1
|
Torres M, Becquet D, Blanchard MP, Guillen S, Boyer B, Moreno M, Franc JL, François-Bellan AM. Circadian RNA expression elicited by 3'-UTR IRAlu-paraspeckle associated elements. eLife 2016; 5. [PMID: 27441387 PMCID: PMC4987140 DOI: 10.7554/elife.14837] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022] Open
Abstract
Paraspeckles are nuclear bodies form around the long non-coding RNA, Neat1, and RNA-binding proteins. While their role is not fully understood, they are believed to control gene expression at a post-transcriptional level by means of the nuclear retention of mRNA containing in their 3’-UTR inverted repeats of Alu sequences (IRAlu). In this study, we found that, in pituitary cells, all components of paraspeckles including four major proteins and Neat1 displayed a circadian expression pattern. Furthermore the insertion of IRAlu at the 3’-UTR of the EGFP cDNA led to a rhythmic circadian nuclear retention of the egfp mRNA that was lost when paraspeckles were disrupted whereas insertion of a single antisense Alu had only a weak effect. Using real-time video-microscopy, these IRAlu were further shown to drive a circadian expression of EGFP protein. This study shows that paraspeckles, thanks to their circadian expression, control circadian gene expression at a post-transcriptional level. DOI:http://dx.doi.org/10.7554/eLife.14837.001 Many biological features of animals, including body temperature and hormone levels, follow daily rhythms that repeat every 24 hours. These so-called circadian rhythms are driven by an internal body clock and are essential for the organism to adapt to the daily cycle of light and dark. Circadian rhythms also take place inside individual cells – for example, the amount of a given protein in a cell often rises and falls over each 24-hour period. To generate these daily fluctuations, the processes used to make proteins based on the instructions encoded within a gene must be carefully controlled. Genes are first copied or ‘transcribed' into intermediate molecules called messenger RNAs (mRNAs). These mRNA molecules must then travel out of the cell’s nucleus before they can be de-coded to produce proteins. This means that daily fluctuations in mRNA and protein levels could occur because the rate at which the DNA is transcribed fluctuates or because controlling the steps that occur after transcription. However it is not clear how much these post-transcriptional steps contribute to circadian rhythms inside cells. Recently, structures called paraspeckles were seen inside the nucleus. These structures are made from a long RNA molecule that does not code for a protein, and a number of proteins that can bind mRNA molecules. Paraspeckles are thought to prevent certain mRNAs from leaving the nucleus and therefore stop them from being decoded to make proteins. Torres et al. have now investigated whether paraspeckles may play a role in circadian rhythms. Torres et al. looked at the long non-coding RNA and several proteins that are known to be components of paraspeckles in cells taken from the pituitary glands of rats using a variety of techniques. These cells were chosen because they were known to have a working circadian clock. The analysis showed that the levels of these components, as well as the number of paraspeckles within the nucleus, changed over the course of a daily cycle. Torres et al. then confirmed that mRNAs containing a sequence that is known to recruit mRNAs to paraspeckes (the IRAlu sequence) could be also retained in the nucleus or released with a circadian rhythm. This pattern was lost when the paraspeckles were disrupted. These findings suggest that daily fluctuations in protein levels can be post-transcriptionally controlled by paraspeckles rhythmically retaining mRNAs in the nucleus. Future studies could explore whether it may be possible to control circadian rhythms by targeting the paraspeckles, which could help to improve conditions where the internal body clock goes wrong. DOI:http://dx.doi.org/10.7554/eLife.14837.002
Collapse
Affiliation(s)
- Manon Torres
- Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| | - Denis Becquet
- Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| | - Marie-Pierre Blanchard
- Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| | - Séverine Guillen
- Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| | - Bénédicte Boyer
- Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| | - Mathias Moreno
- Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| | - Jean-Louis Franc
- Faculté de Médecine Nord, Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| | | |
Collapse
|
2
|
Analgesic Neural Circuits Are Activated by Electroacupuncture at Two Sets of Acupoints. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3840202. [PMID: 27429635 PMCID: PMC4939346 DOI: 10.1155/2016/3840202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 11/17/2022]
Abstract
To investigate analgesic neural circuits activated by electroacupuncture (EA) at different sets of acupoints in the brain, goats were stimulated by EA at set of Baihui-Santai acupoints or set of Housanli acupoints for 30 min. The pain threshold was measured using the potassium iontophoresis method. The levels of c-Fos were determined with Streptavidin-Biotin Complex immunohistochemistry. The results showed pain threshold induced by EA at set of Baihui-Santai acupoints was 44.74% ± 4.56% higher than that by EA at set of Housanli acupoints (32.64% ± 5.04%). Compared with blank control, EA at two sets of acupoints increased c-Fos expression in the medial septal nucleus (MSN), the arcuate nucleus (ARC), the nucleus amygdala basalis (AB), the lateral habenula nucleus (HL), the ventrolateral periaqueductal grey (vlPAG), the locus coeruleus (LC), the nucleus raphe magnus (NRM), the pituitary gland, and spinal cord dorsal horn (SDH). Compared with EA at set of Housanli points, EA at set of Baihui-Santai points induced increased c-Fos expression in AB but decrease in MSN, the paraventricular nucleus of the hypothalamus, HL, and SDH. It suggests that ARC-PAG-NRM/LC-SDH and the hypothalamus-pituitary may be the common activated neural pathways taking part in EA-induced analgesia at the two sets of acupoints.
Collapse
|
3
|
The Expression Patterns of c-Fos and c-Jun Induced by Different Frequencies of Electroacupuncture in the Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:343682. [PMID: 26491460 PMCID: PMC4603316 DOI: 10.1155/2015/343682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022]
Abstract
To investigate patterns of c-Fos and c-Jun expression induced by different frequencies of electroacupuncture (EA) in the brain, goats were stimulated by EA of 0, 2, 60, or 100 Hz at a set of "Baihui, Santai, Ergen, and Sanyangluo" points for 30 min. The pain threshold was measured using the potassium iontophoresis method. The levels of c-Fos and c-Jun were determined with Streptavidin-Biotin Complex immunohistochemistry. The results showed that the pain threshold induced by 60 Hz was 82.2% higher (P < 0.01) than that by 0, 2, or 100 Hz (6.5%, 35.2%, or 40.9%). EA induced increased c-Fos and c-Jun expression in most analgesia-related nuclei and areas in the brain. Sixty Hz EA increased more c-Fos or c-Jun expression than 2 Hz or 100 Hz EA in all the measured nuclei and areas except for the nucleus accumbens, the area septalis lateralis, the caudate nucleus, the nucleus amygdala basalis, and the locus coeruleus, in which c-Fos or c-Jun expressions induced by 60 Hz EA did not differ from those by 2 Hz or 100 Hz EA. It was suggested that 60 Hz EA activated more extensive neural circuits in goats, which may contribute to optimal analgesic effects.
Collapse
|
4
|
Zhang N, Lin JK, Chen J, Liu XF, Liu JL, Luo HS, Li YQ, Cui S. MicroRNA 375 mediates the signaling pathway of corticotropin-releasing factor (CRF) regulating pro-opiomelanocortin (POMC) expression by targeting mitogen-activated protein kinase 8. J Biol Chem 2013; 288:10361-73. [PMID: 23430746 DOI: 10.1074/jbc.m112.425504] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is a common precursor of melanocortin-related peptides in the pituitary and primarily regulated by corticotropin- releasing factor (CRF). Our results show that miR-375 is highly expressed in the mouse pituitary gland and located specifically in the intermediate lobe of pituitary. The functional studies show that the forced inhibition of endogenous miR-375 in AtT-20 mouse pituitary tumor cells and in the intermediate lobe of the pituitary gland significantly increases POMC expression, whereas miR-375 overexpression down-regulates POMC expression and ACTH secretion stimulated by CRF. This function of miR-375 is accomplished by its binding to the 3'-UTR of mitogen-activated protein kinase kinase kinase-8. Our results here have demonstrated that miR-375 acts as a negative regulating molecule mediating the signaling pathway of CRF and affecting POMC expression by targeting mitogen-activated protein kinase kinase kinase-8, which subsequently down-regulates ERK1/2 phosphorylation and nerve growth factor-induced clone B (NGFI-B) transcription activity. Taken together, our results show that miR-375 is a novel negative regulator of POMC expression and related hormone secretion.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Guillaumond F, Boyer B, Becquet D, Guillen S, Kuhn L, Garin J, Belghazi M, Bosler O, Franc J, François‐Bellan A. Chromatin remodeling as a mechanism for circadian prolactin transcription: rhythmic NONO and SFPQ recruitment to HLTF. FASEB J 2011; 25:2740-56. [DOI: 10.1096/fj.10-178616] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Fabienne Guillaumond
- Institut des Sciences Moleculaires de Marseille (ISM2)UMR6263 Université Aix‐Marseille IIIMarseilleFrance
| | - Benedicte Boyer
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| | - Denis Becquet
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| | - Severine Guillen
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| | - Lauriane Kuhn
- Plateforme Étude de la Dynamique des Protéomes (EDyP)‐ServiceGrenobleFrance
| | - Jerome Garin
- Centre d'Analyse Protéomique de MarseilleInstitut Fédératif de Recherche (IFR) Jean‐RocheMarseilleFrance
| | - Maya Belghazi
- Plateforme Protéomique de l'Esplanade Institut de Biologie Moléculaire et Cellulaire (IBMC)StrasbourgFrance
| | - Olivier Bosler
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| | - Jean‐Louis Franc
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| | - Anne‐Marie François‐Bellan
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| |
Collapse
|
6
|
Trümbach D, Graf C, Pütz B, Kühne C, Panhuysen M, Weber P, Holsboer F, Wurst W, Welzl G, Deussing JM. Deducing corticotropin-releasing hormone receptor type 1 signaling networks from gene expression data by usage of genetic algorithms and graphical Gaussian models. BMC SYSTEMS BIOLOGY 2010; 4:159. [PMID: 21092110 PMCID: PMC3002901 DOI: 10.1186/1752-0509-4-159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 11/19/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a hallmark of complex and multifactorial psychiatric diseases such as anxiety and mood disorders. About 50-60% of patients with major depression show HPA axis dysfunction, i.e. hyperactivity and impaired negative feedback regulation. The neuropeptide corticotropin-releasing hormone (CRH) and its receptor type 1 (CRHR1) are key regulators of this neuroendocrine stress axis. Therefore, we analyzed CRH/CRHR1-dependent gene expression data obtained from the pituitary corticotrope cell line AtT-20, a well-established in vitro model for CRHR1-mediated signal transduction. To extract significantly regulated genes from a genome-wide microarray data set and to deduce underlying CRHR1-dependent signaling networks, we combined supervised and unsupervised algorithms. RESULTS We present an efficient variable selection strategy by consecutively applying univariate as well as multivariate methods followed by graphical models. First, feature preselection was used to exclude genes not differentially regulated over time from the dataset. For multivariate variable selection a maximum likelihood (MLHD) discriminant function within GALGO, an R package based on a genetic algorithm (GA), was chosen. The topmost genes representing major nodes in the expression network were ranked to find highly separating candidate genes. By using groups of five genes (chromosome size) in the discriminant function and repeating the genetic algorithm separately four times we found eleven genes occurring at least in three of the top ranked result lists of the four repetitions. In addition, we compared the results of GA/MLHD with the alternative optimization algorithms greedy selection and simulated annealing as well as with the state-of-the-art method random forest. In every case we obtained a clear overlap of the selected genes independently confirming the results of MLHD in combination with a genetic algorithm. With two unsupervised algorithms, principal component analysis and graphical Gaussian models, putative interactions of the candidate genes were determined and reconstructed by literature mining. Differential regulation of six candidate genes was validated by qRT-PCR. CONCLUSIONS The combination of supervised and unsupervised algorithms in this study allowed extracting a small subset of meaningful candidate genes from the genome-wide expression data set. Thereby, variable selection using different optimization algorithms based on linear classifiers as well as the nonlinear random forest method resulted in congruent candidate genes. The calculated interacting network connecting these new target genes was bioinformatically mapped to known CRHR1-dependent signaling pathways. Additionally, the differential expression of the identified target genes was confirmed experimentally.
Collapse
Affiliation(s)
- Dietrich Trümbach
- Helmholtz Centre Munich, German Research Centre for Environmental Health, (GmbH) and Technical University Munich, Institute of Developmental Genetics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ingolstädter, Landstraße 1, 85764 Munich-Neuherberg, Germany
| | - Cornelia Graf
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Claudia Kühne
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Marcus Panhuysen
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Peter Weber
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Wolfgang Wurst
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Helmholtz Centre Munich, German Research Centre for Environmental Health, (GmbH) and Technical University Munich, Institute of Developmental Genetics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ingolstädter, Landstraße 1, 85764 Munich-Neuherberg, Germany
| | - Gerhard Welzl
- Helmholtz Centre Munich, German Research Centre for Environmental Health, (GmbH) and Technical University Munich, Institute of Developmental Genetics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ingolstädter, Landstraße 1, 85764 Munich-Neuherberg, Germany
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
7
|
Hanstein R, Trotter J, Behl C, Clement AB. Increased connexin 43 expression as a potential mediator of the neuroprotective activity of the corticotropin-releasing hormone. Mol Endocrinol 2009; 23:1479-93. [PMID: 19460861 DOI: 10.1210/me.2009-0022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CRH is a major central stress mediator, but also a potent neuroprotective effector. The mechanisms by which CRH mediates its neuroprotective actions are largely unknown. Here, we describe that the gap junction molecule connexin43 (Cx43) mediates neuroprotective effects of CRH toward experimentally induced oxidative stress. An enhanced gap junction communication has been reported to contribute to neuroprotection after neurotoxic insults. We show that CRH treatment up-regulates Cx43 expression and gap junctional communication in a CRH receptor-dependent manner in IMR32 neuroblastoma cells, primary astrocytes, and organotypic hippocampal slice cultures. MAPKs and protein kinase A-cAMP response element binding protein -coupled pathways are involved in the signaling cascade from CRH to enhanced Cx43 function. Inhibition of CRH-promoted gap junction communication by the gap junction inhibitor carbenoxolone could prevent neuroprotective actions of CRH in cell and tissue culture models suggesting that gap junction molecules are involved in the neuroprotective effects of CRH. The extent of oxidative stress-induced protein carbonylation and cell death inversely correlated with Cx43 protein levels as shown by Cx43 small interfering RNA knockdown experiments. Coculture studies of primary neurons and astrocytes revealed that astrocytic Cx43 likely contributes to the neuroprotective effects of CRH. To our knowledge this is the first description of Cx43 as a potential mediator of the neuroprotective actions of CRH.
Collapse
Affiliation(s)
- Regina Hanstein
- Institute of Pathobiochemistry, University Medical Center, Johannes Gutenberg-University, 55099 Mainz, Germany
| | | | | | | |
Collapse
|
8
|
|
9
|
Iwasaki Y, Taguchi T, Nishiyama M, Asai M, Yoshida M, Kambayashi M, Takao T, Hashimoto K. Lipopolysaccharide stimulates proopiomelanocortin gene expression in AtT20 corticotroph cells. Endocr J 2008; 55:285-90. [PMID: 18323674 DOI: 10.1507/endocrj.k07-075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
While lipopolysaccharides (LPS) are known to activate the hypothalamo-pituitary-adrenal axis, their direct effects on proopiomelanocortin (POMC) and adrenocorticotropin (ACTH) expression at the pituitary level through Toll-like receptors (TLRs) remain unclear. In this study, we examined the effects of LPS on ACTH secretion and the transcription of the POMC gene in the AtT20 mouse pituitary corticotroph cell line. RT-PCR analysis showed that TLR1-4 and 6 subtype mRNAs were expressed in AtT20 cells. When the cells were treated with LPS, a significant increase in the 5'-promoter activity of POMC gene was observed at 24 h, without any stimulatory effect on ACTH secretion. LPS also stimulated the expression of c-Fos gene and protein, and AP1-, but not NF-kappaB-, mediated transcription. Overall, our data show the expression of TLRs in the pituitary corticotroph cells, and suggest the direct stimulatory effect of LPS on POMC gene expression via TLR (probably TLR4), although the intracellular signaling pathways in the corticotroph may be different from those in immune cells.
Collapse
Affiliation(s)
- Yasumasa Iwasaki
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu X, Shen H, Yu L, Peng M, Lai WS, Ding YL. Corticotropin-releasing hormone activates connexin 43 via activator protein-1 transcription factor in human myometrial smooth muscle cells. Am J Physiol Endocrinol Metab 2007; 293:E1789-94. [PMID: 17895291 DOI: 10.1152/ajpendo.00249.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corticotropin-releasing hormone (CRH) and connexin 43 (Cx43) play crucial roles in uterine contraction and the onset of labor. The aim of the present study was to investigate the regulatory effects of CRH on Cx43 expression in human myometrial smooth muscle cells (SMCs) and, potentially, its activation of the c-Fos/activator protein (AP)-1 signaling pathway. Human myometrial SMCs collected from nonpregnant women were treated with different concentrations of CRH. Transient transfection of AP-1 decoy oligodeoxynucleotide (ODN) was used to block AP-1 sites of Cx43. The transcriptional activity of AP-1 was detected by luciferase assay. Cx43 protein expression was visualized by immunofluorescence staining. mRNA and protein expression of c-Fos and Cx43 were demonstrated by real-time quantitative RT-PCR and Western blot, respectively. CRH facilitated Cx43 expression and enhanced AP-1 promoter activity in human uterine SMCs. After CRH treatment, Cx43 expression in the cytoplasm increased significantly. CRH significantly increased mRNA and protein expression of c-Fos and Cx43 in a dose-dependent manner (P < 0.01). A transient transfection of AP-1 decoy ODN did not affect CRH regulation of c-Fos (P > 0.05) but almost completely abolished CRH-induced enhancement of Cx43 expression (P < 0.01). In human primary myometrial SMCs, CRH enhances Cx43 mRNA and protein expression through upregulation of c-Fos expression. Blockade of AP-1 sites to the Cx43 promoter can neutralize the CRH-induced upregulation of Cx43.
Collapse
Affiliation(s)
- Xiang Wu
- Dept. of Gynecology and Obstetrics, The Second Xiangya Hospital, Central South Univ., Changsha, Hunan 410011, China
| | | | | | | | | | | |
Collapse
|
11
|
Iwasaki Y, Nishiyama M, Taguchi T, Kambayashi M, Asai M, Yoshida M, Nigawara T, Hashimoto K. Activation of AMP-activated protein kinase stimulates proopiomelanocortin gene transcription in AtT20 corticotroph cells. Am J Physiol Endocrinol Metab 2007; 292:E1899-905. [PMID: 17341551 DOI: 10.1152/ajpendo.00116.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Starvation is known to activate the hypothalamo-pituitary-adrenal (HPA) axis, a representative antistress system in the living organism. In this study, we investigated in vitro whether activation of the AMP-activated protein kinase (AMPK), which is known to occur in intracellular energy depletion, influences the expression of POMC gene that encodes adrenocorticotropin. We first confirmed that each subunit of AMPK was expressed in the AtT20 corticotroph cell line. We then found that AICAR, a cell-permeable AMP analog and an activator of AMPK, potently stimulated the 5'-promoter activity of POMC gene in a dose-dependent manner. The effects were promoter specific because AICAR enhanced the AP1-mediated POMC promoter activities but did not influence other transcription factor-induced transcription. The effect of AICAR on POMC gene transcription was completely eliminated by specific AMPK inhibitor compound C or by dominant negative AMPK, whereas overexpression of constitutively active AMPK mimicked the effect of AICAR. Finally, experiments using specific kinase inhibitors suggested that the PI 3-kinase-mediated signaling pathway is at least partly involved in the effect. Our results suggest that intracellular energy depletion with the resultant activation of AMPK directly stimulates the HPA axis at the pituitary level by increasing the expression of POMC gene.
Collapse
Affiliation(s)
- Yasumasa Iwasaki
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kohasu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Asaba K, Iwasaki Y, Asai M, Yoshida M, Nigawara T, Kambayashi M, Hashimoto K. High glucose activates pituitary proopiomelanocortin gene expression: possible role of free radical-sensitive transcription factors. Diabetes Metab Res Rev 2007; 23:317-23. [PMID: 16921546 DOI: 10.1002/dmrr.677] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hyperglycemia is recognized as a metabolic stress, and indeed it is known to stimulate hypothalamo-pituitary-adrenal (HPA) axis, a representative anti-stress system, in patients with diabetes mellitus or in animal models of hyperglycemia. Thus, we tried to clarify the molecular mechanism of glucose-induced HPA axis activation. METHODS We studied the effect of high glucose on the transcriptional regulation of proopiomelanocortin (POMC) gene that encodes adrenocorticotropic hormone, a central mediator of HPA axis, using AtT20 corticotroph cell line in vitro. RESULTS We found that high glucose concentration (24 mM) significantly stimulated the 5'-promoter activity of POMC gene. The effect was promoter-specific, and was mimicked by nuclear factor-kappaB (NF-kappaB)- or AP1-responsive promoters but not by cAMP-responsive element or serum-response element-containing promoters. Furthermore, the stimulatory effect of high glucose on POMC gene was eliminated by NF-kappaB and AP1 inhibitors, suggesting the involvement of the transcriptional factors. The POMC 5'-promoter has the canonical NF-kappaB consensus sequence, and gel shift assay showed the binding of NF-kappaB to the element. Finally, the effect of high glucose was completely abolished by treatment with a radical quencher 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL). CONCLUSIONS Our data suggest that hyperglycemia activates POMC gene expression, at least partly, via NF-kappaB/AP1, and that high-glucose-induced free radical generation may mediate the activation of these transcription factors, which in turn stimulates the transcription of POMC gene.
Collapse
Affiliation(s)
- Koichi Asaba
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Tsatsanis C, Androulidaki A, Alissafi T, Charalampopoulos I, Dermitzaki E, Roger T, Gravanis A, Margioris AN. Corticotropin-Releasing Factor and the Urocortins Induce the Expression of TLR4 in Macrophages via Activation of the Transcription Factors PU.1 and AP-1. THE JOURNAL OF IMMUNOLOGY 2006; 176:1869-77. [PMID: 16424218 DOI: 10.4049/jimmunol.176.3.1869] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Corticotropin-releasing factor (CRF) augments LPS-induced proinflammatory cytokine production from macrophages. The aim of the present study was to determine the mechanism by which CRF and its related peptides urocortins (UCN) 1 and 2 affect LPS-induced cytokine production. We examined their role on TLR4 expression, the signal-transducing receptor of LPS. For this purpose, the murine macrophage cell line RAW 264.7 and primary murine peritoneal macrophages were used. Exposure of peritoneal macrophages and RAW 264.7 cells to CRF, UCN1, or UCN2 up-regulated TLR4 mRNA and protein levels. To study whether that effect occurred at the transcriptional level, RAW 264.7 cells were transfected with a construct containing the proximal region of the TLR4 promoter linked to the luciferase gene. CRF peptides induced activation of the TLR4 promoter, an effect abolished upon mutation of a proximal PU.1-binding consensus or upon mutation of an AP-1-binding element. Indeed, all three peptides promoted PU.1 binding to the proximal PU.1 site and increased DNA-binding activity to the AP-1 site. The effects of CRF peptides were inhibited by the CRF2 antagonist anti-sauvagine-30, but not by the CRF1 antagonist antalarmin, suggesting that CRF peptides mediated the up-regulation of TLR4 via the CRF2 receptor. Finally, CRF peptides blocked the inhibitory effect of LPS on TLR4 expression. In conclusion, our data suggest that CRF peptides play an important role on macrophage function. They augment the effect of LPS by inducing Tlr4 gene expression, through CRF2, via activation of the transcription factors PU.1 and AP-1.
Collapse
Affiliation(s)
- Christos Tsatsanis
- Department of Clinical Chemistry-Biochemistry, University of Crete, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Schmidt MV, Schmidt M, Oitzl MS, Levine S, de Kloet ER. The HPA system during the postnatal development of CD1 mice and the effects of maternal deprivation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:39-49. [PMID: 12414092 DOI: 10.1016/s0165-3806(02)00519-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study we describe in 9- and 18-day-old CD1 mice (i) the basal and stress-induced activity of markers of the HPA system in blood, brain and pituitary, (ii) the effects of a 24-h maternal deprivation and (iii) the influence of anogenital stimulation (stroking) in deprived pups on these markers. We found low basal concentrations of ACTH and corticosterone at postnatal day (pnd) 9 and no or little response to a mild stressor at this age, confirming the existence of a SHRP in mice. At pnd 18 the mice displayed an adult-like ACTH and corticosterone response following a mild stressor. Maternal deprivation resulted in enhanced basal and stress levels of corticosterone at both ages. Interestingly, basal ACTH levels were elevated following maternal deprivation at pnd 9. At pnd 18 maternal deprivation resulted in a blunted ACTH response. Maternal deprivation resulted in a down-regulation of GR, MR, CRH and POMC transcript in the brain. However, maternally deprived 18-day-old pups displayed increased levels of CRH and POMC transcript, while GR and MR mRNA was also down-regulated. Anogenital stroking could reverse maternal deprivation effects on ACTH and MR mRNA, but not CRH mRNA. We conclude that (i) at the two measured time points the HPA axis develops similar in mice as in rats, (ii) maternal deprivation has pronounced effects in mice, which are similar to that found in the rat and (iii) there are a number of significant differences, which mainly concern the central CRH-ACTH components of the axis.
Collapse
Affiliation(s)
- Mathias V Schmidt
- Leiden/Amsterdam Center for Drug Research/Leiden University Medical Center, Division of Medical Pharmacology, Gorlaeus Laboratories, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Agelaki S, Tsatsanis C, Gravanis A, Margioris AN. Corticotropin-releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice. Infect Immun 2002; 70:6068-74. [PMID: 12379683 PMCID: PMC130344 DOI: 10.1128/iai.70.11.6068-6074.2002] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) exerts an anti-inflammatory effect indirectly, via cortisole production, and a proinflammatory effect directly on immune cells. The aim of the present work was to examine the effect of CRH on macrophage-derived cytokines both in vitro and in vivo. For the in vitro experiments we used two types of macrophages: (i) the RAW264.7 monocyte/macrophage cell line and (ii) thioglycolate-elicited peritoneal macrophages from BALB/c mice. We have found that CRH enhanced lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-6 production. For the in vivo experiments we have used the LPS-induced endotoxin shock model in BALB/c mice, an established model for systemic inflammation in which macrophages are the major source of the proinflammatory cytokines responsible for the development of the shock. Administration of antalarmin, a synthetic CRH receptor 1 (CRHR1) antagonist, prior to LPS prolonged survival in a statistically significant manner. The effect was more evident at the early stages of endotoxin shock. CRHR1 blockade suppressed LPS-induced elevation of the macrophage-derived cytokines TNF-alpha, IL-1beta, and IL-6, confirming the role of CRH signals in cytokine expression. In conclusion, our data suggest that CRH signals play an early and crucial role in augmenting LPS-induced proinflammatory cytokine production by macrophages. Our data suggest that the diffuse neuroendocrine system via CRH directly affects the immune system at the level of macrophage activation and cytokine production.
Collapse
Affiliation(s)
- Sofia Agelaki
- Deparment of Clinical Chemistry-Biochemistry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
16
|
Ekman R, Persson R, Nilsson CL. Neurodevelopmental influences on the immune system reflecting brain pathology. Neurotox Res 2002; 4:565-572. [PMID: 12754167 DOI: 10.1080/10298420290031423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A number of studies have shown that early life events can affect the development of the nervous system, contributing to particular individual differences in later vulnerability to different forms of psychosocial stress related to the environment and lifestyle. Neuropeptides, chemokines (CKs), neurotrophins (NTs) belong to the chemical microenvironment of the cells of the central nervous system (CNS). This paper reviews research performed in our and other laboratories indicating that mass spectrometry should play a significant role in future studies of the structures of proteins/peptides in neuroscience. These applications include peptide metabolism associated with normal and impaired neurone/immune function. Detailed information about peptide/protein processing in the CNS may be studied by using the lymphocyte as a model reflecting different chemical modifications of peptides/proteins related to various psychosomatic disturbances reflecting disorders of environment and lifestyle.
Collapse
Affiliation(s)
- Rolf Ekman
- Institute of Clinical Neuroscience, Experimental Neuroscience Section, Unit of Neurochemistry, Göteborg University, SE 431 80 Mölndal, Sweden
| | | | | |
Collapse
|