1
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
2
|
Ji Y, Liang L, Bao X, Hou G. Recent progress in dipolar recoupling techniques under fast MAS in solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 112:101711. [PMID: 33508579 DOI: 10.1016/j.ssnmr.2020.101711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
With the recent advances in NMR hardware and probe design technology, magic-angle spinning (MAS) rates over 100 kHz are accessible now, even on commercial solid NMR probes. Under such fast MAS conditions, excellent spectral resolution has been achieved by efficient suppression of anisotropic interactions, which also opens an avenue to the proton-detected NMR experiments in solids. Numerous methods have been developed to take full advantage of fast MAS during the last decades. Among them, dipolar recoupling techniques under fast MAS play vital roles in the determination of the molecular structure and dynamics, and are also key elements in multi-dimensional correlation NMR experiments. Herein, we review the dipolar recoupling techniques, especially those developed in the past two decades for fast-to-ultrafast MAS conditions. A major focus for our discussion is the ratio of RF field strength (in frequency) to MAS frequency, ν1/νr, in different pulse sequences, which determines whether these dipolar recoupling techniques are suitable for NMR experiments under fast MAS conditions. Systematic comparisons are made among both heteronuclear and homonuclear dipolar recoupling schemes. In addition, the schemes developed specially for proton-detection NMR experiments under ultrafast MAS conditions are highlighted as well.
Collapse
Affiliation(s)
- Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.
| |
Collapse
|
3
|
Xiao Y, Matsuda I, Inoue M, Sasahara T, Hoshi M, Ishii Y. NMR-based site-resolved profiling of β-amyloid misfolding reveals structural transitions from pathologically relevant spherical oligomer to fibril. J Biol Chem 2019; 295:458-467. [PMID: 31771980 DOI: 10.1074/jbc.ra119.008522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/12/2019] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence highlights the central role of neurotoxic oligomers of the 42-residue-long β-amyloid (Aβ42) in Alzheimer's disease (AD). However, very limited information is available on the structural transition from oligomer to fibril, particularly for pathologically relevant amyloids. To the best of our knowledge, we present here the first site-specific structural characterization of Aβ42 misfolding, from toxic oligomeric assembly yielding a similar conformation to an AD-associated Aβ42 oligomer, into a fibril. Transmission EM (TEM) analysis revealed that a spherical amyloid assembly (SPA) of Aβ42 with a 15.6 ± 2.1-nm diameter forms in a ∼30-μm Aβ42 solution after a ∼10-h incubation at 4 °C, followed by a slow conversion into fibril at ∼180 h. Immunological analysis suggested that the SPA has a surface structure similar to that of amylospheroid (ASPD), a patient-derived toxic Aβ oligomer, which had a diameter of 10-15 nm in negative-stain TEM. Solid-state NMR analyses indicated that the SPA structure involves a β-loop-β motif, which significantly differed from the triple-β motif observed for the Aβ42 fibril. The comparison of the 13C chemical shifts of SPA with those of the fibril prepared in the above conditions and interstrand distance measurements suggested a large conformational change involving rearrangements of intermolecular β-sheet into in-register parallel β-sheet during the misfolding. A comparison of the SPA and ASPD 13C chemical shifts indicated that SPA is structurally similar to the ASPD relevant to AD. These observations provide insights into the architecture and key structural transitions of amyloid oligomers relevant for AD pathology.
Collapse
Affiliation(s)
- Yiling Xiao
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Isamu Matsuda
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Masafumi Inoue
- TAO Health Life Pharma Co. Ltd., Med-Pharma Collaboration Building, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Tomoya Sasahara
- TAO Health Life Pharma Co. Ltd., Med-Pharma Collaboration Building, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Department for Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo 650-0047, Japan
| | - Minako Hoshi
- Department for Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo 650-0047, Japan; Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshitaka Ishii
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Midori-ku, Yokohama, Kanagawa 226-8503, Japan; NMR Science and Development Division, RIKEN SPring-8 Center (RSC), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
4
|
Kobayashi T, Wang Z, Pruski M. Homonuclear dipolar recoupling of arbitrary pairs in multi-spin systems under magic angle spinning: A double-frequency-selective ZQ-SEASHORE experiment. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:76-81. [PMID: 31129364 DOI: 10.1016/j.ssnmr.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
We describe a useful method for measuring the internuclear distances within arbitrarily selected pairs of like nuclei in dipolar-coupled multi-spin systems. The method uses a combination of the zero-quantum shift-evolution-assisted selective homonuclear recoupling (ZQ-SEASHORE) technique developed by Hu and Tycko [J. Chem. Phys. 2009, 131, 045101] and double-frequency-selective radio-frequency pulse. The double-frequency-selective pulse inverts polarizations of two spins simultaneously, and thus applications of the method presented here are only limited by the spectral resolution, and not by the number of interacting spins. Our experiments demonstrate the validity of the method and present analytical expressions for the dephasing curve.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States.
| | - Zhuoran Wang
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States
| | - Marek Pruski
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States.
| |
Collapse
|
5
|
Huang D, Hudson BC, Gao Y, Roberts EK, Paravastu AK. Solid-State NMR Structural Characterization of Self-Assembled Peptides with Selective 13C and 15N Isotopic Labels. Methods Mol Biol 2018; 1777:23-68. [PMID: 29744827 PMCID: PMC7490753 DOI: 10.1007/978-1-4939-7811-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
For the structural characterization methods discussed here, information on molecular conformation and intermolecular organization within nanostructured peptide assemblies is discerned through analysis of solid-state NMR spectral features. This chapter reviews general NMR methodologies, requirements for sample preparation, and specific descriptions of key experiments. An attempt is made to explain choices of solid-state NMR experiments and interpretation of results in a way that is approachable to a nonspecialist. Measurements are designed to determine precise NMR peak positions and line widths, which are correlated with secondary structures, and probe nuclear spin-spin interactions that report on three-dimensional organization of atoms. The formulation of molecular structural models requires rationalization of data sets obtained from multiple NMR experiments on samples with carefully chosen 13C and 15N isotopic labels. The information content of solid-state NMR data has been illustrated mostly through the use of simulated data sets and references to recent structural work on amyloid fibril-forming peptides and designer self-assembling peptides.
Collapse
Affiliation(s)
- Danting Huang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Benjamin C Hudson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuan Gao
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Evan K Roberts
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Xiao Y, McElheny D, Hoshi M, Ishii Y. Solid-State NMR Studies of Amyloid Materials: A Protocol to Define an Atomic Model of Aβ(1-42) in Amyloid Fibrils. Methods Mol Biol 2018; 1777:407-428. [PMID: 29744851 DOI: 10.1007/978-1-4939-7811-3_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intense efforts have been made to understand the molecular structures of misfolded amyloid β (Aβ) in order to gain insight into the pathological mechanism of Alzheimer's disease. Solid-state NMR spectroscopy (SSNMR) is considered a primary tool for elucidating the structures of insoluble and noncrystalline amyloid fibrils and other amyloid assemblies. In this chapter, we describe a detailed protocol to obtain the first atomic model of the 42-residue human Aβ peptide Aβ(1-42) in structurally homogeneous amyloid fibrils from our recent SSNMR study (Nat Struct Mol Biol 22:499-505, 2015). Despite great biological and clinical interest in Aβ(1-42) fibrils, their structural details have been long-elusive until this study. The protocol is divided into four sections. First, the solid-phase peptide synthesis (SPPS) and purification of monomeric Aβ(1-42) is described. We illustrate a controlled incubation method to prompt misfolding of Aβ(1-42) into homogeneous amyloid fibrils in an aqueous solution with fragmented Aβ(1-42) fibrils as seeds. Next, we detail analysis of Aβ(1-42) fibrils by SSNMR to obtain structural restraints. Finally, we describe methods to construct atomic models of Aβ(1-42) fibrils based on SSNMR results through two-stage molecular dynamics calculations.
Collapse
Affiliation(s)
- Yiling Xiao
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Minako Hoshi
- Institute of Biomedical Research and Innovation, FBRI, Kobe, Japan
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Ishii
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
7
|
Ren J, Eckert H. Measurement of homonuclear magnetic dipole-dipole interactions in multiple 1/2-spin systems using constant-time DQ-DRENAR NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 260:46-53. [PMID: 26397219 DOI: 10.1016/j.jmr.2015.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/22/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
A new pulse sequence entitled DQ-DRENAR (Double-Quantum based Dipolar Recoupling Effects Nuclear Alignment Reduction) was recently described for the quantitative measurement of magnetic dipole-dipole interactions in homonuclear spin-1/2 systems involving multiple nuclei. As described in the present manuscript, the efficiency and performance of this sequence can be significantly improved, if the measurement is done in the constant-time mode. We describe both the theoretical analysis of this method and its experimental validation of a number of crystalline model compounds, considering both symmetry-based and back-to-back (BABA) DQ-coherence excitation schemes. Based on the combination of theoretical analysis and experimental results we discuss the effect of experimental parameters such as the chemical shift anisotropy (CSA), the spinning rate, and the radio frequency field inhomogeneity upon its performance. Our results indicate that constant-time (CT-) DRENAR is a method of high efficiency and accuracy for compounds with multiple homonuclear spin systems with particular promise for the analysis of stronger-coupled and short T2 spin systems.
Collapse
Affiliation(s)
- Jinjun Ren
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Hellmut Eckert
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, D-48149 Münster, Germany; Instituto de Física de São Carlos, Universidade de São Paulo (USP), C.P. 369, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
8
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 478] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
9
|
Cegelski L. REDOR NMR for drug discovery. Bioorg Med Chem Lett 2013; 23:5767-75. [PMID: 24035486 PMCID: PMC4038398 DOI: 10.1016/j.bmcl.2013.08.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022]
Abstract
Rotational-echo double-resonance (REDOR) NMR is a powerful and versatile solid-state NMR measurement that has been recruited to elucidate drug modes of action and to drive the design of new therapeutics. REDOR has been implemented to examine composition, structure, and dynamics in diverse macromolecular and whole-cell systems, including taxol-bound microtubules, enzyme-cofactor-inhibitor ternary complexes, and antibiotic-whole-cell complexes. The REDOR approach involves the integrated design of specific isotopic labeling strategies and the selection of appropriate REDOR experiments. By way of example, this digest illustrates the versatility of the REDOR approach, with an emphasis on the practical considerations of experimental design and data interpretation.
Collapse
Affiliation(s)
- Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Cheng H, Huang WYC, Tsai TWT, Mou Y, Chao JCH, Chan JCC. Depletion of Water Molecules Near the End Stage of Steric Zipper Formation. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hsin‐Mei Cheng
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - William Y. C. Huang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Tim W. T. Tsai
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Yun Mou
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - John Chin Hao Chao
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Jerry C. C. Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
11
|
Qiang W, Tycko R. Zero-quantum stochastic dipolar recoupling in solid state nuclear magnetic resonance. J Chem Phys 2013; 137:104201. [PMID: 22979851 DOI: 10.1063/1.4749258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the theoretical description and experimental demonstration of a zero-quantum stochastic dipolar recoupling (ZQ-SDR) technique for solid state nuclear magnetic resonance (NMR) studies of (13)C-labeled molecules, including proteins, under magic-angle spinning (MAS). The ZQ-SDR technique combines zero-quantum recoupling pulse sequence blocks with randomly varying chemical shift precession periods to create randomly amplitude- and phase-modulated effective homonuclear magnetic dipole-dipole couplings. To a good approximation, couplings between different (13)C spin pairs become uncorrelated under ZQ-SDR, leading to spin dynamics (averaged over many repetitions of the ZQ-SDR sequence) that are fully described by an orientation-dependent N × N polarization transfer rate matrix for an N-spin system, with rates that are inversely proportional to the sixth power of internuclear distances. Suppression of polarization transfers due to non-commutivity of pairwise couplings (i.e., dipolar truncation) does not occur under ZQ-SDR, as we show both analytically and numerically. Experimental demonstrations are reported for uniformly (13)C-labeled L-valine powder (at 14.1 T and 28.00 kHz MAS), uniformly (13)C-labeled protein GB1 in microcrystalline form (at 17.6 T and 40.00 kHz MAS), and partially labeled (13)C-labeled protein GB1 (at 14.1 T and 40.00 kHz MAS). The experimental results verify that spin dynamics under ZQ-SDR are described accurately by rate matrices and suggest the utility of ZQ-SDR in structural studies of (13)C-labeled solids.
Collapse
Affiliation(s)
- Wei Qiang
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | |
Collapse
|
12
|
Antzutkin ON, Iuga D, Filippov AV, Kelly RT, Becker-Baldus J, Brown SP, Dupree R. Hydrogen Bonding in Alzheimer’s Amyloid-β Fibrils Probed by15N{17O} REAPDOR Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Antzutkin ON, Iuga D, Filippov AV, Kelly RT, Becker-Baldus J, Brown SP, Dupree R. Hydrogen Bonding in Alzheimer’s Amyloid-β Fibrils Probed by15N{17O} REAPDOR Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2012; 51:10289-92. [DOI: 10.1002/anie.201203595] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Indexed: 02/06/2023]
|
14
|
Tang M, Berthold DA, Rienstra CM. Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement. J Phys Chem Lett 2011; 2:1836-1841. [PMID: 21841965 PMCID: PMC3153064 DOI: 10.1021/jz200768r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane proteins play an important role in many biological functions. Solid-state NMR spectroscopy is uniquely suited for studying structure and dynamics of membrane proteins in a membranous environment. The major challenge to obtain high quality solid-state NMR spectra of membrane proteins is sensitivity, due to limited quantities of labeled high-molecular-weight proteins. Here we demonstrate the incorporation of paramagnetic metal (Cu(2+)) ions, through either EDTA or a chelator lipid, into membrane protein samples for rapid data collection under fast magic-angle spinning (MAS) and low power (1)H decoupling. Spectral sensitivity of DsbB (20 kDa), an integral membrane protein, more than doubles in the same experimental time due to (1)H T(1) relaxation enhancement by Cu(2+) ions, with DsbB native fold and active site intact. This technique can be implemented to acquire multidimensional solid-state NMR spectra for chemical shift assignments and structure elucidation of large membrane proteins with small sample quantities.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Deborah A. Berthold
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| |
Collapse
|
15
|
Cheng HM, Tsai TWT, Huang WYC, Lee HK, Lian HY, Chou FC, Mou Y, Chan JCC. Steric zipper formed by hydrophobic peptide fragment of Syrian hamster prion protein. Biochemistry 2011; 50:6815-23. [PMID: 21749158 DOI: 10.1021/bi200712z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Steric zippers, where the residues of two neighboring β-sheet layers are tightly interdigitated, have been proposed as fundamental structural units of amyloid fibrils by Eisenberg and co-workers. The steric zipper formed by polypeptides containing the palindromic sequence AGAAAAGA has a distinctive feature that the distance between two interdigitated β-sheet layers is comparable to the interstrand distance of the individual β-sheet. This structural motif is of great interest in the study of prion disease because the AGAAAAGA sequence is highly conserved in prion proteins of different species. In this work, the amyloid fibrils formed by the polypeptides of PrP(113-127), viz. Ac-AGAAAAGAVVGGLGG-NH(2), are taken as the model compound to investigate the biophysical principles governing the steric zipper formation. The target fibrils adopt the structural motif of class 7 steric zipper, which is formed by stacking of antiparallel β-sheet layers with residue 117 + k forming backbone hydrogen bonds to residue 120 - k. Implication of our results in the infectivity of scrapie prion is briefly discussed.
Collapse
Affiliation(s)
- Hsin-Mei Cheng
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tsai TWT, Chen WY, Tseng YH, Chan JCC. Phase transformation of calcium phosphates in the presence of glutamic acid. CAN J CHEM 2011. [DOI: 10.1139/v11-032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This work describes a phase-transformation pathway of calcium phosphate in the presence of glutamic acid. The route follows the order starting from amorphous calcium phosphate and brushite, then octacalcium phosphate (OCP), and finally hydroxyapatite (HAp). The preferred growth direction of the intermediate OCP and the final HAp phases lies along the c axis. On the basis of our scanning electron microscopy, X-ray powder diffraction, and 31P solid-state NMR data, we suggest that the transformation is via the dissolution–reprecipitation process, which is facilitated in the presence of glutamic acid. The effect on the transformation kinetics is rationalized by the disruption of the water layer bound on the crystal surface.
Collapse
Affiliation(s)
- Tim W. T. Tsai
- Chemistry Department, National Taiwan University, Roosevelt Road, Taipei, Taiwan
| | - Wei-Ya Chen
- Chemistry Department, National Taiwan University, Roosevelt Road, Taipei, Taiwan
| | - Yao-Hung Tseng
- Chemistry Department, National Taiwan University, Roosevelt Road, Taipei, Taiwan
| | - Jerry C. C. Chan
- Chemistry Department, National Taiwan University, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
17
|
Huang SJ, Yang CY, Zheng A, Feng N, Yu N, Wu PH, Chang YC, Lin YC, Deng F, Liu SB. New insights into Keggin-type 12-tungstophosphoric acid from 31P MAS NMR analysis of absorbed trimethylphosphine oxide and DFT calculations. Chem Asian J 2011; 6:137-48. [PMID: 21181851 DOI: 10.1002/asia.201000572] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The acid and transport properties of the anhydrous Keggin-type 12-tungstophosphoric acid (H(3)PW(12)O(40); HPW) have been studied by solid-state (31)P magic-angle spinning NMR of absorbed trimethylphosphine oxide (TMPO) in conjunction with DFT calculations. Accordingly, (31)P NMR resonances arising from various protonated complexes, such as TMPOH(+) and (TMPO)(2)H(+) adducts, could be unambiguously identified. It was found that thermal pretreatment of the sample at elevated temperatures (≥423 K) is a prerequisite for ensuring complete penetration of the TMPO guest probe molecule into HPW particles. Transport of the TMPO absorbate into the matrix of the HPW adsorbent was found to invoke a desorption/absorption process associated with the (TMPO)(2)H(+) adducts. Consequently, three types of protonic acid sites with distinct superacid strengths, which correspond to (31)P chemical shifts of 92.1, 89.4, and 87.7 ppm, were observed for HPW samples loaded with less than three molecules of TMPO per Keggin unit. Together with detailed DFT calculations, these results support the scenario that the TMPOH(+) complexes are associated with protons located at three different terminal oxygen (O(d)) sites of the PW(12)O(40)(3-) polyanions. Upon increasing the TMPO loading to >3.0 molecules per Keggin unit, abrupt decreases in acid strength and the corresponding structural variations were attributed to the change in secondary structure of the pseudoliquid phase of HPW in the presence of excessive guest absorbate.
Collapse
Affiliation(s)
- Shing-Jong Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chan JCC. Solid-state NMR techniques for the structural determination of amyloid fibrils. Top Curr Chem (Cham) 2011; 306:47-88. [PMID: 21630137 DOI: 10.1007/128_2011_154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review discusses the solid-state NMR techniques developed for the study of amyloid fibrils. Literature up to the end of 2010 has been surveyed and the materials are organized according to five categories, viz. homonuclear dipolar recoupling and polarization transfer via J-coupling, heteronuclear dipolar recoupling, correlation spectroscopy, recoupling of chemical shift anisotropy, and tensor correlation. Our emphasis is on the NMR techniques and their practical aspects. The biological implications of the results obtained for amyloid fibrils are only briefly discussed. Our main objective is to showcase the power of NMR in the study of biological unoriented solids.
Collapse
Affiliation(s)
- Jerry C C Chan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Caporini MA, Bajaj VS, Veshtort M, Fitzpatrick A, MacPhee CE, Vendruscolo M, Dobson CM, Griffin RG. Accurate determination of interstrand distances and alignment in amyloid fibrils by magic angle spinning NMR. J Phys Chem B 2010; 114:13555-61. [PMID: 20925357 PMCID: PMC2959142 DOI: 10.1021/jp106675h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid fibrils are structurally ordered aggregates of proteins whose formation is associated with many neurodegenerative and other diseases. For that reason, their high-resolution structures are of considerable interest and have been studied using a wide range of techniques, notably electron microscopy, X-ray diffraction, and magic angle spinning (MAS) NMR. Because of the excellent resolution in the spectra, MAS NMR is uniquely capable of delivering site-specific, atomic resolution information about all levels of amyloid structure: (1) the monomer, which packs into several (2) protofilaments that in turn associate to form a (3) fibril. Building upon our high-resolution structure of the monomer of an amyloid-forming peptide from transthyretin (TTR(105-115)), we introduce single 1-(13)C labeled amino acids at seven different sites in the peptide and measure intermolecular carbonyl-carbonyl distances with an accuracy of ~0.11 A. Our results conclusively establish a parallel, in register, topology for the packing of this peptide into a β-sheet and provide constraints essential for the determination of an atomic resolution structure of the fibril. Furthermore, the approach we employ, based on a combination of a double-quantum filtered variant of the DRAWS recoupling sequence and multispin numerical simulations in SPINEVOLUTION, is general and should be applicable to a wide range of systems.
Collapse
Affiliation(s)
- Marc A Caporini
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chou FC, Tsai TWT, Chan JCC. Rotational echo double resonance without proton decoupling under fast spinning condition. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2010; 38:58-61. [PMID: 20817415 DOI: 10.1016/j.ssnmr.2010.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 05/29/2023]
Abstract
We show that rotational echo double resonance (REDOR) experiments can be carried out without proton decoupling under the conditions of fast spinning and strong rf field. Numerical simulations on a five-spin systems show that no significant attenuation of the reference signal (S(0)) is observed at a spin rate of 25 kHz, provided that the rf power is larger than 100 kHz. This approach has been validated by (31)P{(13)C} REDOR measurements on isotopically labeled glyphosate. The obtained van Vleck's second moment is in favorable agreement with the value calculated based on the crystal structure.
Collapse
Affiliation(s)
- Fang-Chieh Chou
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan
| | | | | |
Collapse
|
21
|
Tsai TWT, Chou FC, Tseng YH, Chan JCC. Solid-state P-31 NMR study of octacalcium phosphate incorporated with succinate. Phys Chem Chem Phys 2010; 12:6692-7. [PMID: 20422114 DOI: 10.1039/b923338e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octacalcium phosphate (OCP) is an important model compound in the study of biomineralization. The octacalcium phosphate-succinate (OCPS) compound is prepared and characterized by (31)P solid-state NMR spectroscopy. Taking advantage of the fact that the crystal structures of OCP and OCPS are very similar, an NMR strategy based on the (31)P homonuclear double-quantum spectroscopy is developed to assign all the peaks observed in the (31)P magic-angle spinning spectrum of OCPS. On the basis of our experimental data, the molecular formula of OCPS is determined to be Ca(7.81)(HPO(4))(1.82)(PO(4))(3.61)(succinate)(0.56).zH(2)O, where z<or= 0.5. We find that mainly the phosphorus species at the P5 site will be displaced when succinate ions are incorporated to form the OCPS lattice. The stability of OCPS is significantly higher than OCP with respect to the hydrolysis reaction at high pH conditions. We conclude that the hydration layer of OCP is playing the key role in the structural transformation of OCP.
Collapse
Affiliation(s)
- Tim W T Tsai
- Chemistry Department, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan
| | | | | | | |
Collapse
|
22
|
Molecular Structure of Amyloid Fibrils Formed by Residues 127 to 147 of the Human Prion Protein. Chemistry 2010; 16:5492-9. [DOI: 10.1002/chem.200903290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Hu KN, Tycko R. Zero-quantum frequency-selective recoupling of homonuclear dipole-dipole interactions in solid state nuclear magnetic resonance. J Chem Phys 2009; 131:045101. [PMID: 19655922 DOI: 10.1063/1.3176874] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We describe a method for measuring magnetic dipole-dipole interactions, and hence distances, between pairs of like nuclear spins in a many-spin system under magic-angle spinning (MAS). This method employs a homonuclear dipolar recoupling sequence that creates an average dipole-dipole coupling Hamiltonian under MAS with full zero-quantum symmetry, including both secular and flip-flop terms. Flip-flop terms are then attenuated by inserting rotor-synchronized periods of chemical shift evolution between recoupling blocks, leaving an effective Hamiltonian that contains only secular terms to a good approximation. Couplings between specific pairs of nuclear spins can then be selected with frequency-selective pi pulses. We demonstrate this technique, which we call zero-quantum shift evolution assisted homonuclear recoupling, in a series of one-dimensional and two-dimensional (13)C NMR experiments at 17.6 T and 40.00 kHz MAS frequency on uniformly (13)C-labeled L-threonine powder and on the helix-forming peptide MB(i+4)EK, synthesized with a pair of uniformly (13)C-labeled L-alanine residues. Experimental demonstrations include measurements of distances between (13)C sites that are separated by three bonds, placing quantitative constraints on both sidechain and backbone torsion angles in polypeptides.
Collapse
Affiliation(s)
- Kan-Nian Hu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | |
Collapse
|
24
|
Hu B, Delevoye L, Lafon O, Trébosc J, Amoureux JP. Double-quantum NMR spectroscopy of 31P species submitted to very large CSAs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 200:178-188. [PMID: 19616980 DOI: 10.1016/j.jmr.2009.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/24/2009] [Accepted: 06/24/2009] [Indexed: 05/28/2023]
Abstract
We introduce an original pulse sequence, BR2(2)(1)(taupitau), which is a block super-cycled R2(2)(1) sequence employing as basic element a pi pulse sandwiched by 'window' intervals. This homonuclear dipolar recoupling method allows the efficient excitation of double-quantum coherences between spin-1/2 nuclei submitted to very large chemical shift anisotropy. We demonstrate that this technique can be employed in double-quantum<-->single-quantum (31)P homonuclear correlation experiment at high magnetic field (B(0)>or=14 T) and high MAS frequencies (nu(R)>or=30 kHz). The performances of BR2(2)(1)(taupitau) are compared to those of the double-quantum recoupling methods, such as BABA and bracketed fp-RFDR, which were already employed at fast MAS rates. The BR2(2)(1)(taupitau) sequence displays a higher robustness to CSA and offset than the other existing techniques.
Collapse
Affiliation(s)
- B Hu
- UCCS, CNRS-8181, Lille-University, Villeneuve D'Ascq, France
| | | | | | | | | |
Collapse
|
25
|
Shewmaker F, McGlinchey RP, Thurber KR, McPhie P, Dyda F, Tycko R, Wickner RB. The functional curli amyloid is not based on in-register parallel beta-sheet structure. J Biol Chem 2009; 284:25065-76. [PMID: 19574225 PMCID: PMC2757210 DOI: 10.1074/jbc.m109.007054] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/23/2009] [Indexed: 11/06/2022] Open
Abstract
The extracellular curli proteins of Enterobacteriaceae form fibrous structures that are involved in biofilm formation and adhesion to host cells. These curli fibrils are considered a functional amyloid because they are not a consequence of misfolding, but they have many of the properties of protein amyloid. We confirm that fibrils formed by CsgA and CsgB, the primary curli proteins of Escherichia coli, possess many of the hallmarks typical of amyloid. Moreover we demonstrate that curli fibrils possess the cross-beta structure that distinguishes protein amyloid. However, solid state NMR experiments indicate that curli structure is not based on an in-register parallel beta-sheet architecture, which is common to many human disease-associated amyloids and the yeast prion amyloids. Solid state NMR and electron microscopy data are consistent with a beta-helix-like structure but are not sufficient to establish such a structure definitively.
Collapse
Affiliation(s)
| | | | | | - Peter McPhie
- From the Laboratories of Biochemistry and Genetics
| | - Fred Dyda
- Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830
| | | | | |
Collapse
|
26
|
Tycko R, Sciarretta KL, Orgel JPRO, Meredith SC. Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils. Biochemistry 2009; 48:6072-84. [PMID: 19358576 PMCID: PMC2910621 DOI: 10.1021/bi9002666] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | |
Collapse
|
27
|
Steric Zipper of the Amyloid Fibrils Formed by Residues 109–122 of the Syrian Hamster Prion Protein. J Mol Biol 2008; 378:1142-54. [DOI: 10.1016/j.jmb.2008.03.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 03/04/2008] [Accepted: 03/16/2008] [Indexed: 11/20/2022]
|
28
|
Bayro MJ, Ramachandran R, Caporini MA, Eddy MT, Griffin RG. Radio frequency-driven recoupling at high magic-angle spinning frequencies: homonuclear recoupling sans heteronuclear decoupling. J Chem Phys 2008; 128:052321. [PMID: 18266438 DOI: 10.1063/1.2834736] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe solid-state NMR homonuclear recoupling experiments at high magic-angle spinning (MAS) frequencies using the radio frequency-driven recoupling (RFDR) scheme. The effect of heteronuclear decoupling interference during RFDR recoupling at high spinning frequencies is investigated experimentally and via numerical simulations, resulting in the identification of optimal decoupling conditions. The effects of MAS frequency, RF field amplitude, bandwidth, and chemical shift offsets are examined. Most significantly, it is shown that broadband homonuclear correlation spectra can be efficiently obtained using RFDR without decoupling during the mixing period in fully protonated samples, thus considerably reducing the rf power requirements for acquisition of (13)C-(13)C correlation spectra. The utility of RFDR sans decoupling is demonstrated with broadband correlation spectra of a peptide and a model protein at high MAS frequencies and high magnetic field.
Collapse
Affiliation(s)
- Marvin J Bayro
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
29
|
Zheng Z, Qiang W, Weliky DP. Investigation of finite-pulse radiofrequency-driven recoupling methods for measurement of intercarbonyl distances in polycrystalline and membrane-associated HIV fusion peptide samples. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2007; 45 Suppl 1:S247-S260. [PMID: 18157840 DOI: 10.1002/mrc.2160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two finite-pulse radiofrequency-driven recoupling (RFDR) methods were compared and applied to the measurement of 3-6 Å (13)CO-(13)CO distances in polycrystalline and membrane-associated HIV fusion peptide (HFP) samples. The RFDR methods were based on π pulses and were relatively straightforward to implement and insensitive to pulse imperfections. The two tested methods were: (i) constant-time double-quantum buildup with finite pulses (fpCTDQBU) for which the pulse sequence maintained a constant transverse relaxation period while allowing a variable period of dipolar dephasing; and (ii) constant-time finite-pulse rf-driven recoupling (fpRFDR-CT) for which the duration of transverse relaxation increased with increasing dephasing period. The fpRFDR-CT method yielded higher signal-to-noise and an accurate determination of a ~5 Å intercarbonyl distance was made in a crystalline peptide which had T(2) ≈ 55 ms. In some contrast, the HFP samples had T(2) ≈ 15 ms and the fpRFDR-CT data were dominated by transverse relaxation. Examination of the fpCTDQBU sequence showed: (i) the most rapid signal buildup was obtained with application of one (13) C π pulse per rotor period rather than one (13)C π pulse per multiple rotor periods and (ii) the data were insensitive to ~15 ppm transmitter offset and to ~5° variation of π pulse nutation angle. For HFP samples which were (13)CO labeled at a single residue, analyses of the fpCTDQBU data were interpreted with a model of mixed parallel and antiparallel β-strand arrangements in the N-terminal region of HFP and loss of parallel β-sheet structure in the C-terminal region of HFP.
Collapse
Affiliation(s)
- Zhaoxiong Zheng
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
30
|
Abstract
Constant-time dipolar recoupling pulse sequences are advantageous in structural studies by solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) because they yield experimental data that are relatively insensitive to radio-frequency pulse imperfections and nuclear spin relaxation processes. A new approach to the construction of constant-time homonuclear dipolar recoupling sequences is described, based on symmetry properties of the recoupled dipole-dipole interaction Hamiltonian under cyclic displacements in time with respect to the MAS sample rotation period. A specific symmetry-based pulse sequence called PITHIRDS-CT is introduced and demonstrated experimentally. (13)C NMR data for singly-(13)C-labeled amino acid powders and amyloid fibrils indicate the effectiveness of PITHIRDS-CT in measurements of intermolecular distances in solids. (15)N-detected and (13)C-detected measurements of intramolecular (15)N-(15)N distances in peptides with alpha-helical and beta-sheet structures indicate the utility of PITHIRDS-CT in studies of molecular conformations, especially measurements of backbone psi torsion angles in peptides containing uniformly (15)N- and (13)C-labeled amino acids.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
| |
Collapse
|
31
|
Tseng YH, Tsai YL, Tsai TWT, Lin CP, Huang SH, Mou CY, Chan JCC. Double-quantum filtered heteronuclear correlation spectroscopy under magic angle spinning. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2007; 31:55-61. [PMID: 17276042 DOI: 10.1016/j.ssnmr.2007.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 12/29/2006] [Accepted: 01/02/2007] [Indexed: 05/13/2023]
Abstract
We present a simple experimental method to extract the van Vleck second moment of a multiple-spin system under high-resolution condition. The idea is to incorporate a double-quantum (DQ) filter into the pulse sequence of heteronuclear correlation spectroscopy so that a DQ excitation profile can be obtained by measuring a series of 2D spectra. The effects of spinning frequency and proton decoupling are demonstrated on the measurements of two model compounds, viz. hydroxyapatite and brushite. Based on the results obtained for the model compounds, the P-31 homonuclear second moment of the apatite component in rat dentin is characterized. The method is generally suited for the study of bone, enamel and dentin.
Collapse
Affiliation(s)
- Yao-Hung Tseng
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
32
|
Shewmaker F, Wickner RB, Tycko R. Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc Natl Acad Sci U S A 2006; 103:19754-9. [PMID: 17170131 PMCID: PMC1750918 DOI: 10.1073/pnas.0609638103] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The [PSI(+)] prion of Saccharomyces cerevisiae is a self-propagating amyloid form of Sup35p, a subunit of the translation termination factor. Using solid-state NMR we have examined the structure of amyloid fibrils formed in vitro from purified recombinant Sup35(1-253), consisting of the glutamine- and asparagine-rich N-terminal 123-residue prion domain (N) and the adjacent 130-residue highly charged M domain. Measurements of magnetic dipole-dipole couplings among (13)C nuclei in a series of Sup35NM fibril samples, (13)C-labeled at backbone carbonyl sites of Tyr, Leu, or Phe residues or at side-chain methyl sites of Ala residues, indicate intermolecular (13)C-(13)C distances of approximately 0.5 nm for nearly all sites in the N domain. Certain sites in the M domain also exhibit intermolecular distances of approximately 0.5 nm. These results indicate that an in-register parallel beta-sheet structure underlies the [PSI(+)] prion phenomenon.
Collapse
Affiliation(s)
| | - Reed B. Wickner
- *Laboratory of Biochemistry and Genetics and
- To whom correspondence may be addressed at:
Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, Bethesda, MD 20892-0830. E-mail:
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence may be addressed at:
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 112, Bethesda, MD 20892-0520. E-mail:
| |
Collapse
|
33
|
|
34
|
Bu Z, Shi Y, Callaway DJE, Tycko R. Molecular alignment within beta-sheets in Abeta(14-23) fibrils: solid-state NMR experiments and theoretical predictions. Biophys J 2006; 92:594-602. [PMID: 17056725 PMCID: PMC1751388 DOI: 10.1529/biophysj.106.091017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report investigations of the molecular structure of amyloid fibrils formed by residues 14-23 of the beta-amyloid peptide associated with Alzheimer's disease (Abeta(14-23)), using solid-state nuclear magnetic resonance (NMR) techniques in conjunction with electron microscopy and atomic force microscopy. The NMR measurements, which include two-dimensional proton-mediated (13)C-(13)C exchange and two-dimensional relayed proton-mediated (13)C-(13)C exchange spectra, show that Abeta(14-23) fibrils contain antiparallel beta-sheets with a registry of backbone hydrogen bonds that aligns residue 17+k of each peptide molecule with residue 22-k of neighboring molecules in the same beta-sheet. We compare these results, as well as previously reported experimental results for fibrils formed by other beta-amyloid fragments, with theoretical predictions of molecular alignment based on databases of residue-specific alignments in antiparallel beta-sheets in known protein structures. While the theoretical predictions are not in exact agreement with the experimental results, they facilitate the design of experiments by suggesting a small number of plausible alignments that are readily distinguished by solid-state NMR.
Collapse
Affiliation(s)
- Zimei Bu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
35
|
Kristiansen PE, Carravetta M, van Beek JD, Lai WC, Levitt MH. Theory and applications of supercycled symmetry-based recoupling sequences in solid-state nuclear magnetic resonance. J Chem Phys 2006; 124:234510. [PMID: 16821932 DOI: 10.1063/1.2205857] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the theoretical principles of supercycled symmetry-based recoupling sequences in solid-state magic-angle-spinning NMR. We discuss the construction procedure of the SR26 pulse sequence, which is a particularly robust sequence for double-quantum homonuclear dipole-dipole recoupling. The supercycle removes destructive higher-order average Hamiltonian terms and renders the sequence robust over long time intervals. We demonstrate applications of the SR26 sequence to double-quantum spectroscopy, homonuclear spin counting, and determination of the relative orientations of chemical shift anisotropy tensors.
Collapse
Affiliation(s)
- Per Eugen Kristiansen
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041-Blindern, 0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
36
|
Schmedt auf der Günne J. Effective dipolar couplings determined by dipolar dephasing of double-quantum coherences. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 180:186-96. [PMID: 16524751 DOI: 10.1016/j.jmr.2006.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 02/14/2006] [Accepted: 02/14/2006] [Indexed: 05/07/2023]
Abstract
It is shown how homonuclear distances and homonuclear dipolar lattice sums between spin-1/2 nuclei can be measured by a pulsed solid-state NMR experiment under magic-angle spinning conditions. The presented technique is based on double-quantum coherence filtering. Instead of measuring a build-up of double-quantum coherence the pulse sequence is designed to dephase double-quantum coherence. This is achieved by exciting double-quantum coherence either with the help of the through-space dipolar coupling or the through-bond dipolar coupling while the dephasing relies on the through-space dipolar coupling as selected by a gamma-encoded pulse sequence from the C/R symmetry class. Since dephasing curves can be normalized on zero dephasing, it is possible to analyze the initial dephasing regime and hence determine dipolar lattice sums (effective dipolar couplings) in multiple-spin systems. A formula for the effective dipolar coupling is derived theoretically and validated by numerical calculations and experiments on crystalline model compounds for (13)C and (31)P spin systems. The double-quantum dephasing experiment can be combined with constant-time data sampling to compensate for relaxation effects, consequently only two experimental data points are necessary for a single distance measurement. The phase cycling overhead for the constant-time experiment is minimal because a short cogwheel phase cycle exists. A 2D implementation is demonstrated on [(13)C(3)]alanine.
Collapse
Affiliation(s)
- Jörn Schmedt auf der Günne
- Munich University (LMU), Department of Chemistry and Biochemistry, Butenandtstr. 5-13 (house D), 81377 Munich, Germany.
| |
Collapse
|
37
|
Tycko R. Characterization of amyloid structures at the molecular level by solid state nuclear magnetic resonance spectroscopy. Methods Enzymol 2006; 413:103-22. [PMID: 17046393 PMCID: PMC1633711 DOI: 10.1016/s0076-6879(06)13006-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Solid state nuclear magnetic resonance (NMR) spectroscopy is particularly useful in structural studies of amyloid fibrils because solid state NMR techniques have unique capabilities as site-specific, molecular-level structural probes of noncrystalline materials. These techniques provide experimental data that strongly constrain the secondary, tertiary, and quaternary structures of amyloid fibrils, permitting the development of experimentally based structural models. Examples of techniques that are applicable to amyloid samples prepared with isotopic labeling of specific sites and to samples prepared with uniform isotopic labeling of selected residues are presented, illustrating the utility of the various techniques and labeling schemes. Information regarding the preparation of amyloid samples for solid state NMR measurements is also included.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 112, Bethesda, Maryland 20892-0520, e-mail: , phone: 301-402-8272, fax: 301-496-0825
| |
Collapse
|
38
|
Tseng YH, Mou Y, Mou CY, Chan JCC. Double-quantum NMR spectroscopy based on finite pulse RFDR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2005; 27:266-270. [PMID: 15799885 DOI: 10.1016/j.ssnmr.2005.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 01/21/2005] [Indexed: 05/24/2023]
Abstract
We demonstrate that the finite pulse RFDR sequence (J. Chem. Phys. 114 (2001) 8473) can be used effectively for 31P double-quantum NMR spectroscopy at a spinning frequency of 10 kHz. The 31P NMR data measured for hydroxyapatite and octacalcium phosphate show that sizable double-quantum excitation efficiency can be obtained with the ratio of the recoupling field to spinning frequency set equal to 1.67.
Collapse
Affiliation(s)
- Yao-Hung Tseng
- Department of Chemistry, National Taiwan University, College of Science, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
39
|
Antzutkin ON. Amyloidosis of Alzheimer's Abeta peptides: solid-state nuclear magnetic resonance, electron paramagnetic resonance, transmission electron microscopy, scanning transmission electron microscopy and atomic force microscopy studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2004; 42:231-246. [PMID: 14745804 DOI: 10.1002/mrc.1341] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aggregation cascade for Alzheimer's amyloid-beta peptides, its relevance to neurotoxicity in the course of Alzheimer's disease and experimental methods useful for these studies are discussed. Details of the solid-phase peptide synthesis and sample preparation procedures for Alzheimer's beta-amyloid fibrils are given. Recent progress in obtaining structural constraints on Abeta-fibrils from solid-state NMR and scanning transmission electron microscopy (STEM) data is discussed. Polymorphism of amyloid fibrils and oligomers of the 'Arctic' mutant of Abeta(1-40) was studied by (1)H,(13)C solid-state NMR, transmission electron microscopy (TEM) and atomic force microscopy (AFM), and a real-time aggregation of different polymorphs of the peptide was observed with the aid of in situ AFM. Recent results on binding of Cu(II) ions and Al-citrate and Al-ATP complexes to amyloid fibrils, as studied by electron paramagnetic resonance (EPR) and solid-state (27)Al NMR techniques, are also presented.
Collapse
Affiliation(s)
- Oleg N Antzutkin
- Division of Chemistry, Luleå University of Technology, S-971 87 Luleå, Sweden.
| |
Collapse
|
40
|
Petkova AT, Buntkowsky G, Dyda F, Leapman RD, Yau WM, Tycko R. Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 2004; 335:247-60. [PMID: 14659754 DOI: 10.1016/j.jmb.2003.10.044] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report solid state nuclear magnetic resonance (NMR) measurements that probe the supramolecular organization of beta-sheets in the cross-beta motif of amyloid fibrils formed by residues 11-25 of the beta-amyloid peptide associated with Alzheimer's disease (Abeta(11-25)). Fibrils were prepared at pH 7.4 and pH 2.4. The solid state NMR data indicate that the central hydrophobic segment of Abeta(11-25) (sequence LVFFA) adopts a beta-strand conformation and participates in antiparallel beta-sheets at both pH values, but that the registry of intermolecular hydrogen bonds is pH-dependent. Moreover, both registries determined for Abeta(11-25) fibrils are different from the hydrogen bond registry in the antiparallel beta-sheets of Abeta(16-22) fibrils at pH 7.4 determined in earlier solid state NMR studies. In all three cases, the hydrogen bond registry is highly ordered, with no detectable "registry-shift" defects. These results suggest that the supramolecular organization of beta-sheets in amyloid fibrils is determined by a sensitive balance of multiple side-chain-side-chain interactions. Recent structural models for Abeta(11-25) fibrils based on X-ray fiber diffraction data are inconsistent with the solid state NMR data at both pH values.
Collapse
Affiliation(s)
- A T Petkova
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | | | | | | | |
Collapse
|
41
|
Gordon DJ, Balbach JJ, Tycko R, Meredith SC. Increasing the amphiphilicity of an amyloidogenic peptide changes the beta-sheet structure in the fibrils from antiparallel to parallel. Biophys J 2004; 86:428-34. [PMID: 14695285 PMCID: PMC1303808 DOI: 10.1016/s0006-3495(04)74119-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2003] [Accepted: 08/27/2003] [Indexed: 12/31/2022] Open
Abstract
Solid-state NMR measurements have been reported for four peptides derived from beta-amyloid peptide Abeta(1-42): Abeta(1-40), Abeta(10-35), Abeta(16-22), and Abeta(34-42). Of these, the first two are predicted to be amphiphilic and were reported to form parallel beta-sheets, whereas the latter two peptides appear nonamphiphilic and adopt an antiparallel beta-sheet organization. These results suggest that amphiphilicity may be significant in determining fibril structure. Here, we demonstrate that acylation of Abeta(16-22) with octanoic acid increases its amphiphilicity and changes the organization of fibrillar beta-sheet from antiparallel to parallel. Electron microscopy, Congo Red binding, and one-dimensional 13C NMR measurements demonstrate that octanoyl-Abeta(16-22) forms typical amyloid fibrils. Based on the stability of monolayers at the air-water interface, octanoyl-Abeta(16-22) is more amphiphilic than Abeta(16-22). Measurements of 13C-13C and 15N-13C nuclear magnetic dipole-dipole couplings in isotopically labeled fibril samples, using the constant-time finite-pulse radiofrequency-driven recoupling (fpRFDR-CT) and rotational echo double resonance (REDOR) solid-state NMR techniques, demonstrate that octanoyl-Abeta(16-22) fibrils are composed of parallel beta-sheets, whereas Abeta(16-22) fibrils are composed of antiparallel beta-sheets. These data demonstrate that amphiphilicity is critical in determining the structural organization of beta-sheets in the amyloid fibril. This work also shows that all amyloid fibrils do not share a common supramolecular structure, and suggests a method for controlling the structure of amyloid fibrils.
Collapse
Affiliation(s)
- David J Gordon
- Department of Biochemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
42
|
Dvinskikh SV, Sandström D, Luz Z, Zimmermann H, Maliniak A. Molecular structure and order of hexaoctyloxy-rufigallol in the solid and columnar phases: Analysis of 2H–13C dipolar and 13C chemical-shift interactions. J Chem Phys 2003. [DOI: 10.1063/1.1576753] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Antzutkin ON, Balbach JJ, Tycko R. Site-specific identification of non-beta-strand conformations in Alzheimer's beta-amyloid fibrils by solid-state NMR. Biophys J 2003; 84:3326-35. [PMID: 12719262 PMCID: PMC1302893 DOI: 10.1016/s0006-3495(03)70057-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The most well-established structural feature of amyloid fibrils is the cross-beta motif, an extended beta-sheet structure formed by beta-strands oriented perpendicular to the long fibril axis. Direct experimental identification of non-beta-strand conformations in amyloid fibrils has not been reported previously. Here we report the results of solid-state NMR measurements on amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1-40)), prepared synthetically with pairs of (13)C labels at consecutive backbone carbonyl sites. The measurements probe the peptide backbone conformation in residues 24-30, a segment where a non-beta-strand conformation has been suggested by earlier sequence analysis, cross-linking experiments, and molecular modeling. Data obtained with the fpRFDR-CT, DQCSA, and 2D MAS exchange solid-state NMR techniques, which provide independent constraints on the phi and psi backbone torsion angles between the labeled carbonyl sites, indicate non-beta-strand conformations at G25, S26, and G29. These results represent the first site-specific identification and characterization of non-beta-strand peptide conformations in an amyloid fibril.
Collapse
Affiliation(s)
- Oleg N Antzutkin
- Department of Inorganic Chemistry, Luleå University of Technology, Luleå, Sweden
| | | | | |
Collapse
|
44
|
Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R. A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 2002; 99:16742-7. [PMID: 12481027 PMCID: PMC139214 DOI: 10.1073/pnas.262663499] [Citation(s) in RCA: 1505] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We present a structural model for amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1-40)), based on a set of experimental constraints from solid state NMR spectroscopy. The model additionally incorporates the cross-beta structural motif established by x-ray fiber diffraction and satisfies constraints on Abeta(1-40) fibril dimensions and mass-per-length determined from electron microscopy. Approximately the first 10 residues of Abeta(1-40) are structurally disordered in the fibrils. Residues 12-24 and 30-40 adopt beta-strand conformations and form parallel beta-sheets through intermolecular hydrogen bonding. Residues 25-29 contain a bend of the peptide backbone that brings the two beta-sheets in contact through sidechain-sidechain interactions. A single cross-beta unit is then a double-layered beta-sheet structure with a hydrophobic core and one hydrophobic face. The only charged sidechains in the core are those of D23 and K28, which form salt bridges. Fibrils with minimum mass-per-length and diameter consist of two cross-beta units with their hydrophobic faces juxtaposed.
Collapse
Affiliation(s)
- Aneta T Petkova
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Balbach JJ, Petkova AT, Oyler NA, Antzutkin ON, Gordon DJ, Meredith SC, Tycko R. Supramolecular structure in full-length Alzheimer's beta-amyloid fibrils: evidence for a parallel beta-sheet organization from solid-state nuclear magnetic resonance. Biophys J 2002; 83:1205-16. [PMID: 12124300 PMCID: PMC1302222 DOI: 10.1016/s0006-3495(02)75244-2] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We report constraints on the supramolecular structure of amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (A beta(1-40)) obtained from solid-state nuclear magnetic resonance (NMR) measurements of intermolecular dipole-dipole couplings between (13)C labels at 11 carbon sites in residues 2 through 39. The measurements are carried out under magic-angle spinning conditions, using the constant-time finite-pulse radiofrequency-driven recoupling (fpRFDR-CT) technique. We also present one-dimensional (13)C magic-angle spinning NMR spectra of the labeled A beta(1-40) samples. The fpRFDR-CT data reveal nearest-neighbor intermolecular distances of 4.8 +/- 0.5 A for carbon sites from residues 12 through 39, indicating a parallel alignment of neighboring peptide chains in the predominantly beta-sheet structure of the amyloid fibrils. The one-dimensional NMR spectra indicate structural order at these sites. The fpRFDR-CT data and NMR spectra also indicate structural disorder in the N-terminal segment of A beta(1-40), including the first nine residues. These results place strong constraints on any molecular-level structural model for full-length beta-amyloid fibrils.
Collapse
Affiliation(s)
- John J Balbach
- Laboratory of Chemical Physics, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, Maryland 20892-0520 USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Oyler NA, Tycko R. Multiple Quantum 13C NMR Spectroscopy in Solids under High-Speed Magic-Angle Spinning. J Phys Chem B 2002. [DOI: 10.1021/jp020906m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nathan A. Oyler
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| |
Collapse
|
47
|
Brinkmann A, Schmedt auf der Günne J, Levitt MH. Homonuclear zero-quantum recoupling in fast magic-angle spinning nuclear magnetic resonance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 156:79-96. [PMID: 12081445 DOI: 10.1006/jmre.2002.2525] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Solid-state magic-angle-spinning NMR pulse sequences which implement zero-quantum homonuclear dipolar recoupling are designed with the assistance of symmetry theory. The pulse sequences are compensated on a short time scale by the use of composite pulses and on a longer time scale by the use of supercycles. (13)C dipolar recoupling is demonstrated in powdered organic solids at high spinning frequencies. The new sequences are compared to existing pulse sequences by means of numerical simulations. Experimental two-dimensional magnetization exchange spectra are shown for [U-(13)C]-L-tyrosine.
Collapse
Affiliation(s)
- Andreas Brinkmann
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 10691, Sweden
| | | | | |
Collapse
|
48
|
Petkova AT, Tycko R. Sensitivity enhancement in structural measurements by solid state NMR through pulsed spin locking. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 155:293-299. [PMID: 12036340 DOI: 10.1006/jmre.2002.2519] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Free induction decay (FID) signals in solid state NMR measurements performed with magic angle spinning can often be extended in time by factors on the order of 10 by a simple pulsed spin locking technique. The sensitivity of a structural measurement in which the structural information is contained in the dependence of the integrated FID amplitude on a preceding evolution period can therefore be enhanced substantially by pulsed spin locking in the signal detection period. We demonstrate sensitivity enhancements in a variety of solid state NMR techniques that are applicable to selectively isotopically labeled samples, including 13C-15N rotational echo double resonance (REDOR), 13C-13C dipolar recoupling measurements using the constant-time finite-pulse radio-frequency-driven recoupling (fpRFDR-CT) and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) techniques, and torsion angle measurements using the double quantum chemical shift anisotropy (DQCSA) technique. Further, we demonstrate that the structural information in the solid state NMR data is not distorted by pulsed spin locking in the detection period.
Collapse
Affiliation(s)
- Aneta T Petkova
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0520, USA
| | | |
Collapse
|