1
|
Coureaud G, Thomas-Danguin T, Sandoz JC, Wilson DA. Biological constraints on configural odour mixture perception. J Exp Biol 2022; 225:274695. [PMID: 35285471 PMCID: PMC8996812 DOI: 10.1242/jeb.242274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals, including humans, detect odours and use this information to behave efficiently in the environment. Frequently, odours consist of complex mixtures of odorants rather than single odorants, and mixtures are often perceived as configural wholes, i.e. as odour objects (e.g. food, partners). The biological rules governing this 'configural perception' (as opposed to the elemental perception of mixtures through their components) remain weakly understood. Here, we first review examples of configural mixture processing in diverse species involving species-specific biological signals. Then, we present the original hypothesis that at least certain mixtures can be processed configurally across species. Indeed, experiments conducted in human adults, newborn rabbits and, more recently, in rodents and honeybees show that these species process some mixtures in a remarkably similar fashion. Strikingly, a mixture AB (A, ethyl isobutyrate; B, ethyl maltol) induces configural processing in humans, who perceive a mixture odour quality (pineapple) distinct from the component qualities (A, strawberry; B, caramel). The same mixture is weakly configurally processed in rabbit neonates, which perceive a particular odour for the mixture in addition to the component odours. Mice and honeybees also perceive the AB mixture configurally, as they respond differently to the mixture compared with its components. Based on these results and others, including neurophysiological approaches, we propose that certain mixtures are convergently perceived across various species of vertebrates/invertebrates, possibly as a result of a similar anatomical organization of their olfactory systems and the common necessity to simplify the environment's chemical complexity in order to display adaptive behaviours.
Collapse
Affiliation(s)
- Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, Team Sensory Neuroethology (ENES), CNRS/INSERM/UCBL1/UJM, 69500 Lyon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, Team Flavor, Food Oral Processing and Perception, INRAE, CNRS, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| | - Donald A Wilson
- Department of Child & Adolescent Psychiatry, New York University Langone School of Medicine and Nathan S. Kline Institute for Psychiatric Research, New York, NY 10016, USA
| |
Collapse
|
2
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Fourcaud-Trocmé N, Lefèvre L, Garcia S, Messaoudi B, Buonviso N. High beta rhythm amplitude in olfactory learning signs a well-consolidated and non-flexible behavioral state. Sci Rep 2019; 9:20259. [PMID: 31889074 PMCID: PMC6937317 DOI: 10.1038/s41598-019-56340-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/07/2019] [Indexed: 02/04/2023] Open
Abstract
Beta rhythm (15-30 Hz) is a major candidate underlying long-range communication in the brain. In olfactory tasks, beta activity is strongly modulated by learning but its condition of expression and the network(s) responsible for its generation are unclear. Here we analyzed the emergence of beta activity in local field potentials recorded from olfactory, sensorimotor and limbic structures of rats performing an olfactory task. Rats performed successively simple discrimination, rule transfer, memory recall tests and contingency reversal. Beta rhythm amplitude progressively increased over learning in most recorded areas. Beta amplitude reduced to baseline when new odors were introduced, but remained high during memory recall. Intra-session analysis showed that even expert rats required several trials to reach a good performance level, with beta rhythm amplitude increasing in parallel. Notably, at the beginning of the reversal task, beta amplitude remained high while performance was low and, in all tested animals, beta amplitude decreased before rats were able to learn the new contingencies. Connectivity analysis showed that beta activity was highly coherent between all structures where it was expressed. Overall, our results suggest that beta rhythm is expressed in a highly coherent network when context learning - including both odors and reward - is consolidated and signals behavioral inflexibility.
Collapse
Affiliation(s)
- Nicolas Fourcaud-Trocmé
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France.
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, OX1 3TH, Oxford, United Kingdom
| | - Samuel Garcia
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| | - Belkacem Messaoudi
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| |
Collapse
|
4
|
Courtiol E, Buonviso N, Litaudon P. Odorant features differentially modulate beta/gamma oscillatory patterns in anterior versus posterior piriform cortex. Neuroscience 2019; 409:26-34. [PMID: 31022464 DOI: 10.1016/j.neuroscience.2019.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/01/2022]
Abstract
Oscillatory activity is a prominent characteristic of the olfactory system. We previously demonstrated that beta and gamma oscillations occurrence in the olfactory bulb (OB) is modulated by the physical properties of the odorant. However, it remains unknown whether such odor-related modulation of oscillatory patterns is maintained in the piriform cortex (PC) and whether those patterns are similar between the anterior PC (aPC) and posterior PC (pPC). The present study was designed to analyze how different odorant molecular features can affect the local field potential (LFP) oscillatory signals in both the aPC and the pPC in anesthetized rats. As reported in the OB, three oscillatory patterns were observed: standard pattern (gamma + beta), gamma-only and beta-only patterns. These patterns occurred with significantly different probabilities in the two PC areas. We observed that odor identity has a strong influence on the probability of occurrence of LFP beta and gamma oscillatory activity in the aPC. Thus, some odor coding mechanisms observed in the OB are retained in the aPC. By contrast, probability of occurrence of different oscillatory patterns is homogeneous in the pPC with beta-only pattern being the most prevalent one for all the different odor families. Overall, our results confirmed the functional heterogeneity of the PC with its anterior part tightly coupled with the OB and mainly encoding odorant features whereas its posterior part activity is not correlated with odorant features but probably more involved in associative and multi-sensory encoding functions.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| | - Philippe Litaudon
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
5
|
Activity in the rat olfactory cortex is correlated with behavioral response to odor: a microPET study. Brain Struct Funct 2016; 222:577-586. [PMID: 27194619 DOI: 10.1007/s00429-016-1235-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
How olfactory cortical areas interpret odor maps evoked in the olfactory bulb and translate odor information into behavioral responses is still largely unknown. Indeed, rat olfactory cortices encompass an extensive network located in the ventral part of the brain, thus complicating the use of invasive functional methods. In vivo imaging techniques that were previously developed for brain activation studies in humans have been adapted for use in rodents and facilitate the non-invasive mapping of the whole brain. In this study, we report an initial series of experiments designed to demonstrate that microPET is a powerful tool to investigate the neural processes underlying odor-induced behavioral response in a large-scale olfactory neuronal network. After the intravenous injection of [18F]Fluorodeoxyglucose ([18F]FDG), awake rats were placed in a ventilated Plexiglas cage for 50 min, where odorants were delivered every 3 min for a 10-s duration in a random order. Individual behavioral responses to odor were classified into categories ranging from 1 (head movements associated with a short sniffing period in response to a few stimulations) to 4 (a strong reaction, including rearing, exploring and sustained sniffing activity, to several stimulations). After [18F]FDG uptake, rats were anesthetized to perform a PET scan. This experimental session was repeated 2 weeks later using the same animals without odor stimulation to assess the baseline level of activation in each individual. Two voxel-based statistical analyses (SPM 8) were performed: (1) a two-sample paired t test analysis contrasting baseline versus odor scan and (2) a correlation analysis between voxel FDG activity and behavioral score. As expected, the contrast analysis between baseline and odor session revealed activations in various olfactory cortical areas. Significant increases in glucose metabolism were also observed in other sensory cortical areas involved in whisker movement and in several modules of the cerebellum involved in motor and sensory function. Correlation analysis provided new insight into these results. [18F]FDG uptake was correlated with behavioral response in a large part of the anterior piriform cortex and in some lobules of the cerebellum, in agreement with the previous data showing that both piriform cortex and cerebellar activity in humans can be driven by sniffing activity, which was closely related to the high behavioral scores observed in our experiment. The present data demonstrate that microPET imaging offers an original perspective for rat behavioral neuroimaging.
Collapse
|
6
|
Fournel A, Ferdenzi C, Sezille C, Rouby C, Bensafi M. Multidimensional representation of odors in the human olfactory cortex. Hum Brain Mapp 2016; 37:2161-72. [PMID: 26991044 DOI: 10.1002/hbm.23164] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 11/09/2022] Open
Abstract
What is known as an odor object is an integrated representation constructed from physical features, and perceptual attributes mainly mediated by the olfactory and trigeminal systems. The aim of the present study was to comprehend how this multidimensional representation is organized, by deciphering how similarities in the physical, olfactory and trigeminal perceptual spaces of odors are represented in the human brain. To achieve this aim, we combined psychophysics, functional MRI and multivariate representational similarity analysis. Participants were asked to smell odors diffused by an fMRI-compatible olfactometer and to rate each smell along olfactory dimensions (pleasantness, intensity, familiarity and edibility) and trigeminal dimensions (irritation, coolness, warmth and pain). An event-related design was implemented, presenting different odorants. Results revealed that (i) pairwise odorant similarities in anterior piriform cortex (PC) activity correlated with pairwise odorant similarities in chemical properties (P < 0.005), (ii) similarities in posterior PC activity correlated with similarities in olfactory perceptual properties (P <0.01), and (iii) similarities in amygdala activity correlated with similarities in trigeminal perceptual properties (P < 0.01). These findings provide new evidence that extraction of physical, olfactory and trigeminal features is based on specific fine processing of similarities between odorous stimuli in a distributed manner in the olfactory system. Hum Brain Mapp 37:2161-2172, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Fournel
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - C Ferdenzi
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - C Sezille
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - C Rouby
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - M Bensafi
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| |
Collapse
|
7
|
Sato K, Hayashi S, Inaji M, Momose-Sato Y. Oscillations in the embryonic chick olfactory bulb: initial expression and development revealed by optical imaging with a voltage-sensitive dye. Eur J Neurosci 2016; 43:1111-21. [PMID: 26833763 DOI: 10.1111/ejn.13189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/31/2015] [Accepted: 01/26/2016] [Indexed: 11/28/2022]
Abstract
In a previous study, we applied a multiple-site optical recording technique with a voltage-sensitive dye to the embryonic chick olfactory system and showed that functional synaptic transmission in the olfactory bulb was expressed at embryonic 6-7-day stages. It is known that oscillations, i.e. stereotyped sinusoidal neural activity, appear in the olfactory system of various species. The focus of the present study is to determine whether the oscillation is also generated in the embryonic chick olfactory bulb and, if this is the case, when the oscillation appears and how its profiles change during embryogenesis. At the early stages of development (embryonic 6- to 8-day stages), postsynaptic response-related optical signals evoked by olfactory nerve stimulation exhibited a simple monophasic waveform that lasted for a few seconds. At embryonic 9-day stage, the optical signal became multi-phasic, and the oscillatory event was detected in some preparations. The oscillation was restricted to the distal half of the olfactory bulb. As development proceeded, the incidence and duration of the oscillation gradually increased, and the waveform became complicated. In some cases at embryonic 12-day stage, the oscillation lasted for nearly a minute. The frequency of the oscillation increased slightly with development, but it remained in the range of theta oscillation during the 9- to 12-day stages. We discuss the ontogenetic dynamics of the oscillation and the significance of this activity in the developing olfactory bulb.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi-shi, Tokyo, 206-8511, Japan
| | - Shihori Hayashi
- Department of Neurosurgery, Faculty of Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Faculty of Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
8
|
Thomas-Danguin T, Sinding C, Romagny S, El Mountassir F, Atanasova B, Le Berre E, Le Bon AM, Coureaud G. The perception of odor objects in everyday life: a review on the processing of odor mixtures. Front Psychol 2014; 5:504. [PMID: 24917831 PMCID: PMC4040494 DOI: 10.3389/fpsyg.2014.00504] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/08/2014] [Indexed: 11/13/2022] Open
Abstract
Smelling monomolecular odors hardly ever occurs in everyday life, and the daily functioning of the sense of smell relies primarily on the processing of complex mixtures of volatiles that are present in the environment (e.g., emanating from food or conspecifics). Such processing allows for the instantaneous recognition and categorization of smells and also for the discrimination of odors among others to extract relevant information and to adapt efficiently in different contexts. The neurophysiological mechanisms underpinning this highly efficient analysis of complex mixtures of odorants is beginning to be unraveled and support the idea that olfaction, as vision and audition, relies on odor-objects encoding. This configural processing of odor mixtures, which is empirically subject to important applications in our societies (e.g., the art of perfumers, flavorists, and wine makers), has been scientifically studied only during the last decades. This processing depends on many individual factors, among which are the developmental stage, lifestyle, physiological and mood state, and cognitive skills; this processing also presents striking similarities between species. The present review gathers the recent findings, as observed in animals, healthy subjects, and/or individuals with affective disorders, supporting the perception of complex odor stimuli as odor objects. It also discusses peripheral to central processing, and cognitive and behavioral significance. Finally, this review highlights that the study of odor mixtures is an original window allowing for the investigation of daily olfaction and emphasizes the need for knowledge about the underlying biological processes, which appear to be crucial for our representation and adaptation to the chemical environment.
Collapse
Affiliation(s)
- Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Charlotte Sinding
- Smell and Taste Clinic, Department of Otorhinolaryngoly TU Dresden, Dresden, Germany
| | - Sébastien Romagny
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Fouzia El Mountassir
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | | | | | - Anne-Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| |
Collapse
|
9
|
Bensafi M. The Role of the Piriform Cortex in Human Olfactory Perception: Insights from Functional Neuroimaging Studies. CHEMOSENS PERCEPT 2011. [DOI: 10.1007/s12078-011-9110-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Plailly J, Delon-Martin C, Royet JP. Experience induces functional reorganization in brain regions involved in odor imagery in perfumers. Hum Brain Mapp 2011; 33:224-34. [PMID: 21391264 DOI: 10.1002/hbm.21207] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 10/07/2010] [Accepted: 10/20/2010] [Indexed: 12/19/2022] Open
Abstract
Areas of expertise that cultivate specific sensory domains reveal the brain's ability to adapt to environmental change. Perfumers are a small population who claim to have a unique ability to generate olfactory mental images. To evaluate the impact of this expertise on the brain regions involved in odor processing, we measured brain activity in novice and experienced (student and professional) perfumers while they smelled or imagined odors. We demonstrate that olfactory imagery activates the primary olfactory (piriform) cortex (PC) in all perfumers, demonstrating that similar neural substrates were activated in odor perception and imagination. In professional perfumers, extensive olfactory practice influences the posterior PC, the orbitofrontal cortex, and the hippocampus; during the creation of mental images of odors, the activity in these areas was negatively correlated with experience. Thus, the perfumers' expertise is associated with a functional reorganization of key olfactory and memory brain regions, explaining their extraordinary ability to imagine odors and create fragrances.
Collapse
Affiliation(s)
- Jane Plailly
- Neurosciences Sensorielles, Comportement, Cognition, UMR 5020 CNRS-Université Claude Bernard Lyon 1, Institut Fédératif des Neurosciences de Lyon, Lyon, France.
| | | | | |
Collapse
|
11
|
Litaudon P, Garcia S, Buonviso N. Strong coupling between pyramidal cell activity and network oscillations in the olfactory cortex. Neuroscience 2008; 156:781-7. [PMID: 18790020 DOI: 10.1016/j.neuroscience.2008.07.077] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 11/25/2022]
Abstract
Oscillatory activity is a prominent characteristic of electrophysiological recordings in the olfactory system and has been proposed to play a key role in encoding olfactory representations. Studies in several systems have shown that some aspects of information coding involve characteristics that intertwine spikes and fast oscillations (in the beta and gamma range) of local field potentials (LFP). In the insect olfactory system, it has been proposed that oscillatory activity could provide a temporal link between cells. Following previous data, we have proposed that gamma band oscillations in mammals could subserve a gating function for the transfer of information between the olfactory bulb (OB) and the anterior piriform cortex (aPC), which are functionally coupled. In this study, we used an electrophysiological approach to investigate the temporal relationship between LFP gamma oscillations and single-unit activity by simultaneously recording LFP and single unit discharges in the rat aPC during odor evoked activity. Our data showed that mean spike discharges and gamma oscillatory bursts were synchronized with the same respiratory cycle epoch (around the inspiration/expiration transition). Temporal correlations between spikes and LFP revealed that cortical cell spikes were tightly phase-coupled with the peak of gamma oscillations and that this phase-coupling was not odor-dependent. Our results suggest that gamma oscillation may act as a temporal filter. Oscillatory phase-coupled spikes in the OB could act in increasing the probability of spike emission in the aPC cell during a narrow time-window, explaining the tight phase-coupling observed in the aPC. The role of spike-LFP phase-coupling as a binding function between odor features is discussed.
Collapse
Affiliation(s)
- P Litaudon
- Neurosciences Sensorielles, Comportement, Cognition, CNRS UMR 5020-Université Lyon 1, Université de Lyon, Institut Fédératif des Neurosciences de Lyon, 50 avenue Tony Garnier, 69366 Lyon cedex 07, France.
| | | | | |
Collapse
|
12
|
Markopoulos F, Neubauer FB, Berger T, Scotti AL. Reassembling a system from the sensor to cerebral representation: the olfactory system in vitro. Neuroscience 2008; 156:1048-63. [PMID: 18773940 DOI: 10.1016/j.neuroscience.2008.07.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 11/24/2022]
Abstract
An odorant's code is represented by activity in a dispersed ensemble of olfactory sensory neurons in the nose, activation of a specific combination of groups of mitral cells in the olfactory bulb and is considered to be mapped at divergent locations in the olfactory cortex. We present here an in vitro model of the mammalian olfactory system developed to gain easy access to all stations of the olfactory pathway. Mouse olfactory epithelial explants are cocultured with a brain slice that includes the olfactory bulb and olfactory cortex areas and maintains the central olfactory pathway intact and functional. Organotypicity of bulb and cortex is preserved and mitral cell axons can be traced to their target areas. Calcium imaging shows propagation of mitral cell activity to the piriform cortex. Long term coculturing with postnatal olfactory epithelial explants restores the peripheral olfactory pathway. Olfactory receptor neurons renew and progressively acquire a mature phenotype. Axons of olfactory receptor neurons grow out of the explant and rewire into the olfactory bulb. The extent of reinnervation exhibits features of a postlesion recovery. Functional imaging confirms the recovery of part of the peripheral olfactory pathway and shows that activity elicited in olfactory receptor neurons or the olfactory nerves is synaptically propagated into olfactory cortex areas. This model is the first attempt to reassemble a sensory system in culture, from the peripheral sensor to the site of cortical representation. It will increase our knowledge on how neuronal circuits in the central olfactory areas integrate sensory input and counterbalance damage.
Collapse
|
13
|
Hermer-Vazquez R, Hermer-Vazquez L, Srinivasan S, Chapin JK. Beta- and gamma-frequency coupling between olfactory and motor brain regions prior to skilled, olfactory-driven reaching. Exp Brain Res 2007; 180:217-35. [PMID: 17273874 PMCID: PMC2747650 DOI: 10.1007/s00221-007-0850-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 12/30/2006] [Indexed: 11/28/2022]
Abstract
A major question in neuroscience concerns how widely separated brain regions coordinate their activity to produce unitary cognitive states or motor actions. To investigate this question, we employed multisite, multielectrode recording in rats to study how olfactory and motor circuits are coupled prior to the execution of an olfactory-driven, GO/NO-GO variant of a skilled, rapidly executed (approximately 350-600 ms) reaching task. During task performance, we recorded multi-single units and local field potentials (LFPs) simultaneously from the rats' olfactory cortex (specifically, the posterior piriform cortex) and from cortical and subcortical motor sites (the caudal forepaw M1, and the magnocellular red nucleus, respectively). Analyses on multi-single units across areas revealed an increase in beta-frequency spiking (12-30 Hz) during a approximately 100 ms window surrounding the Final Sniff of the GO cue before lifting the arm (the "Sniff-GO window") that was seldom seen when animals sniffed the NO-GO cue. Also during the Sniff-GO window, LFPs displayed a striking increase in beta, low-gamma, and high-gamma energy (12-30, 30-50, and 50-100 Hz, respectively), and oscillations in the high gamma band appeared to be coherent across the recorded sites. These results indicate that transient, multispectral coherence across cortical and subcortical brain sites is part of the coordination process prior to sensory-guided movement initiation.
Collapse
Affiliation(s)
- Raymond Hermer-Vazquez
- Behavioral Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Linda Hermer-Vazquez
- Behavioral Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Sridhar Srinivasan
- Department of Electrical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - John K. Chapin
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
14
|
Sato K, Kinoshita M, Momose-Sato Y. Optical mapping of spatiotemporal emergence of functional synaptic connections in the embryonic chick olfactory pathway. Neuroscience 2007; 144:1334-46. [PMID: 17184922 DOI: 10.1016/j.neuroscience.2006.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 10/31/2006] [Accepted: 11/02/2006] [Indexed: 11/26/2022]
Abstract
In order to understand the functional maturation of the CNS, it is essential to first describe the functional maturation of sensory processing. We have approached this topic by following the ontogenetic patterning of neural circuit formation related to cranial and spinal sensory input using voltage-sensitive dye imaging. In previous studies, we have described the functional maturation of synapses in brainstem/midbrain neural circuits. Here, we elucidate the functional maturation of forebrain circuits by investigating neural networks related to the olfactory nerve (N. I) of chicken embryo. In the isolated N. I-olfactory bulb-forebrain preparation, application of electrical stimulation to N. I elicited excitatory postsynaptic potential (EPSP)-related slow optical signals in the olfactory bulb. The slow signal was mainly mediated by glutamate, and was easily fatigued with repetitive stimuli because of the immaturity of synapses in the embryonic CNS. Ontogenetically, the slow signal was detected from the 6-day embryonic stage, suggesting that functional synaptic connections between N. I and olfactory bulb emerge around this stage. In addition, from the 8-day embryonic stage, another response area was discriminated within the forebrain, which corresponded to the higher-ordered nucleus of the olfactory pathway. In comparison with our previous studies concerning the functional development of other cranial nerve-related sensory nuclei in the embryonic brainstem and midbrain, these results suggest that the olfactory pathway is functionally generated in the early stages of development when neural networks related to other visceral and somatic sensory inputs are also in the process of developing.
Collapse
Affiliation(s)
- K Sato
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
15
|
Buonviso N, Amat C, Litaudon P. Respiratory Modulation of Olfactory Neurons in the Rodent Brain. Chem Senses 2005; 31:145-54. [PMID: 16339270 DOI: 10.1093/chemse/bjj010] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this review we report data from freely breathing animals in an attempt to show how respiratory dynamics can influence bulbar and cortical activity. Relying on in vivo data as well as in vitro observations, we try to emphasize the multiple mechanisms that underlie this modulation, its multiple origins, and its possible functional role.
Collapse
Affiliation(s)
- Nathalie Buonviso
- Neurosciences & Systèmes Sensoriels, CNRS--Université Claude Bernard, Lyon I, France.
| | | | | |
Collapse
|
16
|
Otáhal J, Suchomelová L, Druga R, Kubová H. Changes in Cytochrome Oxidase in the Piriform Cortex after Status Epilepticus in Adult Rats. Epilepsia 2005; 46 Suppl 5:89-93. [PMID: 15987259 DOI: 10.1111/j.1528-1167.2005.01014.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The piriform cortex is involved in genesis and propagation of temporal lobe seizures. Degenerating neurons demonstrated by FluoroJade B staining are visible early after status epilepticus (SE) as well as after longer intervals. Furthermore, the piriform cortex is activated during an early phase of experimental temporal seizures, as described by magnetic resonance imaging (MRI) studies. It indicates that the early activity of the piriform cortex should be accompanied by increased adenosine triphosphate (ATP) production. Cytochrome oxidase activity in the brain may be used as an endogenous metabolic marker for neurons. The present research studied activity of the cytochrome oxidase separately in the rostral and caudal parts of the piriform cortex after lithium chloride-pilocarpine-induced SE in adult rats. METHODS SE was induced by a single dose of pilocarpine (40 mg/kg) in LiCl-pretreated adult Wistar rats. Cytochrome oxidase activity was mapped by optical density on sections stained with histochemistry separately in the rostral and caudal parts of the piriform cortex. RESULTS Optical density of the rostral part of the piriform cortex remained nearly unchanged at both 1 week (0.284 +/- 0.009 in SE group vs. 0.297 +/- 0.005 in controls) and 3 months (0.318 +/- 0.007 in SE group vs. 0.333 +/- 0.004 in controls) after SE intervals. The caudal part of the piriform cortex showed a decrease of optical density in both groups at 1 week (0.265 +/- 0.007 in SE group vs. 0.285 +/- 0.009 in controls) and 3 months after SE (0.292 +/- 0.006 in SE animals vs. 0.310 +/- 0.003 in controls), respectively. Nissl-stained sections demonstrated a marked neuronal loss and gliosis and/or necrotic cavities through the caudal piriform cortex 1 week after SE. CONCLUSIONS Our results demonstrated that damage of the piriform cortex is not homogeneous and thus that its parts are differently involved in epileptic activity.
Collapse
Affiliation(s)
- Jakub Otáhal
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|
17
|
Roullet F, Datiche F, Liénard F, Cattarelli M. Learning-stage dependent Fos expression in the rat brain during acquisition of an olfactory discrimination task. Behav Brain Res 2005; 157:127-37. [PMID: 15617779 DOI: 10.1016/j.bbr.2004.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 06/15/2004] [Accepted: 06/21/2004] [Indexed: 10/26/2022]
Abstract
By using Fos immunocytochemistry, we investigated the activation in olfactory-related areas at three stages (the first and fourth days of conditioning and complete acquisition) of an olfactory discrimination learning task. The trained rats (T) had to associate one odour of a pair with water-reward within a four-arm maze whereas pseudo-trained (P) rats were only submitted to the olfactory cues without any reinforcement. In the piriform cortex, both T and P rats exhibited a higher immunoreactivity on the first day, which seemed to indicate a novelty-related Fos expression in this area, but whatever the learning-stage, no significant difference in Fos expression between T and P rats was observed. In hippocampus, Fos expression was significantly different between T and P rats in CA1 and CA3 on the first and fourth days respectively. Thus we showed a differential activation of CA1 and CA3 subfields which might support a possible functional heterogeneity. In the orbitofrontal cortex, Fos immunoreactivity was significantly higher in T rats compared to P rats when mastery of the discrimination task was complete. In contrast, no learning-related Fos expression was found in infralimbic and prelimbic cortices. The present data suggest an early implication of the hippocampal formation and a later involvement of neocortical areas throughout different stages of a progressively acquired olfactory learning task.
Collapse
|
18
|
Litaudon P, Amat C, Bertrand B, Vigouroux M, Buonviso N. Piriform cortex functional heterogeneity revealed by cellular responses to odours. Eur J Neurosci 2003; 17:2457-61. [PMID: 12814377 DOI: 10.1046/j.1460-9568.2003.02654.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of the piriform cortex (PC) in olfactory information processing remains mainly unknown. Indeed, until recently, only a few studies have investigated the response of PC neurons to odours and these studies did not take into account the functional heterogeneity of the PC previously described using an electrical stimulation paradigm. In this experiment, extracellular activity in response to odour was recorded in urethane anaesthetized rats in the different parts of the cortex ranging from anterior to posterior. A large percentage of cortical cells were silent at rest, and this percentage increased from anterior to posterior. Analysis of odour evoked activity revealed a large percentage of nonresponsive cells that increased from anterior to posterior. Cell activity was largely synchronized with breathing and different temporal patterns were observed. The anterior PC was characterized by odour-evoked responses phase-locked with the inhalation-exhalation transition period. By contrast, activity in the posterior PC was mainly phase-locked with inhalation or exhalation. These data confirm the spatial functional heterogeneity previously reported in the PC. Functional anatomy of the PC suggests that activity in the anterior PC can be mainly driven by afferent activity coming from the OB whereas posterior cells were certainly entrained by more complex mechanisms.
Collapse
Affiliation(s)
- P Litaudon
- Neurosciences et Systèmes Sensoriels, Université Lyon I-CNRS, 50 avenue Tony Garnier, 69366 Lyon cedex 07, France.
| | | | | | | | | |
Collapse
|
19
|
Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J Neurosci 2003. [PMID: 12486175 DOI: 10.1523/jneurosci.22-24-10819.2002] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies of patients with focal brain injury indicate that smell perception involves caudal orbitofrontal and medial temporal cortices, but a more precise functional organization has not been characterized. In addition, although it is believed that odors are potent triggers of emotion, support for an anatomical association is scant. We sought to define the neural substrates of human olfactory information processing and determine how these are modulated by affective properties of odors. We used event-related functional magnetic resonance imaging (fMRI) in an olfactory version of a classical conditioning paradigm, whereby neutral faces were paired with pleasant, neutral, or unpleasant odors, under 50% reinforcement. By comparing paired (odor/face) and unpaired (face only) conditions, odor-evoked neural activations could be isolated specifically. In primary olfactory (piriform) cortex, spatially and temporally dissociable responses were identified along a rostrocaudal axis. A nonhabituating response in posterior piriform cortex was tuned to all odors, whereas activity in anterior piriform cortex reflected sensitivity to odor affect. Bilateral amygdala activation was elicited by all odors, regardless of valence. In posterior orbitofrontal cortex, neural responses evoked by pleasant and unpleasant odors were segregated within medial and lateral segments, respectively. The results indicate functional heterogeneity in areas critical to human olfaction. They also show that brain regions mediating emotional processing are differentially activated by odor valence, providing evidence for a close anatomical coupling between olfactory and emotional processes.
Collapse
|
20
|
Bouret S, Sara SJ. Locus coeruleus activation modulates firing rate and temporal organization of odour-induced single-cell responses in rat piriform cortex. Eur J Neurosci 2002; 16:2371-82. [PMID: 12492432 DOI: 10.1046/j.1460-9568.2002.02413.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Piriform cortex (PCx) is the primary cortical projection region for olfactory information and has bidirectional monosynaptic connections with olfactory bulb and association cortices. PCx neurons display a complex receptive field, responding to odours rather than their molecular components, suggesting that these neurons are involved in higher order olfactory processing. Neuromodulators, especially noradrenaline (NA), have important influences on sensory processing in other cortical regions and might be responsible for the plasticity observed in PCx during learning. The present study is the first attempt to examine in vivo the actions of NA on sensory responses in the PCx. Stimulation of the noradrenergic nucleus locus coeruleus (LC) was used to induce release of NA in the forebrain in urethane-anaesthetized rats. Extracellular recording of single units was made simultaneously in anterior and posterior PCx. The responses to an odour stimulus were measured over 25 trials. Twenty-five subsequent odour presentations were preceded by stimulation of the ipsilateral LC through a bipolar electrode, previously placed in the LC under electrophysiological control. This priming stimulation modified the activity of 77 of the 135 recorded neurons. For most cells, LC stimulation enhanced cortical responses to odour in terms of both spike count and temporal organization, with some differential effects in anterior and posterior regions. These results are the first to show enhancement of sensory responses in the olfactory cortex by LC activation. Spontaneous activation of LC neurons such as occurs during learning could serve to enhance olfactory perception and promote learning.
Collapse
Affiliation(s)
- Sebastien Bouret
- Laboratoire neuromodulation et processus mnésiques, Neurobiologie des processus adaptatifs, CNRS UMR 7102, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
21
|
Montag-Sallaz M, Buonviso N. Altered odor-induced expression of c-fos and arg 3.1 immediate early genes in the olfactory system after familiarization with an odor. JOURNAL OF NEUROBIOLOGY 2002; 52:61-72. [PMID: 12115894 DOI: 10.1002/neu.10069] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In adult rats, repeated exposure to an odorant, in absence of any experimentally delivered reinforcement, leads to a drastic decrease in mitral/tufted (M/T) cell responsiveness, not only for the familiar odor but also for other novel odors. In the present study, using two different and complementary in situ hybridization methods, we analyzed the effect of familiarization with an odorant on c-fos and arg 3.1 mRNA expression levels, and we examined the odor specificity of this effect. Odor exposure induces a specific increase in c-fos and arg 3.1 expression in some particular olfactory bulb quadrants. Previous familiarization with the test odor results in a decreased expression of both IEGs in these quadrants, leading to the alteration of the odor-specific pattern of c-fos and arg 3.1 expression. In contrast, this odor-specific pattern is not affected when different odors are used for familiarization and test. Similarly, an odor-specific familiarization effect leading to a reduced c-fos and arg 3.1 expression was also detected in the cingulate cortex and in the anterior piriform cortex. These results support our hypothesis that the decrease in M/T cell responsiveness following a preceding familiarization with an odorant may be related to a particular form of synaptic plasticity involving changes at the genomic level, and reveals further insight in olfactory information processing and the cellular mechanisms underlying familiarization in the olfactory system.
Collapse
Affiliation(s)
- M Montag-Sallaz
- Research Group Neurogenetics, Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany.
| | | |
Collapse
|
22
|
Abstract
Functional imaging methods permit analysis of neuronal systems in which activity is broadly distributed in time and space. In the olfactory system the dimensions that describe odorant stimuli in "odorant space" are still poorly defined. One way of trying to characterize the attributes of this space is to examine the ways in which its dimensions are encoded by the neurons and circuits making up the system and to compare these responses with physical-chemical attributes of the stimuli and with the output behavior of the animal. For documenting distributed events as they occur, imaging methods are among the few tools available. We are still in the early stages of this analysis; however, a number of recent studies have contributed new information to our understanding of the odorant coding problem. This paper describes imaging results in the context of other data that have contributed to our understanding of how odors are encoded by the peripheral olfactory pathway.
Collapse
Affiliation(s)
- J S Kauer
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
23
|
Datiche F, Roullet F, Cattarelli M. Expression of Fos in the piriform cortex after acquisition of olfactory learning: an immunohistochemical study in the rat. Brain Res Bull 2001; 55:95-9. [PMID: 11427343 DOI: 10.1016/s0361-9230(01)00499-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The piriform cortex (PCx), the main area of the primary olfactory cortex, is assumed to play a role in olfactory memory. Involvement of this paleocortex in mnesic processes was investigated by using Fos immunocytochemistry after acquisition of a two-odor discrimination task. Trained rats had to associate one odor of a pair with water reward while pseudo-trained rats were randomly rewarded. We further used non-trained rats and home cage control animals to determine the effect of manipulation and basal Fos level respectively. Except in control rats, Fos immunoreactivity was mainly distributed in brain areas involved in olfactory processing, learning and arousal. The trained, pseudo-trained, and non-trained rats showed a high Fos labeling in the entire PCx. However, quantitative analysis demonstrated a statistically higher Fos immunoreactivity in the anterior PCx in comparison with the posterior PCx for these rats. Furthermore, behavioral data allowed us to distinguish two groups of trained rats according to the number of days required to acquire the task. Rats with slow acquisition showed a higher Fos immunoreactivity in the whole PCx in comparison with the rats exhibiting a fast acquisition. Our findings support the assumption of a PCx rostro-caudal heterogeneity which could sustain differential information processing.
Collapse
Affiliation(s)
- F Datiche
- Centre Européen des Sciences du Goût-CNRS FRE 2049, Dijon, France.
| | | | | |
Collapse
|
24
|
Gruart A, Morcuende S, Martínez S, Delgado-García JM. Involvement of cerebral cortical structures in the classical conditioning of eyelid responses in rabbits. Neuroscience 2001; 100:719-30. [PMID: 11036206 DOI: 10.1016/s0306-4522(00)00325-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The classical conditioning of the eyelid motor system in alert behaving rabbits has been used to study the expression of Fos in the hippocampus, and in the occipital, parietal, piriform and temporal cortices. Animals were classically conditioned with both delay and trace conditioning paradigms. As conditioned stimulus, both short and long (20 and 100 ms) tones (600 Hz, 90 dB) or short, weak (20 ms, 1kg/cm(2)) air puffs were used. The unconditioned stimulus was always a long, strong (100 ms, 3 kg/cm(2)) air puff that started 250-270 ms after the onset of the conditioned stimulus. The expression of Fos was significantly increased after both delayed and trace conditioning in the hippocampus, and in the parietal and piriform cortices contralateral to the unconditioned stimulus presentation side, compared with equivalent ipsilateral structures in conditioned animals, or with Fos production in the same contralateral structures in pseudo-conditioned and control animals. Fos expression in some cortical sites was specific to tone versus air puff stimuli when used as conditioned stimulus. Thus, Fos expression was significantly increased in the contralateral temporal lobe when tones were used as conditioned stimulus, for both delayed and trace conditioning paradigms, but not when animals were conditioned to short, weak air puffs. The present results indicate a specific Fos activation in several cerebral cortical structures during associative eyelid conditioning.
Collapse
Affiliation(s)
- A Gruart
- Laboratorio Andaluz de Biología, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | | | | | | |
Collapse
|
25
|
Wang Y, Wright NJ, Guo H, Xie Z, Svoboda K, Malinow R, Smith DP, Zhong Y. Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron 2001; 29:267-76. [PMID: 11182097 DOI: 10.1016/s0896-6273(01)00196-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Odor-induced neural activity was recorded by Ca2+ imaging in the cell body region of the Drosophila mushroom body (MB), which is the second relay of the olfactory central nervous system. The signals recorded are mainly from the cell layers on the brain surface because of the limited penetration of Ca2+-sensitive dyes. The densely packed cell bodies and their accessibility allow visualization of odor-induced population neural activity. It is revealed that odors evoke diffused neural activities in the MB. Although the signals cannot be attributed to individual neurons, patterns of the population neural activity can be analyzed. The activity pattern, but not the amplitude, of an odor-induced population response is specific for the chemical identity of an odor and its concentration. The distribution pattern of neural activity can be altered specifically by genetic manipulation of an odor binding protein and this alteration is closely associated with a behavioral defect of odor preference. These results suggest that the spatial pattern of the distributed neural activity may contribute to coding of odor information at the second relay of the olfactory system.
Collapse
Affiliation(s)
- Y Wang
- Cold Spring Harbor Lab, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sobel N, Prabhakaran V, Zhao Z, Desmond JE, Glover GH, Sullivan EV, Gabrieli JD. Time course of odorant-induced activation in the human primary olfactory cortex. J Neurophysiol 2000; 83:537-51. [PMID: 10634894 DOI: 10.1152/jn.2000.83.1.537] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paradoxically, attempts to visualize odorant-induced functional magnetic resonance imaging (fMRI) activation in the human have yielded activations in secondary olfactory regions but not in the primary olfactory cortex-piriform cortex. We show that odorant-induced activation in primary olfactory cortex was not previously made evident with fMRI because of the unique time course of activity in this region: in primary olfactory cortex, odorants induced a strong early transient increase in signal amplitude that then habituated within 30-40 s of odorant presence. This time course of activation seen here in the primary olfactory cortex of the human is almost identical to that recorded electrophysiologically in the piriform cortex of the rat. Mapping activation with analyses that are sensitive to both this transient increase in signal amplitude, and temporal-variance, enabled us to use fMRI to consistently visualize odorant-induced activation in the human primary olfactory cortex. The combination of continued accurate odorant detection at the behavioral level despite primary olfactory cortex habituation at the physiological level suggests that the functional neuroanatomy of the olfactory response may change throughout prolonged olfactory stimulation.
Collapse
Affiliation(s)
- N Sobel
- Program in Neuroscience, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Chabaud P, Ravel N, Wilson DA, Gervais R. Functional coupling in rat central olfactory pathways: a coherence analysis. Neurosci Lett 1999; 276:17-20. [PMID: 10586964 DOI: 10.1016/s0304-3940(99)00773-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This experiment determined the importance of functional coupling between structures of central olfactory pathways: the olfactory bulb (OB), anterior (APC), posterior (PPC) parts of the piriform cortex and lateral entorhinal cortex (EC). From local field potential signals obtained in awake rats, coupling during spontaneous activity was estimated with variables reflecting level of coherence computed with a dynamical method. Results revealed a clear hierarchy in the strength of coupling between structures with dissociation within the piriform cortex: PPC was more tightly coupled with the EC than with APC. Systemic injection of a cholinergic antagonist, scopolamine, suggested that tonic coupling is strongly mediated by cortico-cortical connections and not by an external synchronizer, except between OB and APC.
Collapse
Affiliation(s)
- P Chabaud
- lnstitut des Sciences Cognitives, CNRS - UPR 9075, Bron, France
| | | | | | | |
Collapse
|
28
|
Neunlist M, Peters S, Schemann M. Multisite optical recording of excitability in the enteric nervous system. Neurogastroenterol Motil 1999; 11:393-402. [PMID: 10520170 DOI: 10.1046/j.1365-2982.1999.00163.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A multisite optical recording technique consisting of an array of 464 photodiodes was used to measure dynamic changes in transmembrane potentials (Vm) of guinea-pig and mouse enteric neurones stained with the voltage-sensitive dye Di-8-ANEPPS. Optical recordings of Vm changes in enteric neurones which were evoked by depolarizing current pulses or synaptic activation mirrored the Vm changes measured intracellularly in the same neurone. Action potentials had fractional change in fluorescence of -0.09 +/- 0.06% and their peak to peak noise level was 20 +/- 14% of the action potential amplitude. Optical recordings after electrical stimulation of interganglionic nerve strands revealed slow EPSPs, nicotinergic supra- and subthreshold fast EPSPs as well as propagation of action potentials along interganglionic strands. Local application of acetylcholine onto a single ganglion induced reproducibly and dose dependently action potential discharge demonstrating the feasibility of neuropharmacological studies. The optical mapping made it possible to record action potentials simultaneously in a large number of neurones with high spatiotemporal resolution that is unattainable by conventional techniques. This technique presents a powerful tool to study excitability spread within enteric circuits and to assess differential activation of enteric populations in response to a number of stimuli which modulate neuronal activity directly or through synaptic mechanisms.
Collapse
Affiliation(s)
- M Neunlist
- Department of Physiology, School of Veterinary Medicine, Bischofsholer Damm 15/102, D-30173 Hannover, Germany.
| | | | | |
Collapse
|
29
|
Rosin JF, Datiche F, Cattarelli M. Modulation of the piriform cortex activity by the basal forebrain: an optical recording study in the rat. Brain Res 1999; 820:105-11. [PMID: 10023037 DOI: 10.1016/s0006-8993(98)01369-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The piriform cortex (PCx) is the main projection area of the olfactory bulb. It further receives afferents from neurons located in the horizontal limb of the diagonal band (HDB) and the magnocellular preoptic nucleus (MCPO) of the basal forebrain. Using an optical recording technique, we examined the influence of electrical stimulation of the HDB-MCPO complex upon the PCx reactivity to electrical stimulation of the olfactory bulb. We observed an inhibitory modulation which was stronger on the intrinsic activity than on the afferent one. This effect was not homogeneously distributed within the whole PCx. The neurotransmitter involved and its synaptic target remain to be determined. The present findings are discussed in view of anatomical and functional data.
Collapse
Affiliation(s)
- J F Rosin
- Centre Européen des Sciences du Goût, CNRS UPR 9054, Campus Universitaire de Bourgogne, 15 rue Hugues Picardet, F-21000, Dijon, France
| | | | | |
Collapse
|
30
|
Mouly AM, Litaudon P, Chabaud P, Ravel N, Gervais R. Spatiotemporal distribution of a late synchronized activity in olfactory pathways following stimulation of the olfactory bulb in rats. Eur J Neurosci 1998; 10:1128-35. [PMID: 9753181 DOI: 10.1046/j.1460-9568.1998.00126.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The evoked potential recorded in the rat piriform cortex in response to electrical stimulation of the olfactory bulb is composed of an early component occasionally followed by a late component (60-70 ms). We previously showed that the late component occurrence was enhanced following an olfactory learning. In the present study carried out in naive rats, we investigated the precise conditions of induction of this late component, and its spatiotemporal distribution along the olfactory pathways. In the anaesthetized rat, a stimulating electrode was implanted in the olfactory bulb. Four recording electrodes were positioned, respectively, in the olfactory bulb, the anterior and posterior parts of the piriform cortex, and the entorhinal cortex. Simultaneous recording of signals evoked in the four sampled structures in response to stimulation of the olfactory bulb revealed that the late component was detected in anterior and posterior piriform cortex as well as in entorhinal cortex, but not in the olfactory bulb. The late component occurred reliably for a narrow range of low intensities of stimulation delivered at frequencies not exceeding 1 Hz. Comparison of late component amplitude and latency across the different recorded sites showed that this component appeared first and with the greatest amplitude in the posterior piriform cortex. In addition to showing a functional dissociation between anterior and posterior parts of the piriform cortex, these data suggest that the posterior piriform cortex could be the locus of generation of this late high amplitude synchronized activity, which would then propagate to the neighbouring regions.
Collapse
Affiliation(s)
- A M Mouly
- Institut des Sciences Cognitives, CNRS UPR 9075, UCB Lyon I, France.
| | | | | | | | | |
Collapse
|