1
|
Ko J, Fonseca VA, Wu H. Pax4 in Health and Diabetes. Int J Mol Sci 2023; 24:ijms24098283. [PMID: 37175989 PMCID: PMC10179455 DOI: 10.3390/ijms24098283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Paired box 4 (Pax4) is a key transcription factor involved in the embryonic development of the pancreatic islets of Langerhans. Consisting of a conserved paired box domain and a homeodomain, this transcription factor plays an essential role in early endocrine progenitor cells, where it is necessary for cell-fate commitment towards the insulin-secreting β cell lineage. Knockout of Pax4 in animal models leads to the absence of β cells, which is accompanied by a significant increase in glucagon-producing α cells, and typically results in lethality within days after birth. Mutations in Pax4 that cause an impaired Pax4 function are associated with diabetes pathogenesis in humans. In adulthood, Pax4 expression is limited to a distinct subset of β cells that possess the ability to proliferate in response to heightened metabolic needs. Upregulation of Pax4 expression is known to promote β cell survival and proliferation. Additionally, ectopic expression of Pax4 in pancreatic islet α cells or δ cells has been found to generate functional β-like cells that can improve blood glucose regulation in experimental diabetes models. Therefore, Pax4 represents a promising therapeutic target for the protection and regeneration of β cells in the treatment of diabetes. The purpose of this review is to provide a thorough and up-to-date overview of the role of Pax4 in pancreatic β cells and its potential as a therapeutic target for diabetes.
Collapse
Affiliation(s)
- Jenna Ko
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
| | - Vivian A Fonseca
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
| | - Hongju Wu
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Zhang X, Wang C, Zhang Y, Ju Z, Qi C, Wang X, Huang J, Zhang S, Li J, Zhong J, Shi F. Association between an alternative promoter polymorphism and sperm deformity rate is due to modulation of the expression of KATNAL1 transcripts in Chinese Holstein bulls. Anim Genet 2014; 45:641-51. [PMID: 24990491 DOI: 10.1111/age.12182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 11/25/2022]
Abstract
Katanin p60 subunit A-like 1 (KATNAL1) is an ATPase that regulates Sertoli cell microtubule dynamics and sperm retention. We evaluated one novel splice variant and characterized the promoter and a functional single nucleotide polymorphism (SNP) of the bovine KATNAL1 gene to explore its expression pattern, possible regulatory mechanism and relationship with semen traits in Chinese Holstein bulls. A novel splice variant, KATNAL1 transcript variant 2 (KATNAL1-TV2) of the retained 68 bp in intron 2, was identified by RT-PCR and compared with KATNAL1 transcript variant 1 (KATNAL1-TV1, NM 001192918.1) in various tissues. Bioinformatics analyses predicted that KATNAL1 transcription was regulated by two promoters: P1 in KATNAL1-TV1 and P2 in KATNAL1-TV2. Results of qRT-PCR revealed that KATNAL1-TV1 had higher expression than did KATNAL1-TV2 in testes of adult bulls (P < 0.05). Promoter luciferase activity analysis suggested that the core sequences of P1 and P2 were mapped to the region of c.-575˜c.-180 and c.163-40˜c.333+59 respectively. One novel SNP (c.163-210T>C, ss836312085) located in intron 1 was found using sequence alignment. The SNP in P2 resulted in the presence of the DeltaE binding site, improving its basal promoter activity (P < 0.05); and we observed a greater sperm deformity rate in bulls with the genotype CC than in those with the genotype TT (P < 0.05), which indicated that different genotypes were associated with the bovine semen traits. Bioinformatics analysis of the KATNAL1 protein sequence predicted that the loss of the MIT domain in the KATNAL1-TV2 transcript resulted in protein dysfunction. These findings help us to understand that a functional SNP in P2 and subsequent triggering of expression diversity of KATNAL1 transcripts are likely to play an important role with regard to semen traits in bull breeding programs.
Collapse
Affiliation(s)
- X Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, China; College of Animal Science, Henan Institute of Science and Technology, Xinxiang, 453000, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kappen C, Salbaum JM. Identification of regulatory elements in the Isl1 gene locus. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:935-46. [PMID: 19598113 DOI: 10.1387/ijdb.082819ck] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Isl1 is a LIM/homeodomain transcription factor with critical roles for the development of the heart, the nervous system and the pancreas. Both deficiency and mis-expression of Isl1 cause profound developmental defects, demonstrating the importance of proper regulation of Isl1 gene expression during development. In order to understand the mechanisms that control Isl1 expression during embryogenesis and in tissue differentiation, we initiated a screen for gene regulatory elements in the Isl1 locus using a novel dual reporter gene vector that allows screens of large genomic regions through reporter gene assays in vitro and in vivo. We identified regions from the Isl1 gene locus that confer transcriptional activity in pancreatic cell lines in vitro. Using transgenic mice, we furthermore discovered an enhancer with in vivo specificity for the developing heart, as well as visceral and posterior mesoderm. Our findings further suggest that Foxo1 as well as Gata4 contribute to the activity of this enhancer in the developing embryo. We conclude that Isl1 gene expression is controlled in modular fashion by several elements with distinct functionality. Embryonic Isl1 expression in several tissues of mesodermal origin is driven by a specific enhancer that is located 3-6kb downstream of the gene.
Collapse
Affiliation(s)
- Claudia Kappen
- Pennington Biomedical Research Center, Baton Rouge, LA 71010, USA.
| | | |
Collapse
|
4
|
Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol 2008; 22:781-98. [PMID: 18174356 DOI: 10.1210/me.2007-0513] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The WGATAR motif is a common nucleotide sequence found in the transcriptional regulatory regions of numerous genes. In vertebrates, these motifs are bound by one of six factors (GATA1 to GATA6) that constitute the GATA family of transcriptional regulatory proteins. Although originally considered for their roles in hematopoietic cells and the heart, GATA factors are now known to be expressed in a wide variety of tissues where they act as critical regulators of cell-specific gene expression. This includes multiple endocrine organs such as the pituitary, pancreas, adrenals, and especially the gonads. Insights into the functional roles played by GATA factors in adult organ systems have been hampered by the early embryonic lethality associated with the different Gata-null mice. This is now being overcome with the generation of tissue-specific knockout models and other knockdown strategies. These approaches, together with the increasing number of human GATA-related pathologies have greatly broadened the scope of GATA-dependent genes and, importantly, have shown that GATA action is not necessarily limited to early development. This has been particularly evident in endocrine organs where GATA factors appear to contribute to the transcription of multiple hormone-encoding genes. This review provides an overview of the GATA family of transcription factors as they relate to endocrine function and disease.
Collapse
Affiliation(s)
- Robert S Viger
- Ontogeny-Reproduction Research Unit, Room T1-49, CHUQ Research Centre, 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2.
| | | | | | | | | |
Collapse
|
5
|
Lin HT, Kao CL, Lee KH, Chang YL, Chiou SH, Tsai FT, Tsai TH, Sheu DC, Ho LLT, Ku HH. Enhancement of insulin-producing cell differentiation from embryonic stem cells using pax4-nucleofection method. World J Gastroenterol 2007; 13:1672-9. [PMID: 17461469 PMCID: PMC4146945 DOI: 10.3748/wjg.v13.i11.1672] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To enhance the differentiation of insulin producing cell (IPC) ability from embryonic stem (ES) cells in vitro.
METHODS: Four-day embryoid body (EB)-formatted ES cells were dissociated as single cells for the followed plasmid DNA delivery. The use of Nucleofector™electroporator (Amaxa biosystems, Germany) in combination with medium-contained G418 provided a high efficiency of gene delivery for advanced selection. Neucleofected cells were plated on the top of fibronectin-coated Petri dishes. Addition of Ly294002 and raised the glucose in medium at 24 h before examination. The differentiation status of these cells was monitored by semi-quantitative PCR (SQ-PCR) detection of the expression of relative genes, such as oct-4, sox-17, foxa2, mixl1, pdx-1, insulin 1, glucagons and somatostatin. The percentage of IPC population on d 18 of the experiment was investigated by immunohistochemistry (IHC), and the content/secretion of insulin was estimated by ELISA assay. The mice with severe combined immunodeficiency disease (SCID) pretreated with streptozotocin (STZ) were used to eliminate plasma glucose restoration after pax4+ ES implantation.
RESULTS: A high efficiency of gene delivery was demonstrated when neucleofection was used in the present study; approximately 70% cells showed DsRed expression 2 d after neucleofection. By selection of medium-contained G418, the percentage of DsRed expressing cells kept high till the end of study. The pancreatic differentiation seemed to be accelerated by pax4 nucleofection. When compared to the group of cells with mock control, foxa2, mixl1, pdx1, higher insulin and somatostatin levels were detected by SQ-PCR 4 d after nucleofection in the group of pax4 expressing plasmid delivery. Approximately 55% of neucleofected cells showed insulin expression 18 d after neucleofection, and only 18% of cells showed insulin expression in mock control. The disturbance was shown by nucleofected pax4 RNAi vector; only 8% of cells expressed insulin 18 d after nucleofection. A higher IPC population was also detected in the insulin content by ELISA assay, and the glucose dependency was demonstrated in insulin secretion level. In the animal model, improvement of average plasma glucose concentration was observed in the group of pax-4 expressed ES of SCID mice pretreated with STZ, but no significant difference was observed in the group of STZ-pretreated SCID mice who were transplanted ES with mock plasmid.
CONCLUSION: Enhancement of IPC differentiation from EB-dissociated ES cells can be revealed by simply using pax4 expressing plasmid delivery. Not only more IPCs but also pancreatic differentiation-related genes can be detected by SQ-PCR. Expression of relative genes, such as foxa 2, mixl 1, pdx-1, insulin 1 and somatostatin after nucleofection, suggests that pax4 accelerates the whole differentiation progress. The higher insulin production with glucose dependent modulation suggests that pax4 expression can drive more mature IPCs. Although further determination of the entire mechanism is required, the potential of pax-4-nucleofected cells in medical treatment is promising.
Collapse
Affiliation(s)
- Han-Tso Lin
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ketola I, Otonkoski T, Pulkkinen MA, Niemi H, Palgi J, Jacobsen CM, Wilson DB, Heikinheimo M. Transcription factor GATA-6 is expressed in the endocrine and GATA-4 in the exocrine pancreas. Mol Cell Endocrinol 2004; 226:51-7. [PMID: 15489005 DOI: 10.1016/j.mce.2004.06.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 03/21/2004] [Accepted: 06/04/2004] [Indexed: 02/07/2023]
Abstract
GATA-4 and GATA-6 are zinc finger transcription factors that regulate gene expression, differentiation, and cell proliferation in various tissues. These factors have been implicated in the development of endodermal derivatives, including epithelial cells in the yolk sac, lung, and stomach. In the present study, we have characterized the expression of GATA-4 and GATA-6 during development of another endodermal derivative, the mouse pancreas, using a combination of in situ hybridization and immunohistochemistry. Neither GATA-4 nor GATA-6 antigen was detected in E10.5 pancreatic epithelial buds expressing Pdx-1. By E15.5, GATA-4 mRNA and protein were evident in developing pancreatic acini, but not in ductal or endocrine cells of the pancreas; GATA-6 mRNA and protein were present in both endocrine and exocrine cell precursors. In the newborn and adult pancreas, GATA-4 protein was seen in acinar cells, while GATA-6 antigen was found mainly in islet beta-cells. The amphicrine pancreatic AR42J-B13 cell line was used to study the expression of GATA-4 and GATA-6 during the differentiation of these cells towards an endocrine phenotype. Endocrine differentiation was associated with marked increase in GATA-6 but not GATA-4 mRNA levels. We conclude that GATA-4 is a marker of exocrine pancreatic differentiation, whereas GATA-6 is a marker of endocrine pancreatic development.
Collapse
Affiliation(s)
- Ilkka Ketola
- Children's Hospital and Program for Developmental and Reproductive Biology, Biomedicum Helsinki, PO Box 63, Room B525b, 00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Brink C, Gruss P. DNA sequence motifs conserved in endocrine promoters are essential forPax4 expression. Dev Dyn 2003; 228:617-22. [PMID: 14648838 DOI: 10.1002/dvdy.10405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The paired box transcription factor Pax4 is required for maturation of insulin-producing beta- and somatostatin secreting delta-cells in the murine pancreas. It starts to be expressed in pancreatic precursors and later is restricted to beta- and delta-cells to finally be switched off after birth. A 0.9-kb genomic DNA fragment has been shown to mediate the Pax4 expression pattern. Transcription factors Pdx1 and NeuroD bind to this fragment at A2- and E1-sequence motifs. In this study, we downscale the size of this fragment to 409 bp. Another genomic fragment of 254 bp is still able to mediate the specificity, but not the strength of Pax4 expression. Deletion of the A2 and E1 elements results in loss or weakening of reporter gene expression. Because A2 and E1 elements are conserved in numerous pancreatic promoters, they might play a general role in regulating endocrine gene expression.
Collapse
|
8
|
Smith SB, Gasa R, Watada H, Wang J, Griffen SC, German MS. Neurogenin3 and hepatic nuclear factor 1 cooperate in activating pancreatic expression of Pax4. J Biol Chem 2003; 278:38254-9. [PMID: 12837760 DOI: 10.1074/jbc.m302229200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During fetal development, paired/homeodomain transcription factor Pax4 controls the formation of the insulin-producing beta cells and the somatostatin-producing delta cells in the islets of Langerhans in the pancreas. Targeting of Pax4 expression to the islet lineage in the fetal pancreas depends on a short sequence located approximately 2 kb upstream of the transcription initiation site of the PAX4 gene. This short sequence contains binding sites for homeodomain transcription factors PDX1 and hepatic nuclear factor (HNF)1, nuclear receptor HNF4alpha, and basic helix-loop-helix factor Neurogenin3. In the current study we demonstrate that the HNF1alpha and Neurogenin3 binding sites are critical for activity of the region through synergy between the two proteins. Synergy involves a physical interaction between the factors and requires the activation domains of both factors. Furthermore, exogenous expression of Neurogenin3 is sufficient to induce expression of the endogenous pax4 gene in the mouse pancreatic ductal cell line mPAC, which already expresses HNF1alpha, whereas expression of both Neurogenin3 and HNF1alpha are necessary to activate the pax4 gene in the fibroblast cell line NIH3T3. These data demonstrate how Neurogenin3 and HNF1alpha activate the pax4 gene during the cascade of gene expression events that control pancreatic endocrine cell development.
Collapse
Affiliation(s)
- Stuart B Smith
- Diabetes Center, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kemp DM, Lin JC, Habener JF. Regulation of Pax4 paired homeodomain gene by neuron-restrictive silencer factor. J Biol Chem 2003; 278:35057-62. [PMID: 12829700 DOI: 10.1074/jbc.m305891200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An elucidation of the key regulatory factors in pancreas development is critical for understanding the pathogenesis of diabetes mellitus. This study examined whether a specific regulatory mechanism that exists in neuronal development also plays a role in the pancreas. In non-neuronal cells, neuron-restrictive silencer factor (NSRF) actively represses gene transcription via a sequence-specific DNA motif known as the neuron-restrictive silencer element (NRSE). This DNA motif has been identified in many genes that are specific markers for cells of neuronal and neuroendocrine lineage. We identified several genes involved in pancreas development that also harbor NRSE-like motifs, including pdx-1, Beta2/NeuroD, and pax4. The paired homeodomain transcription factor Pax4 is implicated in the differentiation of the insulin-producing beta-cell lineage because disruption of the pax4 gene results in a severe deficiency of beta-cells and the manifestation of diabetes mellitus in mice. The NRSE-like motif identified in the upstream pax4 promoter is highly conserved throughout evolution, forms a DNA-protein complex with NRSF, and confers NRSF-dependent transcriptional repression in the context of a surrogate gene promoter. This cis-activating NRSE element also confers NRSF-dependent modulation in the context of the native pax4 gene promoter. Together with earlier reports, these new findings suggest an important functional role for NRSF in the expression of the pax4 gene and infer a role for NRSF in pancreatic islet development.
Collapse
Affiliation(s)
- Daniel M Kemp
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
10
|
Thameem F, Yang X, Permana PA, Wolford JK, Bogardus C, Prochazka M. Evaluation of the microsomal glutathione S-transferase 3 (MGST3) locus on 1q23 as a Type 2 diabetes susceptibility gene in Pima Indians. Hum Genet 2003; 113:353-8. [PMID: 12898215 DOI: 10.1007/s00439-003-0980-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 05/25/2003] [Indexed: 12/31/2022]
Abstract
Elevation of plasma glucose concentration may induce generation of oxygen-free radicals, which can play an important role in the progression of diabetes and/or development of its complications. Various glutathione transferases utilize the availability of reduced glutathione for the cellular defense against oxygen-free radicals. One such enzyme is microsomal glutathione S-transferase 3 encoded by MGST3, which maps to chromosome 1q23, a region linked to Type 2 diabetes mellitus (T2DM) in Pima Indians, Caucasian, and Chinese populations. We investigated the MGST3 gene as a potential susceptibility gene for T2DM by screening this locus for single nucleotide polymorphisms (SNPs) in diabetic and non-diabetic Pima Indians. We also measured the skeletal muscle MGST3 mRNA level by Real-Time (RT) PCR and its relationship with insulin action in non-diabetic individuals. We identified 25 diallelic variants, most of which, based on their genotypic concordance, could be divided into three distinct linkage disequilibrium (LD) groups. We genotyped unique representative SNPs in selected diabetic and non-diabetic Pima Indians and found no evidence for association with T2DM. Furthermore, inter-individual variation of skeletal muscle MGST3 mRNA was not correlated with differences in insulin action in non-diabetic subjects. We conclude that alterations of MGST3 are unlikely to contribute to T2DM or differences in insulin sensitivity in the Pima Indians.
Collapse
Affiliation(s)
- Farook Thameem
- Clinical Diabetes and Nutrition Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Cissell MA, Zhao L, Sussel L, Henderson E, Stein R. Transcription factor occupancy of the insulin gene in vivo. Evidence for direct regulation by Nkx2.2. J Biol Chem 2003; 278:751-6. [PMID: 12426319 DOI: 10.1074/jbc.m205905200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Consensus-binding sites for many transcription factors are relatively non-selective and found at high frequency within the genome. This raises the possibility that factors that are capable of binding to a cis-acting element in vitro and regulating transcription from a transiently transfected plasmid, which would not have higher order chromatin structure, may not occupy this site within the endogenous gene. Closed chromatin structure and competition from another DNA-binding protein with similar nucleotide specificity are two possible mechanisms by which a transcription factor may be excluded from a potential binding site in vivo. Multiple transcription factors, including Pdx-1, BETA-2, and Pax6, have been implicated in expression of the insulin gene in pancreatic beta cells. In this study, the chromatin immunoprecipitation assay has been used to show that these factors do, in fact, bind to insulin control region sequences in intact beta cells. In addition, another key islet-enriched transcription factor, Nkx2.2, was found to occupy this region using the chromatin immunoprecipitation assay. In vitro DNA-binding and transient transfection assays defined how Nkx2.2 affected insulin gene expression. Pdx-1 was also shown to bind within a region of the endogenous islet amyloid polypeptide, pax-4, and glucokinase genes that were associated with control in vitro. Because Pdx-1 does not regulate gene transcription in isolation, these sequences were examined for occupancy by the other insulin transcriptional regulators. BETA-2, Pax6, and Nkx2.2 were also found to bind to amyloid polypeptide, glucokinase, and pax-4 control sequences in vivo. These studies reveal the broad application of the Pdx-1, BETA-2, Pax6, and Nkx2.2 transcription factors in regulating expression of genes selectively expressed in islet beta cells.
Collapse
Affiliation(s)
- Michelle A Cissell
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
12
|
Chakrabarti SK, James JC, Mirmira RG. Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1. Importance of chromatin structure in directing promoter binding. J Biol Chem 2002; 277:13286-93. [PMID: 11825903 DOI: 10.1074/jbc.m111857200] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcription factor Pdx1 is expressed in the pancreatic beta-cell, where it is believed to regulate several beta-cell-specific genes. Whereas binding by Pdx1 to elements of beta-cell genes has been demonstrated in vitro, almost none of these genes has been demonstrated to be a direct binding target for Pdx1 within cells (where complex chromatin structure exists). To determine which beta-cell promoters are bound by Pdx1 in vivo, we performed chromatin immunoprecipitation assays using Pdx1 antiserum and chromatin from beta-TC3 cells and Pdx1-transfected NIH3T3 cells and subsequently quantitated co-immunoprecipitated promoters using real-time PCR. We compared these in vivo findings to parallel immunoprecipitations in which Pdx1 was allowed to bind to promoter fragments in in vitro reactions. Our results show that in all cells Pdx1 binds strongly to the insulin, islet amyloid polypeptide, glucagon, Pdx1, and Pax4 promoters, whereas it does not bind to either the glucose transporter type 2 or albumin promoters. In addition, no binding by Pdx1 to the glucokinase promoter was observed in beta-cells. In contrast, in in vitro immunoprecipitations, Pdx1 bound all promoters to an extent approximately proportional to the number of Pdx1 binding sites. Our findings suggest a critical role for chromatin structure in directing the promoter binding selectivity of Pdx1 in beta-cells and non-beta-cells.
Collapse
Affiliation(s)
- Swarup K Chakrabarti
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia Health Sciences Center, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|