1
|
Chen F, Zhong M, Luo W, Zhuang W, Zhang B, Sun J, Lai T, Lu X. Changes in the starch quality of adlay seed varieties (Coix lacryma-jobi L.) from different regions in China after high-temperature storage. Int J Biol Macromol 2024; 277:134284. [PMID: 39084433 DOI: 10.1016/j.ijbiomac.2024.134284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The effects of high-temperature storage at 37 °C on the crystallinity, pasting, rheological, and thermal properties of adlay seed starches from three famous Chinese varieties were studied. The results showed that high-temperature storage altered the natural structure of adlay seed starch, resulting in increased peak viscosity for all starch pastes after one month of storage at 37 °C. Jinsha adlay seed starch (JSC), which had the highest amylose content (11.21 %), showed increased D50, relative crystallinity and OD values, demonstrating strong regrowth ability and hydrophobicity, with starch gels having greater hardness and gumminess after storage. In contrast, Pucheng adlay seed starch (PSC) and waxy Ninghua adlay seed starch (WSC), with similar amylose proportions, showed distinct starch gel properties. PSC (with an amylose content of 3.35 %) exhibited better starch gel properties, whereas WSC (amylose content of 5.74 %) demonstrated improved gumminess and chewiness after storage and exhibited stronger anti-starch regrowth capabilities. This study provides valuable insights into the selection of future starches based on their specific processing requirements.
Collapse
Affiliation(s)
- Feng Chen
- Fujian Agricultural Vocational Technical College, Fuzhou 350119, China
| | - Meifang Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wencan Luo
- Fujian Food and Drug Certification Center, Fuzhou 350002, China
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binle Zhang
- Department of Food and Biology Engineering, Zhangzhou Profession and Technology Institute, Zhangzhou 363000, China
| | - Jingdi Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tengqiang Lai
- Fujian Agricultural Vocational Technical College, Fuzhou 350119, China
| | - Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Wang Z, Zhang S, Wang H, Huang J, Wang L. Effect of synergistic fermentation of Saccharomyces cerevisiae and Lactobacillus plantarum on thermal properties of hyaluronic acid-wheat starch system. Int J Biol Macromol 2024; 267:131542. [PMID: 38608973 DOI: 10.1016/j.ijbiomac.2024.131542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Hyaluronic acid (HA), as a multifunctional hydrophilic polysaccharide, is potentially beneficial in improving the thermal stability of fermented modified starches, but relevant insights at the molecular level are lacking. The aim of this study was to investigate the effect of different levels (0 %, 3 %, 6 %, 9 %, 12 % and 15 %) of HA on the structural, thermal and pasting properties of wheat starch co-fermented with Saccharomyces cerevisiae and Lactobacillus plantarum. We found that the addition of HA increased the median particle size of fermented starch granules from 16.387 to 17.070 μm. Meanwhile, the crystallinity of fermented starch was negatively correlated with the HA content, decreasing from 14.70 % to 12.80 % (p < 0.05). Fourier transform infrared spectroscopy results confirmed that HA interacted with starch granules and water molecules mainly through hydrogen bonding. Thermal analyses showed that the thermal peak of the composite correlated with the HA concentration, reaching a maximum of 73.17 °C at 12 % HA. In addition, HA increases the pasting temperature, reduces the peak, breakdown and setback viscosities of starch. This study demonstrates the role of HA in improving the thermal stability of fermented starch, providing new insights for traditional fermented food research and the application of HA in food processing.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Sijie Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Huiping Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Luyang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
3
|
Philo JS. SEDNTERP: a calculation and database utility to aid interpretation of analytical ultracentrifugation and light scattering data. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:233-266. [PMID: 36792822 DOI: 10.1007/s00249-023-01629-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/17/2023]
Abstract
Proper interpretation of analytical ultracentrifugation (AUC) data for purified proteins requires ancillary information and calculations to account for factors such as buoyancy, buffer viscosity, hydration, and temperature. The utility program SEDNTERP has been widely used by the AUC community for this purpose since its introduction in the mid-1990s. Recent extensions to this program (1) allow it to incorporate data from diffusion as well as AUC experiments; and (2) allow it to calculate the refractive index of buffer solutions (based on the solute composition of the buffer), as well as the specific refractive increment (dn/dc) of proteins based on their composition. These two extensions should be quite useful to the light scattering community as well as helpful for AUC users. The latest version also adds new terms to the partial specific volume calculations which should improve the accuracy, particularly for smaller proteins and peptides, and can calculate the viscosity of buffers containing heavy isotopes of water. It also uses newer, more accurate equations for the density of water and for the hydrodynamic properties of rods and disks. This article will summarize and review all the equations used in the current program version and the scientific background behind them. It will tabulate the values used to calculate the partial specific volume and dn/dc, as well as the polynomial coefficients used in calculating the buffer density and viscosity (most of which have not been previously published), as well as the new ones used in calculating the buffer refractive index.
Collapse
Affiliation(s)
- John S Philo
- Alliance Protein Laboratories, San Diego, CA, USA.
| |
Collapse
|
4
|
Kruchinin SE, Kislinskaya EE, Chuev GN, Fedotova MV. Protein 3D Hydration: A Case of Bovine Pancreatic Trypsin Inhibitor. Int J Mol Sci 2022; 23:ijms232314785. [PMID: 36499117 PMCID: PMC9737982 DOI: 10.3390/ijms232314785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Characterization of the hydrated state of a protein is crucial for understanding its structural stability and function. In the present study, we have investigated the 3D hydration structure of the protein BPTI (bovine pancreatic trypsin inhibitor) by molecular dynamics (MD) and the integral equation method in the three-dimensional reference interaction site model (3D-RISM) approach. Both methods have found a well-defined hydration layer around the protein and revealed the localization of BPTI buried water molecules corresponding to the X-ray crystallography data. Moreover, under 3D-RISM calculations, the obtained positions of waters bound firmly to the BPTI sites are in reasonable agreement with the experimental results mentioned above for the BPTI crystal form. The analysis of the 3D hydration structure (thickness of hydration shell and hydration numbers) was performed for the entire protein and its polar and non-polar parts using various cut-off distances taken from the literature as well as by a straightforward procedure proposed here for determining the thickness of the hydration layer. Using the thickness of the hydration shell from this procedure allows for calculating the total hydration number of biomolecules properly under both methods. Following this approach, we have obtained the thickness of the BPTI hydration layer of 3.6 Å with 369 water molecules in the case of MD simulation and 3.9 Å with 333 water molecules in the case of the 3D-RISM approach. The above procedure was also applied for a more detailed description of the BPTI hydration structure near the polar charged and uncharged radicals as well as non-polar radicals. The results presented for the BPTI as an example bring new knowledge to the understanding of protein hydration.
Collapse
Affiliation(s)
- Sergey E. Kruchinin
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
| | - Ekaterina E. Kislinskaya
- Department of Fundamental and Applied Chemistry, Institute of Mathematics, Information Technology and Science, Ivanovo State University, Ermak St., 39, 153025 Ivanovo, Russia
| | - Gennady N. Chuev
- Institute of Theoretical and Experimental Biophysics, The Russian Academy of Sciences, Institutskaya St., Pushchino, 142290 Moscow, Russia
- Correspondence: (G.N.C.); (M.V.F.)
| | - Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
- Correspondence: (G.N.C.); (M.V.F.)
| |
Collapse
|
5
|
Bokor M, Házy E, Tantos Á. Wide-Line NMR Melting Diagrams, Their Thermodynamic Interpretation, and Secondary Structure Predictions for A30P and E46K α-Synuclein. ACS OMEGA 2022; 7:18323-18330. [PMID: 35694516 PMCID: PMC9178613 DOI: 10.1021/acsomega.2c00477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease is thought to be caused by aggregation of the intrinsically disordered protein, α-synuclein. Two amyloidogenic variants, A30P, and E46K familial mutants were investigated by wide-line 1H NMR spectrometry as a completion of our earlier work on wild-type and A53T α-synuclein (Bokor M. et al. WT and A53T α-synuclein systems: melting diagram and its new interpretation. Int. J. Mol. Sci.2020, 21, 3997.). A monolayer of mobile water molecules hydrates A30P α-synuclein at the lowest potential barriers (temperatures), while E46K α-synuclein has here third as much mobile hydration, insufficient for functionality. According to wide-line 1H NMR results and secondary structure predictions, E46K α-synuclein is more compact than the A30P variant and they are more compact than the wild type (WT) and A53T variants. Linear hydration vs potential barrier sections of A30P α-synuclein shows one and E46K shows two slopes. The different slopes of the latter between potential barriers E a,1 and E a,2 reflect a change in water-protein interactions. The 31-32% homogeneous potential barrier distribution of the protein-water bonds refers to a non-negligible amount of secondary structures in all four α-synuclein variants. The secondary structures detected by wide-line 1H NMR are solvent-exposed α-helices, which are predicted by secondary structure models. β-sheets are only minor components of the protein structures as three- and eight-state predicted secondary structures are dominated by α-helices and coils.
Collapse
Affiliation(s)
- Mónika Bokor
- Institute
for Solid State Physics and Optics, Wigner
Research Centre for Physics, 1121 Budapest, Hungary
| | - Eszter Házy
- Institute
of Enzymology, Research Centre for Natural
Sciences, 1117 Budapest, Hungary
| | - Ágnes Tantos
- Institute
of Enzymology, Research Centre for Natural
Sciences, 1117 Budapest, Hungary
| |
Collapse
|
6
|
Ma S, Wang Z, Tian X, Sun B, Huang J, Yan J, Bao Q, Wang X. Effect of synergistic fermentation of Lactobacillus plantarum and Saccharomyces cerevisiae on thermal properties of wheat bran dietary fiber-wheat starch system. Food Chem 2022; 373:131417. [PMID: 34710698 DOI: 10.1016/j.foodchem.2021.131417] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022]
Abstract
A synergistic fermentation system was constructed using single strains of Lactobacillus plantarum and Saccharomyces cerevisiae cultured separately; wheat starches containing different wheat bran dietary fiber (WBDF) levels (0, 3, 6, 9 & 12%) were fermented in this system. The thermal properties of materials were measured by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and rapid viscosity analysis (RVA). The results showed that WBDF may alter the thermal behavior of starch by forming hydrogen bonds with the leached starch chains and limit the available water of starch. The viscosity properties (peak, trough, and final viscosity) and setback decreased, and they were negatively correlated with the WBDF levels. In addition, dynamic rheological measurements showed that the addition of WBDF significantly enhanced the elasticity of fermented starch gels while slightly improving the mechanical strength, and 6% level of WBDF had the largest contribution. This study provides some data for the production of high dietary fiber fermented flour products, both common and gluten-free.
Collapse
Affiliation(s)
- Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoling Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jihong Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Jingyao Yan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qingdan Bao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Correira JM, Webb LJ. Formation and Characterization of a Stable Monolayer of Active Acetylcholinesterase on Planar Gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3501-3513. [PMID: 35276042 DOI: 10.1021/acs.langmuir.1c03399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enzyme activity is the basis for many biosensors where a catalytic event is used to detect the presence and amount of a biomolecule of interest. To create a practical point-of-care biosensor, these enzymes need to be removed from their native cellular environments and immobilized on an abiological surface to rapidly transduce a biochemical signal into an interpretable readout. This immobilization often leads to loss of activity due to unfolded, aggregated, or improperly oriented enzymes when compared to the native state. In this work, we characterize the formation and surface packing density of a stable monolayer of acetylcholinesterase (AChE) immobilized on a planar gold surface and quantify the extent of activity loss following immobilization. Using spectroscopic ellipsometry, we determined that the surface concentration of AChE on a saturated Au surface in a buffered solution was 2.77 ± 0.21 pmol cm-2. By calculating the molecular volume of hydrated AChE, corresponding to a sphere of 6.19 nm diameter, divided by the total volume at the AChE-Au interface, we obtain a surface packing density of 33.4 ± 2.5% by volume. This corresponds to 45.1 ± 3.4% of the theoretical maximum monolayer coverage, assuming hexagonal packing. The true value, however, may be larger due to unfolding of enzymes to occupy a larger volume. The enzyme activity and kinetic measurements showed a 90.6 ± 1.4% decrease in specific activity following immobilization. Finally, following storage in a buffered solution for over 100 days at both room temperature and 4 °C, approximately 80% of this enzyme activity was retained. This contrasts with the native aqueous enzyme, which loses approximately 75% of its activity within 1 day and becomes entirely inactive within 6 days.
Collapse
Affiliation(s)
- Joshua M Correira
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| | - Lauren J Webb
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
8
|
Relationships between Molecular Structure of Carbohydrates and Their Dynamic Hydration Shells Revealed by Terahertz Time-Domain Spectroscopy. Int J Mol Sci 2021; 22:ijms222111969. [PMID: 34769399 PMCID: PMC8584907 DOI: 10.3390/ijms222111969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Despite more than a century of research on the hydration of biomolecules, the hydration of carbohydrates is insufficiently studied. An approach to studying dynamic hydration shells of carbohydrates in aqueous solutions based on terahertz time-domain spectroscopy assay is developed in the current work. Monosaccharides (glucose, galactose, galacturonic acid) and polysaccharides (dextran, amylopectin, polygalacturonic acid) solutions were studied. The contribution of the dissolved carbohydrates was subtracted from the measured dielectric permittivities of aqueous solutions based on the corresponding effective medium models. The obtained dielectric permittivities of the water phase were used to calculate the parameters describing intermolecular relaxation and oscillatory processes in water. It is established that all of the analyzed carbohydrates lead to the increase of the binding degree of water. Hydration shells of monosaccharides are characterized by elevated numbers of hydrogen bonds and their mean energies compared to undisturbed water, as well as by elevated numbers and the lifetime of free water molecules. The axial orientation of the OH(4) group of sugar facilitates a wider distribution of hydrogen bond energies in hydration shells compared to equatorial orientation. The presence of the carboxylic group affects water structure significantly. The hydration of polysaccharides is less apparent than that of monosaccharides, and it depends on the type of glycosidic bonds.
Collapse
|
9
|
Navarro JL, Moiraghi M, Quiroga FM, León AE, Steffolani ME. Effect of Wholewheat Flour Particle Shape Obtained by Different Milling Processes on Physicochemical Characteristics and Quality of Bread. Food Technol Biotechnol 2020; 58:325-336. [PMID: 33281488 PMCID: PMC7709460 DOI: 10.17113/ftb.58.03.20.6766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research background Wholewheat flour is a very good source of nutritional compounds and functional ingredients for human diet. However, it causes negative effect on bread quality. Different milling techniques can be used to obtain wholewheat flour, minimizing the negative effect of both bran and germ on bread quality. The aim of this work is to study the effect of particle size and shape of wholegrain flour on the interaction among the different components, water distribution, dough rheology and bread volume. Experimental approach Wholewheat flour of three varieties (Klein Rayo, Fuste and INTA 815) was obtained in cyclonic, hammer and roller mills. The characteristics of wholewheat flour were explored, and the water distribution and rheological properties of dough were determined by thermogravimetric analysis and Mixolab test, respectively. Finally, microscale bread was prepared. Results and conclusions The amount of water-soluble pentosans, damaged starch and wet gluten was affected by the milling procedure. Regarding dough rheological properties, wholewheat flour obtained in hammer mill had the lowest water absorption capacity and the highest developing time. This result could be mainly attributed to particle shape in these samples with large amount of endosperm attached to the bran, hindering protein unfolding. Thermogravimetric analysis showed that both fine and large bran particle size seem to have the same effect on water properties in wholewheat dough during heating. Bread made with Klein Rayo variety had the highest specific volume, indicating that wheat with high protein content and breadmaking quality is needed to make wholewheat bread. The results of this work showed that particle shape, rather than particle size, affected the quality of wholewheat flour for breadmaking. Novelty and scientific contribution The effect of milling type and particle shape of the wholewheat flour had a greater effect than the wheat variety. Thus, the wholegrain milling process should be carefully selected taking to account the shape of the produced particle. This may open new opportunities for developing wholewheat bread with better acceptance by consumers.
Collapse
Affiliation(s)
- José Luis Navarro
- Institute of Food Science and Technology of Córdoba (ICYTAC), CONICET-UNC Valparaiso and Rogelio Martínez Avenue, 5000 Córdoba, Argentina
| | - Malena Moiraghi
- Institute of Food Science and Technology of Córdoba (ICYTAC), CONICET-UNC Valparaiso and Rogelio Martínez Avenue, 5000 Córdoba, Argentina.,Department of Biological Chemistry, Faculty of Agricultural Sciences, National University of Córdoba (UNC), Valparaiso and Rogelio Martínez Avenue, 5000 Cordoba, Argentina
| | - Fernanda Micaela Quiroga
- Institute of Food Science and Technology of Córdoba (ICYTAC), CONICET-UNC Valparaiso and Rogelio Martínez Avenue, 5000 Córdoba, Argentina
| | - Alberto Edel León
- Institute of Food Science and Technology of Córdoba (ICYTAC), CONICET-UNC Valparaiso and Rogelio Martínez Avenue, 5000 Córdoba, Argentina.,Department of Biological Chemistry, Faculty of Agricultural Sciences, National University of Córdoba (UNC), Valparaiso and Rogelio Martínez Avenue, 5000 Cordoba, Argentina
| | - María Eugenia Steffolani
- Institute of Food Science and Technology of Córdoba (ICYTAC), CONICET-UNC Valparaiso and Rogelio Martínez Avenue, 5000 Córdoba, Argentina.,Department of Biological Chemistry, Faculty of Agricultural Sciences, National University of Córdoba (UNC), Valparaiso and Rogelio Martínez Avenue, 5000 Cordoba, Argentina
| |
Collapse
|
10
|
|
11
|
Karoyo A, Dehabadi L, Alabi W, Simonson CJ, Wilson LD. Hydration and Sorption Properties of Raw and Milled Flax Fibers. ACS OMEGA 2020; 5:6113-6121. [PMID: 32226894 PMCID: PMC7098004 DOI: 10.1021/acsomega.0c00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The physicochemical and hydration properties of mechanically modified flax fibers (FFs) were investigated herein. Raw flax fibers (FF-R) were ball-milled and sieved through mesh with various aperture sizes (420, 210, and 125 μm) to achieve modified samples, denoted as FF-420, FF-210, and FF-125, respectively. The physicochemical and hydration properties of FF-R with variable particle sizes were characterized using several complementary techniques: microscopy (SEM), spectroscopy (FT-IR, XRD, and XPS), thermoanalytical methods (DSC and TGA), adsorption isotherms using gas/dye probes, and solvent swelling studies in liquid H2O. The hydration of FF biomass is governed by the micropore structure and availability of active surface sites, as revealed by the adsorption isotherm results and the TGA/DSC profiles of the hydrated samples. Gravimetric water swelling, water retention values, and vapor adsorption results provide further support that particle size reduction of FF-R upon milling parallels the changes in surface chemical and physicochemical properties relevant to adsorption/hydration in the modified FF materials. This study outlines a facile strategy for the valorization and tuning of the physicochemical properties of agricultural FF biomass via mechanical treatment for diverse applications in biomedicine, energy recovery, food, and biosorbents for environmental remediation.
Collapse
Affiliation(s)
- Abdalla
H. Karoyo
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Leila Dehabadi
- Dr.
Ma’s Laboratories, Inc., Unit 4, 8118 North Fraser Way, Burnaby, British Columbia V5J 0E5, Canada
| | - Wahab Alabi
- Department
of Mechanical Engineering, University of
Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Carey J. Simonson
- Department
of Mechanical Engineering, University of
Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Lee D. Wilson
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
12
|
Goranova Z, Marudova M, Baeva M. Influence of functional ingredients on starch gelatinization in sponge cake batter. Food Chem 2019; 297:124997. [PMID: 31253298 DOI: 10.1016/j.foodchem.2019.124997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 11/28/2022]
Abstract
The present study evaluated the thermal properties of sponge cake batters with different functional ingredients, and the effects of their adding on starch gelatinization. Samples of sponge cake batter: with wheat flour (control batter), with a reduced quantity of wheat flour and addition of functional ingredients (sponge cake batter with 50% einkorn wholemeal flour, sponge cake batter with 20% Jerusalem artichoke powder, sponge cake batter with 35% cocoa husk powder) were investigated. Using the method of differential scanning calorimetry (DSC) the starch gelatinization temperature intervals (°C) and energies of the different batters during baking were evaluated. Based on the experimental results, it could be concluded that the addition of functional ingredients in the cake batter retard the starch gelatinization. The gelatinization occurs at higher temperature and with higher energy consumption. The retarding effect of the functional ingredients is related to the water binding capacity and the presence of dietary fiber.
Collapse
Affiliation(s)
- Zhivka Goranova
- Institute of Food Preservation and Quality, 154 Vasil Aprilov Blvd., 4000 Plovdiv, Bulgaria.
| | - Maria Marudova
- University of Plovdiv, Faculty of Physics, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria.
| | - Marianna Baeva
- University of Food Technologies, Department of Nutrition and Tourism, 26 Maritsa Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
13
|
Blanco Canalis M, León A, Ribotta P. Incorporation of dietary fiber on the cookie dough. Effects on thermal properties and water availability. Food Chem 2019; 271:309-317. [DOI: 10.1016/j.foodchem.2018.07.146] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022]
|
14
|
Abstract
Based on molecular dynamics simulations of four globular proteins in dilute aqueous solution, with three different water models, we examine several, essentially geometrical, aspects of the protein-water interface that remain controversial or incompletely understood. First, we compare different hydration shell definitions, based on spatial or topological proximity criteria. We find that the best method for constructing monolayer shells with nearly complete coverage is to use a 5 Å water-carbon cutoff and a 4 Å water-water cutoff. Using this method, we determine a mean interfacial water area of 11.1 Å2 which appears to be a universal property of the protein-water interface. We then analyze the local coordination and packing density of water molecules in the hydration shells and in subsets of the first shell. The mean polar water coordination number in the first shell remains within 1% of the bulk-water value, and it is 5% lower in the nonpolar part of the first shell. The local packing density is obtained from additively weighted Voronoi tessellation, arguably the most physically realistic method for allocating space between protein and water. We find that water in all parts of the first hydration shell, including the nonpolar part, is more densely packed than in the bulk, with a shell-averaged density excess of 6% for all four proteins. We suggest reasons why this value differs from previous experimental and computational results, emphasizing the importance of a realistic placement of the protein-water dividing surface and the distinction between spatial correlation and packing density. The protein-induced perturbation of water coordination and packing density is found to be short-ranged, with an exponential decay "length" of 0.6 shells. We also compute the protein partial volume, analyze its decomposition, and argue against the relevance of electrostriction.
Collapse
Affiliation(s)
- Filip Persson
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Pär Söderhjelm
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bertil Halle
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
15
|
|
16
|
Sirotkin VA, Kuchierskaya AA. α-chymotrypsin in water-acetone and water-dimethyl sulfoxide mixtures: Effect of preferential solvation and hydration. Proteins 2017; 85:1808-1819. [PMID: 28612358 DOI: 10.1002/prot.25334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 11/10/2022]
Abstract
We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α-chymotrypsin with water-acetone (moderate-strength H-bond acceptor) and water-DMSO (strong H-bond acceptor) mixtures. There are three concentration regimes for the dried α-chymotrypsin. α-Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α-chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water-poor acetone is ∼80%, compared with that observed after incubation in pure water. This effect is very small for the water-poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α-chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α-chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α-chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein-water-organic solvent systems.
Collapse
Affiliation(s)
- Vladimir A Sirotkin
- Department of Physical Chemistry, Kazan Federal University, A.M. Butlerov Institute of Chemistry, Kazan, 420008, Russia
| | - Alexandra A Kuchierskaya
- Department of Physical Chemistry, Kazan Federal University, A.M. Butlerov Institute of Chemistry, Kazan, 420008, Russia
| |
Collapse
|
17
|
Sirotkin VA, Kuchierskaya AA. Lysozyme in water-acetonitrile mixtures: Preferential solvation at the inner edge of excess hydration. J Chem Phys 2017; 146:215101. [PMID: 28576085 DOI: 10.1063/1.4984116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Preferential solvation/hydration is an effective way for regulating the mechanism of the protein destabilization/stabilization. Organic solvent/water sorption and residual enzyme activity measurements were performed to monitor the preferential solvation/hydration of hen egg-white lysozyme at high and low water content in acetonitrile at 25 °C. The obtained results show that the protein destabilization/stabilization depends essentially on the initial hydration level of lysozyme and the water content in acetonitrile. There are three composition regimes for the dried lysozyme. At high water content, the lysozyme has a higher affinity for water than for acetonitrile. The residual enzyme activity values are close to 100%. At the intermediate water content, the dehydrated lysozyme has a higher affinity for acetonitrile than for water. A minimum on the residual enzyme activity curve was observed in this concentration range. At the lowest water content, the organic solvent molecules are preferentially excluded from the dried lysozyme, resulting in the preferential hydration. The residual catalytic activity is ∼80%, compared with that observed after incubation in pure water. Two distinct schemes are operative for the hydrated lysozyme. At high and intermediate water content, lysozyme is preferentially hydrated. However, in contrast to the dried protein, at the intermediate water content, the initially hydrated lysozyme has the increased preferential hydration parameters. At low water content, the preferential binding of the acetonitrile molecules to the initially hydrated lysozyme was detected. No residual enzyme activity was observed in the water-poor acetonitrile. Our data clearly show that the initial hydration level of the protein macromolecules is one of the key factors that govern the stability of the protein-water-organic solvent systems.
Collapse
Affiliation(s)
- Vladimir A Sirotkin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Alexandra A Kuchierskaya
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| |
Collapse
|
18
|
Sirotkin VA, Kuchierskaya AA. Preferential Solvation/Hydration of α-Chymotrypsin in Water–Acetonitrile Mixtures. J Phys Chem B 2017; 121:4422-4430. [PMID: 28414445 DOI: 10.1021/acs.jpcb.7b01632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vladimir A. Sirotkin
- Kazan Federal University, A.M. Butlerov Institute of Chemistry, Kremlevskaya str., 18, Kazan 420008, Russia
| | - Alexandra A. Kuchierskaya
- Kazan Federal University, A.M. Butlerov Institute of Chemistry, Kremlevskaya str., 18, Kazan 420008, Russia
| |
Collapse
|
19
|
Miyawaki O, Omote C, Matsuhira K. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions. Biopolymers 2015. [DOI: 10.1002/bip.22706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Osato Miyawaki
- Faculty of Bioresources and Environmental Sciences; Ishikawa Prefectural University; 1-308 Suematsu Nonoichi Ishikawa 921-8836 Japan
| | - Chiaki Omote
- Faculty of Bioresources and Environmental Sciences; Ishikawa Prefectural University; 1-308 Suematsu Nonoichi Ishikawa 921-8836 Japan
| | - Keiko Matsuhira
- Faculty of Bioresources and Environmental Sciences; Ishikawa Prefectural University; 1-308 Suematsu Nonoichi Ishikawa 921-8836 Japan
| |
Collapse
|
20
|
Sirotkin VA, Dudkina EV. A study of the hydration of lysozyme in neat organic solvents using isothermal calorimetry: Effect of water solvation. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
|
22
|
Sirotkin VA, Khadiullina AV. A study of the hydration of ribonuclease A using densitometry: Effect of the protein hydrophobicity and polarity. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Sirotkin VA, Khadiullina AV. Gibbs energies, enthalpies, and entropies of water and lysozyme at the inner edge of excess hydration. J Chem Phys 2013; 139:075102. [DOI: 10.1063/1.4818527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Breyton C, Gabel F, Lethier M, Flayhan A, Durand G, Jault JM, Juillan-Binard C, Imbert L, Moulin M, Ravaud S, Härtlein M, Ebel C. Small angle neutron scattering for the study of solubilised membrane proteins. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:71. [PMID: 23852580 DOI: 10.1140/epje/i2013-13071-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/22/2013] [Accepted: 05/16/2013] [Indexed: 06/02/2023]
Abstract
Small angle neutron scattering (SANS) is a powerful technique for investigating association states and conformational changes of biological macromolecules in solution. SANS is of particular interest for the study of the multi-component systems, as membrane protein complexes, for which in vitro characterisation and structure determination are often difficult. This article details the important physical properties of surfactants in view of small angle neutron scattering studies and the interest to deuterate membrane proteins for contrast variation studies. We present strategies for the production of deuterated membrane proteins and methods for quality control. We then review some studies on membrane proteins, and focus on the strategies to overcome the intrinsic difficulty to eliminate homogeneously the detergent or surfactant signal for solubilised membrane proteins, or that of lipids for membrane proteins inserted in liposomes.
Collapse
Affiliation(s)
- Cécile Breyton
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Abstract
Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the "protein-adsorption problem" to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations C(B). This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume V(I) by expulsion of either-or-both interphase water and initially adsorbed protein. Interphase protein concentration C(I) increases as V(I) decreases, resulting in slow reduction in interfacial energetics. Steady state is governed by a net partition coefficient P=(C(I)/C(B)). In the process of occupying space within the interphase, adsorbing protein molecules must displace an equivalent volume of interphase water. Interphase water is itself associated with surface-bound water through a network of transient hydrogen bonds. Displacement of interphase water thus requires an amount of energy that depends on the adsorbent surface chemistry/energy. This "adsorption-dehydration" step is the significant free energy cost of adsorption that controls the maximum amount of protein that can be adsorbed at steady state to a unit adsorbent surface area (the adsorbent capacity). As adsorbent hydrophilicity increases, adsorbent capacity monotonically decreases because the energetic cost of surface dehydration increases, ultimately leading to no protein adsorption near an adsorbent water wettability (surface energy) characterized by a water contact angle θ→65(°). Consequently, protein does not adsorb (accumulate at interphase concentrations greater than bulk solution) to more hydrophilic adsorbents exhibiting θ<65(°). For adsorbents bearing strong Lewis acid/base chemistry such as ion-exchange resins, protein/surface interactions can be highly favorable, causing protein to adsorb in multilayers in a relatively thick interphase. A straightforward, three-component free energy relationship captures salient features of protein adsorption to all surfaces predicting that the overall free energy of protein adsorption ΔG(ads)(o) is a relatively small multiple of thermal energy for any surface chemistry (except perhaps for bioengineered surfaces bearing specific ligands for adsorbing protein) because a surface chemistry that interacts chemically with proteins must also interact with water through hydrogen bonding. In this way, water moderates protein adsorption to any surface by competing with adsorbing protein molecules. This Leading Opinion ends by proposing several changes to the protein-adsorption paradigm that might advance answers to the three core questions that frame the "protein-adsorption problem" that is so fundamental to biomaterials surface science.
Collapse
Affiliation(s)
- Erwin A Vogler
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
27
|
Lee JH, Hwang KS, Yoon DS, Kang JY, Kim SK, Kim TS. Direct electrical measurement of protein-water interactions and temperature dependence using piezoelectric microcantilevers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:2920-2923. [PMID: 21567485 DOI: 10.1002/adma.201101037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, 447-1, Wolgye, Nowon, Seoul, 139-701, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Kao P, Parhi P, Krishnan A, Noh H, Haider W, Tadigadapa S, Allara DL, Vogler EA. Volumetric interpretation of protein adsorption: interfacial packing of protein adsorbed to hydrophobic surfaces from surface-saturating solution concentrations. Biomaterials 2010; 32:969-78. [PMID: 21035180 DOI: 10.1016/j.biomaterials.2010.09.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/29/2010] [Indexed: 11/26/2022]
Abstract
The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM.
Collapse
Affiliation(s)
- Ping Kao
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Piaggio MV, Peirotti MB, Deiber JA. Analysis of the interplay among charge, hydration and shape of proteins through the modeling of their CZE mobility data. Electrophoresis 2009; 30:2328-36. [DOI: 10.1002/elps.200800743] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Yang TC, Yang Q, Maluf NK. Interaction of the adenoviral IVa2 protein with a truncated viral DNA packaging sequence. Biophys Chem 2008; 140:78-90. [PMID: 19150169 DOI: 10.1016/j.bpc.2008.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
Adenoviral (Ad) infection typically poses little health risk for immunosufficient individuals. However, for immunocompromised individuals, such as AIDS patients and organ transplant recipients, especially pediatric heart transplant recipients, Ad infection is common and can be lethal. Ad DNA packaging is the process whereby the Ad genome becomes encapsulated by the viral capsid. Specific packaging is dependent upon the packaging sequence (PS), which is composed of seven repeated elements called A repeats. The Ad protein, IVa2, which is required for viral DNA packaging, has been shown to bind specifically to synthetic DNA probes containing A repeats I and II, however, the molecular details of this interaction have not been investigated. In this work we have studied the binding of a truncated form of the IVa2 protein, that has previously been shown to be sufficient for virus viability, to a DNA probe containing A repeats I and II. We find that the IVa2 protein exists as a monomer in solution, and that a single IVa2 monomer binds to this DNA with high affinity (K(d)< approximately 10 nM), and moderate specificity, and that the trIVa2 protein interacts in a fundamentally different way with DNA containing A repeats than it does with non-specific DNA. We also find that at elevated IVa2 concentrations, additional binding, beyond the singly ligated complex, is observed. When this reaction is modeled as representing the binding of a second IVa2 monomer to the singly ligated complex, the K(d) is 1.4+/-0.7 microM, implying a large degree of negative cooperativity exists for placing two IVa2 monomers on a DNA with adjacent A repeats.
Collapse
Affiliation(s)
- Teng-Chieh Yang
- University of Colorado Denver, Department of Pharmaceutical Sciences, School of Pharmacy C238-P15, P.O Box 6511, Aurora, CO 80045, USA
| | | | | |
Collapse
|
31
|
Abstract
A group of proteins with cell membrane remodeling properties is also able to change dramatically the morphology of liposomes in vitro, frequently inducing tubulation. For a number of these proteins, the mechanism by which this effect is exerted has been proposed to be the embedding of amphipathic helices into the lipid bilayer. For proteins presenting BAR domains, removal of an N-terminal amphipathic alpha-helix (H0-NBAR) results in much lower membrane tubulation efficiency, pointing to a fundamental role of this protein segment. Here, we studied the interaction of a peptide corresponding to H0-NBAR with model lipid membranes. H0-NBAR bound avidly to anionic liposomes but partitioned weakly to zwitterionic bilayers, suggesting an essentially electrostatic interaction with the lipid bilayer. Interestingly, it is shown that after membrane incorporation, the peptide oligomerizes as an antiparallel dimer, suggesting a potential role of H0-NBAR in the mediation of BAR domain oligomerization. Through monitoring the effect of H0-NBAR on liposome shape by cryoelectron microscopy, it is clear that membrane morphology is not radically changed. We conclude that H0-NBAR alone is not able to induce vesicle curvature, and its function must be related to the promotion of the scaffold effect provided by the concave surface of the BAR domain.
Collapse
|
32
|
Monitoring the structural alterations induced in β-lactoglobulin during ultrafiltration: learning from chemical and thermal denaturation phenomena. J Memb Sci 2007. [DOI: 10.1016/j.memsci.2007.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
DeMoll E, Cox DJ, Daniel E, Riggs AF. Apparent specific volume of human hemoglobin: Effect of ligand state and contribution of heme. Anal Biochem 2007; 363:196-203. [PMID: 17331460 DOI: 10.1016/j.ab.2007.01.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 01/20/2007] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
The apparent specific volumes of human deoxy-, oxy-, met-, and CN-met hemoglobin (Hb) were measured with a vibrating tube densitometer. The values were calculated from the difference in density between protein solutions and solvents with which they were in dialysis equilibrium. The results obtained were very similar to the value for horse HbCO often used for sedimentation studies of Hbs. The apparent specific volumes of oxy- and CN-metHb are approximately 0.0020 cm(3)/g higher than those of deoxy- and metHb. This small reproducible difference could be due either to a small conformational difference between the liganded and unliganded species or to different interactions with components of the solvent. On the basis of these results, a simple method for the determination of the contribution of the heme to the apparent specific volume is proposed. The contribution can be estimated from the difference between the measured volume of each molecular species and that calculated from the amino acid composition.
Collapse
Affiliation(s)
- Edward DeMoll
- Section of Neurobiology, School of Biological Sciences, Institute of Molecular and Cell Biology, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
34
|
Krishnan A, Liu YH, Cha P, Allara D, Vogler EA. Interfacial energetics of globular-blood protein adsorption to a hydrophobic interface from aqueous-buffer solution. J R Soc Interface 2006; 3:283-301. [PMID: 16849238 PMCID: PMC1578746 DOI: 10.1098/rsif.2005.0087] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adsorption isotherms of nine globular proteins with molecular weight (MW) spanning 10-1000 kDa confirm that interfacial energetics of protein adsorption to a hydrophobic solid/aqueous-buffer (solid-liquid, SL) interface are not fundamentally different than adsorption to the water-air (liquid-vapour, LV) interface. Adsorption dynamics dampen to a steady-state (equilibrium) within a 1 h observation time and protein adsorption appears to be reversible, following expectations of Gibbs' adsorption isotherm. Adsorption isotherms constructed from concentration-dependent advancing contact angles theta(a) of buffered-protein solutions on methyl-terminated, self-assembled monolayer surfaces show that maximum advancing spreading pressure, Pi(a)max, falls within a relatively narrow 10 < Pi(a)max < 20 mN m(-1) band characteristic of all proteins studied, mirroring results obtained at the LV surface. Furthermore, Pi(a) isotherms exhibited a 'Traube-rule-like' progression in MW similar to the ordering observed at the LV surface wherein molar concentrations required to reach a specified spreading pressure Pi(a) decreased with increasing MW. Finally, neither Gibbs' surface excess quantities [Gamma(sl)-Gamma(sv)] nor Gamma(lv) varied significantly with protein MW. The ratio {[Gamma(sl)-Gamma(sv)]/Gamma(lv)} approximately 1, implying both that Gamma(sv) approximately 0 and chemical activity of protein at SL and LV surfaces was identical. These results are collectively interpreted to mean that water controls protein adsorption to hydrophobic surfaces and that the mechanism of protein adsorption can be understood from this perspective for a diverse set of proteins with very different composition.
Collapse
Affiliation(s)
- Anandi Krishnan
- Department of Bioengineering, Huck Institute of Life Sciences, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
| | - Yi-Hsiu Liu
- Department of Bioengineering, Materials Research Institute and Huck Institute of Life Sciences, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
| | - Paul Cha
- Department of Bioengineering, Materials Research Institute and Huck Institute of Life Sciences, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
| | - David Allara
- Department of Bioengineering, Materials Research Institute and Huck Institute of Life Sciences, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
| | - Erwin A Vogler
- Department of Bioengineering, Materials Research Institute and Huck Institute of Life Sciences, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
- Huck Institute of Life Sciences, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
- Author for correspondence ()
| |
Collapse
|
35
|
Miyawaki O, Norimatsu Y, Kumagai H, Irimoto Y, Kumagai H, Sakurai H. Effect of water potential on sol-gel transition and intermolecular interaction of gelatin near the transition temperature. Biopolymers 2004; 70:482-91. [PMID: 14648759 DOI: 10.1002/bip.10473] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The sol-gel transition of gelatin, measured by thermal analysis and viscosity measurement, was analyzed in terms of the change in hydration state of polymer molecules. A new thermodynamic model was proposed in which the effect of water potential is explicitly taken into account for the evaluation of the free energy change in the sol-gel transition process. Because of the large number of water molecules involved and the small free energy change in the transition process, the contribution of water activity, a(W), was proved to be not negligible in the sol-gel transition process in solutions containing such low-molecular cosolutes as sugars, glycerol, urea, and formamide. The gel-stabilization effect of sugars and glycerol was linear with a(W), which seemed consistent with the contribution of water potential in the proposed model. The different stabilization effect among sugars and glycerol was explained by the difference in solvent ordering, which affects hydrophobic interaction among protein molecules. The gel-destabilization effect of urea and formamide could be explained only by the direct binding of them to protein molecules through hydrogen bonding. On the contrary, the polymer-polymer interaction, measured by the viscosity analysis, in polyethyleneglycol and dextran solutions was not sensitive to the change in a(W), suggesting that no substantial change in hydration state with a(W) occurred in these polymer solutions.
Collapse
Affiliation(s)
- Osato Miyawaki
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The range of interactions between fibre and water and the consequential properties of the bound water are modelled and examined. Dietary fibre may interact with water by means of polar and hydrophobic interactions, hydrogen bonding and enclosure. The results of these interactions vary with the flexibility of the fibre surface. When the fibre is insoluble or junction zones are formed,this may result in profound changes in the surrounding water. Such interactions are capable of affecting the structuring and solvation properties of water well away from the immediate surfaces involved. In particular, the specific properties of water enclosed by dietary fibre are examined, an area of investigation previously receiving scant attention. The way this enclosure may affect the properties of water is exemplified by modelling the colon to show how fibre may exert a beneficial action by the preferential partitioning of hydrophobic carcinogens. Unfermented dietary fibre has a tendency to form low-density expanded water that acts as a preferential solvent for hydrophobic molecules when compared with the less-structured denser water within the much more hydrophilic mucus layer.
Collapse
|
37
|
Abstract
The background and purpose of the British Biophysical Society Discussion meeting, The Hydration Problem in Solution Biophysics, held at the University of Glasgow, 12 September 2000, is described, particularly in relation to previous meetings in this field. Whereas a study of the nature and dynamic properties of water associated with a molecule is an important topic by itself, the collection of papers based on this meeting focus mainly on its affect in interpreting biophysical data in terms of macromolecular shape in a solution environment, particularly under dilute and very dilute systems. The techniques considered are largely hydrodynamically or thermodynamically based and supplemented by molecular modeling strategies; but in the context of how these could be used in conjunction with techniques like X-ray crystallography, NMR and neutron scattering.
Collapse
Affiliation(s)
- S E Harding
- NCMH Physical Biochemistry Laboratory, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|