1
|
Yousefian O, Dashti A, Geithner H, Karbalaeisadegh Y, Yao S, Blackwell J, Ali M, Montgomery S, Zhu Y, Egan T, Muller M. Characterizing random complex biological media by quantifying ultrasound multiple scattering. FRONTIERS IN ACOUSTICS 2025; 3:1545057. [PMID: 40357143 PMCID: PMC12068836 DOI: 10.3389/facou.2025.1545057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Introduction In this in silico, in vitro, and in vivo study, we propose metrics for the characterization of highly scattering media using backscattered acoustic waves in the MHz range, for application to the characterization of biological media. Methods Multi-element array transducers are used to record the ultrasonic Inter element Response Matrix (IRM) of scattering phantoms and of lung tissue in rodent models of pulmonary fibrosis. The distribution of singular values of the IRM in the frequency domain is then studied to quantify the multiple scattering contribution. Numerical models of scattering media, as well as gelatin-glass bead and polydimethylsiloxane phantoms with different scatterer densities, are used as a first step to demonstrate the proof of concept. Results The results show that changes in microstructure of a complex random medium affect parameters associated with the distribution of singular values. Two metrics are proposed: E(X), which is the expected value of the singular value distribution, andλ max , the maximum value of the probability density function of the singular value distribution, i.e., the most represented singular value. After validation of the methods in silico and in phantoms, we show that these metrics are relevant to evaluate pulmonary fibrosis in an in vivo rodent study on six control rats and eighteen rats with varying degrees of severity of pulmonary fibrosis. In rats, a moderate correlation was found between the severity of pulmonary fibrosis and metrics E(X) andλ max . Discussion These results suggest that such parameters could be used as metrics to estimate the amount of multiple scattering in highly heterogeneous media, and that these parameters could contribute to the evaluation of structural changes in lung microstructure.
Collapse
Affiliation(s)
- Omid Yousefian
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Azadeh Dashti
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Haley Geithner
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Yasamin Karbalaeisadegh
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Shanshan Yao
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - John Blackwell
- Surgery, University of North Carolina, Chapel Hill, NC, United States
| | - Mir Ali
- Surgery, University of North Carolina, Chapel Hill, NC, United States
| | | | - Yong Zhu
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Thomas Egan
- Surgery, University of North Carolina, Chapel Hill, NC, United States
- Biomedical Engineering, North Carolina State University, Raleigh, NC, United States
| | - Marie Muller
- Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
- Biomedical Engineering, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
2
|
Bi D, Shi L, Li B, Li Y, Liu C, Le LH, Luo J, Wang S, Ta D. The Protocol of Ultrasonic Backscatter Measurements of Musculoskeletal Properties. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:72-80. [PMID: 38605911 PMCID: PMC11004104 DOI: 10.1007/s43657-023-00122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 04/13/2024]
Abstract
This study aims to introduce the protocol for ultrasonic backscatter measurements of musculoskeletal properties based on a novel ultrasonic backscatter bone diagnostic (UBBD) instrument. Dual-energy X-ray absorptiometry (DXA) can be adopted to measure bone mineral density (BMD) in the hip, spine, legs and the whole body. The muscle and fat mass in the legs and the whole body can be also calculated by DXA body composition analysis. Based on the proposed protocol for backscatter measurements by UBBD, ultrasonic backscatter signals can be measured in vivo, deriving three backscatter parameters [apparent integral backscatter (AIB), backscatter signal peak amplitude (BSPA) and the corresponding arrival time (BSPT)]. AIB may provide important diagnostic information about bone properties. BSPA and BSPT may be important indicators of muscle and fat properties. The standardized backscatter measurement protocol of the UBBD instrument may have the potential to evaluate musculoskeletal characteristics, providing help for promoting the application of the backscatter technique in the clinical diagnosis of musculoskeletal disorders (MSDs), such as osteoporosis and muscular atrophy.
Collapse
Affiliation(s)
- Dongsheng Bi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Lingwei Shi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
| | - Lawrence H. Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, T6G2B7 Canada
| | - Jingchun Luo
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
| | - Sijia Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
| |
Collapse
|
3
|
Bi D, Shi L, Liu C, Li B, Li Y, Le LH, Luo J, Wang S, Ta D. Ultrasonic Through-Transmission Measurements of Human Musculoskeletal and Fat Properties. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:347-355. [PMID: 36266143 DOI: 10.1016/j.ultrasmedbio.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The study described here was aimed at investigating the feasibility of using the ultrasonic through-transmission technique to estimate human musculoskeletal and fat properties. Five hundred eighty-two volunteers were assessed by dual-energy X-ray absorptiometry (DXA) and ultrasonic transmission techniques. Bone mineral density (BMD), muscle and fat mass were measured for both legs and the whole body. Hip BMD and spine BMD were also measured. Ultrasonic transmission measurements were performed on the heel, and the measured parameters were broadband ultrasound attenuation (BUA), speed of sound (SOS), ultrasonic stiffness index (SI), T-score and Z-score, which were significantly correlated with all measured BMDs. The optimal correlation was observed between SI and left-leg BMD (p < 0.001) before and after adjustment for age, sex and body mass index (BMI). The linear and partial correlation analyses revealed that BUA and SOS were closely associated with muscle and fat mass, respectively. Multiple regressions revealed that muscle and fat mass significantly contributed to the prediction of transmission parameters, explaining up to 17.83% (p < 0.001) variance independently of BMD. The results suggest that the ultrasonic through-transmission technique could help in the clinical diagnosis of skeletal and muscular system diseases.
Collapse
Affiliation(s)
- Dongsheng Bi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Lingwei Shi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Jingchun Luo
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Sijia Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; Academy for Engineering and Technology, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Wear K. Scattering in Cancellous Bone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:163-175. [DOI: 10.1007/978-3-030-91979-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Bi D, Dai Z, Liu D, Wu F, Liu C, Li Y, Li B, Li Z, Li Y, Ta D. Ultrasonic Backscatter Measurements of Human Cortical and Trabecular Bone Densities in a Head-Down Bed-Rest Study. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2404-2415. [PMID: 34052063 DOI: 10.1016/j.ultrasmedbio.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
This study aims to investigate the feasibility of quantitative ultrasonic backscatter in evaluating human cortical and trabecular bone densities in vivo based on a head-down-tilt bed rest study, with 36 participants tested through 90 d of bed rest and 180 d of recovery. Backscatter measurements were performed using an ultrasonic backscatter bone diagnostic instrument. Backscatter parameters were calculated with a dynamic signal-of-interest method, which was proposed to ensure the same ultrasonic interrogated volume in cortical and trabecular bones. The backscatter parameters exhibited significant correlations with site-matched bone densities provided by high-resolution peripheral quantitative computed tomography (0.33 < |R| < 0.72, p < 0.05). Some bone densities and backscatter parameters exhibited significant changes after the 90-d bed rest. The proposed method can be used to characterize bone densities, and the portable ultrasonic backscatter bone diagnostic device might be used to non-invasively reveal mean bone loss (across a group of people) after long-term bed rest and microgravity conditions of spaceflight missions.
Collapse
Affiliation(s)
- Dongsheng Bi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Duwei Liu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Zhili Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; Academy for Engineering and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Roncen R, Fellah ZEA, Ogam E. Bayesian inference of human bone sample properties using ultrasonic reflected signals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3797. [PMID: 33379902 DOI: 10.1121/10.0002878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The non-intrusiveness and low cost of ultrasonic interrogation is motivating the development of new means of detection of osteoporosis and other bone deficiencies. Bone is a porous media saturated with a viscous fluid and could thus be well characterized by the Biot model. The main purpose of this work is to present an in vitro methodology for the identification of the properties and structural parameters of the bone, adopting a statistical Bayesian inference technique using ultrasonic reflected signals at normal incidence. It is, in this respect, a companion paper to a previous work [J. Acoust. Soc. Am. 146, 3 (2019), pp. 1629-1640], where ultrasonic transmitted signals were considered. This approach allows the retrieval of some important parameters that characterize the bone structure and associated uncertainties. The method was applied to seven samples of bone extracted from femoral heads, immersed in water, and exposed to ultrasonic signals with a center frequency of ≈500 kHz. For all seven samples, signals at different sites were acquired to check the method robustness. The porosity, pore mean size and standard deviation, and the porous frame bulk modulus were all successfully identified using only ultrasonic reflected signals.
Collapse
Affiliation(s)
- R Roncen
- ONERA/Département Multi-Physique pour l'Énergétique, Université de Toulouse, F-31055, Toulouse, France
| | - Z E A Fellah
- Laboratoire de Mécanique et d'Acoustique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7031, Aix-Marseille Université, Centrale Marseille, F-13402 Marseille Cedex 20, France
| | - E Ogam
- Laboratoire de Mécanique et d'Acoustique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7031, Aix-Marseille Université, Centrale Marseille, F-13402 Marseille Cedex 20, France
| |
Collapse
|
7
|
Wear KA. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:454-482. [PMID: 31634127 PMCID: PMC7050438 DOI: 10.1109/tuffc.2019.2947755] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultrasound is now a clinically accepted modality in the management of osteoporosis. The most common commercial clinical devices assess fracture risk from measurements of attenuation and sound speed in cancellous bone. This review discusses fundamental mechanisms underlying the interaction between ultrasound and cancellous bone. Because of its two-phase structure (mineralized trabecular network embedded in soft tissue-marrow), its anisotropy, and its inhomogeneity, cancellous bone is more difficult to characterize than most soft tissues. Experimental data for the dependencies of attenuation, sound speed, dispersion, and scattering on ultrasound frequency, bone mineral density, composition, microstructure, and mechanical properties are presented. The relative roles of absorption, scattering, and phase cancellation in determining attenuation measurements in vitro and in vivo are delineated. Common speed of sound metrics, which entail measurements of transit times of pulse leading edges (to avoid multipath interference), are greatly influenced by attenuation, dispersion, and system properties, including center frequency and bandwidth. However, a theoretical model has been shown to be effective for correction for these confounding factors in vitro and in vivo. Theoretical and phantom models are presented to elucidate why cancellous bone exhibits negative dispersion, unlike soft tissue, which exhibits positive dispersion. Signal processing methods are presented for separating "fast" and "slow" waves (predicted by poroelasticity theory and supported in cancellous bone) even when the two waves overlap in time and frequency domains. Models to explain dependencies of scattering on frequency and mean trabecular thickness are presented and compared with measurements. Anisotropy, the effect of the fluid filler medium (marrow in vivo or water in vitro), phantoms, computational modeling of ultrasound propagation, acoustic microscopy, and nonlinear properties in cancellous bone are also discussed.
Collapse
|
8
|
Liu C, Li B, Diwu Q, Li Y, Zhang R, Ta D, Wang W. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2311-2321. [PMID: 30575524 DOI: 10.1109/tuffc.2018.2872084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study was designed to investigate the associations among ultrasonic backscatter, bone densities, and microstructure in bovine cancellous bone. Ultrasonic backscatter measurements were performed on 33 bovine cancellous bone specimens with a 2.25-MHz transducer. Ultrasonic apparent backscatter parameters ("apparent" means not compensating for ultrasonic attenuation and diffraction) were calculated with optimal signals of interest. The results showed that ultrasonic backscatter was significantly related to bone densities and microstructure ( R2 = 0.17 -0.88 and ). After adjusting the correlations by bone mineral density (BMD), the bone apparent density (BAD) and some trabecular structural features still contributed significantly to the adjusted correlations, with moderate additional variance explained ( ∆R2 = 9.7 % at best). Multiple linear regressions revealed that both BAD and trabecular structure contributed significantly and independently to the prediction of ultrasound backscatter (adjusted R2 = 0.75 -0.89 and ), explaining an additional 14% of the variance at most, compared with that of BMD measurements alone. The results proved that ultrasonic backscatter was primarily determined by BAD, not BMD, but the combination of bone structure and densities could achieve encouragingly better performances (89% of the variance explained at best) in predicting backscatter properties. This study demonstrated that ultrasonic apparent backscatter might provide additional density and structural features unrelated to current BMD measurement. Therefore, we suggest that ultrasonic backscatter measurement could play a more important role in cancellous bone evaluation.
Collapse
|
9
|
Karbalaeisadegh Y, Yousefian O, Muller M. Influence of micro-structural parameters on apparent absorption coefficient in porous structures mimicking cortical bone. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM : [PROCEEDINGS]. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM 2018; 2018:10.1109/ultsym.2018.8579610. [PMID: 39092167 PMCID: PMC11293489 DOI: 10.1109/ultsym.2018.8579610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Ultrasound wave propagation in porous media is associated with energy loss and attenuation. Attenuation is caused by both scattering and absorption, and is influenced by the microstructure as well as the operating frequency. In the present simulation study, we calculate the attenuation coefficient in porous structures mimicking cortical bone both in presence and absence of absorption to isolate the effects of scattering and absorption on the total attenuation. A parameter called apparent absorptionα a p p . a b s is defined as the difference between the total attenuationα total and the attenuation exclusively due to scatteringα scat .α total , α scat andα app.abs are estimated in porous structures with varying pore diameters ( ϕ ∈ [ 40, 120 ] μ m ) and pore densities ( ρ ∈ [ 5, 25 ] pore / m m 2 ) at 5MHz and 8MHz. Results show that both scattering and absorption contribute to the total attenuation. They also illustrate that, although absorption only occurs in the solid matrix, the apparent absorptionα a p p . a b s is a function of porosity, presumably due to the presence of multiple scattering. For large values of k ϕ , an increase in pore size or density does not lead to increase inα s c a t and only results in an increase of the total attenuation as a result of increase inα app.abs. . On the other hand, in low/intermediate scattering regimes ( k ϕ ≤ 1 ) , an increase in either pore size or pore density results in increase inα scat whileα app.abs remains constant.
Collapse
Affiliation(s)
- Yasamin Karbalaeisadegh
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27695-8212, USA
| | - Omid Yousefian
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27695-8212, USA
| | - Marie Muller
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27695-8212, USA
| |
Collapse
|
10
|
Stromer J, Ladani L. Examination of a spectral-based ultrasonic analysis method for materials characterization and evaluation. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Hoffmeister BK, Huber MT, Viano AM, Huang J. Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:911. [PMID: 29495707 PMCID: PMC5812744 DOI: 10.1121/1.5023219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 05/28/2023]
Abstract
Materials that simulate the ultrasonic properties of tissues are used widely for clinical and research purposes. However, relatively few materials are known to simulate the ultrasonic properties of cancellous bone. The goal of the present study was to investigate the suitability of using a polymer, open-cell rigid foam (OCRF) produced by Sawbones®. Measurements were performed on OCRF specimens with four different densities. Ultrasonic speed of sound and normalized broadband ultrasonic attenuation were measured with a 0.5 MHz transducer. Three backscatter parameters were measured with a 5 MHz transducer: apparent integrated backscatter, frequency slope of apparent backscatter, and normalized mean of the backscatter difference. X-ray micro-computed tomography was used to measure the microstructural characteristics of the OCRF specimens. The trabecular thickness and relative bone volume of the OCRF specimens were similar to those of human cancellous bone, but the trabecular separation was greater. In most cases, the ultrasonic properties of the OCRF specimens were similar to values reported in the literature for cancellous bone, including dependence on density. In addition, the OCRF specimens exhibited an ultrasonic anisotropy similar to that reported for cancellous bone.
Collapse
Affiliation(s)
| | - Matthew T Huber
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Jinsong Huang
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
12
|
Variability in Ultrasound Backscatter Induced by Trabecular Microstructure Deterioration in Cancellous Bone. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4786329. [PMID: 29780823 PMCID: PMC5892598 DOI: 10.1155/2018/4786329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/01/2018] [Indexed: 12/02/2022]
Abstract
To determine the relationship between the ultrasonic backscatter parameters and trabecular microstructural variations in cancellous bone, three erosion procedures were performed to simulate various changes in the cancellous bone microstructure. The finite difference time domain (FDTD) method was used to simulate the backscatter signal in cancellous bone. Ultrasonic backscatter properties were derived as functions of the porosity when the ultrasound incident directions were perpendicular and parallel to the major trabeculae direction (MTD), respectively. The variability in the apparent backscatter coefficient (ABC) and apparent integrated backscatter (AIB) due to the trabecular microstructure was revealed. Significant negative correlations between the backscatter parameters (ABC and AIB) and the porosity of the cancellous bone were observed. The simulations showed that the ABC and AIB were influenced by the direction of the trabecular microstructural variations. The linear regressions between the ultrasonic backscatter parameters (ABC and AIB) and the porosity showed significantly different slopes for three erosion procedures when they are ultrasonically perpendicular (for ABC, −1.22 dB, −0.98 dB, and −0.46 dB; for AIB, −0.74 dB, −0.69 dB, and −0.25 dB) and parallel (for ABC, −1.87 dB, −0.69 dB, and −0.51 dB; for AIB, −0.9 dB, −0.5 dB, and −0.34 dB) to the MTD. This paper investigated the relationship between ultrasonic backscatter and cancellous bone microstructure deterioration and indicated that the ultrasonic backscatter could be affected by cancellous bone microstructure deterioration direction.
Collapse
|
13
|
Hoffmeister BK, Viano AM, Fairbanks LC, Ebron SC, McPherson JA, Huber MT. Effect of gate choice on backscatter difference measurements of cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:540. [PMID: 28863582 PMCID: PMC5552398 DOI: 10.1121/1.4996140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 05/28/2023]
Abstract
A variety of ultrasonic techniques have been developed to detect changes in bone caused by osteoporosis. One approach, called the backscatter difference technique, analyzes the power difference between two different portions of a backscatter signal. Analysis gates with a certain delay τd, width τw, and separation τs are used to define portions of the backscatter signal for analysis. The goal of the present study was to investigate how different choices of τd, τw, and τs affect four backscatter difference parameters: the normalized mean of the backscatter difference (nMBD), the normalized slope of the backscatter difference (nSBD), the normalized intercept of the backscatter difference (nIBD), and the normalized backscatter amplitude ratio (nBAR). Backscatter measurements were performed on 54 cube shaped specimens of human cancellous bone. nMBD, nSBD, nIBD, and nBAR were determined for 34 different combinations of τd, τw, and τs for each specimen. nMBD and nBAR demonstrated the strongest correlations with apparent bone density (0.48 ≤ Rs ≤ 0.90). Generally, the correlations were found to improve as τw + τs was increased and as τd was decreased. Among the four backscatter difference parameters, the measured values of nMBD were least sensitive to gate choice (<16%).
Collapse
Affiliation(s)
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Luke C Fairbanks
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Sheldon C Ebron
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | | | - Matthew T Huber
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| |
Collapse
|
14
|
Xu Y, Xu Y, Ding Z, Chen Y, Su B, Ma Z, Sun YN. Correlation between ultrasonic power spectrum and bone density on the heel. ULTRASONICS 2017; 73:77-81. [PMID: 27614335 DOI: 10.1016/j.ultras.2016.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The purposes of this paper were to evaluate the correlation between ultrasonic power spectrum and bone density and to extract the effectiveness of parameters from power spectrum for evaluating bone density. A total of 50 persons 24-72years of age were recruited. All study participants underwent bone mineral density (BMD) measurements of the lumbar spine (vertebral levels L1-L4). The participants also underwent calcaneal measurements to determine ultrasonic power spectrum with central frequencies of 0.5MHz. Three parameters from normalized power spectrum, called principle frequency (PF), frequency band (FB), and amplitude for principle frequency (APF), were chosen and be evaluated the correlation with the lumbar spine BMD. The correlation coefficient of PF, FB and APF with BMD was r=-0.48 (p<0.001), r=0.48 (p<0.001), and r=-0.71 (p<0.001), respectively. The results showed that the correlation between APF and BMD was better than the correlation among PF, FB and BMD, and APF have a significant correlation with BMD. In conclusion, the correlations among the parameters of ultrasonic power spectrum and BMD are significant, and especially APF performs better than PF and FB in evaluating bone density of participants. These results suggest that ultrasonic power spectrum may contain substantial information not already contained in BUA and SOS. A multiple regression model including all three QUS variables was somewhat more predictive of BMD than a model including only BUA and SOS.
Collapse
Affiliation(s)
- Yubing Xu
- Institute and Intelligent of Machines, Chinese Academy of Science, Hefei, Anhui, PR China
| | - Yang Xu
- Institute and Intelligent of Machines, Chinese Academy of Science, Hefei, Anhui, PR China; Department of Automation, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Zenghui Ding
- Institute and Intelligent of Machines, Chinese Academy of Science, Hefei, Anhui, PR China; Department of Automation, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Yanyan Chen
- Institute and Intelligent of Machines, Chinese Academy of Science, Hefei, Anhui, PR China.
| | - Benyue Su
- School of Mathematics and Computing Science, Anqing Teachers College, PR China
| | - Zuchang Ma
- Institute and Intelligent of Machines, Chinese Academy of Science, Hefei, Anhui, PR China
| | - Yi-Ning Sun
- Institute and Intelligent of Machines, Chinese Academy of Science, Hefei, Anhui, PR China
| |
Collapse
|
15
|
Correlation between the combination of apparent integrated backscatter–spectral centroid shift and bone mineral density. J Med Ultrason (2001) 2016; 43:167-73. [DOI: 10.1007/s10396-015-0690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
16
|
Hoffmeister BK, Mcpherson JA, Smathers MR, Spinolo PL, Sellers ME. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:2115-25. [PMID: 26683412 DOI: 10.1109/tuffc.2015.007299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ultrasonic backscatter techniques are being developed to detect changes in cancellous bone caused by osteoporosis. Many techniques are based on measurements of the apparent backscatter transfer function (ABTF), which represents the backscattered power from bone corrected for the frequency response of the measurement system. The ABTF is determined from a portion of the backscatter signal selected by an analysis gate of width τw delayed by an amount τd from the start of the signal. The goal of this study was to characterize the ABTF for a wide range of gate delays (1 μs ≤ τd ≤ 6 μs) and gate widths (1 μs ≤ τw ≤ 6 μs). Measurements were performed on 29 specimens of human cancellous bone in the frequency range 1.5 to 6.0 MHz using a broadband 5-MHz transducer. The ABTF was found to be an approximately linear function of frequency for most choices of τd and τw. Changes in τd and τw caused the frequency-averaged ABTF [quantified by apparent integrated backscatter (AIB)] and the frequency dependence of the ABTF [quantified by frequency slope of apparent backscatter (FSAB)] to change by as much as 24.6 dB and 6.7 dB/MHz, respectively. τd strongly influenced the measured values of AIB and FSAB and the correlation of AIB with bone density (-0.95 ≤ R ≤ +0.68). The correlation of FSAB with bone density was influenced less strongly by τd (-0.97 ≤ R ≤ -0.87). τw had a weaker influence than τd on the measured values of AIB and FSAB and the correlation of these parameters with bone density.
Collapse
|
17
|
Guipieri S, Nagatani Y, Bosc R, Nguyen VH, Chappard C, Geiger D, Haïat G. Ultrasound Speed of Sound Measurements in Trabecular Bone Using the Echographic Response of a Metallic Pin. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2966-2976. [PMID: 26320667 DOI: 10.1016/j.ultrasmedbio.2015.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/16/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
Bone quality is an important parameter in spine surgery, but its clinical assessment remains difficult. The aim of the work described here was to demonstrate in vitro the feasibility of employing quantitative ultrasound to retrieve bone mechanical properties using an echographic technique taking advantage of the presence of a metallic pin inserted in bone tissue. A metallic pin was inserted in bone tissue perpendicular to the transducer axis. The echographic response of the bone sample was determined, and the echo of the pin inserted in bone tissue and water were compared to determine speed of sound, which was compared with bone volume fraction. A 2-D finite-element model was developed to assess the effect of positioning errors. There was a significant correlation between speed of sound and bone volume fraction (R(2) = 0.6). The numerical results indicate the relative robustness of the measurement method, which could be useful to estimate bone quality intra-operatively.
Collapse
Affiliation(s)
- Séraphin Guipieri
- CNRS, Laboratoire Modélisation et Simulation MultiEchelle, MSME UMR CNRS 8208, Créteil, France
| | - Yoshiki Nagatani
- CNRS, Laboratoire Modélisation et Simulation MultiEchelle, MSME UMR CNRS 8208, Créteil, France; Kobe City College of Technology, Nishiku, Kobe, Japan
| | - Romain Bosc
- Service de Chirurgie Plastique et Reconstructive, Hôpital Henri Mondor AP-HP, F-94000, Créteil, France
| | - Vu-Hieu Nguyen
- CNRS, Laboratoire Modélisation et Simulation MultiEchelle, MSME UMR CNRS 8208, Créteil, France
| | | | - Didier Geiger
- CNRS, Laboratoire Modélisation et Simulation MultiEchelle, MSME UMR CNRS 8208, Créteil, France
| | - Guillaume Haïat
- CNRS, Laboratoire Modélisation et Simulation MultiEchelle, MSME UMR CNRS 8208, Créteil, France.
| |
Collapse
|
18
|
Hoffmeister BK, Spinolo PL, Sellers ME, Marshall PL, Viano AM, Lee SR. Effect of intervening tissues on ultrasonic backscatter measurements of bone: An in vitro study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2449-57. [PMID: 26520327 PMCID: PMC4627934 DOI: 10.1121/1.4931906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/07/2015] [Accepted: 09/12/2015] [Indexed: 05/28/2023]
Abstract
Ultrasonic backscatter techniques are being developed to diagnose osteoporosis. Tissues that lie between the transducer and the ultrasonically interrogated region of bone may produce errors in backscatter measurements. The goal of this study is to investigate the effects of intervening tissues on ultrasonic backscatter measurements of bone. Measurements were performed on 24 cube shaped specimens of human cancellous bone using a 5 MHz transducer. Measurements were repeated after adding a 1 mm thick plate of cortical bone to simulate the bone cortex and a 3 cm thick phantom to simulate soft tissue at the hip. Signals were analyzed to determine three apparent backscatter parameters (apparent integrated backscatter, frequency slope of apparent backscatter, and frequency intercept of apparent backscatter) and three backscatter difference parameters [normalized mean backscatter difference (nMBD), normalized slope of the backscatter difference, and normalized intercept of the backscatter difference]. The apparent backscatter parameters were impacted significantly by the presence of intervening tissues. In contrast, the backscatter difference parameters were not affected by intervening tissues. However, only one backscatter difference parameter, nMBD, demonstrated a strong correlation with bone mineral density. Thus, among the six parameters tested, nMBD may be the best choice for in vivo backscatter measurements of bone when intervening tissues are present.
Collapse
Affiliation(s)
| | - P Luke Spinolo
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Mark E Sellers
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Peyton L Marshall
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Sang-Rok Lee
- Department of Kinesiology and Dance, New Mexico State University, Las Cruces, New Mexico 88003, USA
| |
Collapse
|
19
|
Shenoy S, Bedi R, Sandhu JS. Effect of Soy Isolate Protein and Resistance Exercises on Muscle Performance and Bone Health of Osteopenic/Osteoporotic Post-Menopausal Women. J Women Aging 2013; 25:183-98. [DOI: 10.1080/08952841.2013.764252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Ferreira ML, Matusin DP, Machado CB, Silva PC, Mello NB, Amaral AC, Franco RS, Pereira WCDA, Schanaider A. Characterization of pseudarthrosis with ultrasound backscattered signals in rats. Acta Cir Bras 2010; 25:13-7. [PMID: 20126881 DOI: 10.1590/s0102-86502010000100005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/19/2009] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To propose a novel model of pseudarthrosis in a small animal and to investigate the ability of backscatter parameters from ultrasound signals in differentiating normal bone from those ones with pseudarthrosis. METHODS Twelve Rattus norvegicus albinus free from pathogenic species (SPF) were randomly divided in two groups, with six animals each. In the Control group a surgical approach to the femur was made, followed by the synthesis of the muscle and skin layers. The Experimental group was submitted to an osteotomy of the femur and a vascularized flap of the fascia lata was interposed in the line of the fractured bone. Then the alignment and bone stabilization were accomplished, by using nylon stitch in U shape introduced in holes made in the proximal and distal fractured bone. Bone samples were scanned with ultrasound and signals were collected for each one to analyze the parameter Apparent Integrated Backscatter - AIB. RESULTS Radiological and anatomopathologic studies revealed the absence of bone consolidation with persistence of fiber-osteoid tissue. Values of the ultrasound parameter AIB from normal bones were statistically different from those with pseudarthrosis. CONCLUSION The experimental model was suitable for pseudarthrosis development in rats and the ultrasound backscatter parameters were able to identify such a bone disease in vitro.
Collapse
|
21
|
Anderson CC, Bauer AQ, Holland MR, Pakula M, Laugier P, Bretthorst GL, Miller JG. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:2940-8. [PMID: 21110589 PMCID: PMC3003723 DOI: 10.1121/1.3493441] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/23/2010] [Accepted: 08/31/2010] [Indexed: 05/05/2023]
Abstract
Quantitative ultrasonic characterization of cancellous bone can be complicated by artifacts introduced by analyzing acquired data consisting of two propagating waves (a fast wave and a slow wave) as if only one wave were present. Recovering the ultrasonic properties of overlapping fast and slow waves could therefore lead to enhancement of bone quality assessment. The current study uses Bayesian probability theory to estimate phase velocity and normalized broadband ultrasonic attenuation (nBUA) parameters in a model of fast and slow wave propagation. Calculations are carried out using Markov chain Monte Carlo with simulated annealing to approximate the marginal posterior probability densities for parameters in the model. The technique is applied to simulated data, to data acquired on two phantoms capable of generating two waves in acquired signals, and to data acquired on a human femur condyle specimen. The models are in good agreement with both the simulated and experimental data, and the values of the estimated ultrasonic parameters fall within expected ranges.
Collapse
Affiliation(s)
- Christian C Anderson
- Department of Physics, Washington University in St Louis, St Louis, Missouri 63130, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Ta D, Wang W, Wang Y, Le LH, Zhou Y. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:641-652. [PMID: 19153000 DOI: 10.1016/j.ultrasmedbio.2008.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 09/20/2008] [Accepted: 10/08/2008] [Indexed: 05/27/2023]
Abstract
Osteoporotic bones are likely to have less cortical bone than healthy bones. The velocities of guided waves propagating in a long cylindrical bone are very sensitive to bone properties and cortical thickness (CTh). This work studies the dispersion and attenuation of ultrasonic guided waves propagating in long cylindrical bone. A hollow cylinder filled with a viscous liquid was used to model the long bone and then to calculate the theoretical phase and group velocities, as well as the attenuation of the waves. The generation and selection of guided wave modes were based on theoretical dispersive curves. The phase velocity and attenuation of cylindrical guided wave modes, such as L(0,1), L(0,2) and L(0,3), were measured in bovine tibia using angled beam transducers at various propagation distances ranging from 75 to 160 mm. The results showed that the phase velocity of the L(0,2) guided wave mode decreased with an increase in CTh. The attenuation of the low cylindrical guided wave modes was a nonlinear function that increased with propagation distance and mode order. The L(0,2) mode had a different attenuation for each CTh. The experimental results were in good agreement with the predicted values. Cylindrical guided waves of low-frequency and low-order have been shown to demonstrate more dispersion and less attenuation and should, therefore, be used to evaluate long bone.
Collapse
Affiliation(s)
- Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China.
| | | | | | | | | |
Collapse
|
23
|
Ta D, Wang W, Huang K, Wang Y, Le LH. Analysis of frequency dependence of ultrasonic backscatter coefficient in cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:4083-4090. [PMID: 19206830 DOI: 10.1121/1.3001705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ultrasonic scattering mechanism in cancellous bone is investigated theoretically and a model describing the frequency dependence of ultrasonic scattering from cancellous bone is presented. The ultrasonic backscatter coefficient (BSC) of bovine tibiae, human calcanei in vitro and in vivo, were measured and discussed. The data of BSC were also fitted by polynomial. The results demonstrate that BSC is a nonlinear function of frequency and increases with frequency. A good agreement was obtained between BSC values from theory and experiment. Also, the high correlation coefficient between BSC and bone mineral density was obtained, r=0.85+/-0.07 (mean+/-SD) (n=15, p<0.001). Based on the values of BSC, the status of cancellous bone and the degree of osteoporotic fracture risk may be assessed.
Collapse
Affiliation(s)
- Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China.
| | | | | | | | | |
Collapse
|
24
|
Wear KA. Mechanisms for attenuation in cancellous-bone-mimicking phantoms. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:2418-25. [PMID: 19049921 PMCID: PMC6935503 DOI: 10.1109/tuffc.949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Broadband ultrasound attenuation (BUA) in cancellous bone is useful for prediction of osteoporotic fracture risk, but its causes are not well understood. To investigate attenuation mechanisms, 9 cancellous-bone-mimicking phantoms containing nylon filaments (simulating bone trabeculae) embedded within soft-tissue-mimicking fluid (simulating marrow) were interrogated. The measurements of frequency-dependent attenuation coefficient had 3 separable components: 1) a linear (with frequency) component attributable to absorption in the soft-tissue-mimicking fluid, 2) a quasilinear (with frequency) component, which may include absorption in and longitudinal-shear mode conversion by the nylon filaments, and 3) a nonlinear (with frequency) component, which may be attributable to longitudinal-longitudinal scattering by the nylon filaments. The slope of total linear (with frequency) attenuation coefficient (sum of components #1 and #2) versus frequency was found to increase linearly with volume fraction, consistent with reported measurements on cancellous bone. Backscatter coefficient measurements in the 9 phantoms supported the claim that the nonlinear (with frequency) component of attenuation coefficient (component #3) was closely associated with longitudinal-longitudinal scattering. This work represents the first experimental separation of these 3 components of attenuation in cancellous bone-mimicking phantoms.
Collapse
Affiliation(s)
- Keith A Wear
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA.
| |
Collapse
|
25
|
Wear KA. Ultrasonic scattering from cancellous bone: a review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1432-41. [PMID: 18986932 PMCID: PMC6935504 DOI: 10.1109/tuffc.2008.818] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This paper reviews theory, measurements, and computer simulations of scattering from cancellous bone reported by many laboratories. Three theoretical models (binary mixture, Faran cylinder, and weak scattering) for scattering from cancellous bone have demonstrated some consistency with measurements of backscatter. Backscatter is moderately correlated with bone mineral density in human calcaneus in vitro (r(2) = 0.66 - 0.68). Backscatter varies approximately as frequency cubed and trabecular thickness cubed in human calcaneus and femur in vitro. Backscatter from human calcaneus and bovine tibia exhibits substantial anisotropy. So far, backscatter has demonstrated only modest clinical utility. Computer simulation models have helped to elucidate mechanisms underlying scattering from cancellous bones.
Collapse
Affiliation(s)
- K A Wear
- Center for Devices & Radiol. Health, U.S. Food & Drug Adm., Silver Spring, MD, USA.
| |
Collapse
|
26
|
Padilla F, Jenson F, Bousson V, Peyrin F, Laugier P. Relationships of trabecular bone structure with quantitative ultrasound parameters: in vitro study on human proximal femur using transmission and backscatter measurements. Bone 2008; 42:1193-202. [PMID: 18396124 DOI: 10.1016/j.bone.2007.10.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/28/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
The present study was designed to assess the relationships between QUS parameters and bone density or microarchitecture on samples of human femoral trabecular bone. The normalized slope of the frequency-dependent attenuation (nBUA), the speed of sound (SOS) and the broadband ultrasound backscatter coefficient (BUB) were measured on 37 specimens of pure trabecular bones removed from upper parts of fresh human femurs. Bone mineral density (BMD) was assessed using a clinical scanner. Finally, 8 mm diameter cylindrical cores were extracted from the specimens and their microarchitecture was reconstructed after synchrotron radiation microtomography experiments (isotropic resolution of 10 microm). A large number of microarchitectural parameters were computed, describing morphology, connectivity and geometry of the specimens. BMD correlated with all the microarchitectural parameters and the number of significant correlations was found among the architectural parameters themselves. All QUS parameters were significantly correlated to BMD (R=0.83 for nBUA, R=0.81 for SOS and R=0.69 for BUB) and to microarchitectural parameters (R=-0.79 between nBUA and Tb.Sp, R=-0.81 between SOS and Tb.Sp, R=-0.65 between BUB and BS/BV). Using multivariate model, it was found that microstructural parameters adds 10%, 19%, and 4% to the respective BMD alone contribution for the three variables BUA, SOS and BUB. Moreover, the RMSE was reduced by up to 50% for SOS, by up to 21% for nBUA and up to 11% when adding structural variables to BMD in explaining QUS results. Given the sample, which is not osteoporosis-enriched, the added contribution is quite substantial. The variability of SOS was indeed completely explained by a multivariate model including BMD and independent structural parameters (R(2)=0.94). The inverse problem on the data presented here has been addressed using simple and multiple linear regressions. It was shown that the predictions (in terms of R(2) or RMSE) of microarchitectural parameters was not enhanced when combining 2 or 3 QUS in multiple linear regressions compared to the prediction obtained with one QUS parameter alone. The best model was found for the prediction of Tb.Th() from BUA (R(2)=0.58, RMSE=17 microm). Given the high values of RMSE, these linear models appear of limited clinical value, suggesting that appropriate models have to be derived in order to solve the inverse problem. In this regard, a very interesting multivariate model was found for nBUA and BUB with Tb.Th and Tb.N, in agreement with single scattering theories by random medium. However, the source of residual variability of nBUA and BUB (15% and 45% respectively) remained unexplained.
Collapse
Affiliation(s)
- F Padilla
- CNRS, UMR7623 LIP, Paris, F-75006 France.
| | | | | | | | | |
Collapse
|
27
|
Apostolopoulos KN, Deligianni DD. Influence of microarchitecture alterations on ultrasonic backscattering in an experimental simulation of bovine cancellous bone aging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:1179-87. [PMID: 18247917 DOI: 10.1121/1.2822291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An experimental model which can simulate physical changes that occur during aging was developed in order to evaluate the effects of change of mineral content and microstructure on ultrasonic properties of bovine cancellous bone. Timed immersion in hydrochloric acid was used to selectively alter the mineral content. Scanning electron microscopy and histological staining of the acid-treated trabeculae demonstrated a heterogeneous structure consisting of a mineralized core and a demineralized layer. The presence of organic matrix contributed very little to normalized broadband ultrasound attenuation (nBUA) and speed of sound. All three ultrasonic parameters, speed of sound, nBUA and backscatter coefficient, were sensitive to changes in apparent density of bovine cancellous bone. A two-component model utilizing a combination of two autocorrelation functions (a densely populated model and a spherical distribution) was used to approximate the backscatter coefficient. The predicted attenuation due to scattering constituted a significant part of the measured total attenuation (due to both scattering and absorption mechanisms) for bovine cancellous bone. Linear regression, performed between trabecular thickness values and estimated from the model correlation lengths, showed significant linear correlation, with R(2)=0.81 before and R(2)=0.80 after demineralization. The accuracy of estimation was found to increase with trabecular thickness.
Collapse
Affiliation(s)
- K N Apostolopoulos
- Biomedical Engineering Laboratory, Department of Mechanical Engineering & Aeronautics, University of Patras, Rion 26500, Greece
| | | |
Collapse
|
28
|
Deligianni DD, Apostolopoulos KN. Characterization of dense bovine cancellous bone tissue microstructure by ultrasonic backscattering using weak scattering models. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:1180-90. [PMID: 17672664 DOI: 10.1121/1.2749461] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A weak scattering model was proposed for the ultrasonic frequency-dependent backscatter in dense bovine cancellous bone, using two autocorrelation functions to describe the medium: one with discrete homogeneities (spherical distribution of equal spheres) and another, which considers tissue as an inhomogeneous continuum (densely populated medium). The inverse problem to estimate trabecular thickness of bone tissue has been addressed. A combination of the two autocorrelation functions was required to closely approximate the backscatter from bovine bone with various microarchitecture, given that the shape of trabeculae ranges from a rodlike to a platelike shape. Because of the large variation in trabecular thickness, both at an intraspecimen and an interspecimen level, thickness distributions for individual trabeculae for each bone specimen were obtained, and dominant trabecular sizes were determined. Comparison of backscatter measurements to theoretical predictions indicated that there were more than one dominant trabecular sizes that scatter sound for most specimens. Linear regression, performed between dominant trabecular thickness and estimated correlation length, showed significant linear correlation (R(2)=0.81). Attenuation due to scattering by a continuous distribution of scatterers was predicted to be linear over a frequency range from 0.3 to 0.9 MHz, suggesting a possibility that scattering may be a significant source of attenuation.
Collapse
Affiliation(s)
- D D Deligianni
- Biomedical Engineering Laboratory, Department of Mechanical Engineering and Aeronautics, University of Patras, Rion, Greece.
| | | |
Collapse
|
29
|
Nicholson PHF, Alkalay R. Quantitative ultrasound predicts bone mineral density and failure load in human lumbar vertebrae. Clin Biomech (Bristol, Avon) 2007; 22:623-9. [PMID: 17499408 DOI: 10.1016/j.clinbiomech.2006.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 12/11/2006] [Accepted: 12/14/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND Quantitative ultrasound is in widespread clinical use for assessment of bone quality at peripheral skeletal sites, but has not yet been applied to those sites in the axial skeleton, such as the spine and hip, where osteoporotic fractures are common. METHODS Ultrasound measurements were made in 11 cadaveric vertebrae and relationships with bone mineral density and failure load were investigated. An ultrasonic imaging system was used to measure speed of sound, broadband ultrasonic attenuation, and attenuation at a single frequency, through the vertebral body in the sagittal plane. Ultrasonic measurements were averaged over a region of interest centrally within the vertebral body, and were calculated with and without normalization for bone size. Vertebral bone mineral density was measured in antero-posterior and lateral projections using dual energy X-ray absorptiometry. Compressive mechanical testing was performed to determine vertebral failure load. FINDINGS Bone mineral density correlated with failure load (r=0.74-0.78, all P<0.01), and with quantitative ultrasound (r=0.63-0.82, P=0.038-0.004), in line with previous studies. Of the ultrasonic measurements, those parameters not normalized for bone size gave the highest correlations with failure load, ranging from r=0.71 (P=0.021) for speed of sound to r=0.93 (P<0.001) for attenuation. When ultrasonic measurements were normalized for bone size, the correlations with both failure load and bone mineral density were lower. INTERPRETATION These results confirm the feasibility of vertebral quantitative ultrasound in vitro, and indicate that ultrasound does provide information on both bone mineral density and failure load. The predictive performance of ultrasonic measurements for failure load was comparable to or greater than that of bone mineral density, suggesting that ultrasound has the potential to be at least as useful as mineral density in the assessment of vertebral bone. Normalizing ultrasonic measurements for bone size reduced the strength of correlations because both bone mineral density and bone strength reflect bone size to a certain extent.
Collapse
Affiliation(s)
- P H F Nicholson
- Department of Health Sciences, University of Jyväskylä, Finland
| | | |
Collapse
|
30
|
|
31
|
Ta DA, Huang K, Wang WQ, Wang YY. Predict ultrasonic backscatter coefficient in cancellous bone by theory and experiment. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:1131-4. [PMID: 17282389 DOI: 10.1109/iembs.2005.1616620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The scattering mechanism of ultrasound in cancellous bone is investigated theoretically. The relationship of backscatter coefficient (BSC) in cancellous bone with frequency is analyzed in theoretical and experimental. The results of theory and experiment for cancellous bone of bovine tibiae, human calcaneus in vitro and in vivo showed that BSC is a non-linear function of frequency, increasing with frequency. In general, all curve of BSC can be divided into three sections with different slope. The slopes of the first and third section have a large value, and the slope of second section is flat. A good agreement was obtained in the averaged BSC of experiment and cellular model. Those results suggest that the backscatter signal and BSC have a particularly important action in assessment of cancellous bone status and diagnosis of osteoporosis.
Collapse
Affiliation(s)
- De-An Ta
- Dept. of Electron. Eng., Fudan Univ., Shanghai
| | | | | | | |
Collapse
|
32
|
Barkmann R, Laugier P, Moser U, Dencks S, Padilla F, Haiat G, Heller M, Glüer CC. A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. Bone 2007; 40:37-44. [PMID: 16949896 DOI: 10.1016/j.bone.2006.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 03/23/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
Quantitative ultrasound (QUS) measurements at peripheral sites can be used to estimate osteoporotic fracture risk. However, measurements at these sites are less suitable to predict bone mineral density (BMD) or fracture risk at the central skeleton. We investigated whether direct QUS measurements at the femur would allow to estimate dual X-ray absorptiometry (DXA) BMD of the total proximal femur with errors comparable to established DXA accuracy errors. Two independent sets of femora were measured in Kiel (6 f, 4 m, age: 55-90) and Paris (19 f, 20 m age: 45-95) using different benchtop systems in the two laboratories. The femora were scanned in transverse transmission mode using focused US transducers of 500 kHz center frequency. The QUS values were averaged over a region similar to the total hip region of dual X-ray absorptiometry (DXA) measurements. BMD was measured using DXA. SOS and BMD correlated significantly (p<0.0001) in both data sets (R2=0.81-0.93). Correlations between BUA and BMD were also significant at p<0.001, but correlation coefficients were lower (R2=0.61-0.75). Residual errors for the estimation of BMD were 8%-10% for SOS as predictor, and 14%-16% for BUA as predictor. The residual error of 8 to 10% for the estimation of BMD from SOS is comparable to variabilities among different DXA femur subregions and accuracy errors of femoral DXA measurements caused by the impact of soft tissue. It is substantially smaller than the errors of 13% for the estimation of total femur BMD from spine BMD, 14% for the estimation of total femur BMD from calcaneus SOS or 16% for the estimation of ash weight from DXA. The results of the study show that SOS is able to predict total BMD with adequate accuracy. If femoral BMD could be obtained in vivo with comparable accuracy, femoral QUS would be suited for the assessment of bone status at one of the main osteoporotic fracture sites.
Collapse
Affiliation(s)
- R Barkmann
- Medizinische Physik, Klinik für Diagnostische Radiologie, Universitätsklinikum Schleswig Holstein Campus Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Padilla F, Jenson F, Laugier P. Influence of the precision of spectral backscatter measurements on the estimation of scatterers size in cancellous bone. ULTRASONICS 2006; 44 Suppl 1:e57-60. [PMID: 16904147 DOI: 10.1016/j.ultras.2006.06.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The goal of this study is to propose a model for the ultrasonic frequency-dependent backscatter coefficient in femoral cancellous bone. This model has been developed with success to predict backscatter in human calcaneal bone [Jenson, Ultr. Med. Biol. 2003]. A weak scattering model is used and the backscatter coefficient is expressed in terms of a Gaussian autocorrelation function of the medium. The backscatter coefficient is computed and comparison is made with experimental data for 37 specimens and for frequency ranging from 0.4 to 1.2 MHz. An excellent agreement between experimental data and predictions is found for both the magnitude and the frequency-dependence of the backscatter coefficient. Then, a nonlinear regression is performed for each specimen, and the mean trabecular thickness is estimated. Experimental data and theoretical predictions are averaged over the 37 specimens. We also find a close agreement between theoretical predictions obtained using the Gaussian autocorrelation function (scatterer size=134+/-15 microm) and the mean trabecular thickness (Tb.Th=132+/-12 microm) derived from the analysis of bone 3-D micro-architecture using high-resolution micro-tomography. However, the correlation between individual experimental and estimated Tb.Th values is moderate (R(2)=0.44). The performance of the estimator are limited mainly by two factors: interference noise due to random positioning of the scatterers and attenuation. We show that the fundamental limitation of our estimator due to the speckle noise is around 5 microm for trabecular thickness estimation. This limitation is lower than the observed biological variability which is around 30 microm and should not be a limiting factor for individual prediction. A second limitation is the tremendous attenuation encountered in highly scattering media such as cancellous bone, which results in highly damped backscatter signals. The compensation for attenuation is difficult to perform, and it may be a critical point that limits the precision of the estimator.
Collapse
Affiliation(s)
- F Padilla
- Laboratoire d'Imagerie paramétrique--CNRS UMR 7623 Université Paris 6, Paris, France.
| | | | | |
Collapse
|
34
|
Marutyan KR, Holland MR, Miller JG. Anomalous negative dispersion in bone can result from the interference of fast and slow waves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 120:EL55-61. [PMID: 17139755 DOI: 10.1121/1.2357187] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The goal of this work was to show that the apparent negative dispersion of ultrasonic waves propagating in bone can arise from interference between fast and slow longitudinal modes, each exhibiting positive dispersion. Simulations were carried out using two approaches: one based on the Biot-Johnson model and one independent of that model. Results of the simulations are mutually consistent and appear to account for measurements from many laboratories that report that the phase velocity of ultrasonic waves propagating in cancellous bone decreases with increasing frequency (negative dispersion) in about 90% of specimens but increases with frequency in about 10%.
Collapse
|
35
|
Hoffmeister BK, Jones CI, Caldwell GJ, Kaste SC. Ultrasonic characterization of cancellous bone using apparent integrated backscatter. Phys Med Biol 2006; 51:2715-27. [PMID: 16723761 DOI: 10.1088/0031-9155/51/11/002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Apparent integrated backscatter (AIB) is a measure of the frequency-averaged (integrated) backscattered power contained in some portion of a backscattered ultrasonic signal. AIB has been used extensively to study soft tissues, but its usefulness as a tissue characterization technique for cancellous bone has not been demonstrated. To address this, we performed measurements on 17 specimens of cancellous bone over two different frequency ranges using a 1 MHz and 5 MHz broadband ultrasonic transducer. Specimens were obtained from bovine tibiae and prepared in the shape of cubes (15 mm side length) with faces oriented along transverse (anterior, posterior, medial and lateral) and longitudinal (superior and inferior) principal anatomic directions. A mechanical scanning system was used to acquire multiple backscatter signals from each direction for each cube. AIB demonstrated highly significant linear correlations with bone mineral density (BMD) for both the transverse (R2 = 0.817) and longitudinal (R2 = 0.488) directions using the 5 MHz transducer. In contrast, the correlations with density were much weaker for the 1 MHz transducer (R2 = 0.007 transverse, R2 = 0.228 longitudinal). In all cases where a significant correlation was observed, AIB was found to decrease with increasing BMD.
Collapse
Affiliation(s)
- B K Hoffmeister
- Department of Physics, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA.
| | | | | | | |
Collapse
|
36
|
Hakulinen MA, Day JS, Töyräs J, Weinans H, Jurvelin JS. Ultrasonic characterization of human trabecular bone microstructure. Phys Med Biol 2006; 51:1633-48. [PMID: 16510968 DOI: 10.1088/0031-9155/51/6/019] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
New quantitative ultrasound (QUS) techniques involving ultrasound backscattering have been introduced for the assessment of bone quality. QUS parameters are affected by the transducer characteristics, e.g. frequency range, wave and pulse length. Although frequency-dependent backscattering has been studied extensively, understanding of the ultrasound scattering phenomenon in trabecular bone is still limited. In the present study, the relationships between QUS parameters and the microstructure of human trabecular bone were investigated experimentally and by using numerical simulations. Speed of sound (SOS), normalized broadband ultrasound attenuation (nBUA), average attenuation, integrated reflection coefficient (IRC) and broadband ultrasound backscatter (BUB) were measured for 26 human trabecular bone cylinders. Subsequently, a high-resolution microCT system was used to determine the microstructural parameters. Moreover, based on the sample-specific microCT data, a numerical model for ultrasound propagation was developed for the simulation of experimental measurements. Experimentally, significant relationships between the QUS parameters and microstructural parameters were demonstrated. The relationships were dependent on the frequency, and the strongest association (r = 0.88) between SOS and structural parameters was observed at a centre frequency of 5 MHz. nBUA, average attenuation, IRC and BUB showed somewhat lower linear correlations with the structural properties at a centre frequency of 5 MHz, as compared to those determined at lower frequencies. Multiple regression analyses revealed that the variation of acoustic parameters could best be explained by parameters reflecting the amount of mineralized tissue. A principal component analysis demonstrated that the strongest determinants of BUB and IRC were related to the trabecular structure. However, other structural characteristics contributed significantly to the prediction of the acoustic parameters as well. The two-dimensional numerical model introduced in the present study demonstrated good agreement with the experimental measurements. However, further studies with the simulation model are warranted to systematically investigate the relation between the structural parameters and ultrasound scattering.
Collapse
Affiliation(s)
- Mikko A Hakulinen
- Department of Applied Physics, University of Kuopio, POB 1627, 70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
37
|
Jenson F, Padilla F, Bousson V, Bergot C, Laredo JD, Laugier P. In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 119:654-63. [PMID: 16454319 DOI: 10.1121/1.2126936] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Thirty-eight slices of pure trabecular bone 1-cm thickness were extracted from human proximal femurs. A pair of 1-MHz central frequency transducers was used to measure quantitative ultrasound (QUS) parameters in transmission [normalized broadband ultrasound attenuation (nBUA), speed of sound (SOS)] and in backscatter [broadband ultrasound backscatter (BUB)]. Bone mineral density (BMD) was measured using clinical x-ray quantitative computed tomography. Site-matched identical region of interest (ROIs) of 7 x 7 mm2 were positioned on QUS and QCT images. This procedure resulted in 605 ROIs for all the specimens data pooled together. The short-term precision of the technique expressed in terms of CV was found to be 2.3% for nBUA, 0.3% for SOS and 4.5% for BUB. Significant linear correlation between QUS and BMD were found for all the 605 ROIs pooled, with r2 values of 0.73, 0.77, and 0.58 for nBUA, SOS, and BUB, respectively (all p < 0.05). For the BUB, the best regression was obtained with a polynomial fit of second order (r2 = 0.63). An analysis of measurements errors was developed. It showed that the residual variability of SOS is almost completely predicted by measurements errors, which is not the case for BUA and BUB, suggesting a role for micro-architecture in the determination of BUA and BUB.
Collapse
Affiliation(s)
- F Jenson
- Laboratoire d'Imagerie Paramétrique, Université Paris VI, UMR CNRS 7623, 15 rue de l'Ecole de Medecine, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Haïat G, Padilla F, Barkmann R, Dencks S, Moser U, Glüer CC, Laugier P. Optimal prediction of bone mineral density with ultrasonic measurements in excised human femur. Calcif Tissue Int 2005; 77:186-92. [PMID: 16151672 DOI: 10.1007/s00223-005-0057-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
Bone mineral density (BMD) measured with dual energy X-ray absorptiometry (DXA) techniques is the current gold standard for osteoporotic fracture risk prediction. Quantitative ultrasound (QUS) techniques in transmission measurements are, however, increasingly recognized as an alternative approach. It is feasible to select different QUS methods, one type being optimized to assess microarchitectural properties of bone structure and another to assess BMD. Broadband ultrasonic attenuation (BUA) and ultrasonic velocity (UV) measured on the proximal human femur have been shown to be both significantly correlated with BMD. However, a great diversity of algorithms has been reported to measure the time-of-flight used to derive UV values. The purpose of this study was to determine which procedure results in the optimal BMD prediction at the proximal femur from ultrasound measurements. Thirty-eight excised human femurs were measured in transmission with a pair of focused 0.5-MHz central frequency transducers. Two-dimensional scans were performed and radiofrequency (RF) signals were recorded digitally at each scan position. BUA was estimated and eight different signal processing techniques were performed to estimate UV. For each signal-processing technique UV was compared to BMD. We show that the best prediction of BMD was obtained with signal-processing techniques taking into account only the first part of the transmitted signal (r2BMD-SOS = 0.86). Moreover, we show that a linear multiple regression using both BUA and speed of sound (SOS) and applied to site-matched regions of interest improved the accuracy of BMD predictions (r2BMD-SOS/BUA = 0.95). Our results demonstrate that selecting specific signal-processing methods for QUS variables allows optimal assessment of BMD. Correlation is sufficiently high that this specific QUS method can be considered as a good surrogate of BMD.
Collapse
Affiliation(s)
- G Haïat
- Laboratoire d'Imagerie Paramétrique, Université Paris VI, UMR CNRS 7623, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Haïat G, Padilla F, Barkmann R, Kolta S, Latremouille C, Glüer CC, Laugier P. In vitro speed of sound measurement at intact human femur specimens. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:987-96. [PMID: 15972205 DOI: 10.1016/j.ultrasmedbio.2005.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 02/07/2005] [Accepted: 02/17/2005] [Indexed: 05/03/2023]
Abstract
Quantitative ultrasound has been recognized as a useful tool for fracture risk prediction. Current measurement techniques are limited to peripheral skeletal sites. Our objective was to demonstrate the in vitro feasibility of ultrasonic velocity measurements on human proximal femur and to investigate the relationship between velocity and bone mineral density (BMD). Sound velocity images were computed from 2-D scans performed on 38 excised human femurs in transmission at 0.5 MHz. Different regions-of-interest were investigated. Dual x-ray absorptiometry scans have been achieved for BMD measurements in site-matched regions. Our study demonstrates the feasibility of ultrasonic velocity measurements at the hip with reasonable precision (coefficient of variation of 0.3%). The best prediction of BMD was reached in the intertrochanter region (r(2) = 0.91, p < 10(-4)), with a residual error of 0.06 g/cm(2) (10%). Because BMD measured at the femur is the best predictor of hip fracture risk, the highly significant correlation and small residual error found in this study suggest that speed of sound measurement at the femur might be a good candidate for hip fracture risk prediction.
Collapse
Affiliation(s)
- G Haïat
- Laboratoire d'Imagerie Paramétrique, Université Paris VI, Paris, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Hakulinen MA, Day JS, Töyräs J, Timonen M, Kröger H, Weinans H, Kiviranta I, Jurvelin JS. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range. Phys Med Biol 2005; 50:1629-42. [PMID: 15815086 DOI: 10.1088/0031-9155/50/8/001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ultrasound (US) backscattering method has been introduced as an alternative for the through-transmission measurement of sound attenuation and speed in diagnosis of osteoporosis. Both attenuation and backscattering depend strongly on the US frequency. In this study, 20 human trabecular bone samples were measured in transmission and pulse-echo geometry in vitro. The aim of the study was to find the most sensitive frequency range for the quantitative ultrasound (QUS) analyses. Normalized broadband US attenuation (nBUA), speed of sound (SOS), broadband US backscatter (BUB) and integrated reflection coefficient (IRC) were determined for each sample. The samples were spatially scanned with five pairs of US transducers covering a frequency range of 0.2-6.7 MHz. Furthermore, mechanical properties and density of the same samples were determined. At all frequencies, SOS, BUB and IRC showed statistically significant linear correlations with the mechanical properties or density of human trabecular bone (0.51 < r < 0.82, 0.54 < r < 0.81 and 0.70 < r < 0.85, respectively). In contrast to SOS, IRC and BUB, nBUA showed statistically significant correlations with mechanical parameters or density at the centre frequency of 1 MHz only. Our results suggest that frequencies up to 5 MHz can be useful in QUS analyses for the prediction of bone mechanical properties and density. Since the use of higher frequencies provides better axial and spatial resolution, improved structural analyses may be possible. While extensive attenuation of high frequencies in trabecular bone limits the clinically feasible frequency range, selection of optimal frequency range for in vivo QUS application should be carefully considered.
Collapse
|
41
|
Hakulinen MA, Töyräs J, Saarakkala S, Hirvonen J, Kröger H, Jurvelin JS. Ability of ultrasound backscattering to predict mechanical properties of bovine trabecular bone. ULTRASOUND IN MEDICINE & BIOLOGY 2004; 30:919-27. [PMID: 15313324 DOI: 10.1016/j.ultrasmedbio.2004.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Revised: 04/05/2004] [Accepted: 04/15/2004] [Indexed: 05/10/2023]
Abstract
Ultrasound (US) backscatter measurements have been proposed for the quantitative evaluation of bone quality. In this study, we explored the ability of broadband US backscatter (BUB) and integrated reflection coefficient (IRC) to predict density and mechanical properties of trabecular bone, as compared to normalized broadband US attenuation (nBUA) and speed of sound (SOS). These acoustic parameters were measured in 41 in vitro samples of bovine trabecular bone and correlated with a number of mechanical parameters and with volumetric bone mineral density (BMDvol). BUB correlated statistically significantly with the volumetric bone mineral density (r = 0.61, p < 0.01), Young's modulus (r = 0.40, p < 0.01) and ultimate strength (r = 0.40, p < 0.01). IRC was even more strongly correlated with BMD(vol) (r = 0.92, p < 0.01) and most of the mechanical parameters (0.81 < r < 0.85). Strong correlations were also found between mechanical parameters and SOS (0.87 < r < 0.90). No significant correlation was found between attenuation (nBUA) and either BMD(vol) or mechanical parameters. Reproducibilities (standardized CV%) of BUB (3.5%) and IRC (1.5%) were comparable to those of nBUA (2.3%) and SOS (0.5%). To conclude, BUB and IRC are promising parameters for the evaluation of density and mechanical properties of trabecular bone. Advantageously, BUB and IRC can be determined with a single transducer, hypothetically enabling measurements at many clinically relevant fracture sites.
Collapse
Affiliation(s)
- Mikko A Hakulinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
42
|
Pereira WCA, Bridal SL, Coron A, Laugier P. Singular spectrum analysis applied to backscattered ultrasound signals from in vitro human cancellous bone specimens. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2004. [PMID: 15128217 DOI: 10.1109/tuffc.2004.1320786] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mean scatterer spacing (MSS) holds particular promise for the detection of changes in quasiperiodic tissue microstructures such as may occur during development of disease in the liver, spleen, or bones. Many techniques that may be applied for MSS estimation (temporal and spectral autocorrelation, power spectrum and cepstrum, higher order statistics, and quadratic transformation) characterize signals that contain a mixture of periodic and nonperiodic contributions. In contrast, singular spectrum analysis (SSA), a method usually applied in nonlinear dynamics, first identifies components of signals corresponding to periodic structures and, second, identifies dominant periodicity. Thus, SSA may better separate periodic structures from nonperiodic structures and noise. Using an ultrasound echo simulation model, we previously demonstrated SSA's potential to identify MSS of structures in quasiperiodic scattering media. The current work aims to observe the behavior of MSS estimation by SSA using ultrasound measurements in phantom materials (two parallel, nylon-line phantoms and four foam phantoms of different densities). The SSA was able to estimate not only the nylon-line distances but also nylon-line thickness. The method also was sensitive to the average pore-size differences of the four sponges. The algorithms then were applied to characterize human cancellous bone microarchitectures. Using 1-MHz center-frequency, radio-frequency ultrasound signals, MSS was measured in 24 in vitro bone samples and ranged from 1.0 to 1.7 mm. The SSA MSS estimates correlate significantly to MSS measured independently from synchrotron microtomography, r2 = 0.68. Thus, application of SSA to backscattered ultrasound signals seems to be useful for providing information linked to tissue microarchitecture that is not evident from clinical images.
Collapse
Affiliation(s)
- Wagner C A Pereira
- Laboratoire d'Imagerie Paramétrique, UMR 7623 CNRS-University of Paris VI, Paris, France.
| | | | | | | |
Collapse
|
43
|
Laasanen MS, Saarakkala S, Töyräs J, Hirvonen J, Rieppo J, Korhonen RK, Jurvelin JS. Ultrasound indentation of bovine knee articular cartilage in situ. J Biomech 2003; 36:1259-67. [PMID: 12893034 DOI: 10.1016/s0021-9290(03)00163-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have earlier developed a handheld ultrasound indentation instrument for the diagnosis of articular cartilage degeneration. In ultrasound indentation, cartilage is compressed with the ultrasound transducer. Tissue thickness and deformation are calculated from the A-mode ultrasound signal and the stress applied is registered with the strain gauges. In this study, the applicability of the ultrasound indentation instrument to quantify site-dependent variation in the mechano-acoustic properties of bovine knee cartilage was investigated. Osteochondral blocks (n=6 per site) were prepared from the femoral medial condyle (FMC), the lateral facet of the patello-femoral groove (LPG) and the medial tibial plateau (MTP). Cartilage stiffness (dynamic modulus, E(dyn)), as obtained with the ultrasound indentation instrument in situ, correlated highly linearly (r=0.913, p<0.01) with the values obtained using the reference material-testing device in vitro. Reproducibility (standardized coefficient of variation) of the ultrasound indentation measurements was 5.2%, 1.7% and 3.1% for E(dyn), ultrasound reflection coefficient of articular surface (R) and thickness, respectively. E(dyn) and R were site dependent (p<0.05, Kruskall-Wallis H test). E(dyn) was significantly higher (p<0.05, Kruskall-Wallis Post Hoc test) in LPG (mean+/-SD: 10.1+/-3.1MPa) than in MTP (2.9+/-1.4MPa). In FMC, E(dyn) was 4.6+/-1.3MPa. R was significantly (p<0.05) lower at MTP (2.0+/-0.7%) than at other sites (FMC: 4.2+/-0.9%; LPG: 4.4+/-0.8%). Cartilage glycosaminoglycan concentration, as quantified with the digital densitometry, correlated positively with E(dyn) (r=0.678, p<0.01) and especially with the equilibrium Young's modulus (reference device, r=0.874, p<0.01) but it was not associated with R (r=0.294, p=0.24). We conclude that manual measurements are reproducible and the instrument may be used for detection of cartilage quality in situ. Especially, combined measurement of thickness, E(dyn) and R provides valuable diagnostic information on cartilage status.
Collapse
Affiliation(s)
- Mikko S Laasanen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Kuopio, POB 1627, FIN-70211, Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Pereira FR, Machado JC, Pereira WCA. Ultrasonic wave speed measurement using the time-delay profile of rf-backscattered signals: simulation and experimental results. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2002; 111:1445-53. [PMID: 11931321 DOI: 10.1121/1.1445787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Conventional methods determine the ultrasonic wave speed measuring the medium path length propagated by a pulsed wave and the corresponding time-of-flight. In this work, the wave speed is determined without the need of the path length. A transmit transducer sends a pulsed wave into the medium (wave speed constant along the beam axis) and the backscattered signal is collected by a hydrophone placed at two distinct positions near the transmitted beam. The time-delay profile, between gated windows of the two rf-signals received by the hydrophone, is determined using a cross-correlation method. Also, a theoretical time-delay profile is determined considering the wave speed as a parameter. The estimated wave speed is obtained upon minimization of the rms error between theoretical and experimental time-delay profiles. A PZT conically focused transmitting transducer with center frequency of 3.3 MHz, focal depth of 30 mm, and beam full width (-3 dB) of 2 mm at the focus was used together with a PZT hydrophone (0.8 mm of aperture). The method was applied to three phantoms (wave speed of 1220, 1540, and 1720 m/s) and, in vitro, to fresh bovine liver sample, immersed in a temperature-controlled water bath. The results present a relative speed error less than 3% when compared with the sound speed obtained by a conventional method.
Collapse
Affiliation(s)
- Fernando R Pereira
- Instituto Politecnico, Universidade do Estado do Rio de Janeiro, Nova Friburgo, Brazil
| | | | | |
Collapse
|
45
|
Wear KA, Armstrong DW. Relationships among calcaneal backscatter, attenuation, sound speed, hip bone mineral density, and age in normal adult women. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2001; 110:573-8. [PMID: 11508981 PMCID: PMC8217742 DOI: 10.1121/1.1378343] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The present study was undertaken in order to investigate the use of calcaneal ultrasonic backscatter for the application of diagnosis of osteoporosis. Broadband ultrasonic attenuation (BUA), speed of sound (SOS), the average backscatter coefficient (ABC), and the hip bone mineral density (BMD) were measured in calcanea in 47 women (average age: 58 years, standard deviation: 13 years). All three ultrasound variables had comparable correlations with hip BMD (around 0.5). As reported previously by others, BUA and SOS were rather highly correlated with each other. The logarithm of the ABC was only moderately correlated with the other two. The three ultrasound parameters exhibited similar moderate negative correlations with age. These results taken collectively suggest that the ABC may carry important diagnostic information independent of that contained in BUA and SOS and, therefore, may be useful as an adjunct measurement in the diagnosis of osteoporosis.
Collapse
Affiliation(s)
- K A Wear
- US Food and Drug Administration, Center for Devices and Radiological Health, Rockville, Maryland 20852, USA.
| | | |
Collapse
|