1
|
Park YS, Lee Y, Choi NY, Hwang HS, Rose-John S, Zenke M, Ko K. Enhancement of proliferation of human umbilical cord blood–derived CD34+ hematopoietic stem cells by a combination of hyper-interleukin-6 and small molecules. Biochem Biophys Rep 2022; 29:101214. [PMID: 35146134 PMCID: PMC8801758 DOI: 10.1016/j.bbrep.2022.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/05/2022] Open
Abstract
Umbilical cord blood (UCB) is an alternative source of allogeneic hematopoietic stem cells (HSCs) for transplantation to treat various hematological disorders. The major limitation to the use of UCB-derived HSCs (UCB–HSCs) in transplantation, however, is the low numbers of HSCs in a unit of cord blood. To overcome this limitation, various cytokines or small molecules have been used to expand UCB-HSCs ex vivo. In this study, we investigated a synergistic effect of the combination of HIL-6, SR1, and UM171 on UCB-HSC culture and found that this combination resulted in the highest number of CD34+ cells. These results suggest that the combination of SR1, UM171 and HIL-6 exerts a synergistic effect in the proliferation of HSCs from UCB and thus, SR1, UM171 and HIL-6 is the most suitable combination for obtaining HSCs from UCB for clinical transplantation. Hyper IL-6 enhances the proliferation of both total nucleated cells and CD34+ cells. The combination of SR1 and UM171 with Hyper IL-6 led to increases in TNC and CD34+ cells number exvivo human cord blood HSCs. It potentially provides an optimization to achieving a successful strategy through exvivo expansion of HSCs for application.
Collapse
|
2
|
Alasady MJ, Terry AR, Pierce AD, Cavalier MC, Blaha CS, Adipietro KA, Wilder PT, Weber DJ, Hay N. The calcium-binding protein S100B reduces IL6 production in malignant melanoma via inhibition of RSK cellular signaling. PLoS One 2021; 16:e0256238. [PMID: 34411141 PMCID: PMC8376063 DOI: 10.1371/journal.pone.0256238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
S100B is frequently elevated in malignant melanoma. A regulatory mechanism was uncovered here in which elevated S100B lowers mRNA and secreted protein levels of interleukin-6 (IL6) and inhibits an autocrine loop whereby IL6 activates STAT3 signaling. Our results showed that S100B affects IL6 expression transcriptionally. S100B was shown to form a calcium-dependent protein complex with the p90 ribosomal S6 kinase (RSK), which in turn sequesters RSK into the cytoplasm. Consistently, S100B inhibition was found to restore phosphorylation of a nuclear located RSK substrate, CREB, which is a potent transcription factor for IL6 expression. Thus, elevated S100B reduces IL6-STAT3 signaling via RSK signaling pathway in malignant melanoma. Indeed, the elevated S100B levels in malignant melanoma cell lines correspond to low levels of IL6 and p-STAT3.
Collapse
Affiliation(s)
- Milad J. Alasady
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Alexander R. Terry
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Adam D. Pierce
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Michael C. Cavalier
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Catherine S. Blaha
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Kaylin A. Adipietro
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Paul T. Wilder
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
3
|
Lu Q, Li L, Huang A, Cui L, Zhang Y, Liu Q, Wang X, Wang Y, Liu Z, Yuan Z, Dai M. Molecular Characterization and Biological Function of a Novel LncRNA CRNG in Swine. Front Pharmacol 2019; 10:539. [PMID: 31178726 PMCID: PMC6537671 DOI: 10.3389/fphar.2019.00539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Our previous study has showed that a novel gene is differentially expressed in the liver of cyadox-fed piglets, but its sequence and function are unknown. Here, rapid amplification of cDNA ends (RACE) and bioinformatics analysis showed that the novel gene is 953 bp without protein-coding ability and locates in chromosome 11. Hence, we identified the novel gene as long non-coding RNA (lncRNA) and named it cyadox-related novel gene (CRNG). Fluorescence in situ hybridization (FISH) showed that CRNG mainly distributes in cytoplasm. Moreover, microarray assay in combination with CRNG interference and overexpression showed that the differential genes such as ANPEP, KITLG, STAT5A, FOXP3, miR-451, IL-2, IL-10, IL-6, and TNF-α are mainly involved in viral and pathogens infection and the immune-inflammatory responses in PK-15 cells. This work reveals that CRNG might play a role in preventing the host from being infected by pathogens and viruses and exerting immune regulatory effects in the cytoplasm, which may be involved in prophylaxis of cyadox in piglets.
Collapse
Affiliation(s)
- Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- National Reference Laboratory of Veterinary Drug Residues and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China
| | - Aixin Huang
- National Reference Laboratory of Veterinary Drug Residues and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China
| | - Luqing Cui
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yinfeng Zhang
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yulian Wang
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zhenli Liu
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Menghong Dai
- National Reference Laboratory of Veterinary Drug Residues and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Brod SA, Bauer VL. Ingested (oral) tocilizumab inhibits EAE. Cytokine 2014; 68:86-93. [PMID: 24845797 DOI: 10.1016/j.cyto.2014.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Blocking the activity of IL-6 can inhibit autoimmune diseases such as rheumatoid arthritis and Crohn's disease. OBJECTIVE We examined whether an antibody against IL-6, tocilizumab (TCZ) (Actemra®), used clinically in rheumatoid arthritis (RA) would have similar anti-inflammatory effects in EAE after oral administration. DESIGN/METHOD B6 mice were immunized with MOG peptide 35-55 and gavaged with control saline or TCZ during ongoing disease. Splenocytes, CD4(+) T cells or macrophages/monocyte lineage cells (CD11b(+)) from control fed or TCZ fed mice were adoptively transferred into active MOG peptide 35-55 immunized recipient mice during ongoing disease. Actively fed and recipient mice were examined for disease inhibition, inflammation, and cytokine responses. RESULTS Ingested (oral) TCZ inhibited ongoing disease and decreased inflammation. Adoptively transferred cells from TCZ fed donors protected against actively induced disease and decreased inflammation. There was a decrease in IL-6 in actively treated spleen, decrease in TNF-α, Th1-like cytokine IL-12 and increase in Th2-like cytokine IL-10 in active fed and adoptively treated recipients. CONCLUSIONS Ingested (orally administered) TCZ can inhibit disease, CNS inflammation, decrease pro-inflammatory Th1-like cytokines and increase Th2-like anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Staley A Brod
- Department of Neurology, University of Texas-Houston, Health Science Center, 6431 Fannin St, Houston, TX 77030, United States.
| | - Victoria L Bauer
- Department of Neurology, University of Texas-Houston, Health Science Center, 6431 Fannin St, Houston, TX 77030, United States
| |
Collapse
|
5
|
Kroy DC, Hebing L, Sander LE, Gassler N, Erschfeld S, Sackett S, Galm O, Trautwein C, Streetz KL. Differential role of gp130-dependent STAT and Ras signalling for haematopoiesis following bone-marrow transplantation. PLoS One 2012; 7:e39728. [PMID: 22745821 PMCID: PMC3382143 DOI: 10.1371/journal.pone.0039728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. METHODS Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130(ΔMx)), or to selectively disrupt gp130-dependent Ras (gp130(ΔMxRas)) or STAT signalling (gp130(ΔMxSTAT)) in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. RESULTS BM derived from gp130 deficient donor mice (gp130(ΔMx)) displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC), marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+) and CD8(+) T-cells, CD19(+) B-cells and CD11b(+) myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130(ΔMxRas) and gp130(ΔMxSTAT) donor BM. BMT of gp130(ΔMxSTAT) cells significantly impaired engraftment of CD4(+), CD8(+), CD19(+) and CD11b(+) cells, whereas gp130(ΔMxRas) BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. CONCLUSION Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras-dependent pathways thereby exert distinct functions on individual bone-marrow-lineages.
Collapse
Affiliation(s)
- Daniela C. Kroy
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Lisa Hebing
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Leif E. Sander
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
- Department of Infectious Diseases and Pulmonary Medicine, Charité University Hospital Berlin, Berlin, Germany
| | - Nikolaus Gassler
- Institute of Pathology, University Hospital Aachen, Aachen, Germany
| | | | - Sara Sackett
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Oliver Galm
- Department of Medicine IV, University Hospital Aachen, Aachen, Germany
| | | | - Konrad L. Streetz
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
6
|
Suchorska WM, Dams-Kozlowska H, Kazimierczak U, Wysocki PJ, Mackiewicz A. Hyper-interleukin-11 novel designer molecular adjuvant targeting gp130 for whole cell cancer vaccines. Expert Opin Biol Ther 2011; 11:1555-67. [PMID: 21995459 DOI: 10.1517/14712598.2011.627852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hyper-IL-11 (H11) is a fusion protein comprising IL-11 and soluble IL-11 receptor directly targeting gp130. We evaluated efficacy of H11 as a molecular adjuvant in therapeutic whole tumor cell vaccine formulation. METHODS H11 was tested in ectopic and orthotopic murine renal cell carcinoma (RENCA) models. H11 cDNA was transduced into RENCA cells (RENCA-H11). Mice were immunized with RENCA-H11 or control vaccine (RENCA-IRR) in prophylactic, adjuvant and therapeutic settings. Tumor formation, survival and immune mechanisms activated by H11 were studied. RESULTS Biologically active H11 was secreted by RENCA-H11 cells. Immunization with RENCA-H11 resulted in mounting specific anti-RENCA response. Treatment of tumor bearing mice in adjuvant setting prevented disease recurrence in therapeutic setting eradicated tumors. In induction phase H11 inhibited T-regulatory cell formation and activated recruitment and maturation of dendritic cells. Downstream of immunization tumors were densely infiltrated by CD8(+), CD4(+), NK cells, cells expressing CD8(+)CD69(+) and CD4(+)CD62L(low). CONCLUSIONS H11 is a good candidate for adjuvant of whole tumor cell vaccines. Direct targeting of gp130 leads to induction of specific and long lasting anticancer immune response. Enhancement of tumor antigen presentation, abrogation of immune tolerance, and activation of NK cells and generation of memory cells lead to eradication of existing tumors.
Collapse
|
7
|
Metharom P, Velten FW, Goerdt S. Highly phagocytic, CD4hi, CD14hi and CD16hi antigen-presenting cells modulated by tumour-conditioned media retain the capacity to mature and induce TH1 T-cell proliferation. Mol Immunol 2006; 43:2070-82. [PMID: 16455138 DOI: 10.1016/j.molimm.2005.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 12/14/2005] [Accepted: 12/20/2005] [Indexed: 11/16/2022]
Abstract
The tumour microenvironment down-modulates antigen-presentation by dendritic cells (DC), presumably due to inhibition of DC maturation. Here, we sought to examine (1) whether monocyte-derived cells cultivated with tumour-conditioned media under conditions that are conducive to DC generation (APCTCM) resemble immature DC (iDC), IL-10-induced regulatory DC (DCIL10) or display other distinctive features; (2) whether APCTCM are convertible to immunostimulatory DC (DCims) upon proper activation and (3) whether APCTCM and activated APCTCM are functionally defective. Four tumour cell lines expressing different cytokines were used to mimic different tumour microenvironments. As compared to iDC, DCims or DCIL10, APCTCM exhibited the highest levels of expression for CD14, CD16 and CD4. These markers and a high phagocytic capacity were unique features of these cells. When APCTCM were activated by a maturation cocktail, CD83, CD86, HLA-DR and CD25 were up-regulated to levels considerably higher than in DCIL10 and comparable to DCims while CD14, CD16, CD4 and dextran-uptake were down-modulated. Activated APCTCM induced 50-60% of the proliferative response of DCims in the allogeneic T-cell proliferation assay while DCIL10 mounted a 20-30% response (iDC elicited approximately 10%). Activated APCTCM induced secretion of almost equal amounts of IFN-gamma, TNF-alpha and IL-2 as DCims indicating induction of Th1 differentiation. When mature DCims were exposed to TCM, their immunostimulatory function was not significantly altered. However, when TCM were added to the co-cultures of DCims and CD4 T-cells the proliferative outcome was dependent on the TCM. In summary, APCTCM display special features but can mature into DCims-like cells.
Collapse
Affiliation(s)
- P Metharom
- Department of Dermatology, University Medical Centre Mannheim, Ruprecht Karls University of Heidelberg, Mannheim 68167, Germany.
| | | | | |
Collapse
|
8
|
Chen B, Tsui S, Smith TJ. IL-1β Induces IL-6 Expression in Human Orbital Fibroblasts: Identification of an Anatomic-Site Specific Phenotypic Attribute Relevant to Thyroid-Associated Ophthalmopathy. THE JOURNAL OF IMMUNOLOGY 2005; 175:1310-9. [PMID: 16002736 DOI: 10.4049/jimmunol.175.2.1310] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human orbital fibroblasts exhibit a unique inflammatory phenotype. In the present study, we report that these fibroblasts, when treated with IL-1beta, express high levels of IL-6, a cytokine involved in B cell activation and the regulation of adipocyte metabolism. The magnitude of this induction is considerably greater than that in dermal fibroblasts and involves up-regulation of IL-6 mRNA levels. IL-1beta activates both p38 and ERK 1/2 components of the MAPK pathways. Disrupting these could attenuate the IL-6 induction. The up-regulation involves enhanced IL-6 gene promoter activity and retardation of IL-6 mRNA decay by IL-1beta. Dexamethasone completely blocked the effect of IL-1beta on IL-6 expression. Orbital fibroblasts also express higher levels of IL-6R than do skin-derived cells. When treated with rIL-6 (10 ng/ml), STAT3 is transiently phosphorylated. Thus, the exaggerated capacity of orbital fibroblasts to express high levels of both IL-6 and its receptor in an anatomic site-selective manner could represent an important basis for immune responses localized to the orbit in Graves' disease.
Collapse
Affiliation(s)
- Beiling Chen
- Division of Molecular Medicine, Department of Medicine, Harbor-University of California at Los Angeles, Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | | | | |
Collapse
|
9
|
Theunissen K, Verfaillie CM. A multifactorial analysis of umbilical cord blood, adult bone marrow and mobilized peripheral blood progenitors using the improved ML-IC assay. Exp Hematol 2005; 33:165-72. [PMID: 15676210 DOI: 10.1016/j.exphem.2004.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/21/2004] [Accepted: 10/21/2004] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Assays that can evaluate the potential of individual human hematopoietic stem cells (HSC) are still lacking. We previously developed the myeloid-lymphoid initiating cell (ML-IC) assay that enumerates single CD34(+) cells that generate long-term culture-initiating (LTC-IC) and NK-initiating (NK-IC) daughter cells, or single primitive progenitors with multilineage potential. When transplanted in vivo, umbilical cord blood (UCB) has greater repopulating ability than bone marrow (BM) or mobilized peripheral blood (MPB). Whether the greater in vivo repopulating ability is due to an increased frequency of HSC in UCB and generative potential of UCB, BM, and MPB CD34(+) cells is not known. MATERIALS AND METHODS Single UCB, BM, and MPB CD34(+)CD38(-)Lin(-) or CD34(+)CD38(-)CD33(-) cells were plated in ML-IC assay and after 2 to 4 weeks, progeny was evaluated for frequency and generative potential of ML-IC. We also tested whether the ML-IC assay could be used to define if increased numbers of primitive progenitors generated by different cytokines in expansion cultures are mediated by recruitment of quiescent cells or by increasing their generative potential. RESULTS The frequency of ML-IC in BM, UCB, and MPB was similar, but the generative potential of UCB ML-IC was significantly higher. Substitution of Flt3-L, SCF, and IL-7 with Flt3-L and thrombopoietin significantly increased the generative potential of ML-IC, whereas Flt3-L, SCF, and hyper-IL-6 increased both ML-IC frequency and generative potential. CONCLUSION The ML-IC assay demonstrates that the greater repopulating ability of UCB is due to the higher generative ability of HSC in UCB. Furthermore, the ML-IC assay can discriminate between cytokine-mediated expansion of hematopoietic progenitors by enhancing generation of immature daughter cells or by recruiting otherwise quiescent cells.
Collapse
Affiliation(s)
- Koen Theunissen
- Stem Cell Biology Program, Department of Medicine and Cancer Center, University of Minnesota Medical School, Minneapolis, Minn., USA
| | | |
Collapse
|
10
|
Hieronymus T, Gust TC, Kirsch RD, Jorgas T, Blendinger G, Goncharenko M, Supplitt K, Rose-John S, Müller AM, Zenke M. Progressive and Controlled Development of Mouse Dendritic Cells from Flt3+CD11b+Progenitors In Vitro. THE JOURNAL OF IMMUNOLOGY 2005; 174:2552-62. [PMID: 15728461 DOI: 10.4049/jimmunol.174.5.2552] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DC) represent key regulators of the immune system, yet their development from hemopoietic precursors is poorly defined. In this study, we describe an in vitro system for amplification of a Flt3(+)CD11b(+) progenitor from mouse bone marrow with specific cytokines. Such progenitor cells develop into both CD11b(+) and CD11b(-) DC, and CD8alpha(+) and CD8alpha(-) DC in vivo. Furthermore, with GM-CSF, these progenitors synchronously differentiated into fully functional DC in vitro. This two-step culture system yields homogeneous populations of Flt3(+)CD11b(+) progenitor cells in high numbers and allows monitoring the consecutive steps of DC development in vitro under well-defined conditions. We used phenotypic and functional markers and transcriptional profiling by DNA microarrays to study the Flt3(+)CD11b(+) progenitor and differentiated DC. We report here on an extensive analysis of the surface Ag expression of Flt3(+)CD11b(+) progenitor cells and relate that to surface Ag expression of hemopoietic stem cells. Flt3(+)CD11b(+) progenitors studied exhibit a broad overlap of surface Ags with stem cells and express several stem cell Ags such as Flt3, IL-6R, c-kit/SCF receptor, and CD93/AA4.1, CD133/AC133, and CD49f/integrin alpha(6). Thus, Flt3(+)CD11b(+) progenitors express several stem cell surface Ags and develop into both CD11b(+) and CD11b(-) DC, and CD8alpha(+) and CD8alpha(-) DC in vivo, and thus into both of the main conventional DC subtypes.
Collapse
Affiliation(s)
- Thomas Hieronymus
- Institute for Biomedical Engineering-Cell Biology, University Medical School Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa SI, Kamimura D, Ueda N, Iwakura Y, Ishihara K, Murakami M, Hirano T. IL-6 Regulates In Vivo Dendritic Cell Differentiation through STAT3 Activation. THE JOURNAL OF IMMUNOLOGY 2004; 173:3844-54. [PMID: 15356132 DOI: 10.4049/jimmunol.173.6.3844] [Citation(s) in RCA: 382] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) orchestrate immune responses according to their state of maturation. In response to infection, DCs differentiate into mature cells that initiate immune responses, while in the absence of infection, most of them remain in an immature form that induces tolerance to self Ags. Understanding what controls these opposing effects is an important goal for vaccine development and prevention of unwanted immune responses. A crucial question is what cytokine(s) regulates DC maturation in the absence of infection. In this study, we show that IL-6 plays a major role in maintaining immature DCs. IL-6 knockout (KO) mice had increased numbers of mature DCs, indicating that IL-6 blocks DC maturation in vivo. We examined this effect further in knockin mice expressing mutant versions of the IL-6 signal transducer gp130, with defective signaling through either Src homology region 2 domain-containing phosphatase 2/Gab/MAPK (gp130(F759/F759)) or STAT3 (gp130(FxxQ/FxxQ)), and combined gp130 and IL-6 defects (gp130(F759/F759)/IL-6 KO mice). Importantly, we found STAT3 activation by IL-6 was required for the suppression of LPS-induced DC maturation. In addition, STAT3 phosphorylation in DCs was regulated by IL-6 in vivo, and STAT3 was necessary for the IL-6 suppression of bone marrow-derived DC activation/maturation. DC-mediated T cell activation was enhanced in IL-6 KO mice and suppressed in gp130(F759/F759) mice. IL-6 is thus a potent regulator of DC differentiation in vivo, and IL-6-gp130-STAT3 signaling in DCs may represent a critical target for controlling T cell-mediated immune responses in vivo.
Collapse
Affiliation(s)
- Sung-Joo Park
- Department of Molecular Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mosca PJ, Clay TM, Kim Lyerly H, Morse MA. Current status of dendritic cell immunotherapy of malignancies. Int Rev Immunol 2003; 22:255-81. [PMID: 12745642 DOI: 10.1080/08830180305223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Because dendritic cells (DC) are central to the induction of antigen-specific T cell responses, their use for the active immunotherapy of malignancies has been of considerable interest. Since clinical trials with DC-based vaccines have been initiated, a number of important developmental issues have become apparent. These include the ideal source and type of DC, the form of antigen and method of loading DC, whether to induce maturation, the route and timing of immunization, and the optimal clinical scenario. Clinical responses such as stability of disease and tumor regressions have been reported in some patients, particularly with melanoma, myeloma, and prostate cancer.
Collapse
Affiliation(s)
- Paul J Mosca
- Departments of Surgery and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
13
|
Löhr HF, Pingel S, Böcher WO, Bernhard H, Herzog-Hauff S, Rose-John S, Galle PR. Reduced virus specific T helper cell induction by autologous dendritic cells in patients with chronic hepatitis B - restoration by exogenous interleukin-12. Clin Exp Immunol 2002; 130:107-14. [PMID: 12296860 PMCID: PMC1906498 DOI: 10.1046/j.1365-2249.2002.01943.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insufficient stimulatory capacities of autologous dendritic cells (DC) may contribute in part to impaired T cell stimulation and therefore viral persistence in patients with chronic hepatitis B virus (HBV) infection. In order to characterize the antigen presenting functions of DC from chronic HBV carriers and controls antigen specific T cell responses were analysed. CD34+ peripheral blood progenitor cells were differentiated to immature DC in the presence of GM-CSF, IL-6/IL-6R fusion protein and stem cell factor. Proliferative CD4+ T cell responses and specific cytokine release were analysed in co-cultures of DC pulsed with HBV surface and core antigens or tetanus toxoid and autologous CD4+ T cells. Cultured under identical conditions DC from chronic HBV carriers, individuals with acute resolved hepatitis B and healthy controls expressed similar phenotypical markers but chronic HBV carriers showed less frequent and weaker HBV antigen specific proliferative T helper cell responses and secreted less interferon-gamma while responses to the tetanus toxoid control antigen was not affected. Preincubation with recombinant IL-12 enhanced the HBV specific immune reactivities in chronic HBV patients and controls. In conclusion, the weak antiviral immune responses observed in chronic hepatitis B may result in part from insufficient T cell stimulating capacities of DC. Immunostimulation by IL-12 restored the HBV antigen specific T cell responses and could have some therapeutical benefit to overcome viral persistence.
Collapse
Affiliation(s)
- H F Löhr
- Department of Internal Medicine, Johannes-Gutenberg-University Mainz, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Jones SA, Rose-John S. The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:251-63. [PMID: 12421670 DOI: 10.1016/s0167-4889(02)00319-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytokines perform ever-increasing roles in both, the regulation of general homeostasis and in orchestrating the immune response during disease. To ensure that control of the cytokine network is tightly regulated, nature has developed a series of systems designed for this purpose. In this respect, researchers have placed considerable emphasis on identifying and characterising the regulatory properties of soluble cytokine receptors. These proteins bind their ligands with similar affinities to those of their cognate transmembrane receptors and are effective at prolonging the circulating half-life of cytokines they bind. However, it is the individual capacity of these soluble receptors to act as either antagonists or agonists which has been the principal focus of most research studies. This review provides an overview of the activities of soluble cytokine receptors, but primarily concentrates on those that possess agonistic properties.
Collapse
Affiliation(s)
- Simon A Jones
- Molecular Cell Biology Research Group, Cardiff School of Biosciences, Biomedical Sciences Building, Cardiff University, Wales, UK.
| | | |
Collapse
|
15
|
Kallen KJ. The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:323-43. [PMID: 12421676 DOI: 10.1016/s0167-4889(02)00325-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The activation of cells that do not express the membrane bound interleukin-6 6 receptor (IL-6R) by IL-6 and the soluble IL-6 receptor (sIL-6R) is termed transsignalling. Transsignalling may be an pathogenetic factor in human diseases as diverse as multiple myeloma (MM), Castleman's disease, prostate carcinoma, Crohn's disease, systemic sclerosis, Still's disease, osteoporosis and cardiovascular diseases. IL-6 and sIL-6R may directly or indirectly enhance their own production on endothelial or bone marrow stromal cells. Positive feedback autocrine loops thus created in affected organs may either cause or maintain disease progression. In autoimmune or vasculitic disease, the ability of the IL-6/sIL-6R complex to inhibit apoptosis of autoreactive T-cells may be central to the development of tissue specific autoimmunity. The anti-apoptotic effect of the IL-6/sIL-6R complex may be involved in tumour genesis and resistance to chemotherapy. Only in rare cases, where counterregulation has failed, there is a notable systemic effect of IL-6/sIL-6R. Appropriate animal models are necessary to establish the pathogenetic role of the IL-6/sIL-6R complex. A specific treatment option for diseases influenced by the sIL-6R could be based on gp130-Fc, a soluble gp130 (sgp130) linked to the Fc-fragment of IgG1. gp130-Fc has shown efficacy in vivo in animal models of Crohn's disease.
Collapse
Affiliation(s)
- Karl-Josef Kallen
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Germany.
| |
Collapse
|
16
|
Abstract
Recent advantages with the cultivation of adult and embryonic stem cells have raised hopes for therapeutic applications of such cells in the treatment of neurodegenerative diseases and cancer. Cultivation of stem cells on feeder cells or treatment of the cells with cytokines is necessary to maintain stem cells in an undifferentiated state and to keep their pluripotency. In particular, the cytokine leukemia inhibitory factor (LIF) has been used to cultivate murine embryonic stem (ES) cells in the absence of feeder cells. For unknown reasons, LIF does not evoke the same effect on rat or human stem cells. This article summarizes what is known about, and the problems associated with, the cultivation of stem cells and suggests experimental strategies that might help to overcome these difficulties.
Collapse
Affiliation(s)
- Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universitat zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
| |
Collapse
|
17
|
Identification of the genes differentially expressed in human dendritic cell subsets by cDNA subtraction and microarray analysis. Blood 2002. [DOI: 10.1182/blood.v100.5.1742.h81702001742_1742_1754] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies on dendritic cell (DC)–associated genes have been performed using monocyte-derived DCs (MoDCs) in different maturation stages. In our approach, to uncover the novel DC-associated genes and their expression profiles among the different DC subsets, we constructed a subtracted DC-cDNA library from CD1a+, CD14+, and CD11c− DCs by subtracting the genes shared with T cells, B cells, and monocytes, and we then screened the libraries with the aid of microarray technique. The genes showing remarkable specificity to DCs in the microarray analysis were selected and confirmed by semiquantitative reverse transcriptase–polymerase chain reaction. Our investigations revealed the following: (1) Genes highly expressed in myeloid DCs are those involved in antigen uptake/processing/presentation, cell metamorphosis, or chemotaxis. (2) Most of the genes previously identified in MoDCs, such as TARC, ferritin L-chain, lysosomal acid lipase, α- and β-tubulin, osteopontin (Eta-1), and others, are not markedly expressed in CD11c− DCs regardless of their maturation status. On the other hand, specific transcription factors and MHC class II molecules, such as interferon regulatory factor-4 (IRF4) and HLA-DR, are similarly expressed in both DC subsets. (3) CD14+ DCs retain unique features of tissue DCs, as evidenced by the gene expression profile of “no CCR7 but more CCR1” and “no TARC but abundant MCP1 and Eta-1.” (4) The genes for immunoglobulin (Ig) superfamily Z39Ig, CD20-like precursor, glycoprotein NMB (GPNMB), transforming growth factorβ (TGF-β)–induced protein (TGFBI), myeloid DAP12-associated lectin (MDL-1), and 6 novel genes are newly identified as being associated with the phenotypic expression of the DC subsets. These identifications provide important molecular information for further functional studies of the DC subsets.
Collapse
|
18
|
Wang YD, Gu ZJ, Huang JA, Zhu YB, Zhou ZH, Xie W, Xu Y, Qiu YH, Zhang XG. gp130-linked signal transduction promotes the differentiation and maturation of dendritic cells. Int Immunol 2002; 14:599-603. [PMID: 12039911 DOI: 10.1093/intimm/dxf027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to explore the role of gp130-linked signal transduction in the differentiation and maturation of dendritic cells (DC), the mAb, B-S12, an agonist of gp130, was used for the activation of gp130 on DC. The effects of cytokines and of anti-gp130 mAb on the proliferation of DC, and their expression of IL-12 and CD80 (B7-1) by DC were evaluated. DC differentiating from peripheral blood mononuclear cells did not express the IL-6 receptor alpha chain, but expressed gp130. Anti-gp130 mAb promoted the proliferation of DC, induced by IL-4 and granulocyte macrophage colony stimulating factor (GM-CSF), by up-regulating the GM-CSF receptor on DC. DC induced by gp130 mAb and cytokines expressed DC-derived CC chemokine, as measured by RT-PCR. Induced DC also stimulated strong proliferation of autologous T cells in mixed lymphocyte reaction since an up-regulated expression of IL-12 and CD80 (B7-1) was observed in DC activated by anti-gp130 mAb. Thus, gp130 signal transduction is important for the differentiation and maturation of DC.
Collapse
Affiliation(s)
- Yue-Dan Wang
- Department of Immunology, Soochow (Suzhou) University, 48 Renmin Road, Suzhou, China 215007
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cytokines are a growing group of proteins that are responsible for the communication of cells of the immune system, hematopoietic cells, and other cell types. They play a dominant role in various diseases, particularly in promoting and perpetuating inflammation. Cytokine production is a reaction of the body to a pathologic state to restore homeostasis. In such cases, the therapeutic intervention should support the reaction of the body by giving the cytokine itself (agonistic therapeutics). In other cases, manifestation of a disease results from an overproduction of cytokines, making cytokine antagonists desirable therapeutic drugs. Furthermore, cytokines may be good candidates as cancer therapeutics, especially to support the restoration of blood cell populations after chemotherapy or radiation.
Collapse
Affiliation(s)
- Heidi Schooltink
- Department of Biochemistry, Christian-Albrechts-Universität Kiel, D-24098 Kiel, Germany
| | | |
Collapse
|
20
|
Liu A, Takahashi M, Narita M, Zheng Z, Kanazawa N, Abe T, Nikkuni K, Furukawa T, Toba K, Fuse I, Aizawa Y. Generation of functional and mature dendritic cells from cord blood and bone marrow CD34+ cells by two-step culture combined with calcium ionophore treatment. J Immunol Methods 2002; 261:49-63. [PMID: 11861065 DOI: 10.1016/s0022-1759(01)00545-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The object of this study is to explore a culture method to generate a large number of functional and mature dendritic cells (DC) from human CD34+ hematopoietic progenitor cells. In the present study, we used a two-step method combined with calcium ionophore to induce DC from cord blood (CB) or normal human bone marrow (BM) CD34+ progenitor cells. The two-step method consists of 10 days of first step culture for the expansion and proliferation of CD34+ hematopoietic progenitor cells in the presence of SCF, IL-3, IL-6, G-CSF, and 7--11 days of second step culture for the induction of DC in the presence of GM-CSF, IL-4 and TNF-alpha. By the two-step culture, total nucleated cells were increased 208+/-66 (+/-SD, n=13), or 94+/-29 (n=5)-fold in the culture of CB or BM cells, respectively, compared with the number of CD34+ cells at the time of starting culture. Out of the total nucleated cells, 23 +/-10.4% of cells in CB cell culture and 25 +/-5% of cells in the BM cell culture acquired DC characteristic phenotypes, which were marked expressions of CD1a, HLA-DR, co-stimulatory molecules such as CD80, CD40, and adhesion molecule such as CD58. In allogeneic mixed leukocyte reaction (MLR), two-step cultured cells showed potent allo-stimulatory capacity. With this two-step culture, the absolute number of CD1a+ cells that co-expressed HLA-DR, CD80, CD40 and CD58 was enhanced approximately 3 times in CB cell culture and 1.9 times in BM cell culture, compared with the commonly used one-step culture method for the generation of DC from CD34+ cells using SCF, GM-CSF and TNF-alpha. However, on these DC generated in the two-step culture, the expressions of co-stimulatory molecule CD86 and mature DC marker CD83 were not sufficient. By the treatment of two-step cultured cells with calcium ionophore agent (A23187), the expression of co-stimulatory molecules such as CD86 and CD80 (especially CD86) was up-regulated. Besides, the expression of mature DC marker CD83 was remarkably induced by treatment with A23187 for a short duration (24 h). Consistent with the up-regulation of surface molecules CD86, CD80 and CD83, the two-step cultured cells treated with A23187 also showed a stronger allo-stimulatory capacity compared with the cells without A23187 treatment. In conclusion, the present study demonstrated that the two-step culture method effectively improved the yield of CD1a+ DC generated from CD34+ cells, and the phenotypes and functions of these CD1a+ DC could be enhanced efficiently by treatment with a calcium ionophore agent.
Collapse
Affiliation(s)
- Aichun Liu
- First Department of Internal Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
zum Büschenfelde CM, Metzger J, Hermann C, Nicklisch N, Peschel C, Bernhard H. The generation of both T killer and Th cell clones specific for the tumor-associated antigen HER2 using retrovirally transduced dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1712-9. [PMID: 11466395 DOI: 10.4049/jimmunol.167.3.1712] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Induction of antitumor immunity involves the presence of both CD8(+) CTLs and CD4(+) Th cells specific for tumor-associated Ags. Attempts to eradicate cancer by adoptive T cell transfer have been limited due to the difficulty of generating T cells with defined Ag specificity. The current study focuses on the generation of CTL and Th cells against the tumor-associated Ag HER2 using autologous dendritic cells (DC) derived from CD34(+) hematopoietic progenitor cells which have been retrovirally transduced with the human epidermal growth factor receptor 2 (HER2) gene. HER2-transduced DC elicited HER2-specific CD8(+) CTL that lyse HER2-overexpressing tumor cells in context of distinct HLA class I alleles. The induction of both HLA-A2 and -A3-restricted HER2-specific CTL was verified on a clonal level. In addition, retrovirally transduced DC induced CD4(+) Th1 cells recognizing HER2 in context with HLA class II. HLA-DR-restricted CD4(+) T cells were cloned that released IFN-gamma upon stimulation with DC pulsed with the recombinant protein of the extracellular domain of HER2. These data indicate that retrovirally transduced DC expressing the HER2 molecule present multiple peptide epitopes and subsequently elicit HER2-specific CTL and Th1 cells. The method of stimulating HER2-specific CD8(+) and CD4(+) T cells with retrovirally transduced DC was successfully implemented for generating HER2-specific CTL and Th1 clones from a patient with HER2-overexpressing breast cancer. The ability to generate and expand HER2-specific, HLA-restricted CTL and Th1 clones in vitro facilitates the development of immunotherapy regimens, in particular the adoptive transfer of both autologous HER2-specific T cell clones in patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.
Collapse
MESH Headings
- Alleles
- Antigen Presentation/genetics
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Cell Line, Transformed
- Clone Cells
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/metabolism
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Genes, erbB-2/immunology
- Histocompatibility Antigens Class I/genetics
- Humans
- Hybridomas
- Lymphocyte Activation/genetics
- Middle Aged
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Retroviridae/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- Th1 Cells/immunology
- Transduction, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- C M zum Büschenfelde
- Department of Hematology/Oncology, Technical University of Munich, Ismaningerstrasse 22, 81664 Munich, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Böcher WO, Dekel B, Schwerin W, Geissler M, Hoffmann S, Rohwer A, Arditti F, Cooper A, Bernhard H, Berrebi A, Rose-John S, Shaul Y, Galle PR, Löhr HF, Reisner Y. Induction of strong hepatitis B virus (HBV) specific T helper cell and cytotoxic T lymphocyte responses by therapeutic vaccination in the trimera mouse model of chronic HBV infection. Eur J Immunol 2001; 31:2071-9. [PMID: 11449360 DOI: 10.1002/1521-4141(200107)31:7<2071::aid-immu2071>3.0.co;2-d] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Humanized BALB/c mice (termed trimera mice) conditioned by lethal total body irradiation and bone marrow transplantation from SCID mice have been described to support rapid engraftment of human peripheral blood mononuclear cells (PBMC) and the induction of strong B and T cell responses after immunization in vivo. Moreover, these mice can be infected with the hepatitis B and C viruses (HBV, HCV). The current study employed this model to study therapeutic vaccination approaches against the HBV. Thus, strong primary Th cell responses against the HBV core (HBc) and the Borrelia burgdorferi control antigen were induced by transfer of antigen-loaded dendritic cells together with autologous PBMC from HBV-naive donors as well as by vaccination with high doses of antigen or a DNA plasmid encoding for HBcAg. Moreover, primary peptide-specific CTL responses against the immunodominant epitope HBc(18 - 27) were induced by HBc particle or DNA vaccination of chimera engrafted with HBV-naive PBMC. Finally, strong HBc-specific Th cell and antibody responses were induced by HBc or DNA vaccination of mice reconstituted with PBMC from a chronic HBV patient. Thus, since HBc represents the immunodominant antigen in self-limited HBV infection, HBc particles or DNA vectors are good candidates for therapeutic vaccination, that will be further studied in our model and clinical studies.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Cells, Cultured
- Dendritic Cells/transplantation
- Disease Models, Animal
- Hepatitis B Antibodies/biosynthesis
- Hepatitis B Core Antigens/immunology
- Hepatitis B Vaccines/pharmacology
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/therapy
- Humans
- Interferon-gamma/biosynthesis
- Leukocytes, Mononuclear/transplantation
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccines, DNA/pharmacology
Collapse
Affiliation(s)
- W O Böcher
- Ist Department of Internal Medicine Hospital, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Meyer zum Büschenfelde C, Nicklisch N, Rose-John S, Peschel C, Bernhard H. Generation of tumor-reactive CTL against the tumor-associated antigen HER2 using retrovirally transduced dendritic cells derived from CD34+ hemopoietic progenitor cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4133-40. [PMID: 11034426 DOI: 10.4049/jimmunol.165.7.4133] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ag-specific CD8+ CTL are crucial for effective tumor rejection. Attempts to treat human malignancies by adoptive transfer of tumor-reactive CTL have been limited due to the difficulty of generating and expanding autologous CTL with defined Ag specificity. The current study examined whether human CTL can be generated against the tumor-associated Ag HER2 using autologous dendritic cells (DC) that had been genetically engineered to express HER2. DC progenitors were expanded by culturing CD34+ hemopoietic progenitor cells in the presence of the designer cytokine HyperIL-6. Proliferating precursor cells were infected by a retroviral vector encoding the HER2 Ag and further differentiated into CD83+ DC expressing high levels of MHC, adhesion, and costimulatory molecules. Retroviral transduction of DC resulted in the expression of the HER2 molecule with a transduction efficiency of 15%. HER2-transduced DC correctly processed and presented the Ag, because HLA-A*0201-positive DC served as targets for CTL recognizing the HLA-A*0201-binding immunodominant peptide HER2(369-377). HER2-transduced DC were used as professional APCs for stimulating autologous T lymphocytes. Following repetitive stimulation, a HER2-specific, HLA-A*0201-restricted CTL line was generated that was capable of lysing HLA-A*0201-matched tumor cells overexpressing HER2. A CD8+ T cell clone could be generated that displayed the same specificity pattern as the parenteral CTL line. The ability to generate and expand HER2-specific, MHC class I-restricted CTL clones using HER2-transduced autologous DC in vitro facilitates the development of adoptive T cell transfer for patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.
Collapse
MESH Headings
- Antigen Presentation/genetics
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigen-Presenting Cells/virology
- Antigens, CD
- Antigens, CD34/biosynthesis
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Cell Line
- Clone Cells
- Cytotoxicity, Immunologic/genetics
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/virology
- Humans
- Immunoglobulins/biosynthesis
- Interleukin-6/physiology
- Lymphocyte Activation/genetics
- Membrane Glycoproteins/biosynthesis
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Receptors, Interleukin/physiology
- Receptors, Interleukin-6
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/physiology
- Retroviridae/genetics
- Retroviridae/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Transduction, Genetic
- Tumor Cells, Cultured
- CD83 Antigen
Collapse
Affiliation(s)
- C Meyer zum Büschenfelde
- III Medizinische Klinik, Klinikum rechts der Isar, Technische Universität Müchen, Munich, Germany
| | | | | | | | | |
Collapse
|