1
|
Guo Q, Jiang Y, Bai H, Chen G, Chang G. miR-301a-5p Regulates TGFB2 during Chicken Spermatogenesis. Genes (Basel) 2021; 12:genes12111695. [PMID: 34828300 PMCID: PMC8621736 DOI: 10.3390/genes12111695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
The process of spermatogenesis is complex and systemic, requiring the cooperation of many regulators. However, little is known about how micro RNAs (miRNAs) regulate spermatogenesis in poultry. In this study, we investigated key miRNAs and their target genes that are involved in spermatogenesis in chickens. Next-generation sequencing was conducted to determine miRNA expression profiles in five cell types: primordial germ cells (PGCs), spermatogonial stem cells (SSCs), spermatogonia (Spa), and chicken sperm. Next, we analyzed and identified several key miRNAs that regulate spermatogenesis in the four germline cell miRNA profiles. Among the enriched miRNAs, miRNA-301a-5p was the key miRNA in PGCs, SSCs, and Spa. Through reverse transcription quantitative PCR (RT-qPCR), dual-luciferase, and miRNA salience, we confirmed that miR-301a-5p binds to transforming growth factor-beta 2 (TGFβ2) and is involved in the transforming growth factor-beta (TGF-β) signaling pathway and germ cell development. To the best of our knowledge, this is the first demonstration of miR-301a-5p involvement in spermatogenesis by direct binding to TGFβ2, a key gene in the TGF-β signaling pathway. This finding contributes to the insights into the molecular mechanism through which miRNAs regulate germline cell differentiation and spermatogenesis in chickens.
Collapse
Affiliation(s)
- Qixin Guo
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
| | - Yong Jiang
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
| | - Hao Bai
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
- Correspondence:
| |
Collapse
|
2
|
Hussain A, Gilloteaux J. The human testes: Estrogen and ageing outlooks. TRANSLATIONAL RESEARCH IN ANATOMY 2020. [DOI: 10.1016/j.tria.2020.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Roles of CD34+ cells and ALK5 signaling in the reconstruction of seminiferous tubule-like structures in 3-D re-aggregate culture of dissociated cells from neonatal mouse testes. PLoS One 2017; 12:e0188705. [PMID: 29190781 PMCID: PMC5708723 DOI: 10.1371/journal.pone.0188705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/10/2017] [Indexed: 11/19/2022] Open
Abstract
Tissue reconstruction in vitro can provide, if successful, a refined and simple system to analyze the underlying mechanisms that drive the morphogenesis and maintain the ordered structure. We have recently succeeded in reconstruction of seminiferous cord-like and tubule-like structures using 3-D re-aggregate culture of dissociated testicular cells. In testis formation, endothelial cells that migrated from mesonephroi to embryonic gonads have been shown to be critical for development of testis cords, but how endothelial cells contribute to testis cord formation remains unknown. To decipher the roles of endothelial and peritubular cells in the reconstruction of cord-like and tubule-like structures, we investigated the behavior of CD34+ endothelial and p75+ cells, and peritubular myoid cells (PTMCs) in 3-D re-aggregate cultures of testicular cells. The results showed that these 3 types of cells had the capacity of re-aggregation on their own and with each other, and of segregation into 3 layers in a re-aggregate, which were very similar to interstitial and peritubular tissues in vivo. Observation of behaviors of fluorescent Sertoli cells and other non-fluorescent types of cells using testes from Sox9-EGFP transgenic mice showed dynamic cell movement and segregation in re-aggregate cultures. Cultures of testicular cells deprived of interstitial and peritubular cells resulted in dysmorphic structures, but re-addition of them restored tubule-like structures. Purified CD34+ cells in culture differentiated into p75+ cells and PTMCs. These results indicate that CD34+ cells differentiate into p75+ cells, which then differentiate into PTMCs. TGFβ signaling inhibitors, SB431542 and ALK5i, disturbed the reconstruction of cord-like and tubule-like structures, and the latter compromised re-construction of interstitial-like and peritubular-like structures, as well as the proliferation of CD34+, p75+, PTMCs, and Sertoli cells, and their movement and differentiation. These results indicate that CD34+ cells and signaling through ALK5 play pivotal roles in the morphogenesis of interstitial-like, peritubular-like and cord-like structures.
Collapse
|
4
|
Ricci G, Guglielmo MC, Caruso M, Ferranti F, Canipari R, Galdieri M, Catizone A. Hepatocyte Growth Factor Is a Mouse Fetal Leydig Cell Terminal Differentiation Factor1. Biol Reprod 2012; 87:146. [DOI: 10.1095/biolreprod.112.104638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
5
|
Ozgüden-Akkoç CG, Ozer A. Immunohistochemical localization of transforming growth factor β1 and β2 in mouse testes during postnatal development. Biotech Histochem 2011; 87:154-9. [PMID: 21905961 DOI: 10.3109/10520295.2011.592150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We examined age-related changes in the expression of transforming growth factor-β(1) (TGF-β(1)) and transforming growth factor-β(2) in mouse testes. The mice were assigned to three age groups: 35, 50, and 75 days old. Paraffin embedded testis sections were processed for the standard streptavidin biotin peroxidase complex immunohistochemistry method. TGF-β(1) expression increased in aging round spermatids over the time studied. There was no expression in 35-day-old Leydig cells, whereas strong expression of TGF-β(1) was observed in 50-day-old Leydig cells. Expression decreased in 75-day-old Leydig cells. TGF-β(2) expression was weak in 35- and 50-day-old mouse spermatids, but expression was greater in 75-day-old elongated spermatids. In Leydig cells, TGF-β(2) expression was strong in both 35- and 50-day-old mice, whereas the expression of TGF-β(2) was less in 75-day-old Leydig cells. Our results suggest that TGF-β(1) and TGF-β(2) may play significant roles in testicular functions and germ cell development in mice.
Collapse
Affiliation(s)
- C G Ozgüden-Akkoç
- Department of Histology & Embryology, Faculty of Veterinary Medicine, University of Uludag, Bursa, Turkey.
| | | |
Collapse
|
6
|
Abstract
The germ cell lineage is our lifelong reservoir of reproductive stem cells and our mechanism for transmitting genes to future generations. These highly specialised cells are specified early during development and then migrate to the embryonic gonads where sex differentiation occurs. Germ cell sex differentiation is directed by the somatic gonadal environment and is characterised by two distinct cell cycle states that are maintained until after birth. In the mouse, XY germ cells in a testis cease mitotic proliferation and enter G(1)/G(0) arrest from 12.5 dpc, while XX germ cells in an ovary enter prophase I of meiosis from 13.5 dpc. This chapter discusses the factors known to control proliferation and survival of germ cells during their journey of specification to sex differentiation during development.
Collapse
Affiliation(s)
- Cassy M Spiller
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
7
|
Abstract
A large body of evidence points to the existence of a close, dynamic relationship between the immune system and the male reproductive tract, which has important implications for our understanding of both systems. The testis and the male reproductive tract provide an environment that protects the otherwise highly immunogenic spermatogenic cells and sperm from immunological attack. At the same time, secretions of the testis, including androgens, influence the development and mature functions of the immune system. Activation of the immune system has negative effects on both androgen and sperm production, so that systemic or local infection and inflammation compromise male fertility. The mechanisms underlying these interactions have begun to receive the attention from reproductive biologists and immunologists that they deserve, but many crucial details remain to be uncovered. A complete picture of male reproductive tract function and its response to toxic agents is contingent upon continued exploration of these interactions and the mechanisms involved.
Collapse
Key Words
- cytokines
- immunity
- immunoregulation
- inflammation
- leydig cell
- lymphocytes
- macrophages
- nitric oxide
- prostanoids
- seminal plasma
- sertoli cell
- sperm
- spermatogenesis
- steroidogenesis
- toll-like receptors
- 16:0a-lpc, 1-palmitoyl-sn-glycero-3-phosphocholine
- 18:1a-lpc, 1-oleoyl-sn-glycero-3-phosphocholine
- 18:2a-lpc, 1-linoleoyl-sn-glycero-3-phosphocholine
- 20:4a-lpc, 1-arachidonyl-sn-glycero-3-phosphocholine
- aid, acquired immune deviation
- aire, autoimmune regulator
- ap1, activated protein 1
- apc, antigen-presenting cell
- bambi, bmp and activin membrane-bound inhibitor
- bmp, bone morphogenetic protein
- cox, cyclooxygenase
- crry, complement receptor-related protein
- ctl, cytotoxic t lymphocyte
- eao, experimental autoimmune orchitis
- eds, ethane dimethane sulfonate
- enos, endothelial nos
- fadd, fas-associated death domain protein
- fasl, fas ligand
- fsh, follicle-stimulating hormone
- gc, glucocorticoid
- hcg, human chorionic gonadotropin
- hla, human leukocyte antigen
- hmgb1, high mobility group box chromosomal protein 1
- ice, il1 converting enzyme
- ifn, interferon
- ifnar, ifnα receptor
- il, interleukin
- il1r, interleukin 1 receptor
- il1ra, il1 receptor antagonist
- inos, inducible nitric oxide synthase
- irf, interferon regulatory factor
- jak/stat, janus kinase/signal transducers and activators of transcription
- jnk, jun n-terminal kinase
- lh, luteinizing hormone
- lpc, lysoglycerophosphatidylcholine
- lps, lipopolysaccharide
- map, mitogen-activated protein
- mhc, major histocompatibility complex
- mif, macrophage migration inhibitory factor
- myd88, myeloid differentiation primary response protein 88
- nfκb, nuclear factor kappa b
- nk, cell natural killer cell
- nkt cell, natural killer t cell
- nlr, nod-like receptor
- nnos, neuronal nos
- nod, nucleotide binding oligomerization domain
- p450c17, 17α-hydroxylase/c17-c20 lyase
- p450scc, cholesterol side-chain cleavage complex
- paf, platelet-activating factor
- pamp, pathogen-associated molecular pattern
- pc, phosphocholine
- pg, prostaglandin
- pges, pge synthase
- pgi, prostacyclin
- pla2, phospholipase a2
- pmn, polymorphonuclear phagocyte
- pparγ, peroxisome proliferator-activated receptor γ
- rig, retinoic acid-inducible gene
- rlh, rig-like helicase
- ros, reactive oxygen species
- star, steroidogenic acute regulatory
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tir, toll/il1r
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- tnfr, tnf receptor
- tr1, t regulatory 1
- tradd, tnfr-associated death domain protein
- traf, tumor necrosis factor receptor-associated factor
- treg, regulatory t cell
- trif, tir domain-containing adaptor protein inducing interferon β
- tx, thromboxane
- txas, thromboxane a synthase
Collapse
|
8
|
Sarraj MA, Escalona RM, Umbers A, Chua HK, Small C, Griswold M, Loveland K, Findlay JK, Stenvers KL. Fetal testis dysgenesis and compromised Leydig cell function in Tgfbr3 (beta glycan) knockout mice. Biol Reprod 2009; 82:153-62. [PMID: 19696014 DOI: 10.1095/biolreprod.109.078766] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Betaglycan (Tgfbr3) is a coreceptor for transforming growth factor-beta (TGFB) superfamily ligands. In the current study, a defect in seminiferous cord formation was detected in 12.5-13.5 days postcoitum (dpc) beta glycan null murine testis. Immunohistochemistry with antibodies against cell-specific markers revealed defects in somatic cell populations. To confirm these data, quantitative real-time PCR was performed to determine changes in the expression levels of genes involved in fetal testis cell differentiation and function. The expression levels of the Leydig cell markers Insl3, Cyp17a1, Cyp11a1, Star, and Hsd3b1 were reduced in knockout testis compared to wild-type testis, beginning at 12.5 dpc. Whole mount in situ hybridization confirmed that Cyp11a1 expression was reduced in the null testis, but its distribution pattern was unchanged. Apoptosis was not affected by the loss of beta glycan, but proliferation within the interstitium was reduced at 14.5 dpc. However, morphometric analysis showed no changes in Leydig cell counts between the wild-type and the knockout testes at 14.5 dpc, indicating that fetal Leydig function, rather than number, was affected by the loss of beta glycan. The expression levels of Sertoli cell markers Dhh, Sox9, and Amh were also reduced in the knockout testis at 14.5 dpc. However, the expression of fetal germ cell markers Pou5f1 and DDX4 were not changed across the genotypes at any age examined. Our data show that the presence of beta glycan is required for normal cord formation, normal fetal Leydig cell development, and the establishment of fetal testis endocrine function, thus implicating TGFB superfamily members as regulators of early fetal testis structure and function.
Collapse
Affiliation(s)
- Mai A Sarraj
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Griswold SL, Behringer RR. Fetal Leydig cell origin and development. Sex Dev 2009; 3:1-15. [PMID: 19339813 DOI: 10.1159/000200077] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/29/2008] [Indexed: 11/19/2022] Open
Abstract
Male sexual differentiation is a complex process requiring the hormone-producing function of somatic cells in the gonad, including Sertoli cells and fetal Leydig cells (FLCs). FLCs are essential for virilization of the male embryo, but despite their crucial function, relatively little is known about their origins or development. Adult Leydig cells (ALCs), which arise at puberty, have been studied extensively and much of what has been learned about this cell population has been extrapolated to FLCs. This approach is problematic in that prevailing dogma in the field asserts that these 2 populations are distinct in origin. As such, it is imprudent to assume that FLCs arise and develop in a similar manner to ALCs. This review provides a critical assessment of studies performed on FLC populations, rather than those extrapolated from ALC studies to assemble a model for FLC origins and development. Furthermore, we underscore the need for conclusive identification of the source population of fetal Leydig cells.
Collapse
Affiliation(s)
- S L Griswold
- Program in Developmental Biology, Baylor College of Medicine, Houston, Tex., USA
| | | |
Collapse
|
10
|
Loveland KL, Dias V, Meachem S, Rajpert-De Meyts E. The transforming growth factor-? superfamily in early spermatogenesis: potential relevance to testicular dysgenesis. ACTA ACUST UNITED AC 2007; 30:377-84; discussion 384. [PMID: 17705810 DOI: 10.1111/j.1365-2605.2007.00785.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Regulated transforming growth factor-beta (TGFbeta) superfamily signalling is an integral part of normal testicular development and the processes that enable the production of fertile sperm. Through shared utilization of receptors, signal transduction components and inhibitors, many ligands in this family exhibit functional overlaps; this facet of their function is critical to understand because these ligands are often co-expressed and, hence, they may compete with or compensate for one another, depending on the specific cellular context. This review describes particular germ cell maturation steps governed by bone morphogenetic proteins, glial cell line-derived neurotrophic factor and activins, focusing on data predominantly from rodent studies that implicate activin and other family members in modulation of gonocyte and spermatogonial stem cell development. We also review knowledge of the TGFbeta superfamily signalling components in the human testis, exploring their potential impact on the processes associated with disrupted gonocyte development and an enhanced risk of testicular cancer.
Collapse
Affiliation(s)
- K L Loveland
- Monash Institute of Medical Research, Monash University, Clayton, Vic., Australia.
| | | | | | | |
Collapse
|
11
|
Mackay S, Smith RA. Effects of growth factors on testicular morphogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 260:113-73. [PMID: 17482905 DOI: 10.1016/s0074-7696(06)60003-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since the discovery of the sex-determining gene Sry in 1990, research effort has focused on the events downstream of its expression. A range of different experimental approaches including gene expression, knocking-out and knocking-in genes of interest, and cell and tissue culture techniques have been applied, highlighting the importance of growth factors at all stages of testicular morphogenesis. Migration of primordial germ cells and the mesonephric precursors of peritubular myoid cells and endothelial cells to the gonad is under growth factor control. Proliferation of both germ cells and somatic cells within the gonadal primordium is also controlled by cytokines as is the interaction of Sertoli cells (with each other and with the extracellular matrix) to form testicular cords. Several growth factors/growth factor families (e.g., platelet-derived growth factor, fibroblast growth factor family, TGFbeta family, and neurotrophins) have emerged as key players, exerting an influence at different time points and steps in organogenesis. Although most evidence has emerged in the mouse, comparative studies are important in elucidating the variety, potential, and evolution of control mechanisms.
Collapse
Affiliation(s)
- Sarah Mackay
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK, G12 8QQ
| | | |
Collapse
|
12
|
Itman C, Mendis S, Barakat B, Loveland KL. All in the family: TGF-beta family action in testis development. Reproduction 2006; 132:233-46. [PMID: 16885532 DOI: 10.1530/rep.1.01075] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To achieve and maintain fertility, the adult mammalian testis produces many generations of sperm. While testicular integrity is established in the fetus and develops further in juvenile life, sperm production does not ensue until much later in life, following the onset of puberty. Signals from the transforming growth factor-beta superfamily of proteins are vital for governance of testis development and spermatogenesis, and this review discusses our current understanding of the mechanisms and processes in which they have been implicated with a focus on the fetal and juvenile testis.
Collapse
Affiliation(s)
- Catherine Itman
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
13
|
Maire M, Florin A, Kaszas K, Regnier D, Contard P, Tabone E, Mauduit C, Bars R, Benahmed M. Alteration of transforming growth factor-beta signaling system expression in adult rat germ cells with a chronic apoptotic cell death process after fetal androgen disruption. Endocrinology 2005; 146:5135-43. [PMID: 16166221 DOI: 10.1210/en.2005-0592] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In utero exposure to chemicals with antiandrogen activity induces undescended testis, hypospadias, and sub- or infertility. The hypospermatogenesis observed in the adult rat testis exposed in utero to the antiandrogen flutamide has been reported to be a result of a long-term apoptotic cell death process in mature germ cells. However, little if anything is known about the upstream signaling mechanisms controlling this apoptosis. In the present study, we have investigated the possibility that the TGF-beta signaling pathway may be at play in this control of the apoptotic germ cell death process. By using a model of adult rat exposed in utero to 0, 0.4, 2, or 10 mg/kg.d flutamide, we observed that pro-TGF-beta signaling members, such as the three isoforms of TGF-beta ligands (TGF-beta1-3), the two TGF-beta receptors (TGF-betaRI and -RII) and the R-Smads Smad 1, Smad 2, Smad 3, and Smad 5 were inhibited at the mRNA and protein levels, whereas the anti-TGF-beta signaling member Smad 7 was overexpressed. Furthermore, we report that the overexpression of Smad 7 mRNA could induce an activation of c-Jun N-terminal kinase, because of the observed c-Jun overexpression, activation, and nuclear translocation leading to an increase in the transcription of the proapoptotic factor Fas-L. Together, the alterations of TGF-beta signaling may represent upstream mechanisms underlying the adult germ cell apoptotic process evidenced in adult rat testis exposed in utero to antiandrogenic compounds such as flutamide.
Collapse
Affiliation(s)
- Magali Maire
- Institut National de la Santé et de la Recherche Médicale Unité 407, Faculté de Médecine Lyon-Sud, Oullins, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Behnan SM, Guo C, Gong TW, Shum L, Gong SG. Gene and protein expression of transforming growth factor beta 2 gene during murine primary palatogenesis. Differentiation 2005; 73:233-9. [PMID: 16026545 DOI: 10.1111/j.1432-0436.2005.00022.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The molecular mechanisms by which the primordia of the midface grow and fuse to form the primary palate are not well characterized. This is in spite of the fact that failure of growth and/or fusion of these facial primordia leads to the common human craniofacial birth defects, clefts of the lip with or without clefts of the palate. Members of the transforming growth factor beta (Tgfbeta) superfamily have been shown to play critical roles during craniofacial development. Specifically, the role of Tgfbeta-3 in mediating the fusion of the embryonic secondary palatal shelves is well documented. In a screen for genes expressed during fusion of the murine midfacial processes, Tgfbeta2 was identified as a gene differentially expressed during fusion of the lateral and medial nasal processes. The objective of our study was to analyze the spatial and temporal expression of Tgfbeta2 during critical stages of midfacial morphogenesis at both the transcript and protein levels. We also compared the pattern of expression of Tgfbeta2 with that of Bmp4, a gene shown previously to be involved in mediating the fusion process in the midface. Our results showed Tgfbeta2 expression in a very restrictive area of the epithelial layer along the borders of the midfacial primordia, in a pattern very similar to that of Bmp4. The highly restrictive and spatial and temporal pattern of expression of Tgfbeta2 implicates its role in mediating the fusion of the midfacial processes, possibly through interacting with Bmp4 in the regulation of apoptosis and/or epithelial-mesenchymal transformation. A greater understanding of the role of this gene will clarify how the normal midface grows and the mechanisms behind cleft development.
Collapse
Affiliation(s)
- Scott M Behnan
- School of Dentistry, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | |
Collapse
|
15
|
Kasai S, Chuma S, Motoyama N, Nakatsuji N. Haploinsufficiency of Bcl-x leads to male-specific defects in fetal germ cells: differential regulation of germ cell apoptosis between the sexes. Dev Biol 2004; 264:202-16. [PMID: 14623242 DOI: 10.1016/s0012-1606(03)00400-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In germ cells, the function of which is to form the next generation, apoptotic cell death occurs during development, as in the case of somatic cells. In this study, we show that Bcl-x knockout heterozygous (Bcl-x(+/-)) mice exhibit severe defects in male germ cells during development. A substantial increase in apoptosis of male germ cells occurs at around embryonic day 13.5 (E13.5) in Bcl-x(+/-) embryos, leading to hypoplasia of postnatal testes and reduced fertility. On the other hand, female germ cells at the same stages do not show discernible differences between wild-type and Bcl-x(+/-) embryos. This phenotype of Bcl-x haploinsufficiency shows that regulation of apoptosis becomes different between the sexes at around the onset of sex differentiation. Through this study, we found that, in wild-type embryos, (1) apoptosis is much more frequent (approximately 10 times) in the male than in female germ cells, and (2) expression of Bcl-xL, but not that of Bax, is higher in female than in male germ cells, at around E13.5. Male fetal germ cells, cultured with gonadal somatic cells in vitro, showed higher frequencies of apoptosis than those cultured without gonadal somatic cells. On the other hand, in the absence of gonadal somatic cells, both male and female fetal germ cells in vitro showed similar frequencies of apoptosis to female fetal germ cells in vivo. Therefore, male germ cell apoptosis, of which the default pathway is similar to that of the female, is likely to be influenced by male gonadal environments.
Collapse
Affiliation(s)
- Shinya Kasai
- Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
16
|
Abstract
This article reviews results on differentiation, structure, and regulation of Leydig cells in the testes of rodents and men. Two different populations-fetal and adult Leydig cells-can be recognized in rodents. The cells in these two populations are different in ultrastructure, life span, capacity for androgen synthesis, and mechanisms of regulation. A brief survey on the origin, ontogenesis, characterization of precursors, ultrastructure, and functional markers of fetal and adult Leydig cells is presented, followed by an analysis of genes in Leydig cells and the role of luteinizing hormone and its receptor, steroidogenic acute regulatory protein, hydroxysteroid dehydrogenases, androgen and its receptor, anti-Müllerian hormone, estrogens, and thyroid hormones. Various growth factors modulate Leydig cell differentiation, regeneration, and steroidogenic capacity, for example, interleukin 1alpha, transforming growth factor beta, inhibin, insulin-like growth factors I and II, vascular endothelial growth factor, and relaxin-like growth factor. Retinol and retinoic acid increase basal testosterone secretion in adult Leydig cells, but decrease it in fetal Leydig cells. Resident macrophages in the interstitial tissue of the testis are important for differentiation and function of Leydig cells. Apoptosis of Leydig cells is involved in the regulation of Leydig cell number and can be induced by cytotoxins. Characteristics of aging Leydig cells in rodents seem to be species specific. 11beta-hydroxysteroid dehydrogenase protects testosterone synthesis in the Leydig cells of stressed rats. Last, the following aspects of human Leydig cells are briefly described: origin, differentiation, triphasic development, aging changes, pathological changes, and gene mutations leading to infertility.
Collapse
Affiliation(s)
- Syed G Haider
- Institute of Anatomy II, Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Lui WY, Lee WM, Cheng CY. TGF-betas: their role in testicular function and Sertoli cell tight junction dynamics. INTERNATIONAL JOURNAL OF ANDROLOGY 2003; 26:147-60. [PMID: 12755993 DOI: 10.1046/j.1365-2605.2003.00410.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transforming growth factor-betas (TGF-betas) are known to regulate multiple physiological functions in the testis, which include spermatogenesis, Leydig cell steroidogenesis, extracellular matrix synthesis and testis development. More recent studies have shown that TGF-beta3 also regulates Sertoli cell tight junction (TJ) dynamics in vitro via the p38 mitogen-activated protein (MAP) kinase pathway, suggesting that this cytokine plays a crucial role in regulating the opening and closing of the blood-testis barrier (BTB). This in turn regulates the passage of pre-leptotene and leptotene spermatocytes across the BTB at stages VIII-XI of the seminiferous epithelial cycle. This review summarizes recent advances of studies on TGF-betas in the testis, highlighting their regulatory role in TJ dynamics.
Collapse
Affiliation(s)
- Wing-Yee Lui
- Population Council, Center for Biomedical Research, New York, NY 10021, USA
| | | | | |
Collapse
|
18
|
Xu J, Beyer AR, Walker WH, McGee EA. Developmental and stage-specific expression of Smad2 and Smad3 in rat testis. JOURNAL OF ANDROLOGY 2003; 24:192-200. [PMID: 12634305 DOI: 10.1002/j.1939-4640.2003.tb02662.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Members of the transforming growth factor beta type (TGFbeta) superfamily and their receptors are expressed in the testis, and are believed to play important paracrine and autocrine roles during testicular development and spermatogenesis. The Smad proteins are downstream mediators for the family of TGFbeta growth factors. Smad2 and Smad3 are associated with both TGFbeta and activin signaling. However, very little is known about the expression and regulation of the Smad signaling proteins in the testis. In the present study, we have determined that Smad2 and Smad3 proteins are expressed in the postnatal testes of rats from 5 days to 60 days of age. Expression levels for both proteins are higher in young rats than in sexually mature rats. Smad2 and Smad3 messenger RNA levels parallel protein expression. Smad2 and Smad3 proteins are mainly localized in the cytoplasm of meiotic germ cells, Sertoli cells, and Leydig cells. Smad3 protein is localized to the nucleus of preleptotene to zygotene primary spermatocytes in young rats. Both proteins are expressed throughout all stages of the cycle of seminiferous tubules but are expressed at their lowest levels at stages VII-VIII in the seminiferous epithelium of adult rats. The presence of these downstream mediators in these cell types supports a role for TGFbeta and activin during spermatogenesis. The difference between the expression of Smad2 and Smad3 suggests that they may have different functions within the testis.
Collapse
Affiliation(s)
- Jian Xu
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
19
|
Kano K, Kurohmaru M, Hayashi Y, Taniguchi K. Effects of short photoperiod on the expression of smad2 and smad3 mRNA in Syrian hamster testis. J Vet Med Sci 2001; 63:25-30. [PMID: 11217058 DOI: 10.1292/jvms.63.25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The testicular localization and expression of Smad2 and Smad3 mRNA involved in the intracellular signal transduction of activin, inhibin and transforming growth factor-beta (TGF-beta) were examined under the influence of long and short photoperiod in Syrian hamsters (Mesocricetus auratus). In situ hybridization detected both Smad2 and Smad3 mRNA in spermatogonia and premeiotic spermatocytes in the active testis exposed to a long photoperiod, as well as in the regressed testis exposed to a short photoperiod. Northern blots showed that Smad2 mRNA was expressed at all stages over long and short photoperiods, whereas Smad3 mRNA was expressed at high levels in the photoperiod-induced regressed testis. The photoperiodic condition would change the balance between Smad2 and Smad3 transcripts in the testis. Thus, intracellular Smad2 and Smad3 might participate in transducing signals from activin, inhibin and TGF-beta in spermatogenetic cells.
Collapse
Affiliation(s)
- K Kano
- Department of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka, Japan
| | | | | | | |
Collapse
|
20
|
Konrad L, Albrecht M, Renneberg H, Aumüller G. Transforming growth factor-beta2 mediates mesenchymal-epithelial interactions of testicular somatic cells. Endocrinology 2000; 141:3679-86. [PMID: 11014222 DOI: 10.1210/endo.141.10.7728] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transforming growth factor-beta2 (TGFbeta2) is an important mediator of growth and differentiation. We here describe for the first time the complete sequence of the TGFbeta2 complementary DNA derived from peritubular myoid cells of the rat testis. The size of the rat TGFbeta2 complementary DNA was 1245 bp, and the deduced protein sequence contained 414 amino acids. Sequence comparison with the human and mouse amino acid sequences demonstrated 96.4% and 97.9% sequence identities, respectively. To elucidate the functional role of TGFbeta2 in testicular somatic cells, we studied its secretion in vitro in monocultures and cocultures of mesenchymal peritubular and epithelial Sertoli cells. The highest amounts of TGFbeta2 protein were secreted in the cocultures and by peritubular cells, whereas Sertoli cells secreted only minor amounts. Stimulation experiments with FSH revealed a reduced secretion of TGFbeta2 in cocultures, probably mediated by a paracrine interaction of the FSH-responsive Sertoli cells. In contrast, TGFbeta2 secretion by peritubular cells was increased after stimulation with glucocorticoids and after addition of recombinant TGFbeta2, indicating an autoregulation of TGFbeta2. Furthermore, application of recombinant TGFbeta2 to cocultures resulted in an enhanced aggregation and cell clustering of Sertoli cells, pointing to an important role of TGFbeta2 in the paracrine interaction of peritubular and Sertoli cells of the developing rat testis.
Collapse
Affiliation(s)
- L Konrad
- Department of Anatomy and Cell Biology, Philipps University, Marburg, Germany.
| | | | | | | |
Collapse
|
21
|
Levine E, Cupp AS, Skinner MK. Role of neurotropins in rat embryonic testis morphogenesis (cord formation). Biol Reprod 2000; 62:132-42. [PMID: 10611077 DOI: 10.1095/biolreprod62.1.132] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The process of seminiferous cord formation is the first morphological event that differentiates a testis from an ovary and indicates male sex determination. Cord formation occurs by embryonic Day 14 (Day 0 = plug date; E14) in the rat. A series of experiments were conducted to determine if neurotropins and their receptors are important for the process of rat embryonic cord formation. The expression of low affinity neurotropin receptor (p75/LNGFR) was determined by immunohistochemistry on sections of both testis and ovary from E13 through birth (Day 0, P0) with an antibody to p75/LNGFR. The staining for p75/LNGFR was present in the mesonephros of E13 gonads and in a sex-specific manner appeared around developing cords at E14 in the embryonic testis. At birth, staining for p75/LNGFR was localized to a single layer of cells (i.e., peritubular cells) that surrounded the seminiferous cords. The genes for both neurotropin 3 (NT3) and for corresponding high affinity neurotropin trkC receptor were found to be expressed in the E14 rat testis, as well as other neurotropins and receptors. Immunocytochemical analysis of E14 rat testis demonstrated that NT3 was localized to the Sertoli cells and trkC was present in individual cells of the interstitium at E16 and in selected preperitubular cells at E18. Previously, the peritubular cells adjacent to the cords were demonstrated to be derived from migrating mesonephros cells around the time of cord formation. To determine if neurotropins were involved in cord formation, the actions of neurotropins were inhibited. A high affinity neurotropin receptor (trk)-specific kinase inhibitor, K252a, was used to treat organ cultures of testes from E13 rats prior to cord formation. Treatment of E13 testis organ cultures with K252a completely inhibited cord formation. K252a-treated organ cultures of E14 testis that contained cords did not alter cord morphology. A second experiment to inhibit neurotropin actions utilized a specific antagonist trk-IgG chimeric fusion protein and E13 testis organ cultures. The trk-IgG molecules dimerize with endogenous trk receptors and inhibit receptor signaling and activation of ligand function. Forty percent of E13 testis organ cultures treated with trkC-IgG had significantly reduced cord formation. TrkA-IgG had no effect on initiation of cords; however, in fifty percent of the treated organs, a "swollen" appearance of the cord structures was observed. Experiments using trkB-IgG chimeric protein on E13 organ cultures had no effect on cord formation or cord morphology. The testes from trkC and NT3 knockout mice were examined to determine if there were any morphological differences in the testis. NT3 knockouts appeared to have normal cord morphology in E15 and E17 testis. TrkC knockout mice also had normal cord morphology in E14 and P0 testis. Both NT3 and trkC knockout-mice testis had less interstitial area than wild-type controls. In addition, the trkC knockout mice have an increased number of cells expressing p75LNGFR within the cords when compared to controls or NT3 knockout mice. Combined observations suggest compensation between the different neurotropin ligands, receptors, and/or possibly different growth factors for this critical biological process. In summary, results suggest a novel nonneuronal role for neurotropins in the process of cord formation during embryonic rat testis development. The hypothesis developed is that neurotropins are involved in the progression of male sex differentiation and are critical for the induction of embryonic testis cord formation.
Collapse
Affiliation(s)
- E Levine
- Center for Reproductive Biology, Department of Genetics and Cell Biology, Washington State University, Pullman, Washington 99164-4231, USA
| | | | | |
Collapse
|
22
|
Wang RA, Zhao GQ. Transforming growth factor beta signal transducer Smad2 is expressed in mouse meiotic germ cells, Sertoli cells, and Leydig cells during spermatogenesis. Biol Reprod 1999; 61:999-1004. [PMID: 10491636 DOI: 10.1095/biolreprod61.4.999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although previous studies have shown that members of the transforming growth factor beta (TGFbeta) family are expressed in the seminiferous tubules, the functions of these growth factors in spermatogenesis remain elusive. In order to shed light on the mechanisms of TGFbeta action in spermatogenesis, it is crucial to determine whether and where their downstream signaling molecules are expressed in the testis. We examined the expression of Smad2, an intracellular signal transducer of the TGFbetas, in mouse testes by in situ hybridization and immunohistochemistry. Both Smad2 mRNA and protein were detected in meiotic germ cells, from preleptotene to pachytene spermatocytes, but not in postmeiotic germ cells. Smad2 expression was also observed in interstitial cells and Sertoli cells. Therefore, our data provide molecular evidence for TGFbeta signal transduction during spermatogenesis.
Collapse
Affiliation(s)
- R A Wang
- Department of Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
23
|
Loir M. Spermatogonia of rainbow trout: II. in vitro study of the influence of pituitary hormones, growth factors and steroids on mitotic activity. Mol Reprod Dev 1999; 53:434-42. [PMID: 10398419 DOI: 10.1002/(sici)1098-2795(199908)53:4<434::aid-mrd9>3.0.co;2-l] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the present time, in spite of recent advances, knowledge about the factors regulating germ cell proliferation in the teleost testis is limited. This study was designed to investigate, in vitro, the ability of various hormones, growth factors, and steroids to influence the proliferation of trout spermatogonia (Go) present in mixed cultures of somatic and germ cells prepared from testes, either prespermatogenetic or spermatogenetic. The tested molecules were usually present for the duration of culture (4.5 days) and 3H-thymidine (3H-Tdr) for the last day in culture. In our cell culture conditions, homologous gonadotropin I (tGTH-I) and growth hormone (tGH) moderately stimulated 3H-Tdr incorporation by Go, with ED50 equal to 5.5 +/- 3.0 and 1.8 +/- 0.4 ng/ml respectively. Insulin growth factor I (rhIGF-I) and fibroblast growth factor (rhFGF-2) stimulated 3H-Tdr incorporation by Go from spermatogenetic testes only, with ED50 equal to 16.2 +/- 9.3 and 2.4 +/- 0.3 ng/ml respectively. The effects of the most efficient concentrations of rhIGF-I combined with those of either tGTH-I or tGH were additive. Seventy to one hundred microM suramin stimulated 3H-Tdr incorporation by Go from testes at all maturation stages and this effect was additive with that of tGTH-I. We assume that this effect of suramin could result from the inhibition of an unidentified antimitogenic factor. No effect was observed with homologous prolactin, human epidermal growth factor, activin A and B, transforming growth factor-beta1, testosterone, 11-ketotestosterone, 17beta-estradiol, pregnenolone, 11beta-hydroxyprogesterone, and 22-hydroxycholesterol. In conclusion, our in vitro results suggest that GTH-I, GH, IGF-I, and FGF-2, are potent in situ modulators of the proliferative activity of trout Go at the time of induction, speeding up, then slowing down spermatogenesis, through direct or indirect additive and/or antagonistic influences.
Collapse
Affiliation(s)
- M Loir
- Physiologie des Poissons, INRA, Campus de Beaulieu, Cedex, France.
| |
Collapse
|
24
|
Abstract
Several members of the transforming growth factor beta (TGF-beta) family are involved in gonadal development; namely, TGF-beta itself, inhibins, activins, anti-Müllerian hormone (AMH) and GDF-9. These proteins do not affect initial gonadal organogenesis but play either a stimulatory or inhibitory role in the division and differentiation of gonadal cells and in meiotic maturation in the female. Furthermore, as shown by transgenic mouse technology, both AMH and inhibin act as tumor suppressors.
Collapse
|
25
|
Cupp AS, Kim G, Skinner MK. Expression and action of transforming growth factor beta (TGFbeta1, TGFbeta2, and TGFbeta3) during embryonic rat testis development. Biol Reprod 1999; 60:1304-13. [PMID: 10330085 DOI: 10.1095/biolreprod60.6.1304] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of the current study was to determine the role of transforming growth factor beta (TGFbeta) during seminiferous cord formation and embryonic testis development. The expression pattern of mRNA for TGFbeta isoforms was evaluated during testis development through a quantitative reverse transcription-polymerase chain reaction (QRT-PCR) procedure. Expression of mRNA for TGFbeta1 was highest at postnatal day 0 (P0) and P10. In contrast, TGFbeta2 was high at embryonic day 15 (E15), declined at E16, and showed a transient increase at P0 through P3 of testis development. Interestingly, expression of mRNA for TGFbeta3 was high during embryonic development and then declined after P3. Immunohistochemical localization of TGFbeta1 and TGFbeta2 demonstrated expression in Sertoli cells at E14 and in the seminiferous cords at P0. Selective interstitial cells expressed high concentrations of TGFbeta1 and TGFbeta2 in P0 testis. TGFbeta3 was expressed in selective cells at the junction of the E14 testis and mesonephros. The cells expressing TGFbeta3 in the testis appeared to be preperitubular cells that resided around the seminiferous cords. TGFbeta3 was localized to gonocytes in P0 testis. TGFbeta1 was found to have no influence on seminiferous cord formation in embryonic organ cultures of E13 testis. In contrast, growth of both E13 and E14 embryonic organ cultures was inhibited by TGFbeta1 and resulted in reduced testis size (40% of controls) with fewer cords present. A P0 testis cell culture and thymidine incorporation assay were used to directly examine the effects of recombinant TGFbeta1. TGFbeta1 alone had no influence on thymidine incorporation in P0 testis cell cultures when compared to controls. Interestingly, TGFbeta1 inhibited epidermal growth factor (EGF), and 10% calf serum stimulated P0 testis cell growth but not FSH-stimulated growth. Therefore, TGFbeta1 appears to inhibit testis growth in both the embryonic and early postnatal periods. The hormonal regulation of TGFbeta expression was measured using P0 testis cell cultures and a QRT-PCR procedure for each TGFbeta isoform. High concentrations of EGF stimulated expression of mRNA for TGFbeta1 after 24 h but suppressed expression of TGFbeta3. In contrast, there was no effect of FSH on TGFbeta isoform expression. In summary, TGFbeta regulates embryonic and P0 testis growth through inhibiting the actions of positive growth factors such as EGF. In addition, EGF but not FSH appears to regulate TGFbeta isoform expression. Combined observations from the present study demonstrate that TGFbeta isoforms are differentially expressed and appear to be regulators of testis growth during the embryonic and early postnatal periods.
Collapse
Affiliation(s)
- A S Cupp
- Center for Reproductive Biology, Department of Genetics and Cell Biology, Washington State University, Pullman, Washington 99164-4231, USA
| | | | | |
Collapse
|
26
|
Le Roy C, Lejeune H, Chuzel F, Saez JM, Langlois D. Autocrine regulation of Leydig cell differentiated functions by insulin-like growth factor I and transforming growth factor beta. J Steroid Biochem Mol Biol 1999; 69:379-84. [PMID: 10419015 DOI: 10.1016/s0960-0760(99)00075-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression and the maintenance of specific differentiated function of Leydig cells are regulated not only by gonadotropin but by locally produced factors, which may act as autocrine regulators. Many factors, in particular growth factors, have been postulated to have such a type of effect on testicular cells, but very few fulfilled the three criteria required to establish a paracrine/autocrine role: (a) presence of receptors and biological action on local cells; (b) local secretion regulated by physiological signals; and (c) blockade of the factor or its receptors must modify the function of local cells. In the present work we demonstrate that two factors, insulin-like growth factor 1 (IGF-I) and transforming growth factor beta1 (TGFbeta1) fulfilled the three criteria: (a) IGF-I stimulates the transcription of the genes encoding Leydig cell differentiated function, leading to an enhanced steroidogenic responsiveness to LH/hCG; (b) Leydig cells (LC) express and secrete IGF-I and this secretion is enhanced by hCG; and (c) incubation of LC with IgG anti-IGF-I, but not with IgG-control, markedly reduced the steroidogenic responsiveness to LH/hCG. In contrast to IGF-I, TGFbeta is a potent inhibitor of LC differentiated function. Moreover, LC express TGFbeta1 mRNA and secrete this peptide. To prove that the locally produced TGFbeta has an autocrine role, LC were transfected with 10 microM of an antisense oligonucleotide (AON) complementary to the translation initiation region of TGFbeta1 mRNA. Transfection with AON but not with sense deoxynucleotide induces a complete disappearance of TGFbeta immunoreactivity in LC and an enhanced hCG-induced testosterone production by LC. This increased steroidogenic responsiveness was associated with a significant enhancement of both LH/hCG receptor mRNA and P450c17 mRNA. Taken together, the above results show that both factors play an autocrine role, although opposite, on Leydig cell function.
Collapse
Affiliation(s)
- C Le Roy
- INSERM-INRA U 418 and IFREL, Hôpital Debrousse, Lyon, France
| | | | | | | | | |
Collapse
|
27
|
Gautier C, Levacher C, Saez JM, Habert R. Expression and regulation of transforming growth factor beta1 mRNA and protein in rat fetal testis in vitro. Biochem Biophys Res Commun 1997; 236:135-9. [PMID: 9223440 DOI: 10.1006/bbrc.1997.6914] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression and secretion of Transforming Growth Factor beta1 (TGFbeta1) by cultured testes of day 20.5 rat fetuses were investigated. The testes were found to express two TGFbeta1 mRNA transcripts of 2.5 and 1.8 kb. By using mink lung epithelial cell bioassay based on the measurement of the inhibition of tritiated thymidine incorporation in response to TGFbeta1 immunoreactive material, the fetal testes were shown to secrete TGFbeta1 protein in organ culture. This secretion was positively regulated by dibutyryl cyclic AMP or by LH and FSH together, but not by LH alone and very slightly by FSH alone, which suggests interactions between Leydig and Sertoli cells for the control of TGFbeta1 production. These regulations probably take place at a posttranscriptional step since no concomitant increase of TGFbeta1 mRNA levels was observed. Such a positive regulation of TGFbeta1 secretion by gonadotropins could be a characteristic of the rat fetal testis.
Collapse
Affiliation(s)
- C Gautier
- INSERM-INRA U 418-Université Paris 7, France
| | | | | | | |
Collapse
|