubbles were covalently grafted under very mild conditions with beta-cyclodextrin and poly-l-lysine with a view to assay the capability of the device for delivery of hydrophobic drugs or DNA. PVA based microballoons show a remarkable shelf life of several months, their external surface can be decorated with many biologically relevant molecules. These features, together with a tested biocompatibility, make them attractive candidates for use as multifunctional device for diagnosis and therapeutic purposes, i.e., as ultrasound reflectors in ecographic investigation and as drug platforms for in situ sonoporation.
Collapse
Affiliation(s)
- Francesca Cavalieri
- Department of Chemical Sciences and Technologies. University of Rome Tor Vergata and INFM, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | |
Collapse
|