1
|
Deferm N, De Vocht T, Qi B, Van Brantegem P, Gijbels E, Vinken M, de Witte P, Bouillon T, Annaert P. Current insights in the complexities underlying drug-induced cholestasis. Crit Rev Toxicol 2019; 49:520-548. [PMID: 31589080 DOI: 10.1080/10408444.2019.1635081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cholestasis (DIC) poses a major challenge to the pharmaceutical industry and regulatory agencies. It causes both drug attrition and post-approval withdrawal of drugs. DIC represents itself as an impaired secretion and flow of bile, leading to the pathological hepatic and/or systemic accumulation of bile acids (BAs) and their conjugate bile salts. Due to the high number of mechanisms underlying DIC, predicting a compound's cholestatic potential during early stages of drug development remains elusive. A profound understanding of the different molecular mechanisms of DIC is, therefore, of utmost importance. Although many knowledge gaps and caveats still exist, it is generally accepted that alterations of certain hepatobiliary membrane transporters and changes in hepatocellular morphology may cause DIC. Consequently, liver models, which represent most of these mechanisms, are valuable tools to predict human DIC. Some of these models, such as membrane-based in vitro models, are exceptionally well-suited to investigate specific mechanisms (i.e. transporter inhibition) of DIC, while others, such as liver slices, encompass all relevant biological processes and, therefore, offer a better representation of the in vivo situation. In the current review, we highlight the principal molecular mechanisms associated with DIC and offer an overview and critical appraisal of the different liver models that are currently being used to predict the cholestatic potential of drugs.
Collapse
Affiliation(s)
- Neel Deferm
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Tom De Vocht
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Bing Qi
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Van Brantegem
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Eva Gijbels
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Bouillon
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Effects of fenbendazole and triclabendazole on the expression of cytochrome P450 1A and flavin-monooxygenase isozymes in bovine precision-cut liver slices. Vet J 2019; 245:61-69. [DOI: 10.1016/j.tvjl.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
|
3
|
Pushparajah DS, Plant KE, Plant NJ, Ioannides C. Synergistic and antagonistic interactions of binary mixtures of polycyclic aromatic hydrocarbons in the upregulation of CYP1 activity and mRNA levels in precision-cut rat liver slices. ENVIRONMENTAL TOXICOLOGY 2017; 32:764-775. [PMID: 27099206 DOI: 10.1002/tox.22276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
The current studies investigate whether synergistic or antagonistic interactions in the upregulation of CYP1 activity occur in binary mixtures of polycyclic aromatic hydrocarbons (PAHs) involving benzo[a]pyrene and five other structurally diverse PAHs of varying carcinogenic activity. Precision-cut rat liver slices were incubated with benzo[a]pyrene alone or in combination with a range of concentrations of a second PAH, and ethoxyresorufin O-deethylase, CYP1A1 and CYP1B1 mRNA levels determined. Concurrent incubation of benzo[a]pyrene with either dibenzo[a,h]anthracene or fluoranthene in liver slices led to a synergistic interaction, at least at low concentrations, in that ethoxyresorufin O-deethylase activity was statistically higher than the added effects when the slices were incubated with the individual compounds. In contrast, benzo[b]fluoranthene and, at high doses only, dibenzo[a,l]pyrene gave rise to antagonism, whereas 1-methylphenanthrene had no effect at all concentrations studied. When CYP1A1 mRNA levels were monitored, benzo[b]fluoranthene gave rise to an antagonistic response when incubated with benzo[a]pyrene, whereas all other compounds displayed synergism, with 1-methylphenathrene being the least effective. A similar picture emerged when CYP1B1 mRNA levels were determined, though the effects were less pronounced. In conclusion, it has been demonstrated that the benzo[a]pyrene-mediated upregulation of CYP1, at the mRNA and activity levels, is synergistically and antagonistically modulated by other PAHs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 764-775, 2017.
Collapse
Affiliation(s)
- Daphnee S Pushparajah
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Kathryn E Plant
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Nick J Plant
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Costas Ioannides
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| |
Collapse
|
4
|
Green CJ, Pramfalk C, Morten KJ, Hodson L. From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations. Am J Physiol Endocrinol Metab 2015; 308:E1-20. [PMID: 25352434 PMCID: PMC4281685 DOI: 10.1152/ajpendo.00192.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver is a main metabolic organ in the human body and carries out a vital role in lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, encompassing a spectrum of conditions from simple fatty liver (hepatic steatosis) through to cirrhosis. Although obesity is a known risk factor for hepatic steatosis, it remains unclear what factor(s) is/are responsible for the primary event leading to retention of intrahepatocellular fat. Studying hepatic processes and the etiology and progression of disease in vivo in humans is challenging, not least as NAFLD may take years to develop. We present here a review of experimental models and approaches that have been used to assess liver triglyceride metabolism and discuss their usefulness in helping to understand the aetiology and development of NAFLD.
Collapse
Affiliation(s)
- Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| | - Camilla Pramfalk
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| | - Karl J Morten
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| |
Collapse
|
5
|
Wu X, Kania-Korwel I, Chen H, Stamou M, Dammanahalli KJ, Duffel M, Lein PJ, Lehmler HJ. Metabolism of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) atropisomers in tissue slices from phenobarbital or dexamethasone-induced rats is sex-dependent. Xenobiotica 2013; 43:933-47. [PMID: 23581876 DOI: 10.3109/00498254.2013.785626] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. Chiral polychlorinated biphenyls (PCBs) such as PCB 136 enantioselectively sensitize the ryanodine receptor (RyR). In light of recent evidence that PCBs cause developmental neurotoxicity via RyR-dependent mechanisms, this suggests that enantioselective PCB metabolism may influence the developmental neurotoxicity of chiral PCBs. However, enantioselective disposition of PCBs has not been fully characterized. 2. The effect of sex and cytochrome P450 (P450) enzyme induction on the enantioselective metabolism of PCB 136 was studied using liver tissue slices prepared from naïve control (CTL), phenobarbital (PB; CYP2B inducer) or dexamethasone (DEX; CYP3A inducer) pretreated adult Sprague-Dawley rats. PCB 136 metabolism was also examined in hippocampal slices derived from untreated rat pups. 3. In liver tissue slices, hydroxylated PCB (OH-PCB) profiles depended on sex and inducer pretreatment, and OH-PCB levels followed the rank orders male > female and PB > DEX > CTL. In contrast, the enantiomeric enrichment of PCB 136 and its metabolites was independent of sex and inducer pretreatment. Only small amounts of PCB 136 partitioned into hippocampal tissue slices and no OH-PCB metabolites were detected. 4. Our results suggest that enantioselective metabolism, sex and induction status of P450 enzymes in the liver may modulate the neurotoxic outcomes of developmental exposure to chiral PCBs.
Collapse
Affiliation(s)
- Xianai Wu
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa , Iowa City, IA , USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lake BG, Price RJ. Evaluation of the metabolism and hepatotoxicity of xenobiotics utilizing precision-cut slices. Xenobiotica 2012; 43:41-53. [DOI: 10.3109/00498254.2012.734643] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Ioannides C. Up-regulation of cytochrome P450 and phase II enzymes by xenobiotics in precision-cut tissue slices. Xenobiotica 2012; 43:15-28. [DOI: 10.3109/00498254.2012.698766] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
van Midwoud PM, Merema MT, Verweij N, Groothuis GMM, Verpoorte E. Hydrogel embedding of precision-cut liver slices in a microfluidic device improves drug metabolic activity. Biotechnol Bioeng 2011; 108:1404-12. [PMID: 21274846 DOI: 10.1002/bit.23053] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/15/2010] [Accepted: 01/03/2011] [Indexed: 01/15/2023]
Abstract
A microfluidic-based biochip made of poly-(dimethylsiloxane) was recently reported for the first time by us for the incubation of precision-cut liver slices (PCLS). In this system, PCLS are continuously exposed to flow, to keep the incubation environment stable over time. Slice behavior in the biochip was compared with that of slices incubated in well plates, and verified for 24 h. The goal of the present study was to extend this incubation time. The viability and metabolic activity of precision-cut rat liver slices cultured in our novel microflow system was examined for 72 h. Slices were incubated for 1, 24, 48, and 72 h, and tested for viability (enzyme leakage (lactate dehydrogenase)) and metabolic activity (7-hydroxycoumarin (phase II) and 7-ethoxycoumarin (phase I and II)). Results show that liver slices retained a higher viability in the biochip when embedded in a hydrogel (Matrigel) over 72 h. This embedding prevented the slices from attaching to the upper polycarbonate surface in the microchamber, which occurred during prolonged (>24 h) incubation in the absence of hydrogel. Phase II metabolism was completely retained in hydrogel-embedded slices when medium supplemented with dexamethasone, insulin, and calf serum was used. However, phase I metabolism was significantly decreased with respect to the initial values in gel-embedded slices with medium supplements. Slices were still able to produce phase I metabolites after 72 h, but at only about ∼10% of the initial value. The same decrease in metabolic rate was observed in slices incubated in well plates, indicating that this decrease is due to the slices and medium rather than the incubation system. In conclusion, the biochip model was significantly improved by embedding slices in Matrigel and using proper medium supplements. This is important for in vitro testing of drug metabolism, drug-drug interactions, and (chronic) toxicity.
Collapse
Affiliation(s)
- Paul M van Midwoud
- Pharmaceutical Analysis, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Nichols JW, Hoffman AD, Fitzsimmons PN. Optimization of an isolated perfused rainbow trout liver model: Clearance studies with 7-ethoxycoumarin. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 95:182-194. [PMID: 19837470 DOI: 10.1016/j.aquatox.2009.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 09/09/2009] [Accepted: 09/09/2009] [Indexed: 05/28/2023]
Abstract
To date, research with isolated perfused fish livers has been limited by the relatively short time period during which stable performance can be achieved. In the present study, modifications to existing methods were employed with the goal of extending the usable life of an isolated perfused trout liver preparation. Liver performance was evaluated by measuring O(2) consumption (VO(2)), vascular resistance, K(+) leakage, glucose flux, lactate flux, and clearance of a model metabolic substrate, 7-ethoxycoumarin (CL(H,7-EC)). Livers perfused with solutions containing 15, 38, or 150microM bovine serum albumin (BSA) exhibited relatively stable physiological performance for up to 10h. CL(H,7-EC) decreased rapidly between 1 and 2h in all livers tested, possibly due in part to accumulation of 7-EC within the tissue. CL(H,7-EC) declined slowly thereafter, decreasing by 30-40% between 2 and 10h. A linear equation was subsequently developed to correct measured levels of clearance for this decrease in metabolic activity over time. To illustrate the value of this preparation, experiments were conducted to examine the effects of protein binding on 7-EC clearance. Clearance rates corrected for declining activity (CL(H,7-EC,CORR)) changed in nearly direct proportion to changes in the free concentration of 7-EC efferent to the liver, as predicted by theoretical models of liver function. Additional studies were performed to characterize the concentration-dependence of 7-EC clearance. The rate of substrate disappearance from the perfusate increased in proportion to the total concentration of 7-EC afferent to the liver resulting in constant levels of CL(H,7-EC,CORR). CL(H,7-EC,CORR) values for four livers averaged 12.1+/-2.5mL/h/g-liver (mean+/-SD, n=57 individual determinations) and were in good agreement with an estimate of hepatic clearance obtained by extrapolating published in vitro data from isolated trout hepatocytes. The extended viability of isolated trout livers achieved in this study creates new opportunities for research on hepatic function in fish.
Collapse
Affiliation(s)
- John W Nichols
- National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN 55804, USA.
| | | | | |
Collapse
|
10
|
Kramer MA, Tracy TS. Studying cytochrome P450 kinetics in drug metabolism. Expert Opin Drug Metab Toxicol 2008; 4:591-603. [PMID: 18484917 DOI: 10.1517/17425255.4.5.591] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Determination of cytochrome P450 enzyme-mediated kinetics in vitro can be useful for predicting drug dosing and clearance in humans. Expressed P450s, human liver microsomes, human hepatocytes (both fresh and cryopreserved), and human liver slices are used to estimate K(m) and V(max) values for determination of intrinsic clearance of the drug for scale-up to predict in vivo clearance. OBJECTIVE To describe the advantages and disadvantages of the various in vitro systems used to estimate kinetic parameters for disposition of drugs and the various kinetic profiles that can be observed. METHODS A review of the literature was conducted to evaluate the utility of the various in vitro preparations, the methods for determining kinetic parameters and the types of kinetic profiles that may be observed. RESULTS/CONCLUSIONS The choice of in vitro system for determining kinetic parameters will depend on the objective of the studies, as each system has advantages and disadvantages. Kinetic parameter determinations must be carefully assessed to assure that the correct kinetic model is applied and the most accurate kinetic parameters are determined.
Collapse
Affiliation(s)
- Melissa A Kramer
- University of Minnesota, College of Pharmacy, Department of Experimental and Clinical Pharmacology, 7-115B Weaver-Densford Hall, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
11
|
Umachandran M, Howarth J, Ioannides C. Metabolic and structural viability of precision-cut rat lung slices in culture. Xenobiotica 2008; 34:771-80. [PMID: 15690764 DOI: 10.1080/00498250400000816] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The principal objective was to evaluate the functional and structural integrity of precision-cut rat lung slices in culture over 72 h. 2. Lung slices metabolized 7-ethoxycoumarin in a time-dependent fashion, the major metabolites being the sulphate and glucuronide of 7-hydroxycoumarin with very low levels of the free compound. Prior treatment of rats with beta-naphthoflavone elevated markedly the rate of metabolism. The optimum slice thickness, as exemplified by the metabolism of 7-ethoxycoumarin, was about 600 microm. 3. Lung slices retained metabolic viability towards 7-ethoxycoumarin for 8 h, but after this point a marked decline in metabolic activity was noted. However, very low levels of activity were still evident following a 72 h incubation. 4. Morphological examination of lung slices revealed nuclear degeneration and loss of tissue architecture following 24h incubation. When cellular integrity was assessed using lactate dehydrogenase, a time-dependent leakage was evident with maximum loss occurring within 24h; longer incubations did not result in further leakage. 5. It is concluded that precision-cut rat lung slices, of 600 microm thickness, can be maintained metabolically viable in culture for some 8 h.
Collapse
Affiliation(s)
- M Umachandran
- Molecular Toxicology Group, School of Biomedical and Molecular Sciences, University of Surrey, Guildford GU2 7XH, UK
| | | | | |
Collapse
|
12
|
Pushparajah DS, Umachandran M, Nazir T, Plant KE, Plant N, Lewis DF, Ioannides C. Up-regulation of CYP1A/B in rat lung and liver, and human liver precision-cut slices by a series of polycyclic aromatic hydrocarbons; association with the Ah locus and importance of molecular size. Toxicol In Vitro 2008; 22:128-45. [DOI: 10.1016/j.tiv.2007.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 08/22/2007] [Accepted: 08/24/2007] [Indexed: 11/28/2022]
|
13
|
Graaf IAMD, Groothuis GMM, Olinga P. Precision-cut tissue slices as a tool to predict metabolism of novel drugs. Expert Opin Drug Metab Toxicol 2007; 3:879-98. [DOI: 10.1517/17425255.3.6.879] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Arya N, Ioannides C, Kuhnert N, Kirkpatrick J, Stevenson D. Metabolism of 2-amino-3-methylimidazol [4,5,f]quinoline by precision-cut rat liver slices. Toxicology 2007. [DOI: 10.1016/j.tox.2007.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Khong YM, Zhang J, Zhou S, Cheung C, Doberstein K, Samper V, Yu H. Novel Intra-Tissue Perfusion System for Culturing Thick Liver Tissue. ACTA ACUST UNITED AC 2007; 13:2345-56. [PMID: 17708717 DOI: 10.1089/ten.2007.0040] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Innovative scaffold fabrication, angiogenesis promotion, and dynamic tissue culture techniques have been utilized to improve delivery of media into the core of large tissue constructs in tissue engineering. We have developed here an intra-tissue perfusion (ITP) system, which incorporates an array of seven micron-sized needles as a delivery conduit, to improve mass transfer into the core of thick liver tissues slices (>>300 microm mass transport limit). The ITP system improves the uniformity and distribution of media throughout the tissue, resulting in improved cell viability over the static-cultured controls. The ITP-cultured thick liver slices also exhibit improved phase I and phase II metabolic functions and albumin and urea synthetic functions after 3-day culture, which is the minimal period required by the U.S. Food and Drug Administration (FDA) for studying drug-drug interaction. This ITP system can also be used for culturing other thick tissue constructs of larger dimensions for various in vitro and in vivo applications, including bridging integration of the in vitro cultured constructs into living host tissues.
Collapse
Affiliation(s)
- Yuet Mei Khong
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
16
|
Van de Bovenkamp M, Groothuis GMM, Meijer DKF, Olinga P. Liver fibrosis in vitro: Cell culture models and precision-cut liver slices. Toxicol In Vitro 2007; 21:545-57. [PMID: 17289342 DOI: 10.1016/j.tiv.2006.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 12/07/2006] [Accepted: 12/18/2006] [Indexed: 01/27/2023]
Abstract
Chronic liver injury of various etiologies can cause liver fibrosis, which is characterized by the progressive accumulation of connective tissue in the liver. As no effective treatment for liver fibrosis is available yet, extensive research is ongoing to further study the mechanisms underlying the development of disease- or toxicity-induced liver fibrosis and to identify potential pro- or anti-fibrotic properties of compounds. This review gives an overview of the in vitro methods that are currently available for this purpose. The first focus is on cell culture models, since the majority of in vitro research uses these systems. Both primary cells and cell lines as well as the use of different culture matrices and co-culture models are discussed. Second, the use of precision-cut liver slices, which recently came into attention as in vitro model for the study of fibrosis, is discussed. The overview clearly shows that continuous optimization and adaptation have extended the potential of in vitro models for liver fibrosis during the past years. By combining the use of the different cell and tissue culture models, the mechanisms underlying multicellular fibrosis development can be studied in vitro and potential pro- or anti-fibrotic properties of compounds can be identified both on single liver cell types and in human liver tissue.
Collapse
Affiliation(s)
- M Van de Bovenkamp
- Department of Pharmacokinetics and Drug Delivery, University Center for Pharmacy, Groningen, The Netherlands
| | | | | | | |
Collapse
|
17
|
Guo Y, Wang H, Zhang C. ESTABLISHMENT OF RAT PRECISION-CUT FIBROTIC LIVER SLICE TECHNIQUE AND ITS APPLICATION IN VERAPAMIL METABOLISM. Clin Exp Pharmacol Physiol 2007; 34:406-13. [PMID: 17439408 DOI: 10.1111/j.1440-1681.2007.04582.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Liver fibrosis is the compensatory state of cirrhosis. In the long asymptomatic period, it is imperative to select a proper dosing regimen for drugs that are applicable to hepatic fibrosis. Otherwise, progressive deterioration to uncompensated cirrhosis may occur. The present study explored the characteristics of drug metabolism in fibrotic liver. 2. A rat precision-cut fibrotic liver slice (PCFLS) technique was established and the metabolism of verapamil was studied employing this technique. A rat hepatic fibrosis model was successfully induced integrating complex factors that included a high-fat diet, alcohol and CCl4. The PCFLS were incubated under different conditions and lactate dehydrogenase leakage, glutathione S-transferase activity and 3[4,5-dimethythiazole-2-yl]-2,5-diphenyltetrazolium bromide reduction were used as indices to assess PCFLS viability. Activities of phase I and phase II metabolizing enzymes were monitored following treatment with cytochrome P450 (CYP) inducers. Normal and fibrotic liver slices were incubated individually with 10 micromol/L verapamil. The concentration of verapamil in the medium was determined by high-performance liquid chromatography and intrinsic clearance (Cl(int)) was calculated on the basis of the concentration-time curve. 3. The results showed that the PCFLS viability remained steady throughout the 6 h of culture when the thickness of slices was 300 microm and pH of the medium was 7.0; CYP inducers (phenobarbital and ethanol) enhanced CYP2E1, CYP3A1/2 and uridine diphosphate-glucuronate transferase (UDPGT) activities, respectively, in a time-dependent manner. The Cl(int) (microL/min per mg) values differed significantly between normal (9.7 +/- 1.8) and fibrotic (5.6 +/- 1.4) liver slices (P < 0.01). 4. These results suggested that the PCFLS could remain viable for 2-6 h under appropriate conditions. The stability and inducibility of drug-metabolizing enzymes of PCFLS were also demonstrated. Furthermore, the metabolic rate of verapamil in PCFLS was decreased. These findings add further support to the use of PCFLS as a tool to study drug metabolism and to guide clinical medication.
Collapse
Affiliation(s)
- Yu Guo
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, Hubei Province, China
| | | | | |
Collapse
|
18
|
Pushparajah DS, Umachandran M, Plant KE, Plant N, Ioannides C. Evaluation of the precision-cut liver and lung slice systems for the study of induction of CYP1, epoxide hydrolase and glutathione S-transferase activities. Toxicology 2007; 231:68-80. [PMID: 17178432 DOI: 10.1016/j.tox.2006.11.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/20/2006] [Accepted: 11/21/2006] [Indexed: 11/18/2022]
Abstract
The principal objective was to ascertain whether precision-cut tissue slices can be used to evaluate the potential of chemicals to induce CYP1, epoxide hydrolase and glutathione S-transferase activities, all being important enzymes involved in the metabolism of polycyclic aromatic hydrocarbons. Precision-cut rat liver and lung slices were incubated with a range of benzo[a]pyrene concentrations for various time periods. A rise in the O-deethylation of ethoxyresorufin was seen in both liver and lung slices exposed to benzo[a]pyrene, which was accompanied by increased CYP1A apoprotein levels. Pulmonary CYP1B1 apoprotein levels and hepatic mRNA levels were similarly enhanced. Elevated epoxide hydrolase and glutathione S-transferase activities were also observed in liver slices following incubation for 24h; similarly, a rise in apoprotein levels of both enzymes was evident, peak levels occurring at the same time point. When mRNA levels were monitored, a rise in the levels of both enzymes was seen as early as 4h after incubation, but maximum levels were attained at 24 h. In lung slices, induction of epoxide hydrolase by benzo[a]pyrene was observed after a 24-h incubation, and at a concentration of 1 microM; a rise in apoprotein levels was seen at this time point. Glutathione S-transferase activity was not inducible in lung slices by benzo[a]pyrene but a modest increase was observed in hepatic slices. Collectively, these studies confirmed CYP1A induction in rat liver slices and established that CYP1B1 expression, and epoxide hydrolase and glutathione S-transferase activities are inducible in precision-cut tissue slices.
Collapse
Affiliation(s)
- Daphnee S Pushparajah
- Molecular Toxicology Group, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | | | | | | | |
Collapse
|
19
|
Catania JR, McGarrigle BP, Rittenhouse-Olson K, Olson JR. Induction of CYP2B and CYP2E1 in precision-cut rat liver slices cultured in defined medium. Toxicol In Vitro 2006; 21:109-15. [PMID: 17011741 DOI: 10.1016/j.tiv.2006.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/09/2006] [Accepted: 08/10/2006] [Indexed: 12/11/2022]
Abstract
Many drugs and endogenous substances undergo biotransformation by cytochrome P450s (CYPs), and some drugs are also capable of modulating the expression of various CYPs. Knowledge of the potential of a drug to modulate CYPs is useful to help predict potential drug interactions. This study utilized precision-cut rat liver slices in dynamic organ culture to assess the effects of various media on the viability of rat liver slices and the expression of CYP2B and CYP2E1 when the slices are exposed to phenobarbital and isoniazid, which are drugs capable of inducing these respective CYPs. Liver slices were maintained in serum supplemented Waymouths medium and two different serum-free media, Hepatozyme (Life Technologies) and a new defined medium, which is named BPM. While Hepatozyme is considered a suitable medium to support primary hepatocyte cultures, this product did not maintain viable liver slices, even for 24 h. The serum containing and new defined media maintained viable liver slices for up to 96 h in culture. Phenobarbital (0.5 mM) and isoniazid (0.1 or 0.6 mM) did not affect viability in this model. In the absence of phenobarbital or isoniazid, liver slices maintained for 96 h in the new BPM medium maintained the respective levels of CYP2B and 2E1 protein at 1.8 and 1.9-fold higher than in slices maintained in the serum-containing medium. Phenobarbital exposure (0.5 mM) for 96 h induced CYP2B protein 5.2-fold in the BPM medium and 2.5-fold in the serum-containing medium. Isoniazid exposure (0.1 and 0.5 mM) for 96 h induced CYP2E1 protein 1.9 and 2.1-fold (respectively) in the BPM medium and 2.1 and 2.0-fold in the serum-containing medium. The respective CYP enzymatic activities were also increased by these drugs in a similar manner. Thus, the new defined BPM medium provides suitable conditions for maintaining CYP2B and 2E1 in liver slices and supports the investigation of drug-induced modulation of these enzymes.
Collapse
Affiliation(s)
- Jason R Catania
- Department of Biotechnology and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
20
|
Umachandran M, Ioannides C. Stability of cytochromes P450 and phase II conjugation systems in precision-cut rat lung slices cultured up to 72h. Toxicology 2006; 224:14-21. [PMID: 16701934 DOI: 10.1016/j.tox.2006.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 03/29/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
The objective of the present study was to evaluate the stability of cytochrome P450 enzymes and of the conjugation enzyme systems epoxide hydrolase, glucuronosyl transferase, sulphotransferase and glutathione S-transferase in precision-cut rat lung slices incubated in RPMI media for different time periods up to 72 h. Moreover, the effect of culturing of lung slices on total glutathione levels and glutathione reductase was also investigated. Monitoring of cytochrome P450 activity was achieved using established diagnostic probes, but when activity in the lung was low the maintenance of the various enzymes in culture was determined immunologically using Western blotting. The dealkylation of pentoxyresorufin declined markedly during the first 4h of incubation but in the case of ethoxyresorufin loss of activity was more gradual and less severe. Western blot analysis revealed that the rate of decrease in cytochrome P450 apoprotein levels was isoform-specific with CYP2E1 being the most stable and CYP3A the least stable. Generally, phase II activities, especially cytosolic sulphotransferase, were relatively more stable throughout the incubation period compared with cytochromes P450. Finally, glutathione reductase activity and total glutathione levels were maintained throughout the 72 h incubation. The present studies indicate that xenobiotic-metabolising enzymes in precision-cut rat lung slices decline in culture, but the rate of loss differs and depends on the nature of the enzyme.
Collapse
Affiliation(s)
- Meera Umachandran
- Molecular Toxicology Group, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | |
Collapse
|
21
|
Engl T, Boost KA, Leckel K, Beecken WD, Jonas D, Oppermann E, Auth MKH, Schaudt A, Bechstein WO, Blaheta RA. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system. Toxicol In Vitro 2004; 18:527-32. [PMID: 15130610 DOI: 10.1016/j.tiv.2004.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 01/25/2004] [Indexed: 02/01/2023]
Abstract
In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.
Collapse
Affiliation(s)
- Tobias Engl
- Zentrum der Chirurgie, Klinik für Urologie und Kinderurologie, Johann Wolfgang Goethe-Universitaetsklinik, Wissenschaftliches Labor, Haus 23 A, EG 7, Theodor-Stern-Kai 7, D60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sivapathasundaram S, Howells LC, Sauer MJ, Ioannides C. Functional integrity of precision-cut liver slices from deer and cattle. J Vet Pharmacol Ther 2004; 27:79-84. [PMID: 15096104 DOI: 10.1111/j.1365-2885.2004.00555.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Precision-cut bovine and cervine liver slices were incubated in RPMI 1640 media for up to 72 h, and cellular integrity was assessed utilizing the leakage of lactate dehydrogenase (LDH) and the formation of the formazan metabolite of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT). Leakage of LDH (80%) from the bovine and cervine slices was noted only following 10 h of culture, and similarly, the generation of MTT-formazan declined. Metabolic viability was determined using 7-ethoxycoumarin as the model substrate, which was metabolized by slices from both animal species in a time-dependent manner for at least 6 h to generate 7-hydroxycoumarin, which was secreted into the media primarily as glucuronide and sulphate conjugates. With both cervine and bovine slices metabolic activity decreased markedly after a 4-h preincubation as assessed following a further 2-h incubation in the presence of 7-ethoxycoumarin. Subsequently, ethoxycoumarin metabolism by bovine slices did not decrease further until 24 h and was still detectable at 72 h. In the case of cervine slices, activity declined gradually after 8 h, with no activity being detectable at 72 h. It may be concluded that cervine and bovine slices may be maintained metabolically active for 8-10 h, which should prove sufficient for xenobiotic metabolism studies to be performed.
Collapse
Affiliation(s)
- S Sivapathasundaram
- Molecular Toxicology Group, School of Biomedical and Life Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | | | | | | |
Collapse
|
23
|
Brandon EFA, Raap CD, Meijerman I, Beijnen JH, Schellens JHM. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol 2003; 189:233-46. [PMID: 12791308 DOI: 10.1016/s0041-008x(03)00128-5] [Citation(s) in RCA: 382] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The liver is the predominant organ in which biotransformation of foreign compounds takes place, although other organs may also be involved in drug biotransformation. Ideally, an in vitro model for drug biotransformation should accurately resemble biotransformation in vivo in the liver. Several in vitro human liver models have been developed in the past few decades, including supersomes, microsomes, cytosol, S9 fraction, cell lines, transgenic cell lines, primary hepatocytes, liver slices, and perfused liver. A general advantage of these models is a reduced complexity of the study system. On the other hand, there are several more or less serious specific drawbacks for each model, which prevents their widespread use and acceptance by the regulatory authorities as an alternative for in vivo screening. This review describes the practical aspects of selected in vitro human liver models with comparisons between the methods.
Collapse
Affiliation(s)
- Esther F A Brandon
- Division of Drug Toxicology, Department of Biomedical Analysis, Faculty of Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
De-Oliveira ACAX, Silva IB, Manhaes-Rocha DA, Paumgartten FJR. Induction of liver monooxygenases by annatto and bixin in female rats. Braz J Med Biol Res 2003; 36:113-8. [PMID: 12532234 DOI: 10.1590/s0100-879x2003000100015] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Annatto or urucum is an orange-yellow dye obtained from Bixa orellana seeds. It has been used as a natural dye in a variety of food products, drugs and cosmetics, and also in Brazilian cuisine as a condiment ('colorau'). Bixin, a carotenoid devoid of provitamin A activity, is the main pigment found in annatto. Some carotenoids (canthaxanthin, astaxanthin and beta-Apo-8'-carotenal) are known to be potent inducers of CYP1A1, a property not shared by others (beta-carotene, lycopene and lutein). Little is known, however, about the CYP1A1-inducing properties of bixin and annatto. The present study was performed to determine the effects of an annatto extract (28% bixin) and bixin (95% pure) on rat liver monooxygenases. Adult female Wistar rats were treated by gavage with daily doses of annatto (250 mg/kg body weight, which contains approximately 70 mg bixin/kg body weight), bixin (250 mg/kg body weight) or the vehicle only (corn oil, 3.75 g/kg body weight) for 5 consecutive days, or were not treated (untreated control). The activities of aniline-4-hydroxylase (A4H), ethoxycoumarin-O-deethylase (ECOD), ethoxy- (EROD), methoxy- (MROD), pentoxy- (PROD) and benzyloxy- (BROD) resorufin-O-dealkylases were measured in liver microsomes. Annatto (250 mg/kg containing 70 mg bixin/kg) induced EROD (3.8x), MROD (4.2x), BROD (3.3x) and PROD (2.4x). Bixin (250 mg/kg) was a weaker inducer of EROD (2.7x), MROD (2.3x) and BROD (1.9x) and did not alter PROD, A4H or ECOD activities. These results suggest that constituents of the extract other than bixin play an important role in the induction of CYP1A and CYP2B observed with annatto food colorings.
Collapse
Affiliation(s)
- A C A X De-Oliveira
- Laboratório de Toxicologia Ambiental, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
25
|
Rekka E, Evdokimova E, Eeckhoudt S, Labar G, Calderon PB. Role of temperature on protein and mRNA cytochrome P450 3A (CYP3A) isozymes expression and midazolam oxidation by cultured rat precision-cut liver slices. Biochem Pharmacol 2002; 64:633-43. [PMID: 12167482 DOI: 10.1016/s0006-2952(02)01258-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cytochrome P450 3A (CYP3A)-mediated midazolam oxidation was studied in rat precision-cut liver slices (PCLS) maintained for 20hr at 4, 20 and 37 degrees, and further incubated for 8hr at 37 degrees. Either at 4 or 20 degrees, midazolam was oxidised by PCLS at similar rates to that observed in freshly cut slices. Moreover, PCLS kept a regioselectivity since 4-hydroxylation was more important than 1'-hydroxylation. Conversely, PCLS totally lost their capacity to oxidise midazolam after 20hr at 37 degrees, and both CYP3A2 protein and mRNA were not detected. CYP3A1 protein was unaffected by a temperature of 37 degrees but its mRNA was totally lost. By blocking transcription with actinomycin D, the decay of both CYP3A mRNAs followed the same profile at either 20 or 37 degrees, indicating that temperature affected the CYP3A2 protein stability. Cell functionality was not involved in such an impairment since the low values of ATP, GSH and protein synthesis rates observed at 4 and 20 degrees were rapidly restored, when PCLS were further incubated at 37 degrees. The use of rat supersomes expressing either CYP3A1 or CYP3A2, strongly supported the hypothesis that 4-hydroxymidazolam was mainly formed by CYP3A2. These results suggest that: (1) CYP3A1 protein is constitutive and largely expressed in rat liver slices; (2) regioselective midazolam oxidation appears to be mainly CYP3A2 dependent; and (3) since CYP3A isoforms have similar half-lives (about 10-14hr), the loss of CYP3A2 protein at 37 degrees might be due to a selective targeting (phosphorylation ?) leading to proteolytic disposal by the proteasome.
Collapse
Affiliation(s)
- Eleni Rekka
- Unité de Pharmacocinétique, Métabolisme, Nutrition et Toxicologie (PMNT 7369), Département de Sciences Pharmaceutiques, Université Catholique de Louvain, 73, avenue E. Mounier, 1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
26
|
Rekka E, Evdokimova E, Eeckhaudt S, Calderon PB. Reoxygenation after cold hypoxic storage of cultured precision-cut rat liver slices: effects on cellular metabolism and drug biotransformation. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:245-51. [PMID: 11786231 DOI: 10.1016/s0304-4165(01)00225-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cultured rat precision-cut liver slices (PCLS) were used to study the influence of hypothermic preservation and reoxygenation at 37 degrees C on cellular metabolism and drug biotransformation. Cold hypoxic storage caused a depressed metabolism in rat liver slices, but reoxygenation for 8 h at 37 degrees C partially restored the levels of both ATP and GSH and totally restored the capacity to synthesize proteins. Metabolism of midazolam (CYP3A-dependent oxidation) by cold preserved liver slices was decreased by 30% but no further affected by reoxygenation, showing the same profile as freshly cut slices. Such a reoxygenation at 37 degrees C is accompanied by a dramatic loss of CYP3A2 protein while CYP3A1 protein was unaffected. These results suggest that CYP3A2 did not play a major role in midazolam oxidation. Such results are not consistent with a putative reoxygenation injury but rather with cold hypoxic damage. Since cold preserved liver slices did not respond to bacterial endotoxin stimulation (lipopolysaccharides), a minor role of non-parenchymal cells is suggested as mediators for deleterious effects developed during the cold storage.
Collapse
Affiliation(s)
- E Rekka
- Unité de Pharmacocinétique, Métabolisme, Nutrition et Toxicologie, Département de Sciences Pharmaceutiques, Université Catholique de Louvain, Louvain, Belgium
| | | | | | | |
Collapse
|