1
|
Henrique JT, Biason MV, dos Santos Mendes P, Cardoso FAR, Leimann FV, Gonçalves OH, Bona E, de Oliveira A, Marques LLM, Fuchs RHB, Droval AA. Enhancing mortadella formulations: Exploring the impact of curcumin microcrystals, cochineal carmine, and annatto dyes on sensory preferences, stability, and antioxidant potential. Food Chem X 2024; 23:101627. [PMID: 39100244 PMCID: PMC11296006 DOI: 10.1016/j.fochx.2024.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
The effects of adding cochineal carmine and annatto dyes in five mortadella formulations made with curcumin microcrystals were compared, and the preference was evaluated and described sensorially. Based on the optimized formulation obtained with color parameters, two formulations were elaborated: curcumin microcrystals and cochineal carmine were added. During 60 days, pH, objective color, water retention capacity, lipid oxidation, and texture profile analyses were performed. The results demonstrate the possibility of excluding sodium erythorbate from formulations containing curcumin microcrystals. There was no significant difference in lipid oxidation between the samples, presenting at the end of 60 days a value of 0.11 mg and 0.10 mg of MDA kg-1 for the two samples, respectively. There were also no significant differences between the two samples or the evaluated storage times, and the average values obtained for pH, WRC, objective color, and TPA were expected for this type of cooked meat sausage. In the presence of curcumin microcrystals, the synthetic antioxidant, sodium erythorbate, can be eliminated from the formulations, as it does not affect the physical-chemical parameters studied, such as pH, water retention capacity, color objective, and texture profile.
Collapse
Affiliation(s)
- Jacqueline Thomé Henrique
- Department of Food Engineering and Chemical Engineering, Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Maria Victória Biason
- Department of Food Engineering and Chemical Engineering, Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Poliana dos Santos Mendes
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Flávia Aparecida Reitz Cardoso
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
- Post-Graduation Program of Technological Innovations (PPGIT), Federal University of Technology - Paraná, Campo Mourão, 87301-005, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Evandro Bona
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Anielle de Oliveira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Leila Larisa Medeiros Marques
- Department of Food Engineering and Chemical Engineering, Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Renata Hernandez Barros Fuchs
- Department of Food Engineering and Chemical Engineering, Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Adriana Aparecida Droval
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| |
Collapse
|
2
|
Zhou J, Li J, Ma L, Cheng C, Liu H, Wu L. Individual mono and co-interactions of butylated hydroxytoluene and its metabolite with pepsin: Multi-pronged research strategies. Int J Biol Macromol 2024; 280:135760. [PMID: 39299430 DOI: 10.1016/j.ijbiomac.2024.135760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
In this study, the interactions between butylated hydroxytoluene (BHT) and its metabolite 2,6-Di-tert-butyl-p-benzoquinone (BHT-Q) with pepsin (PEP) were explored using multispectral measurements and computer prediction techniques. UV-vis absorption spectra, fluorescence lifetime, and Stern-Volmer quenching analysis showed static fluorescence quenching of PEP by BHT/BHT-Q. Negative thermodynamic parameters indicated that the spontaneous formation of complexes was primarily driven by van der Waals (vdW) forces and hydrogen bonds (HB). Synchronous fluorescence and circular dichroism spectroscopy revealed conformational changes induced by BHT/BHT-Q on PEP. Furthermore, BHT and BHT-Q inhibited PEP's enzymatic activity, while PEP suppressed their antioxidant activity. Interestingly, BHT-Q weakened BHT's binding strength to PEP, affecting the enzyme inhibition rate. Computer predictions highlighted the integral role of hydrophobic interactions. Moreover, BHT and BHT-Q exhibited different effects on the stability and compactness of PEP, the residue environment of PEP became more flexible or rigid in the presence of BHT and BHT-Q. Changes in the hydrophobic solvent accessible surface area (SASA) elucidated that the microenvironment of hydrophobic residues of PEP was changed after binding with BHT and BHT-Q. Ultimately, BHT's stronger binding affinity to PEP than BHT-Q was attributed mainly to its larger negative surface area, facilitating interactions with more amino acid residues.
Collapse
Affiliation(s)
- Junqiao Zhou
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Jiayin Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Lan Ma
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Cong Cheng
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Hao Liu
- Information Centre of Liyuan Hospital Affiliated to Tongji Medical College Huazhong University of Science and Technology, Wuhan 430077, PR China
| | - Laiyan Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
3
|
Barbosa ACS, Mendes PS, Mattos G, Fuchs RHB, Marques LLM, Beneti SC, Heck SC, Droval AA, Cardoso FAR. Comparative analysis of the use of natural and synthetic antioxidants in chicken meat: an update review. BRAZ J BIOL 2023; 83:e275539. [PMID: 37878961 DOI: 10.1590/1519-6984.275539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/02/2023] [Indexed: 10/27/2023] Open
Abstract
The search for healthy foods has attracted the industry's attention to developing products that use natural ingredients, including natural antioxidants. Antioxidants act as free radicals or oxygen scavengers, inhibiting lipid oxidation and adversely affecting meat products' sensory and nutritional quality. Several synthetic antioxidants have been used in the meat industry; however, studies point to health risks related to their consumption. Such fact drives research into natural antioxidants extracted from grains, oilseeds, spices, fruits, and vegetables, which may have a health-promoting effect. This manuscript evaluates the effectiveness of several natural antioxidants in improving the quality and shelf life of chicken meat products during processing, storage, and distribution. The potential effects of natural antioxidants widely used in chicken products are also discussed. It can be concluded that these natural antioxidants are possible substitutes for synthetic ones. However, their use can affect the product's characteristics.
Collapse
Affiliation(s)
- A C S Barbosa
- Universidade Tecnológica Federal do Paraná - UTFPR, Departamento de Engenharia de Alimentos, Campo Mourão, PR, Brasil
| | - P S Mendes
- Universidade Tecnológica Federal do Paraná - UTFPR, Programa de Pós-graduação em Tecnologia de Alimentos - PPGTA, Campo Mourão, PR, Brasil
| | - G Mattos
- Universidade Tecnológica Federal do Paraná - UTFPR, Programa de Pós-graduação em Inovações Tecnológicas -- PPGIT, Campo Mourão, PR, Brasil
| | - R H B Fuchs
- Universidade Tecnológica Federal do Paraná - UTFPR, Departamento de Engenharia de Alimentos, Campo Mourão, PR, Brasil
| | - L L M Marques
- Universidade Tecnológica Federal do Paraná - UTFPR, Departamento de Engenharia de Alimentos, Campo Mourão, PR, Brasil
| | - S C Beneti
- Universidade Tecnológica Federal do Paraná - UTFPR, Departamento de Engenharia de Alimentos, Campo Mourão, PR, Brasil
| | - S C Heck
- Universidade Tecnológica Federal do Paraná - UTFPR, Departamento de Engenharia de Alimentos, Campo Mourão, PR, Brasil
| | - A A Droval
- Universidade Tecnológica Federal do Paraná - UTFPR, Programa de Pós-graduação em Tecnologia de Alimentos - PPGTA, Campo Mourão, PR, Brasil
| | - F A R Cardoso
- Universidade Tecnológica Federal do Paraná - UTFPR, Programa de Pós-graduação em Tecnologia de Alimentos - PPGTA, Campo Mourão, PR, Brasil
- Universidade Tecnológica Federal do Paraná - UTFPR, Programa de Pós-graduação em Inovações Tecnológicas -- PPGIT, Campo Mourão, PR, Brasil
| |
Collapse
|
4
|
Chong SY, Wang X, van Bloois L, Huang C, Syeda NS, Zhang S, Ting HJ, Nair V, Lin Y, Lou CKL, Benetti AA, Yu X, Lim NJY, Tan MS, Lim HY, Lim SY, Thiam CH, Looi WD, Zharkova O, Chew NWS, Ng CH, Bonney GK, Muthiah M, Chen X, Pastorin G, Richards AM, Angeli V, Storm G, Wang JW. Injectable liposomal docosahexaenoic acid alleviates atherosclerosis progression and enhances plaque stability. J Control Release 2023; 360:344-364. [PMID: 37406819 DOI: 10.1016/j.jconrel.2023.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease that is characterized by the accumulation of lipids and immune cells in plaques built up inside artery walls. Docosahexaenoic acid (DHA, 22:6n-3), an omega-3 polyunsaturated fatty acid (PUFA), which exerts anti-inflammatory and antioxidant properties, has long been purported to be of therapeutic benefit to atherosclerosis patients. However, large clinical trials have yielded inconsistent data, likely due to variations in the formulation, dosage, and bioavailability of DHA following oral intake. To fully exploit its potential therapeutic effects, we have developed an injectable liposomal DHA formulation intended for intravenous administration as a plaque-targeted nanomedicine. The liposomal formulation protects DHA against chemical degradation and increases its local concentration within atherosclerotic lesions. Mechanistically, DHA liposomes are readily phagocytosed by activated macrophages, exert potent anti-inflammatory and antioxidant effects, and inhibit foam cell formation. Upon intravenous administration, DHA liposomes accumulate preferentially in atherosclerotic lesional macrophages and promote polarization of macrophages towards an anti-inflammatory M2 phenotype, resulting in attenuation of atherosclerosis progression in both ApoE-/- and Ldlr-/- experimental models. Plaque composition analysis demonstrates that liposomal DHA inhibits macrophage infiltration, reduces lipid deposition, and increases collagen content, thus improving the stability of atherosclerotic plaques against rupture. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) further reveals that DHA liposomes can partly restore the complex lipid profile of the plaques to that of early-stage plaques. In conclusion, DHA liposomes offer a promising approach for applying DHA to stabilize atherosclerotic plaques and attenuate atherosclerosis progression, thereby preventing atherosclerosis-related cardiovascular events.
Collapse
Affiliation(s)
- Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Louis van Bloois
- Department of Pharmaceutics, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Nilofer Sayed Syeda
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Vaarsha Nair
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Yuanzhe Lin
- Department of Biomedical Engineering, National University of Singapore, 117583 Singapore, Singapore
| | - Charles Kang Liang Lou
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Ayca Altay Benetti
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543 Singapore, Singapore
| | - Xiaodong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Nicole Jia Ying Lim
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Michelle Siying Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Hwee Ying Lim
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Sheau Yng Lim
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Chung Hwee Thiam
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Wen Donq Looi
- Bruker Daltonics, Bruker Singapore Pte. Ltd., 138671 Singapore, Singapore
| | - Olga Zharkova
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Nicholas W S Chew
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Department of Cardiology, National University Heart Centre, National University Hospital, 119074 Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Glenn Kunnath Bonney
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital, 119074 Singapore, Singapore
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, 119074 Singapore, Singapore; National University Centre for Organ Transplantation, National University Health System, 119074 Singapore, Singapore
| | - Xiaoyuan Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074 Singapore, Singapore; Departments of Chemical and Biomolecular Engineering, and Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117575 Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543 Singapore, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Veronique Angeli
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore; Department of Pharmaceutics, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands; Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, the Netherlands.
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore; Department of Physiology, National University of Singapore, 117593 Singapore, Singapore.
| |
Collapse
|
5
|
Madureira J, Gonçalves S, Santos-Buelga C, Margaça FMA, Ferreira ICFR, Barros L, Cabo Verde S. Microbiota Assessment of Fresh-Cut Apples Packaged in Two Different Films. Microorganisms 2023; 11:1157. [PMID: 37317130 DOI: 10.3390/microorganisms11051157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The aim of this work was to assess the natural microbiota of packed fresh-cut apples during refrigerated storage. Two different films were tested for the package, a biodegradable (PLA) film and a conventional and commercial one (OPP). Two antioxidant additives were applied, a natural olive pomace extract and the commercial ascorbic acid used by the industries. The results revealed lower bacteria counts in samples with olive pomace extract and PLA films than in those with ascorbic acid and OPP films after 5 and 12 days of storage. These findings suggest that the use of such natural extracts as additives in fruits could delay the growth of mesophilic bacteria. The characterization and identification of the bacterial isolates from fresh-cut apple samples showed that the most prevalent species were Citrobacter freundii, Staphylococcus warneri, Pseudomonas oryzihabitans, Alcalinogenes faecalis, Corynebacterium jeikeium, Micrococcus spp., Pantoea aglomerans and Bacillus spp. Furthermore, an increase in the microbial diversity during the storage time at refrigerated temperatures was observed, except for the sample treated with olive pomace extract and packaged in OPP film. The highest microbial diversity was found for samples with ascorbic acid as an additive. This could indicate a negative effect of ascorbic acid on the microbial inhibition of apple slices. The natural olive pomace extract demonstrated potential as an antimicrobial additive for fresh-cut apples.
Collapse
Affiliation(s)
- Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, EstradaNacional 10 ao km 139.7, 2695-066 Loures, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Sara Gonçalves
- ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
- Unidad de Excelencia Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, 37185 Salamanca, Spain
| | - Fernanda M A Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, EstradaNacional 10 ao km 139.7, 2695-066 Loures, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139.7, 2695-066 Loures, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, EstradaNacional 10 ao km 139.7, 2695-066 Loures, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139.7, 2695-066 Loures, Portugal
| |
Collapse
|
6
|
Fahim SA, Ibrahim S, Tadros SA, Badary OA. Protective effects of butylated hydroxytoluene on the initiation of N-nitrosodiethylamine-induced hepatocellular carcinoma in albino rats. Hum Exp Toxicol 2023; 42:9603271231165664. [PMID: 36943693 DOI: 10.1177/09603271231165664] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Diethylnitrosamine (DEN), a hepatocarcinogen, is found in a variety of smoked and fried foods and was reported to be hepatotoxic in mice. Butylated hydroxytoluene (BHT) is a potent antioxidant used in cosmetic formulations and as a food additive and preservative. As a result, BHT was studied as a potential inhibitor in the early stages of diethylnitrosamine (DEN)-induced HCC. Male Wistar albino rats (n = 24) were equally subdivided. Group 1 was the negative control; Group 2 and 3 administered BHT and DEN, respectively; Group 4 received BHT followed by DEN. Blood samples and rat livers were taken for biochemical and histological investigation. Hepatotoxicity was assessed by increased liver enzymes and HCC indicators, along with reduced antioxidant and pro-apoptotic factors. AFP, AFPL3, GPC3, GSH, SOD, MDA, CASP3 and BAX expression increased significantly after DEN treatment. DEN also reduced GPx, CAT, and CYP2E1 activity, and BCl-2 expression. Moreover, in the hepatic parenchyma, the DEN caused histological alterations. Pretreatment with BHT enhanced antioxidant status while preventing histopathological and most biochemical alterations. BHT pretreatment suppresses DEN-initiated HCC by decreasing oxidative stress, triggering intrinsic mitotic apoptosis, and preventing histopathological changes in liver tissue.
Collapse
Affiliation(s)
- Sally A Fahim
- Department of Biochemistry, School of Pharmacy, 485624Newgiza University, Giza, Egypt
| | - Samar Ibrahim
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, 267119Ahram Canadian University, 6th of October City, Egypt
| | - Samer A Tadros
- Department of Biochemistry, Faculty of Pharmacy, 110123October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Osama A Badary
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, 120633The British University in Egypt (BUE), Cairo, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Hsu JH, Yang CS, Chen JJ. Antioxidant, Anti-α-Glucosidase, Antityrosinase, and Anti-Inflammatory Activities of Bioactive Components from Morus alba. Antioxidants (Basel) 2022; 11:2222. [PMID: 36421408 PMCID: PMC9686747 DOI: 10.3390/antiox11112222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 10/29/2023] Open
Abstract
The root bark of Morus alba L. (Mori Cortex) is used to treat diuresis and diabetes in Chinese traditional medicine. We evaluated different solvent extracts and bioactive components from the root bark of Morus alba L. for their antioxidant, anti-α-glucosidase, antityrosinase, and anti-inflammatory activities. Acetone extract showed potent antioxidant activity, with SC50 values of 242.33 ± 15.78 and 129.28 ± 10.53 µg/mL in DPPH and ABTS radical scavenging assays, respectively. Acetone and ethyl acetate extracts exhibited the strongest anti-α-glucosidase activity, with IC50 values of 3.87 ± 1.95 and 5.80 ± 2.29 μg/mL, respectively. In the antityrosinase assay, the acetone extract showed excellent activity, with an IC50 value of 7.95 ± 1.54 μg/mL. In the anti-inflammatory test, ethyl acetate and acetone extracts showed significant anti-nitric oxide (NO) activity, with IC50 values of 10.81 ± 1.41 and 12.00 ± 1.32 μg/mL, respectively. The content of the active compounds in the solvent extracts was examined and compared by HPLC analysis. Six active compounds were isolated and evaluated for their antioxidant, anti-α-glucosidase, antityrosinase, and anti-inflammatory properties. Morin (1) and oxyresveratrol (3) exhibited effective antioxidant activities in DPPH and ABTS radical scavenging assays. Additionally, oxyresveratrol (3) and kuwanon H (6) showed the highest antityrosinase and anti-α-glucosidase activities among all isolates. Morusin (2) demonstrated more significant anti-NO and anti-iNOS activities than the positive control, quercetin. Our study suggests that the active extracts and components from root bark of Morus alba should be further investigated as promising candidates for the treatment or prevention of oxidative stress-related diseases, hyperglycemia, and pigmentation disorders.
Collapse
Affiliation(s)
- Jui-Hung Hsu
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chang-Syun Yang
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
| |
Collapse
|
8
|
Abou-Diab M, Thibodeau J, Fliss I, Dhulster P, Nedjar N, Bazinet L. Impact of conductivity on the performances of electro-acidification and enzymatic hydrolysis phases of bovine hemoglobin by electrodialysis with bipolar membranes for the production of bioactive peptides. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Pulmonary Inflammation and KRAS Mutation in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33788188 DOI: 10.1007/978-3-030-63046-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2023]
Abstract
Chronic lung infection and lung cancer are two of the most important pulmonary diseases. Respiratory infection and its associated inflammation have been increasingly investigated for their role in increasing the risk of respiratory diseases including chronic obstructive pulmonary disease (COPD) and lung cancer. Kirsten rat sarcoma viral oncogene (KRAS) is one of the most important regulators of cell proliferation, differentiation, and survival. KRAS mutations are among the most common drivers of cancer. Lung cancer harboring KRAS mutations accounted for ~25% of the incidence but the relationship between KRAS mutation and inflammation remains unclear. In this chapter, we will describe the roles of KRAS mutation in lung cancer and how elevated inflammatory responses may increase KRAS mutation rate and create a vicious cycle of chronic inflammation and KRAS mutation that likely results in persistent potentiation for KRAS-associated lung tumorigenesis. We will discuss in this chapter regarding the studies of KRAS gene mutations in specimens from lung cancer patients and in animal models for investigating the role of inflammation in increasing the risk of lung tumorigenesis driven primarily by oncogenic KRAS.
Collapse
|
10
|
Liu J, Huang R, Song Q, Xiong H, Ma J, Xia R, Qiao J. Combinational Antibacterial Activity of Nisin and 3-Phenyllactic Acid and Their Co-production by Engineered Lactococcus lactis. Front Bioeng Biotechnol 2021; 9:612105. [PMID: 33634085 PMCID: PMC7901885 DOI: 10.3389/fbioe.2021.612105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022] Open
Abstract
Nisin produced by certain Lactococcus lactis strains is commercially used in meat and dairy industries because of its effective antibacterial activity and food safety characteristics. It has been proved that the antibacterial activity could be enhanced when combined with other antimicrobial agents. In this study, we demonstrated that nisin and 3-phenyllactic acid (PLA) in combination displayed excellent combinational antibacterial activity against foodborne pathogens including S. xylosus and M. luteus. The potential application in food preservation was further verified via microbial analysis during the storage of meat and milk, and determination of strawberry rot rate. Scanning electron microscopy observation indicated a distinct mode of PLA with nisin, which may target at the dividing cell, contributing to their combinational antibacterial effect of nisin and PLA. Considering the positive results, a nisin-PLA co-producing strain was constructed based on the food-grade strain L. lactis F44, a nisin Z producer. By the knockout of two L-lactate dehydrogenase (LDH) and overexpression of D-LDHY25A, the yield of PLA was significantly increased 1.77-fold in comparison with the wild type. Anti-bacterial assays demonstrated that the fermentation product of the recombinant strain performed highly effective antibacterial activity. These results provided a promising prospect for the nisin-PLA co-expressing L. lactis in food preservation on account of its considerable antibacterial activity and cost-effective performance.
Collapse
Affiliation(s)
- Jiaheng Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, SynBio Research Platform, Tianjin, China
| | - Rongrong Huang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qianqian Song
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Hui Xiong
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Juan Ma
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Rui Xia
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, SynBio Research Platform, Tianjin, China
| |
Collapse
|
11
|
Zhang R, Li J, Cui X. Tissue distribution, excretion, and metabolism of 2,6-di-tert-butyl-hydroxytoluene in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139862. [PMID: 32544679 DOI: 10.1016/j.scitotenv.2020.139862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 05/14/2023]
Abstract
As one typical synthetic phenolic antioxidant, 2,6-di-tert-butyl-hydroxytoluene (BHT) has been widely adopted in food and other human products, and considered as an emerging contaminant due to its toxic effects. Understanding bioaccumulation and metabolism of BHT is crucial to evaluate its environmental fate and toxicity. In this study, the tissue distribution, excretion, and metabolism of BHT in mice were investigated. It was shown that BHT was prone to be accumulated in metabolism-related organs (i.e., liver and kidney) with AUC0-120 h (area under the concentration-time curve from 0 to 120 h) values of 206 h·μg/g in liver and 162 h·μg/g in kidney. For metabolites, 2,6-di-tert-butyl-4-hydroxy-4-methyl-2,5-cyclohexadione (BHT-quinol) was preferentially accumulated in liver, while 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHT-COOH) was the major metabolite in excreta. The major excretion of BHT and metabolites was through feces with a value of 25.1 ± 0.16% of the initial dose compared with urine of 1.27 ± 0.05%. The possible metabolic pathways of BHT were elucidated as the oxidation of the para-methyl, tert-butyl groups, and aromatic ring based on the known and identified unknown metabolites by HPLC-Q-TOF-MS/MS. The preferred accumulation of BHT and metabolites in liver implies their potential hepatotoxicity. Results here also suggested that considering the distribution and excretion of metabolites can better assess BHT's fate and risk in mammals.
Collapse
Affiliation(s)
- Ruirui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Bovine Hemoglobin Enzymatic Hydrolysis by a New Eco-Efficient Process-Part II: Production of Bioactive Peptides. MEMBRANES 2020; 10:membranes10100268. [PMID: 33003442 PMCID: PMC7600257 DOI: 10.3390/membranes10100268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
Bovine cruor, a slaughterhouse waste, was mainly composed of hemoglobin, a protein rich in antibacterial and antioxidant peptides after its hydrolysis. In the current context of food safety, such bioactive peptides derived from enzymatic hydrolysis of hemoglobin represent potential promising preservatives for the food sector. In this work, the hemoglobin hydrolysis to produce bioactive peptides was performed in a regulated pH medium without the use of chemical solvents and by an eco-efficient process: electrodialysis with bipolar membrane (EDBM). Bipolar/monopolar (anionic or cationic) configuration using the H+ and OH- generated by the bipolar membranes to regulate the pH was investigated. The aim of this study was to present and identify the bioactive peptides produced by EDBM in comparison with conventional hydrolysis and to identify their biological activity. The use of the EDBM for the enzymatic hydrolysis of hemoglobin has allowed for the production and identification of 17 bioactive peptides. Hydrolysates obtained by EDBM showed an excellent antimicrobial activity against six strains, antioxidant activity measured by four different tests and for the first time anti-fungal activities against five yeasts and mold strains. Consequently, this enzymatic hydrolysis carried out in regulated pH medium with bipolar membranes could provide bioactive peptides presenting antibacterial, antifungal and antioxidant interest.
Collapse
|
13
|
Two-stage 3-methylcholanthrene and butylated hydroxytoluene-induced lung carcinogenesis in mice. Methods Cell Biol 2020; 163:153-173. [PMID: 33785163 DOI: 10.1016/bs.mcb.2020.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer is one of the deadliest types of cancer and as such requires disease models that are useful for identification of novel pathways for biomarkers as well as to test therapeutic agents. Adenocarcinoma (ADC), the most prevalent type of lung cancer, is a subtype of non-small cell lung carcinoma (NSCLC) and a disease driven mainly by smoking. However, it is also the most common subtype of lung cancer found in non-smokers with environmental exposures. Chemically driven models of lung cancer, also called primary models of lung cancer, are important because they do not overexpress or delete oncogenes or tumor suppressor genes, respectively, to increase oncogenesis. Instead these models test tumor development without forcing a specific pathway (i.e., Kras). The primary focus of this chapter is to discuss a well-established 2-stage mouse model of lung adenocarcinomas. The initiator (3-methylcholanthrene, MCA) does not elicit many, if any, tumors if not followed by exposure to the tumor promoter (butylated hydroxytoluene, BHT). In sensitive strains, such as A/J, FVB, and BALB, significantly greater numbers of tumors develop following the MCA/BHT protocol compared to MCA alone. BHT does not elicit tumors on its own; it is a non-genotoxic carcinogen and promoter. In these sensitive strains, promotion is also associated with inflammation characterized by infiltrating macrophages, lymphocytes, and neutrophils, and other inflammatory cell types in addition to increases in total protein content reflective of lung hyperpermeability. This 2-stage model is a useful tool to identify unique promotion specific events to then test in future intervention studies.
Collapse
|
14
|
Zhang R, Zhang Q, Ma LQ, Cui X. Effects of Food Constituents on Absorption and Bioaccessibility of Dietary Synthetic Phenolic Antioxidant by Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4670-4677. [PMID: 32064879 DOI: 10.1021/acs.jafc.9b07315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One typical synthetic phenolic antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT) is widely used in foodstuff. Concerns are rising on the toxicity of BHT and its metabolites through dietary exposure. In this study, the effects of food macronutrients (i.e., lipid, carbohydrate, fiber, protein, and fasted (as control)) on absorption and bioaccessibility of BHT by Caco-2 cells were investigated. Food components decreased the absorption and bioaccessibility by Caco-2 cells. The highest absorption rate by Caco-2 cells was fasted state (first-order rate constant = 4.26 h-1), followed by carbohydrate (2.36 h-1), fiber (1.39 h-1), lipid (1.34 h-1), and protein (1.15 h-1). The order of bioaccessibility of BHT and its metabolites was fasted (100 ± 11.5%) > protein (83.1 ± 2.69%) > fiber (65.8 ± 2.67%) > carbohydrate (56.8 ± 1.58%) ≈ lipid (56.7 ± 0.82%). A solid-phase microextraction test together with a computational in vitro kinetic model suggested that the macronutrients may bind to BHT to reduce its free concentration and decrease the bioaccessibility. To our knowledge, this is the first study to report food influence on the absorption and bioaccessibility of BHT by Caco-2 cells. Results here can provide important implications for the safety regulation for dietary synthetic phenolic antioxidants.
Collapse
Affiliation(s)
- Ruirui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, China
| |
Collapse
|
15
|
Wee HN, Neo SY, Singh D, Yew HC, Qiu ZY, Tsai XRC, How SY, Yip KYC, Tan CH, Koh HL. Effects of Vitex trifolia L. leaf extracts and phytoconstituents on cytokine production in human U937 macrophages. BMC Complement Med Ther 2020; 20:91. [PMID: 32188443 PMCID: PMC7081688 DOI: 10.1186/s12906-020-02884-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Dysregulation of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) form the basis of immune-mediated inflammatory diseases. Vitex trifolia L. is a medicinal plant growing in countries such as China, India, Australia and Singapore. Its dried ripe fruits are documented in Traditional Chinese Medicine to treat ailments like rhinitis and dizziness. Its leaves are used traditionally to treat inflammation-related conditions like rheumatic pain. Objective This study aimed to investigate the effects of V. trifolia leaf extracts prepared by different extraction methods (Soxhlet, ultrasonication, and maceration) in various solvents on cytokine production in human U937 macrophages, and identify phytoconstituents from the most active leaf extract. Methods Fresh leaves of V. trifolia were extracted using Soxhlet, ultrasonication, and maceration in hexane, dichloromethane, methanol, ethanol or water. Each extract was evaluated for its effects on TNF-α and IL-1β cytokine production by enzyme-linked immunosorbent assay in lipopolysaccharide-stimulated human U937 macrophages. The most active extract was analyzed and further purified by different chemical and spectroscopic techniques. Results Amongst 14 different leaf extracts investigated, extracts prepared by ultrasonication in dichloromethane and maceration in ethanol were most active in inhibiting TNF-α and IL-1β production in human U937 macrophages. Further purification led to the isolation of artemetin, casticin, vitexilactone and maslinic acid, and their effects on TNF-α and IL-1β production were evaluated. We report for the first time that artemetin suppressed TNF-α and IL-1β production. Gas chromatography-mass spectrometry analyses revealed the presence of eight other compounds. To the best of our knowledge, this is the first report of butylated hydroxytoluene, 2,4-di-tert-butylphenol, campesterol and maslinic acid in V. trifolia leaf extracts. Conclusions In conclusion, leaf extracts of V. trifolia obtained using different solvents and extraction methods were successfully investigated for their effects on cytokine production in human U937 macrophages. The findings provide scientific evidence for the traditional use of V. trifolia leaves (a sustainable resource) and highlight the importance of conservation of medicinal plants as resources for drug discovery. Our results together with others suggest further investigation on V. trifolia and constituents to develop novel treatment strategies in immune-mediated inflammatory conditions is warranted.
Collapse
Affiliation(s)
- Hai-Ning Wee
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Soek-Ying Neo
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
| | - Deepika Singh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Hui-Chuing Yew
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Zhi-Yu Qiu
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Xin-Rong Cheryl Tsai
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Sin-Yi How
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Keng-Yan Caleb Yip
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Chay-Hoon Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, 16 Medical Drive, Block MD3, #04-01S, Singapore, 117600, Singapore
| | - Hwee-Ling Koh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
16
|
Liu J, Meng F, Du Y, Nelson E, Zhao G, Zhu H, Caiyin Q, Zhang Z, Qiao J. Co-production of Nisin and γ-Aminobutyric Acid by Engineered Lactococcus lactis for Potential Application in Food Preservation. Front Microbiol 2020; 11:49. [PMID: 32063895 PMCID: PMC7000361 DOI: 10.3389/fmicb.2020.00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/10/2020] [Indexed: 02/05/2023] Open
Abstract
Microbiological contamination and oxidative damage are the two main challenges in maintaining quality and improving shelf-life of foods. Here, we developed a Lactococcus lactis fermentation system that could simultaneously produce nisin, an antimicrobial peptide, and γ-aminobutyric acid (GABA), an antioxidant agent. In this system, we metabolically engineered a nisin producing strain L. lactis F44 for GABA production by expression of glutamate decarboxylase and glutamate/GABA antiporter. GABA biosynthesis could facilitate nisin production through enhancing acid resistance of the strain. By applying a two-stage pH-control fermentation strategy, the engineered strain yielded up to 9.12 g/L GABA, which was 2.2 times higher than that of pH-constant fermentation. Furthermore, we demonstrated the potential application of the freeze-dried fermentation product as a preservative to improve the storage performance of meat and fruit. These results suggested that the fermentation product of nisin-GABA co-producing strain could serve as a cost-effective, easily prepared, and high-performance food preservative.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Furong Meng
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Edwina Nelson
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Guangrong Zhao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Hongji Zhu
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhijun Zhang
- Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
17
|
da Silva SHF, Gordobil O, Labidi J. Organic acids as a greener alternative for the precipitation of hardwood kraft lignins from the industrial black liquor. Int J Biol Macromol 2020; 142:583-591. [DOI: 10.1016/j.ijbiomac.2019.09.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
18
|
Durmus M, Ozogul Y, Küley Boga E, Uçar Y, Kosker AR, Balikci E, Gökdogan S. The effects of edible oil nanoemulsions on the chemical, sensory, and microbiological changes of vacuum packed and refrigerated sea bass fillets during storage period at 2 ± 2°C. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Mustafa Durmus
- Department of Seafood Processing TechnologyFaculty of FisheriesCukurova University Balcali Turkey
| | - Yesim Ozogul
- Department of Seafood Processing TechnologyFaculty of FisheriesCukurova University Balcali Turkey
| | - Esmeray Küley Boga
- Department of Seafood Processing TechnologyFaculty of FisheriesCukurova University Balcali Turkey
| | - Yilmaz Uçar
- Department of Seafood Processing TechnologyFaculty of FisheriesCukurova University Balcali Turkey
| | - Ali Riza Kosker
- Department of Seafood Processing TechnologyFaculty of FisheriesCukurova University Balcali Turkey
| | - Esra Balikci
- Department of Gastronomy Faculty of Tourism Bozok University Yozgat Turkey
| | - Saadet Gökdogan
- Department of Seafood Processing TechnologyFaculty of FisheriesCukurova University Balcali Turkey
| |
Collapse
|
19
|
Difonzo G, Squeo G, Calasso M, Pasqualone A, Caponio F. Physico-Chemical, Microbiological and Sensory Evaluation of Ready-to-Use Vegetable Pâté Added with Olive Leaf Extract. Foods 2019; 8:foods8040138. [PMID: 31018492 PMCID: PMC6518013 DOI: 10.3390/foods8040138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 11/23/2022] Open
Abstract
The shelf-life extension implicates the reduction of food waste. Plant polyphenols can have a crucial role in the shelf-life extension of foods. Olive leaf extract (OLE) is rich in phenolic compounds such as oleuropein, which is well-known for its antioxidant properties. Physico-chemical, microbiological and sensory aspects of non-thermally stabilized olive-based pâté fortified with OLE at concentrations of 0.5 (EX0.5) and 1 mg kg−1 (EX1) were investigated. These samples were compared with olive-based pâté fortified with the synthetic antioxidant BHT (butylated hydroxytoluene) and with a control sample (CTR) without antioxidants. No sensory defects were perceived in all samples, even if a more intense typical olive flavour was perceived in samples containing OLE compared to those containing BHT and CTR. This result was confirmed by significantly higher levels of 2-methylbutanal and 3-methylbutanal in samples containing OLE compared to CTR and BHT. Moreover, the main microbial groups registered a significant loss of 0.5–1 logarithmic cycles in samples containing OLE, especially in EX1. The results of the present study indicate the potentiality of using OLE as natural preservatives in non-thermally stabilized olive-based pâté, since some spoilage-related microbial groups were negatively affected by the addition of OLE at the highest concentration.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Maria Calasso
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| |
Collapse
|
20
|
Phonsatta N, Luangpituksa P, Figueroa‐Espinoza MC, Lecomte J, Durand E, Villeneuve P, Visessanguan W, Deetae P, Uawisetwathana U, Pongprayoon W, Panya A. Conjugated Autoxidizable Triene‐Based (CAT and ApoCAT) Assays: Their Practical Application for Screening of Crude Plant Extracts with Antioxidant Functions in Relevant to Oil‐in‐Water Emulsions. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Natthaporn Phonsatta
- Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC)113 Thailand Science Park, Phaholyothin Rd., Klong LuangPathumthani 12120Thailand
| | - Pairoj Luangpituksa
- Department of Biotechnology, Faculty of Science, Mahidol UniversityBangkok 10400Thailand
| | | | | | | | | | - Wonnop Visessanguan
- Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC)113 Thailand Science Park, Phaholyothin Rd., Klong LuangPathumthani 12120Thailand
| | - Pawinee Deetae
- Division of Food Science and Technology, Faculty of Agro‐Industry, King Mongkut's Institute of Technology LadkrabangBangkok 10520Thailand
| | - Umaporn Uawisetwathana
- Microarray Laboratory, Biosensing Technology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC)113 Thailand Science Park, Phaholyothin Rd., Klong LuangPathumthani 12120Thailand
| | - Wasinee Pongprayoon
- Department of Biology, Faculty of Science, Burapha University169 Long‐Hard Bangsaen Road, Saen Sook Sub‐district, Mueang DistrictChonburi 20131Thailand
| | - Atikorn Panya
- Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC)113 Thailand Science Park, Phaholyothin Rd., Klong LuangPathumthani 12120Thailand
| |
Collapse
|
21
|
Kamemura N. Butylated hydroxytoluene, a food additive, modulates membrane potential and increases the susceptibility of rat thymocytes to oxidative stress. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.comtox.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Dwyer-Nield L, Hickey GA, Friedman M, Choo K, McArthur DG, Tennis MA, New ML, Geraci M, Keith RL. The Second-Generation PGI2 Analogue Treprostinil Fails to Chemoprevent Tumors in a Murine Lung Adenocarcinoma Model. Cancer Prev Res (Phila) 2017; 10:671-679. [PMID: 28851689 DOI: 10.1158/1940-6207.capr-17-0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/07/2017] [Accepted: 08/23/2017] [Indexed: 11/16/2022]
Abstract
Prostacyclin (prostaglandin I2, PGI2) overproduction in FVB/N mice prevents the formation of carcinogen and tobacco smoke-induced adenomas, and administration of the oral prostacyclin analogue iloprost to wild-type mice also prevented carcinogen-induced mouse lung adenoma formation. Former smokers taking oral iloprost showed improved bronchial dysplasia histology compared with placebo. Next-generation oral prostacyclin analogues, like treprostinil, were developed for the treatment of pulmonary arterial hypertension (PAH). On the basis of our prior studies with iloprost, we performed preclinical studies examining the ability of treprostinil to chemoprevent urethane-induced murine lung adenocarcinoma. We determined the MTD in chow (prior studies had delivered treprostinil by gavage), and this dose produced serum levels in the experimental animals similar to those found in PAH patients treated with treprostinil. We then examined the chemopreventive efficacy of treprostinil exposure initiated both before (1 week) and after (6 weeks) urethane exposure to better model chemoprevention studies conducted in former smokers. Neither of these dosing strategies prevented murine lung cancer; however, we did detect changes in pulmonary inflammatory cell infiltrate and expression of CXCR4 (a chemokine receptor previously shown to increase in response to treprostinil exposure) in tumor-bearing, treprostinil-treated animals, indicating that the drug was bioavailable. One potential explanation stems from iloprost and treprostinil differentially activating cell surface prostaglandin receptors and intracellular peroxisome proliferator-activated receptors. When murine lung tumor cells were treated with treprostinil, their proliferation rate increased; in contrast, iloprost had no effect on proliferation. Future investigations comparing these two agents will provide insight into iloprost's chemopreventive mechanisms. Cancer Prev Res; 10(11); 671-9. ©2017 AACR.
Collapse
Affiliation(s)
- Lori Dwyer-Nield
- Skaggs School of Pharmacy and Pharmaceutical Science, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gregory A Hickey
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Eastern Colorado Veterans Affairs Medical Center, Denver, Colorado
| | - Micah Friedman
- Eastern Colorado Veterans Affairs Medical Center, Denver, Colorado
| | - Kevin Choo
- Eastern Colorado Veterans Affairs Medical Center, Denver, Colorado
| | | | - Meredith A Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Melissa L New
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Eastern Colorado Veterans Affairs Medical Center, Denver, Colorado
| | - Mark Geraci
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Robert L Keith
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,Eastern Colorado Veterans Affairs Medical Center, Denver, Colorado
| |
Collapse
|
23
|
Bauer AK, Upham BL, Rondini EA, Tennis MA, Velmuragan K, Wiese D. Toll-like receptor expression in human non-small cell lung carcinoma: potential prognostic indicators of disease. Oncotarget 2017; 8:91860-91875. [PMID: 29190881 PMCID: PMC5696147 DOI: 10.18632/oncotarget.19463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
Introduction Lung cancer remains the highest cause of cancer mortality worldwide. Toll-like receptors (TLR) are innate immune receptors that have both pro- and anti-tumorigenic properties. Based on findings from epidemiological studies and in rodents, we hypothesized that elevated TLR expression would be a positive prognostic indicator of disease in non-small cell lung carcinoma patients. Results Higher mRNA expression of TLR1-3 and 5-8 were significantly associated with increased overall survival (OS) when analyzed individually or as a group in both non-small cell lung carcinoma (NSCLC) patients and in the adenocarcinoma (ADC) subtype. Significant co-expression of many TLR combinations in ADC patients were also observed via RNA sequencing. Immunostaining demonstrated TLR4 and 8 significantly correlated in tumor tissue, similar to RNA. Methods We used kmplot.com to perform a meta-analysis on mRNA expression of TLR1-10 to determine any significant associations with OS in NSCLC and the ADC subtype. cBioportal was also used simultaneously to assess co-expression in TLR1-10 in ADC patients via RNA sequencing and to identify any molecular alterations. Lastly, immunostaining for a subset of TLRs was conducted on ADC patients. Conclusions Expression of innate immune receptors TLR1-10 is associated with improved survival outcomes in NSCLC. Thus, further evaluation of their predictive capacity and therapeutic utility is warranted.
Collapse
Affiliation(s)
- Alison K Bauer
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Elizabeth A Rondini
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Meredith A Tennis
- Department of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kalpana Velmuragan
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Wiese
- McLaren Regional Medical Center, Flint, MI, 48532, USA
| |
Collapse
|
24
|
Engler Ribeiro PC, de Britto Policarpi P, Dal Bo A, Barbetta PA, Block JM. Impact of pecan nut shell aqueous extract on the oxidative properties of margarines during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3005-3012. [PMID: 27859283 DOI: 10.1002/jsfa.8141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND The oxidative properties of margarines supplemented with pecan nut shell extract, rosemary extract and butylated hydroxytoluene (BHT) were investigated. RESULTS The extracts of pecan nut shell and rosemary showed a high content of total phenolics and condensed tannins (93 and 102.9 mg GAE g-1 and 46 and 38.9 mg CE g-1 respectively) as well as a high antioxidant activity (1257 and 2306 µmol TEAC g-1 and 293 and 856 mg TEAC g-1 by ABTS and DPPH methods respectively). Gallic acid, chlorogenic acid, p-hydroxybenzoic acid, epicatechin and epicatechin gallate were identified in the pecan nut shell extract. Peroxide and p-anisidine values of 3.75-4.43 meq kg-1 and 1.22-2.73 respectively, Totox values of 9.88-10.8 and specific extinction values of 4.38-4.59 and 0.92-0.94 at 232 and 268 nm respectively were observed after 8 months of storage in the studied samples. CONCLUSION Margarines supplemented with pecan nut shell extract, rosemary extract or BHT during prolonged storage were found to be of equal quality within the degree of confidence limits. The extract of pecan nut shell may be considered as a natural product replacement for the synthetic antioxidant BHT. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paula Cristina Engler Ribeiro
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Admar Gonzaga 1346, Itacorubi, Florianópolis, Santa Catarina, Brazil
| | - Priscila de Britto Policarpi
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Admar Gonzaga 1346, Itacorubi, Florianópolis, Santa Catarina, Brazil
| | - Andrea Dal Bo
- Bunge, Rodovia Jorge Lacerda, Km 20 S/N, Poço Grande, Gaspar, Santa Catarina, Brazil
| | - Pedro Alberto Barbetta
- Department of Informatics and Statistics, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Jane Mara Block
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Admar Gonzaga 1346, Itacorubi, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
25
|
Przybylski R, Firdaous L, Châtaigné G, Dhulster P, Nedjar N. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative. Food Chem 2016; 211:306-13. [PMID: 27283637 DOI: 10.1016/j.foodchem.2016.05.074] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/04/2016] [Accepted: 05/12/2016] [Indexed: 11/28/2022]
Abstract
Bovine cruor, a slaughterhouse by-product, contains mainly hemoglobin, broadly described as a rich source of antimicrobial peptides. In the current context of food safety, bioactive peptides could be of interest as preservatives in the distribution of food products. The aim of this work was to study the α137-141 fragment of hemoglobin (Thr-Ser-Lys-Tyr-Arg), a small (653Da) and hydrophilic antimicrobial peptide. Its production was fast, with more 65% finally produced at 24h already produced after 30min of hydrolysis with pepsin. Moreover, increasing substrate concentration (from 1 to 8% (w/v)) resulted in a proportional augmentation of α137-141 production (to 807.95±41.03mgL(-1)). The α137-141 application on meat as preservative (0.5%, w/w) reduced the lipid oxidation about 60% to delay meat rancidity. The α137-141 peptide also inhibited the microbial growths under refrigeration during 14days. These antimicrobial effects were close to those of the butylated hydroxytoluene (BHT).
Collapse
Affiliation(s)
- Rémi Przybylski
- Univ. Lille, EA 7394 - ICV - Charles Viollette Institute, F-59000 Lille, France.
| | - Loubna Firdaous
- Univ. Lille, EA 7394 - ICV - Charles Viollette Institute, F-59000 Lille, France
| | - Gabrielle Châtaigné
- Univ. Lille, EA 7394 - ICV - Charles Viollette Institute, F-59000 Lille, France
| | - Pascal Dhulster
- Univ. Lille, EA 7394 - ICV - Charles Viollette Institute, F-59000 Lille, France
| | - Naïma Nedjar
- Univ. Lille, EA 7394 - ICV - Charles Viollette Institute, F-59000 Lille, France
| |
Collapse
|
26
|
Alexander CM, Xiong KN, Velmurugan K, Xiong J, Osgood RS, Bauer AK. Differential innate immune cell signatures and effects regulated by toll-like receptor 4 during murine lung tumor promotion. Exp Lung Res 2016; 42:154-73. [PMID: 27093379 PMCID: PMC5506691 DOI: 10.3109/01902148.2016.1164263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tumor promotion is an early and critical stage during lung adenocarcinoma (ADC). We previously demonstrated that Tlr4 mutant mice were more susceptible to butylated hydroxytoluene (BHT)-induced pulmonary inflammation and tumor promotion in comparison to Tlr4-sufficient mice. Our study objective was to elucidate the underlying differences in Tlr4 mutant mice in innate immune cell populations, their functional responses, and the influence of these cellular differences on ADC progenitor (type II) cells following BHT-treatment. BALB (Tlr4-sufficient) and C.C3-Tlr4(Lps-d)/J (BALB(Lpsd); Tlr4 mutant) mice were treated with BHT (promoter) followed by bronchoalveolar lavage (BAL) and flow cytometry processing on the lungs. ELISAs, Club cell enrichment, macrophage function, and RNA isolation were also performed. Bone marrow-derived macrophages (BMDM) co-cultured with a type II cell line were used for wound healing assays. Innate immune cells significantly increased in whole lung in BHT-treated BALB(Lpsd) mice compared to BALB mice. BHT-treated BALB(Lpsd) mice demonstrated enhanced macrophage functionality, increased epithelial wound closure via BMDMs, and increased Club cell number in BALB(Lpsd) mice, all compared to BALB BHT-treated mice. Cytokine/chemokine (Kc, Mcp1) and growth factor (Igf1) levels also significantly differed among the strains and within macrophages, gene expression, and cell surface markers collectively demonstrated a more plastic phenotype in BALB(Lpsd) mice. Therefore, these correlative studies suggest that distinct innate immune cell populations are associated with the differences observed in the Tlr4-mutant model. Future studies will investigate the macrophage origins and the utility of the pathways identified herein as indicators of immune system deficiencies and lung tumorigenesis.
Collapse
Affiliation(s)
- Carla-Maria Alexander
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Ka-Na Xiong
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Kalpana Velmurugan
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Julie Xiong
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Ross S Osgood
- b Department of Pharmaceutical Sciences , School of Pharmacy , University of Colorado Denver , Aurora , Colorado , USA
| | - Alison K Bauer
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| |
Collapse
|
27
|
Bauer AK, Velmurugan K, Xiong KN, Alexander CM, Xiong J, Brooks R. Epiregulin is required for lung tumor promotion in a murine two-stage carcinogenesis model. Mol Carcinog 2016; 56:94-105. [PMID: 26894620 DOI: 10.1002/mc.22475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/27/2016] [Accepted: 02/06/2016] [Indexed: 01/08/2023]
Abstract
Adenocarcinoma accounts for ∼40% of lung cancer, equating to ∼88 500 new patients in 2015, most of who will succumb to this disease, thus, the public health burden is evident. Unfortunately, few early biomarkers as well as effective therapies exist, hence the need for novel targets in lung cancer treatment. We previously identified epiregulin (Ereg), an EGF-like ligand, as a biomarker in several mouse lung cancer models. In the present investigation we used a primary two-stage initiation/promotion model to test our hypothesis that Ereg deficiency would reduce lung tumor promotion in mice. We used 3-methylcholanthrene (initiator) or oil vehicle followed by multiple weekly exposures to butylated hydroxytoluene (BHT; promoter) in mice lacking Ereg (Ereg-/- ) and wildtype controls (BALB/ByJ; Ereg+/+ ) and examined multiple time points and endpoints (bronchoalveolar lavage analysis, tumor analysis, mRNA expression, ELISA, wound assay) during tumor promotion. At the early time points (4 and 12 wk), we observed significantly reduced amounts of inflammation (macrophages, PMNs) in the Ereg-/- mice compared to controls (Ereg+/+ ). At 20 wk, tumor multiplicity was also significantly decreased in the Ereg-/- mice versus controls (Ereg+/+ ). IL10 expression, an anti-inflammatory mediator, and downstream signaling events (Stat3) were significantly increased in the Ereg-/- mice in response to BHT, supporting both reduced inflammation and tumorigenesis. Lastly, wound healing was significantly increased with recombinant Ereg in both human and mouse lung epithelial cell lines. These results indicate that Ereg has proliferative potential and may be utilized as an early cancer biomarker as well as a novel potential therapeutic target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Ka-Na Xiong
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Carla-Maria Alexander
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Julie Xiong
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Rana Brooks
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
28
|
|
29
|
Kehrer JP, Klotz LO. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health. Crit Rev Toxicol 2015; 45:765-98. [DOI: 10.3109/10408444.2015.1074159] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Fritz JM, Tennis MA, Orlicky DJ, Lin H, Ju C, Redente EF, Choo KS, Staab TA, Bouchard RJ, Merrick DT, Malkinson AM, Dwyer-Nield LD. Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol 2014; 5:587. [PMID: 25505466 PMCID: PMC4243558 DOI: 10.3389/fimmu.2014.00587] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/03/2014] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammation is a risk factor for lung cancer, and low-dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programing changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤50% of control levels after 4–6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of insulin-like growth factor-I, CXCL1, IL-6, and CCL2 diminished with clodronate liposome treatment. Tumor-associated macrophages expressed markers of both M1 and M2 programing in vehicle and clodronate liposome-treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2) had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.
Collapse
Affiliation(s)
- Jason M Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | - Meredith A Tennis
- Pulmonary Division, School of Medicine, University of Colorado Denver , Aurora, CO , USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Denver , Aurora, CO , USA
| | - Hao Lin
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | - Cynthia Ju
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | | | - Kevin S Choo
- Research Division, Eastern Colorado Veterans Administration Medical Center , Denver, CO , USA
| | - Taylor A Staab
- Research Division, Eastern Colorado Veterans Administration Medical Center , Denver, CO , USA
| | - Ronald J Bouchard
- Research Division, Eastern Colorado Veterans Administration Medical Center , Denver, CO , USA
| | - Daniel T Merrick
- Department of Pathology, School of Medicine, University of Colorado Denver , Aurora, CO , USA
| | - Alvin M Malkinson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | - Lori D Dwyer-Nield
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| |
Collapse
|
31
|
The role of neutrophil myeloperoxidase in models of lung tumor development. Cancers (Basel) 2014; 6:1111-27. [PMID: 24821130 PMCID: PMC4074819 DOI: 10.3390/cancers6021111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/11/2014] [Accepted: 05/06/2014] [Indexed: 01/11/2023] Open
Abstract
Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.
Collapse
|
32
|
Siegrist KJ, Reynolds SH, Kashon ML, Lowry DT, Dong C, Hubbs AF, Young SH, Salisbury JL, Porter DW, Benkovic SA, McCawley M, Keane MJ, Mastovich JT, Bunker KL, Cena LG, Sparrow MC, Sturgeon JL, Dinu CZ, Sargent LM. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. Part Fibre Toxicol 2014; 11:6. [PMID: 24479647 PMCID: PMC3923549 DOI: 10.1186/1743-8977-11-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 01/16/2014] [Indexed: 11/24/2022] Open
Abstract
Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 μg/cm2 MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 μm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cerasela Zoica Dinu
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | |
Collapse
|
33
|
Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, Siegrist KJ, Kashon ML, Mercer RR, Bauer AK, Chen BT, Salisbury JL, Frazer D, McKinney W, Andrew M, Tsuruoka S, Endo M, Fluharty KL, Castranova V, Reynolds SH. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 2014; 11:3. [PMID: 24405760 PMCID: PMC3895742 DOI: 10.1186/1743-8977-11-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/06/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Engineered carbon nanotubes are currently used in many consumer and industrial products such as paints, sunscreens, cosmetics, toiletries, electronic processes and industrial lubricants. Carbon nanotubes are among the more widely used nanoparticles and come in two major commercial forms, single-walled carbon nanotubes (SWCNT) and the more rigid, multi-walled carbon nanotubes (MWCNT). The low density and small size of these particles makes respiratory exposures likely. Many of the potential health hazards have not been investigated, including their potential for carcinogenicity. We, therefore, utilized a two stage initiation/promotion protocol to determine whether inhaled MWCNT act as a complete carcinogen and/or promote the growth of cells with existing DNA damage. Six week old, male, B6C3F1 mice received a single intraperitoneal (ip) injection of either the initiator methylcholanthrene(MCA, 10 μg/g BW, i.p.), or vehicle (corn oil). One week after i.p. injections, mice were exposed by inhalation to MWCNT (5 mg/m³, 5 hours/day, 5 days/week) or filtered air (controls) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for lung tumor formation. RESULTS Twenty-three percent of the filtered air controls, 26.5% of the MWCNT-exposed, and 51.9% of the MCA-exposed mice, had lung bronchiolo-alveolar adenomas and lung adenocarcinomas. The average number of tumors per mouse was 0.25, 0.81 and 0.38 respectively. By contrast, 90.5% of the mice which received MCA followed by MWCNT had bronchiolo-alveolar adenomas and adenocarcinomas with an average of 2.9 tumors per mouse 17 months after exposure. Indeed, 62% of the mice exposed to MCA followed by MWCNT had bronchiolo-alveolar adenocarcinomas compared to 13% of the mice that received filtered air, 22% of the MCA-exposed, or 14% of the MWCNT-exposed. Mice with early morbidity resulting in euthanasia had the highest rate of metastatic disease. Three mice exposed to both MCA and MWCNT that were euthanized early had lung adenocarcinoma with evidence of metastasis (5.5%). Five mice (9%) exposed to MCA and MWCNT and 1 (1.6%) exposed to MCA developed serosal tumors morphologically consistent with sarcomatous mesotheliomas, whereas mice administered MWCNT or air alone did not develop similar neoplasms. CONCLUSIONS These data demonstrate that some MWCNT exposures promote the growth and neoplastic progression of initiated lung cells in B6C3F1 mice. In this study, the mouse MWCNT lung burden of 31.2 μg/mouse approximates feasible human occupational exposures. Therefore, the results of this study indicate that caution should be used to limit human exposures to MWCNT.
Collapse
Affiliation(s)
- Linda M Sargent
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Dale W Porter
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | | | - Ann F Hubbs
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - David T Lowry
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Lori Battelli
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Katelyn J Siegrist
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Michael L Kashon
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Robert R Mercer
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | | | - Bean T Chen
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | | | - David Frazer
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Walter McKinney
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Michael Andrew
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | | | | | - Kara L Fluharty
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Vince Castranova
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Steven H Reynolds
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| |
Collapse
|
34
|
Zeidler-Erdely PC, Meighan TG, Erdely A, Battelli LA, Kashon ML, Keane M, Antonini JM. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model. Part Fibre Toxicol 2013; 10:45. [PMID: 24107379 PMCID: PMC3774220 DOI: 10.1186/1743-8977-10-45] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. METHODS Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. RESULTS MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. CONCLUSIONS GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road MS L2015, Morgantown, WV 26505, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Hill T, Osgood RS, Velmurugan K, Alexander CM, Upham BL, Bauer AK. Bronchoalveolar Lavage Fluid Utilized Ex Vivo to Validate In Vivo Findings: Inhibition of Gap Junction Activity in Lung Tumor Promotion is Toll-Like Receptor 4-Dependent. ACTA ACUST UNITED AC 2013; 5. [PMID: 25035812 PMCID: PMC4098145 DOI: 10.4172/2155-9929.1000160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
TLR4 protects against lung tumor promotion and pulmonary inflammation in mice. Connexin 43 (Cx43), a gap junction gene, was increased in Tlr4 wildtype compared to Tlr4-mutant mice in response to promotion, which suggests gap junctional intercellular communication (GJIC) may be compromised. We hypothesized that the early tumor microenvironment, represented by Bronchoalveolar Lavage Fluid (BALF) from Butylated hydroxytoluene (BHT; promoter)-treated mice, would produce TLR4-dependent changes in pulmonary epithelium, including dysregulation of GJIC in the Tlr4-mutant (BALBLps-d) compared to the Tlr4-sufficient (BALB; wildtype) mice. BHT (4 weekly doses) was injected ip followed by BALF collection at 24 h. BALF total protein and total macrophages were significantly elevated in BHT-treated BALBLps-d over BALB mice, similar to previous findings. BALF was then utilized in an ex vivo manner to treat C10 cells, a murine alveolar type II cell line, followed by the scrape-load dye transfer assay (GJIC), Cx43 immunostaining, and quantitative RT-PCR (Mcp-1, monocyte chemotactic protein 1). GJIC was markedly reduced in C10 cells treated with BHT-treated BALBLps-d BALF for 4 and 24 h compared to BALB and control BALF from the respective mice (p < 0.05). Mcp-1, a chemokine, was also significantly increased in the BHT-treated BALBLps-d BALF compared to the BALB mice, and Cx43 protein expression in the cell membrane altered. These novel findings suggest signaling from the BALF milieu is involved in GJIC dysregulation associated with promotion and links gap junctions to pulmonary TLR4 protection in a novel ex vivo model that could assist in future potential tumor promoter screening.
Collapse
Affiliation(s)
- Thomas Hill
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Ross S Osgood
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Carla-Maria Alexander
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, Lansing, USA
| | - Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
36
|
Scientific Opinion on the re‐evaluation of butylated hydroxytoluene BHT (E 321) as a food additive. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2588] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
37
|
Foxm1 transcription factor is required for macrophage migration during lung inflammation and tumor formation. Oncogene 2011; 31:3875-88. [PMID: 22139074 PMCID: PMC3297705 DOI: 10.1038/onc.2011.549] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages play a key role in tumor-associated pulmonary inflammation that supports proliferation of tumor cells and promotes lung tumor growth. Although increased numbers of tumor-associated macrophages (TAM) are linked to poor prognosis in lung cancer patients, little is known regarding the transcriptional mechanisms controlling recruitment of macrophages during lung tumorigenesis. Forkhead Box m1 (Foxm1) transcription factor is induced in multiple cell types within tumor lesions and its increased expression is associated with poor prognosis in patients with lung adenocarcinomas. To determine the role of Foxm1 in recruitment of TAM, a mouse line with macrophage-specific Foxm1 deletion was generated (macFoxm1−/−). Lung tumorigenesis was induced using a MCA/BHT tumor initiation/promotion protocol. Ablation of Foxm1 in macrophages reduced the number and size of lung tumors in macFoxm1−/− mice. Decreased tumorigenesis was associated with diminished proliferation of tumor cells and decreased recruitment of macrophages during the early stages of tumor formation. Expression levels of pro-inflammatory genes iNOS, Cox-2, IL-1b and IL-6, as well as migration related genes MIP-1α, MIP-2 and MMP-12, were decreased in macrophages isolated from macFoxm1−/− mice. Migration of Foxm1-deficient macrophages was reduced in vitro. The chemokine receptors responsible for monocyte recruitment to the lung, CX3CR1 and CXCR4, were decreased in Foxm1-deficient monocytes. In co-transfection experiments, Foxm1 directly bound to and transcriptionally activated CX3CR1 promoter. Adoptive transfer of wild type monocytes to macFoxm1−/− mice restored BHT-induced pulmonary inflammation to the levels observed in control mice. Expression of Foxm1 in macrophages is required for pulmonary inflammation, recruitment of macrophages into tumor sites and lung tumor growth.
Collapse
|
38
|
Vikis HG, Gelman AE, Franklin A, Stein L, Rymaszewski A, Zhu J, Liu P, Tichelaar JW, Krupnick AS, You M. Neutrophils are required for 3-methylcholanthrene-initiated, butylated hydroxytoluene-promoted lung carcinogenesis. Mol Carcinog 2011; 51:993-1002. [PMID: 22006501 DOI: 10.1002/mc.20870] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/06/2011] [Accepted: 09/19/2011] [Indexed: 11/11/2022]
Abstract
Multiple studies have shown a link between chronic inflammation and lung tumorigenesis. Inbred mouse strains vary in their susceptibility to methylcholanthrene (MCA)-initiated butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated whether neutrophils play a role in strain dependent differences in susceptibility to lung tumor promotion. We observed a significant elevation in homeostatic levels of neutrophils in the lungs of tumor-susceptible BALB/cByJ (BALB) mice compared to tumor-resistant C57BL/6J (B6) mice. Additionally, BHT treatment further elevated neutrophil numbers as well as neutrophil chemoattractant keratinocyte-derived cytokine (KC)/chemokine (C-X-C motif) ligand 1 (Cxcl1) levels in BALB lung airways. Lung CD11c+ cells were a major source of KC expression and depletion of neutrophils in BALB mice resulted in a 71% decrease in tumor multiplicity. However, tumor multiplicity did not depend on the presence of T cells, despite the accumulation of T cells following BHT treatment. These data demonstrate that neutrophils are essential to promote tumor growth in the MCA/BHT two-step lung carcinogenesis model.
Collapse
Affiliation(s)
- Haris G Vikis
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shearn CT, Fritz KS, Thompson JA. Protein damage from electrophiles and oxidants in lungs of mice chronically exposed to the tumor promoter butylated hydroxytoluene. Chem Biol Interact 2011; 192:278-86. [PMID: 21536018 DOI: 10.1016/j.cbi.2011.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/15/2011] [Accepted: 04/16/2011] [Indexed: 11/16/2022]
Abstract
The food additive butylated hydroxytoluene (BHT) promotes tumorigenesis in mouse lung. Chronic BHT exposure is accompanied by pulmonary inflammation and several studies indicate that elevated levels of reactive oxygen species (ROS) are involved in its promoting activity. The link between BHT and elevated ROS involves formation of quinone methide (QM) metabolites; these electrophiles form adducts with a variety of lung proteins including several enzymes that protect cells from oxidative stress. Studies in vitro demonstrated that QM alkylation of cytoprotective enzymes is accompanied by inactivation, so an objective of the present investigation was to determine if inactivation also occurs in vivo. Two groups of mice were exposed to BHT by intraperitoneal injection, one for 10 days and the other for 24 days, and proteins from lung cytosols were examined for damage. Analysis by Western blotting demonstrated that BHT treatment caused substantial increases in protein carbonylation, nitration and adduction by 4-hydroxynonenal, confirming the occurrence of sustained oxidative and nitrosative stress over the treatment period required for tumor promotion. Effects of BHT on the activities and/or levels of a representative group of antioxidant/protective enzymes in mouse lung also were assessed; NAD(P)H:quinone reductase and glutathione reductase were unaffected, however carbonyl reductase activity decreased 50-60%. Superoxide dismutase and glutathione peroxidase activities increased 2- and 1.5-fold, respectively, and glutamate-cysteine ligase catalytic subunit expression increased 32-39% relative to untreated mice. Glutathione S-transferase (GST) activity decreased 50-60% but concentrations of the predominant isoforms, GSTM1 and P1, were not affected. GSTP1 was substantially more susceptible than M1 to adduction and inhibition by treatment with BHT-QM in vitro, suggesting that lower GST activity in mice after BHT treatment is due to adduction of the P1 isoform. The results of this study provide additional insight into mechanisms of BHT-induced oxidative damage and further support a link between inflammation and tumor promotion in mouse lung.
Collapse
Affiliation(s)
- Colin T Shearn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO 80045, USA
| | | | | |
Collapse
|
40
|
Suman S, Mancini R, Joseph P, Ramanathan R, Konda M, Dady G, Yin S. Packaging-specific influence of chitosan on color stability and lipid oxidation in refrigerated ground beef. Meat Sci 2010; 86:994-8. [DOI: 10.1016/j.meatsci.2010.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 07/29/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
|
41
|
Park SY, Chin KB. Effects of onion on physicochemical properties, lipid oxidation and microbial growth of fresh pork patties. Int J Food Sci Technol 2010. [DOI: 10.1111/j.1365-2621.2010.02245.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Redente EF, Dwyer-Nield LD, Merrick DT, Raina K, Agarwal R, Pao W, Rice PL, Shroyer KR, Malkinson AM. Tumor progression stage and anatomical site regulate tumor-associated macrophage and bone marrow-derived monocyte polarization. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2972-85. [PMID: 20431028 DOI: 10.2353/ajpath.2010.090879] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tumor-associated macrophages (TAMs) encourage and coordinate neoplastic growth. In late stage human lung adenocarcinoma, TAMs exhibited mixed M1 (classical; argI(low)iNOS(high)) and M2 (alternative; argI(high)iNOS(low)) polarization based on arginine metabolism. In several murine cancer models including chemically and genetically-induced primary lung tumors, prostate tumors, colon xenografts, and lung metastases, TAMs expressed argI(high)iNOS(low) early during tumor formation; argI(low)iNOS(high) polarization also occurred during malignancy in some models. In a chemically-induced lung tumor model, macrophages expressed argI(high)iNOS(low) within one week after carcinogen treatment, followed by similar polarization of bone marrow-derived monocytes (BDMCs) a few days later. TAMs surrounding murine prostate tumors also expressed argI(high)iNOS(low) early during tumorigenesis, indicating that this polarization is not unique to neoplastic lungs. In a human colon cancer xenograft model, the primary tumor was surrounded by argI(high)iNOS(low)-expressing TAMs, and BDMCs also expressed argI(high)iNOS(low), but pulmonary macrophages adopted argI(high)iNOS(low) polarization only after tumors metastasized to the lungs. Persistence of tumors is required to maintain TAM polarization. Indeed, in both conditional mutant Kras- and FGF10-driven models of lung cancer, mice expressing the transgene develop lung tumors that regress rapidly when the transgene is silenced. Furthermore, pulmonary macrophages expressed argI(high)iNOS(low) on tumor induction, but then returned to argI(low) iNOS(low) (no polarization) after tumors regressed. Manipulating TAM function or depleting TAMs may provide novel therapeutic strategies for preventing and treating many types of cancer.
Collapse
Affiliation(s)
- Elizabeth F Redente
- Department of Pharmaceutical Sciences, University of Colorado Denver, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rondini EA, Walters DM, Bauer AK. Vanadium pentoxide induces pulmonary inflammation and tumor promotion in a strain-dependent manner. Part Fibre Toxicol 2010; 7:9. [PMID: 20385015 PMCID: PMC2861012 DOI: 10.1186/1743-8977-7-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 04/12/2010] [Indexed: 11/10/2022] Open
Abstract
Background Elevated levels of air pollution are associated with increased risk of lung cancer. Particulate matter (PM) contains transition metals that may potentiate neoplastic development through the induction of oxidative stress and inflammation, a lung cancer risk factor. Vanadium pentoxide (V2O5) is a component of PM derived from fuel combustion as well as a source of occupational exposure in humans. In the current investigation we examined the influence of genetic background on susceptibility to V2O5-induced inflammation and evaluated whether V2O5 functions as a tumor promoter using a 2-stage (initiation-promotion) model of pulmonary neoplasia in mice. Results A/J, BALB/cJ (BALB), and C57BL/6J (B6) mice were treated either with the initiator 3-methylcholanthrene (MCA; 10 μg/g; i.p.) or corn oil followed by 5 weekly aspirations of V2O5 or PBS and pulmonary tumors were enumerated 20 weeks following MCA treatment. Susceptibility to V2O5-induced pulmonary inflammation was assessed in bronchoalveolar lavage fluid (BALF), and chemokines, transcription factor activity, and MAPK signaling were quantified in lung homogenates. We found that treatment of animals with MCA followed by V2O5 promoted lung tumors in both A/J (10.3 ± 0.9 tumors/mouse) and BALB (2.2 ± 0.36) mice significantly above that observed with MCA/PBS or V2O5 alone (P < 0.05). No tumors were observed in the B6 mice in any of the experimental groups. Mice sensitive to tumor promotion by V2O5 were also found to be more susceptible to V2O5-induced pulmonary inflammation and hyperpermeability (A/J>BALB>B6). Differential strain responses in inflammation were positively associated with elevated levels of the chemokines KC and MCP-1, higher NFκB and c-Fos binding activity, as well as sustained ERK1/2 activation in lung tissue. Conclusions In this study we demonstrate that V2O5, an occupational and environmentally relevant metal oxide, functions as an in vivo lung tumor promoter among different inbred strains of mice. Further, we identified a positive relationship between tumor promotion and susceptibility to V2O5-induced pulmonary inflammation. These findings suggest that repeated exposures to V2O5 containing particles may augment lung carcinogenesis in susceptible individuals through oxidative stress mediated pathways.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Department of Pathobiology and Diagnostic Investigation and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
44
|
Redente EF, Higgins DM, Dwyer-Nield LD, Orme IM, Gonzalez-Juarrero M, Malkinson AM. Differential polarization of alveolar macrophages and bone marrow-derived monocytes following chemically and pathogen-induced chronic lung inflammation. J Leukoc Biol 2010; 88:159-68. [PMID: 20360403 DOI: 10.1189/jlb.0609378] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alveolar macrophages and BDMCs undergo sequential biochemical changes during the chronic inflammatory response to chemically induced lung carcinogenesis in mice. Herein, we examine two chronic lung inflammation models-repeated exposure to BHT and infection with Mycobacterium tuberculosis-to establish whether similar macrophage phenotype changes occur in non-neoplastic pulmonary disease. Exposure to BHT or M. tuberculosis results in pulmonary inflammation characterized by an influx of macrophages, followed by systemic effects on the BM and other organs. In both models, pulmonary IFN-gamma and IL-4 production coincided with altered polarization of alveolar macrophages. Soon after BHT administration or M. tuberculosis infection, IFN-gamma content in BALF increased, and BAL macrophages became classically (M1) polarized, as characterized by increased expression of iNOS. As inflammation progressed in both models, the amount of BALF IFN-gamma content and BAL macrophage iNOS expression decreased, and BALF IL-4 content and macrophage arginase I expression rose, indicating alternative/M2 polarization. Macrophages present in M. tuberculosis-induced granulomas remained M1-polarized, implying that these two pulmonary macrophage populations, alveolar and granuloma-associated, are exposed to different activating cytokines. BDMCs from BHT-treated mice displayed polarization profiles similar to alveolar macrophages, but BDMCs in M. tuberculosis-infected mice did not become polarized. Thus, only alveolar macrophages in these two models of chronic lung disease exhibit a similar progression of polarization changes; polarization of BDMCs was specific to BHT-induced pulmonary inflammation, and polarization of granuloma macrophages was specific to the M. tuberculosis infection.
Collapse
Affiliation(s)
- Elizabeth F Redente
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
45
|
Gibbons MA, Sethi T. Chronic obstructive pulmonary disease and lung cancer: inflammation, the missing link. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/thy.09.77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Maciag A, Anderson LM. Reactive Oxygen Species And Lung Tumorigenesis By Mutant K-ras: A Working Hypothesis. Exp Lung Res 2009; 31:83-104. [PMID: 15765920 DOI: 10.1080/01902140490495048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wild-type K-ras is tumor suppressive in mouse lung, but mutant K-ras is actively oncogenic. Thus, the mutant protein must acquire new, dominant protumorigenic properties. Generation of reactive oxygen species could be one such property. The authors demonstrate increased peroxides in lung epithelial cells (E10)-transfected with mutant hK-ras(va112). An associated increase in DNA damage (comet assay) correlates with increased cyclooxygenase-2 protein. This DNA damage is completely abrogated by a specific cyclooxygenase-2 inhibitor (SC58125) or by a cell-permeable modified catalase. Literature is reviewed regarding generation of reactive oxygen and cyclooxygenase-2 induction by ras, cyclooxygenase-2 release of DNA-damaging reactive oxygen, and involvement of cyclooxygenase-2 and reactive oxygen in lung cancer
Collapse
Affiliation(s)
- Anna Maciag
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | |
Collapse
|
47
|
Dance-Barnes ST, Kock ND, Moore JE, Lin EY, Mosley LJ, D'Agostino RB, McCoy TP, Townsend AJ, Miller MS. Lung tumor promotion by curcumin. Carcinogenesis 2009; 30:1016-23. [PMID: 19359593 DOI: 10.1093/carcin/bgp082] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Curcumin exhibits anti-inflammatory and antitumor activity and is being tested in clinical trials as a chemopreventive agent for colon cancer. Curcumin's chemopreventive activity was tested in a transgenic mouse model of lung cancer that expresses the human Ki-ras(G12C) allele in a doxycycline (DOX) inducible and lung-specific manner. The effects of curcumin were compared with the lung tumor promoter, butylated hydroxytoluene (BHT), and the lung cancer chemopreventive agent, sulindac. Treatment of DOX-induced mice with dietary curcumin increased tumor multiplicity (36.3 +/- 0.9 versus 24.3 +/- 0.2) and progression to later stage lesions, results which were similar to animals that were co-treated with DOX/BHT. Microscopic examination showed that the percentage of lung lesions that were adenomas and adenocarcinomas increased to 66% in DOX/BHT, 66% in DOX/curcumin and 49% in DOX/BHT/curcumin-treated groups relative to DOX only treated mice (19%). Immunohistochemical analysis also showed increased evidence of inflammation in DOX/BHT, DOX/curcumin and DOX/BHT/curcumin mice relative to DOX only treated mice. In contrast, co-treatment of DOX/BHT mice with 200 p.p.m. [DOSAGE ERROR CORRECTED] of sulindac inhibited the progression of lung lesions and reduced the inflammation. Lung tissue from DOX/curcumin-treated mice demonstrated a significant increase (33%; P = 0.01) in oxidative damage, as assessed by the levels of carbonyl protein formation, relative to DOX-treated control mice after 1 week on the curcumin diet. These results suggest that curcumin may exhibit organ-specific effects to enhance reactive oxygen species formation in the damaged lung epithelium of smokers and ex-smokers. Ongoing clinical trials thus may need to exclude smokers and ex-smokers in chemopreventive trials of curcumin.
Collapse
Affiliation(s)
- Stephanie T Dance-Barnes
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Castro P, Nasser H, Abrahão A, Dos Reis LC, Riça I, Valença SS, Rezende DC, Quintas LEM, Cavalcante MCM, Porto LC, Koatz VLG. Aspirin and indomethacin reduce lung inflammation of mice exposed to cigarette smoke. Biochem Pharmacol 2009; 77:1029-39. [PMID: 19161990 DOI: 10.1016/j.bcp.2008.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/09/2008] [Accepted: 12/11/2008] [Indexed: 01/04/2023]
Abstract
Neutrophil accumulation response to cigarette smoke (CS) in humans and animal models is believed to play an important role in pathogenesis of many tobacco-related lung diseases. Here we evaluated the lung anti-inflammatory effect of aspirin and indomethacin in mice exposed to CS. C57BL/6 mice were exposed to four cigarettes per day during 4 days and were treated i.p. with aspirin or indomethacin, administered each day 1h before CS exposure. Twenty four hours after the last exposure, cells and inflammatory mediators were assessed in bronchoalveolar lavage (BAL) fluid and the lungs used for evaluation of lipid peroxidation, p38 mitogen-activated protein kinase (MAPK) phosphorylation and nuclear transcription factor kappaB (NF-kappaB) activation. Exposure to CS resulted in a marked lung neutrophilia. Moreover, the levels of oxidative stress-related lipid peroxidation, prostaglandin E(2) (PGE(2)), interleukin 1beta (IL-1beta), monocyte chemotactic protein 1 (MCP-1), and activated NF-kappaB and p38 MAPK were greatly increased in CS group. Aspirin or indomethacin treatment led to a significant reduction of neutrophil influx, but only aspirin resulted in dramatic decrease of inflammatory mediators. Moreover, both drugs reduced lung p38 MAPK and NF-kappaB activation induced by CS. These results demonstrate that short-term CS exposure has profound airway inflammatory effects counteracted by the anti-inflammatory agents aspirin and indomethacin, probably through COX-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Paulo Castro
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dumstorf CA, Mukhopadhyay S, Krishnan E, Haribabu B, McGregor WG. REV1 is implicated in the development of carcinogen-induced lung cancer. Mol Cancer Res 2009; 7:247-54. [PMID: 19176310 DOI: 10.1158/1541-7786.mcr-08-0399] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The somatic mutation hypothesis of cancer predicts that reducing the frequency of mutations induced by carcinogens will reduce the incidence of cancer. To examine this, we developed an antimutator strategy based on the manipulation of the level of a protein required for mutagenic bypass of DNA damage induced by the ubiquitous carcinogen benzo[a]pyrene. The expression of this protein, REV1, was reduced in mouse cells using a vector encoding a gene-specific targeting ribozyme. In the latter cells, mutagenesis induced by the activated form of benzo[a]pyrene was reduced by >90%. To examine if REV1 transcripts could be lowered in vivo, the plasmid was complexed with polyethyleneimine, a nonviral cationic polymer, and delivered to the lung via aerosol. The endogenous REV1 transcript in the bronchial epithelium as determined by quantitative real-time PCR in laser capture microdissected cells was reduced by 60%. There was a significant decrease in the multiplicity of carcinogen-induced lung tumors from 6.4 to 3.7 tumors per mouse. Additionally, REV1 inhibition completely abolished tumor formation in 27% of the carcinogen-exposed mice. These data support the central role of the translesion synthesis pathway in the development of lung cancer. Further, the selective modulation of members of this pathway presents novel potential targets for cancer prevention. The somatic mutation hypothesis of cancer predicts that the frequency of cancers will also be reduced.
Collapse
Affiliation(s)
- Chad A Dumstorf
- Department of Pharmacology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
50
|
Bauer AK, Rondini EA. Review paper: the role of inflammation in mouse pulmonary neoplasia. Vet Pathol 2009; 46:369-90. [PMID: 19176494 DOI: 10.1354/vp.08-vp-0217-b-rev] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a risk factor for the development of many types of neoplasia, including skin, colon, gastric, and mammary cancers, among others. Chronic pulmonary diseases, such as chronic bronchitis and asthma, predispose to lung neoplasia. We will review the mouse literature examining the role of inflammation in lung neoplasia, focusing specifically on genetic susceptibility, pharmacologic modulation of inflammatory pathways, and both transgenic and knockout mouse models used to assess pro- and anti-inflammatory pathways involved in lung neoplasia. Identification of molecular mechanisms that govern the association between inflammation and pulmonary neoplasia could provide novel preventive, diagnostic, and therapeutic strategies for a disease in which few biomarkers currently exist.
Collapse
Affiliation(s)
- A K Bauer
- Department of Pathobiology and Diagnostic Investigation, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (USA).
| | | |
Collapse
|