1
|
Parker AL, Johnstone TC. Carbon monoxide poisoning: A problem uniquely suited to a medicinal inorganic chemistry solution. J Inorg Biochem 2024; 251:112453. [PMID: 38100903 DOI: 10.1016/j.jinorgbio.2023.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Carbon monoxide poisoning is one of the most common forms of poisoning in the world. Although the primary mode of treatment, oxygen therapy, is highly effective in many cases, there are instances in which it is inadequate or inappropriate. Whereas oxygen therapy relies on high levels of a low-affinity ligand (O2) to displace a high-affinity ligand (CO) from metalloproteins, an antidote strategy relies on introducing a molecule with a higher affinity for CO than native proteins (Kantidote,CO > Kprotein,CO). Based on the fundamental chemistry of CO, such an antidote is most likely required to be an inorganic compound featuring an electron-rich transition metal. A review is provided of the protein-, supramolecular complex-, and small molecule-based CO poisoning antidote platforms that are currently under investigation.
Collapse
Affiliation(s)
- A Leila Parker
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States..
| |
Collapse
|
2
|
Dent MR, Rose JJ, Tejero J, Gladwin MT. Carbon Monoxide Poisoning: From Microbes to Therapeutics. Annu Rev Med 2024; 75:337-351. [PMID: 37582490 PMCID: PMC11160397 DOI: 10.1146/annurev-med-052422-020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Carbon monoxide (CO) poisoning leads to 50,000-100,000 emergency room visits and 1,500-2,000 deaths each year in the United States alone. Even with treatment, survivors often suffer from long-term cardiac and neurocognitive deficits, highlighting a clear unmet medical need for novel therapeutic strategies that reduce morbidity and mortality associated with CO poisoning. This review examines the prevalence and impact of CO poisoning and pathophysiology in humans and highlights recent advances in therapeutic strategies that accelerate CO clearance and mitigate toxicity. We focus on recent developments of high-affinity molecules that take advantage of the uniquely strong interaction between CO and heme to selectively bind and sequester CO in preclinical models. These scavengers, which employ heme-binding scaffolds ranging from organic small molecules to hemoproteins derived from humans and potentially even microorganisms, show promise as field-deployable antidotes that may rapidly accelerate CO clearance and improve outcomes for survivors of acute CO poisoning.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| | - Jason J Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark T Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| |
Collapse
|
3
|
Prigorchenko E, Ustrnul L, Borovkov V, Aav R. Heterocomponent ternary supramolecular complexes of porphyrins: A review. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s108842461930026x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Porphyrins are prominent host molecules which are widely used due to their structural characteristics and directional interaction sites. This review summarizes non-covalently bound ternary complexes of porphyrins, constructed from at least three non-identical species. Progress in supramolecular chemistry allows the creation of complex molecular machinery tools, such as rotors, motors and switches from relatively simple structures in a single self-assembly step. In the current review, we highlight the collection of sophisticated molecular ensembles including sandwich-type complexes, cages, capsules, tweezers, rotaxanes, and supramolecular architectures mediating oxygen-binding and oxidation reactions. These diverse structures have high potential to be applied in sensing, production of new smart materials as well as in medical science.
Collapse
Affiliation(s)
- Elena Prigorchenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Lukas Ustrnul
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Victor Borovkov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
- College of Chemistry and Materials Science, South-Central University for Nationalities, 182 Minzu Road, Hongshan, Wuhan 430074, China
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
4
|
Mavridis IM, Yannakopoulou K. Porphyrinoid-Cyclodextrin Assemblies in Biomedical Research: An Update. J Med Chem 2019; 63:3391-3424. [PMID: 31808344 DOI: 10.1021/acs.jmedchem.9b01069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porphyrinoids, well-known cofactors in fundamental processes of life, have stimulated interest as synthetic models of natural systems and integral components of photodynamic therapy, but their utilization is compromised by self-aggregation in aqueous media. The capacity of cyclodextrins to include hydrophobic molecules in their cavity provides porphyrinoids with a protective environment against oxidation and the ability to disperse efficiently in biological fluids. Moreover, engineered cyclodextrin-porphyrinoid assemblies enhance the photodynamic abilities of porphyrinoids, can carry chemotherapeutics for synergistic modalities, and can be enriched with functions including cell recognition, tissue penetration, and imaging. This Perspective includes synthetic porphyrinoid-cyclodextrin models of proteins participating in fundamental processes, such as enzymatic catalysis, respiration, and electron transfer. In addition, since porphyrinoid-cyclodextrin systems comprise third generation photosensitizers, recent developments for their utilization in photomedicine, that is, multimodal therapy for cancer (e.g., PDT, PTT) and antimicrobial treatment, and eventually in biocompatible therapeutic or diagnostic platforms for next-generation nanomedicine and theranostics are discussed.
Collapse
Affiliation(s)
- Irene M Mavridis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Gregoriou & 27 Neapoleos Str., Agia Paraskevi, Attiki 15341, Greece
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Gregoriou & 27 Neapoleos Str., Agia Paraskevi, Attiki 15341, Greece
| |
Collapse
|
5
|
Shen L, Qu R, Shi H, Huang F, An Y, Shi L. A biocompatible cobaltporphyrin-based complex micelle constructed via supramolecular assembly for oxygen transfer. Biomater Sci 2016; 4:857-62. [PMID: 27009911 DOI: 10.1039/c6bm00046k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a complex micelle as an oxygen nano-carrier is constructed through the hierarchical assembly of the diblock copolymer poly(ethylene glycol)-block-poly(l-lysine) (PEG-b-PLys), tetrakis(4-sulfonatophenyl)porphinato cobalt(ii) (Co(ii)TPPS), a heptapeptide (Cys-His-His-His-His-His-His) and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD). Co(ii)TPPS was encapsulated into the cavities of TM-β-CDs driven by the host-guest interaction so that the irreversible formation of a μ-oxo-dimer of Co(ii)TPPS can be effectively prevented. The imidazole groups of the heptapeptide were selected as good axial ligands coordinating to the centric cobalt of Co(ii)TPPS, which subtly constituted the five-coordinated precursor serving as an active functional centre for oxygen binding. The sixth position of Co(ii)TPPS can bind oxygen. Furthermore, the host-guest inclusion (TM-β-CD/Co(ii)TPPS) was loaded into the hydrophobic core of the complex micelle and tightly fixed with PLys chains. The hydrophilic PEG blocks stretched in the aqueous solution constitute the shells which stabilize the structure of the complex micelle as well as impart the complex micelle sufficient blood circulation time. Moreover, the complex micelle exhibited excellent biocompatibility and cellular uptake. Therefore, the rationally designed amphiphilic structure can work as promising artificial O2 carriers in vivo. Potentially, the complex micelle can be expected to change the anaerobic microenvironment and find applications in the repair of the cells damaged by cellular hypoxia.
Collapse
Affiliation(s)
- Liangliang Shen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Institute of Polymer Chemistry, Nankai University, Tianjin, 300071, P.R. China.
| | | | | | | | | | | |
Collapse
|
6
|
Kryjewski M, Goslinski T, Mielcarek J. Functionality stored in the structures of cyclodextrin–porphyrinoid systems. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Miyamoto T, Maeno S, Zhu Q, Fukushima M. Inclusion complex of iron(III)-tetrakis(p-sulfonatephenyl)porphyrin with 2,3,6-tri-O-methyl-β-cyclodextrin as a biomimetic model of oxidative enzymes: Catalytic oxidation of tetrabromobisphenol A with peroxomonosulfate. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zhou H, Groves JT. Host-guest interactions of cyclodextrins and metalloporphyrins: supramolecular building blocks toward artificial heme proteins. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s108842460400012x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cyclodextrins are versatile building blocks for a variety of macromolecules due to the inclusion complexes that are formed with hydrophobic organic molecules. Cyclodextrin-porphyrin interactions are of particular interest since cyclodextrins can serve as a non-covalent binding pocket while metalloporphyrins could serve as the heme analogs in the construction of heme protein model compounds. Various approaches to the design and assembly of biomimetic porphyrin constructs are compared and contrasted in this minireview with a particular emphasis on self-assembled and porphyrin-cyclodextrin systems. Several recent advances from our laboratories are described in this context. A sensitive fluorescent binding probe, 6A-N-dansyl-permethylated-β-cyclodextrin (Dan-NH-TMCD), was found to form 2:1 complexes with the meso-tetraphenylporphyrins Mn(III)TCPP , Mn(III)TPPS and Mn(III)TF 4 TMAP with high binding constants. A perPEGylated cyclodextrin, heptakis(2,3,6-tri-O-2-(2-(2-methoxyethoxy)ethoxy)ethyl)-β-cyclodextrin (TPCD), has been shown by 1 H NMR spectroscopy to form a 1:1 complex with H 2 TCPP with a binding constant above 108M-1. Such a strong binding constant is the largest found for a 1:1 complex between a monomeric cyclodextrin and a guest. TPCD was also found to bind Mn(III)TCPP with a binding constant of 1.2 × 106 M -1. A novel, self-assembled hemoprotein model, hemodextrin is also described. The molecular design is based on a PEGylated cyclodextrin scaffold that bears both a heme-binding pocket and an axial ligand that binds an iron porphyrin. The binding constant for Fe (III) TPPS (iron(III) meso-tetra(4-sulfonatophenyl)porphyrin) by py-PPCD was determined to be 2 × 106 M -1. The pyridyl nitrogen of py-PPCD was shown to ligate to the iron center by observing signal changes in the Fe(II) -porphyrin 1 H NMR spectrum. This hemodextrin ensemble, a minimalist myoglobin, was shown to bind dioxygen reversibly and to form a stable ferryl species.
Collapse
Affiliation(s)
- Huchen Zhou
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
9
|
Khavasi HR, Sasan K, Safari N. Inclusion complex of iron meso-tetrakis(p-sulfonatophenyl)porphyrin and 2-hydroxypropyl-β-cyclodextrin as a functional model of cytochrome P-450: study on a supramolecular formation and its application in aqueous oxidation of styrene. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424607000990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this report, the interaction of iron(III) meso-tetrakis(p-sulfonatophenyl)porphyrin, TPPS 4 FeCl , and 2-hydroxypropyl-β-cyclodextrin, HP-β-CD as a model of cytochrome P -450 enzyme, has been investigated by UV-vis and 1 H NMR spectroscopy, in different pHs. The formation of a 1:1 inclusion complex has been confirmed by spectroscopic methods. Equilibrium constants ( K 1) for the formation of the inclusion complexes have been estimated from the absorbance changes in neutral, basic and acidic phosphate buffer solutions. The K 1 values show that the inclusion behavior of HP-β-CD depends upon pH. The inclusion ability of the inclusion complex for the TPPS 4 FeCl /HP-β-CD system is strongest ( K 1 = 678.4 m−1) in a neutral solution. In the second part, these inclusion complexes have been examined for the aqueous-catalytic oxidation of styrene under different reaction conditions. The effect of imidazole as an axial ligand and the effect of pH on the catalytic behavior of TPPS 4 FeCl / HP -β- CD were also investigated. This data suggests that the addition of HP-β-CD to the porphyrin solution increases catalytic activity and selectivity of the system.
Collapse
Affiliation(s)
- Hamid Reza Khavasi
- Department of Chemistry, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| | - Koroush Sasan
- Department of Chemistry, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| | - Nasser Safari
- Department of Chemistry, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| |
Collapse
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
11
|
Guo YJ, Zhang P, Chao JB, Shuang SM, Dong C. Study on the supramolecular system of 5-(p-hydroxyphenyl)-10,15,20-tris-(4-chlorophenyl)porphyrin with cyclodextrins and its analytical characteristics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 71:946-950. [PMID: 18373951 DOI: 10.1016/j.saa.2008.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/11/2008] [Indexed: 05/26/2023]
Abstract
The supramolecular systems of 5-(p-hydroxyphenyl)-10,15,20-tris-(4-chlorophenyl)porphyrin (p-HTClPP) with beta-cyclodextrin (beta-CD), heptakis(2,3,6-tri-O-methyl)-beta-CD (TM-beta-CD), carboxymethyl-beta-cyclodextrin (CM-beta-CD) and sulfurbutylether-beta-CD (SBE-beta-CD) have been investigated by means of absorption, fluorescence and (1)H NMR spectroscopy. The formation of inclusion complexes has been confirmed on the base of changes of spectroscopy properties. "The double reciprocal method" has been used to determine the stoichiometry and the inclusion constants of p-HTClPP with the four cyclodextrins (CDs). The results show that p-HTClPP can form 1:1 inclusion complexes with the four CDs. Compared with parent native beta-CD, the inclusion abilities of modified beta-CDs with p-HTClPP are stronger. It indicates that the hydrophobic effect plays an important role in the inclusion procedure. The mechanism of inclusion interaction was examined by (1)H NMR technique. During the study of p-HTClPP-TM-beta-CD supramolecular complex, an efficient enhancement of fluorescence intensity was observed. Based on this phenomenon, fluorometric method for the determination of p-HTClPP was developed. The relationship between fluorescence intensity and the concentration of p-HTClPP is linear from 1.0 x 10(-9) to 7.0 x 10(-6)mol L(-1). The limit of detection is 8.3 x 10(-10)mol L(-1) and the relative standard deviation (R.S.D.) is 1.3% (n=8). This research will provide useful information for further application of p-HTClPP.
Collapse
Affiliation(s)
- Yu-Jing Guo
- Research Center for Environmental Science and Engineering of Shanxi University, Taiyuan 030006, PR China.
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Kano K, Kitagishi H, Dagallier C, Kodera M, Matsuo T, Hayashi T, Hisaeda Y, Hirota S. Iron porphyrin-cyclodextrin supramolecular complex as a functional model of myoglobin in aqueous solution. Inorg Chem 2007; 45:4448-60. [PMID: 16711695 DOI: 10.1021/ic060137b] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 1:1 inclusion complex of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphinato iron(II) (Fe(II)TPPS) and an O-methylated beta-cyclodextrin dimer having a pyridine linker (1) binds dioxygen reversibly in aqueous solution. The O2 adduct was very stable (t(1/2) = 30.1 h) at pH 7.0 and 25 degrees C. ESI-MS and NMR spectroscopic measurements and molecular mechanics (MM) calculations indicated the inclusion of the sulfonatophenyl groups at the 5- and 15-positions of Fe(III)TPPS or Fe(II)TPPS into two cyclodextrin moieties of 1 to form a supramolecular 1:1 complex (hemoCD1 for the Fe(II)TPPS complex), whose iron center is completely covered by two cyclodextrin moieties. Equilibrium measurements and laser flash photolysis provided the affinities ( and ) and rate constants for O2 and CO binding of hemoCD1 (k(O2)(on), k(O2)(off), k(CO)(on), and k(CO)(off)). The CO affinity relative to the O2 affinity of hemoCD1 was abnormally high. Although resonance Raman spectra suggested weak back-bonding of d(pi)(Fe) --> pi(CO) and hence a weak CO-Fe bond, the CO adduct of hemoCD1 was very stable. The hydrophobic CO molecule dissociated from CO-hemoCD1 hardly breaks free from a shallow cleft in hemoCD1 surrounded by an aqueous bulk phase leading to fast rebinding of CO to hemoCD1. Isothermal titration calorimetry furnished the association constant (K(O2)), DeltaH degrees , and DeltaS degrees for O2 association to be (2.71 +/- 0.51) x 10(4) M(-1), -65.2 +/- 4.4 kJ mol(-1), and -133.9 +/- 16.1 J mol(-1) K(-1), respectively. The autoxidation of oxy-hemoCD1 was accelerated by H+ and OH-. The inorganic anions also accelerated the autoxidation of oxy-hemoCD1. The O2-Fe(II) bond is equivalent to the O2.--Fe(III) bond, which is attacked by the inorganic anions or the water molecule to produce met-hemoCD1 and a superoxide anion.
Collapse
Affiliation(s)
- Koji Kano
- Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan. kkano@ mail.doshisha.ac.jp
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kano K, Kitagishi H, Mabuchi T, Kodera M, Hirota S. A Myoglobin Functional Model Composed of a Ferrous Porphyrin and a Cyclodextrin Dimer with an Imidazole Linker. Chem Asian J 2006; 1:358-66. [PMID: 17441072 DOI: 10.1002/asia.200600070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A 1:1 inclusion complex (Fe(II)PImCD) of 5,10,15,20-tetrakis- (4-sulfonatophenyl)porphinatoiron(II) (Fe(II)P) and an O-methylated beta-cyclodextrin dimer with an imidazole linker (ImCD) was found to bind dioxygen in aqueous solution. The half-saturation pressure of dioxygen (P(1/2)O2) is 1.7 torr at 25 degrees C, which is 10 times lower than that for a previous myoglobin functional model (hemoCD) with a pyridine linker. Meanwhile, the half-life of oxygenated Fe(II)PImCD is 3 h, which is 10 times shorter than that of oxygenated hemoCD. The covering of the iron(II) center by a microscopic environment is essential for preventing autoxidation of oxygenated ferrous porphyrin, which is promoted by nucleophilic attack of H2O and/or nucleophiles such as inorganic anions. Due to structural requirements, covering of the Fe(II) center of Fe(II)PImCD is insufficient compared with the case of hemoCD. As a result, water molecules can penetrate more easily the cleft of the O2-Fe(II)PImCD complex and act as an autoxidation inducer. This structure also causes poorer selectivity against carbon monoxide (M = 1040). In contrast, the dioxygen affinity of Fe(II)PImCD is much higher than that of hemoCD because the imidazole moiety is a stronger electron donor than pyridine.
Collapse
Affiliation(s)
- Koji Kano
- Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | | | | | | | | |
Collapse
|
15
|
Collman JP, Yan YL, Eberspacher T, Xie X, Solomon EI. Oxygen binding of water-soluble cobalt porphyrins in aqueous solution. Inorg Chem 2006; 44:9628-30. [PMID: 16363827 DOI: 10.1021/ic0516717] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water-soluble cobalt porphyrin 1Co and imidazole ligand 2 were synthesized. 1Co binds dioxygen in the presence of imidazole ligand 2 in aqueous solution. The formation of the oxygen adduct 2-1Co(O(2)) was studied using UV-vis and EPR spectroscopy. The impact of pH on the kinetic stability of the oxygen adduct was examined.
Collapse
Affiliation(s)
- James P Collman
- Department of Chemistry, Stanford University, California 94305-5080, USA.
| | | | | | | | | |
Collapse
|
16
|
Kano K, Kitagishi H, Kodera M, Hirota S. Dioxygen Binding to a Simple Myoglobin Model in Aqueous Solution. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200461609] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Kano K, Kitagishi H, Kodera M, Hirota S. Dioxygen Binding to a Simple Myoglobin Model in Aqueous Solution. Angew Chem Int Ed Engl 2005; 44:435-8. [PMID: 15624149 DOI: 10.1002/anie.200461609] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Koji Kano
- Department of Molecular Science and Technology, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | | | | | | |
Collapse
|
18
|
Kano K, Kitagishi H, Tamura S, Yamada A. Anion Binding to a Ferric Porphyrin Complexed with Per-O-methylated β-Cyclodextrin in Aqueous Solution. J Am Chem Soc 2004; 126:15202-10. [PMID: 15548017 DOI: 10.1021/ja045472i] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
5,10,15,20-Tetrakis(4-sulfonatophenyl)porphinato iron(III) (Fe(III)TPPS) forms a very stable 1:2 complex with heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMe-beta-CD), whose iron(III) center is located at a hydrophobic cleft formed by two face-to-face TMe-beta-CD molecules. Various inorganic anions (X(-)) such as F(-), Cl(-), Br(-), I(-), N(3)(-), and SCN(-) coordinate to Fe(III)TPPS(TMe-beta-CD)(2) to form five-coordinate high-spin Fe(III)TPPS(X)(TMe-beta-CD)(2), while no coordination occurs with ClO(4)(-), H(2)PO(4)(-), NO(3)(-), and HSO(4)(-). Except for F(-), none of the anions investigated coordinate to Fe(III)TPPS in the absence of TMe-beta-CD due to extensive hydration to the anions as well as to Fe(III)TPPS. The present system shows a high selectivity toward the N(3)(-) anion. The thermodynamics suggests that Lewis basicity, hydrophilicity, and shape of an X(-) anion are the main factors to determine the stability of the Fe(III)TPPS(X)(TMe-beta-CD)(2) complex.
Collapse
Affiliation(s)
- Koji Kano
- Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | | | | | | |
Collapse
|