1
|
Wei X, Chow HY, Chong HC, Leung SL, Ho MK, Lee MY, Leung YC. Arginine Is a Novel Drug Target for Arginine Decarboxylase in Human Colorectal Cancer Cells. Int J Mol Sci 2023; 24:13741. [PMID: 37762044 PMCID: PMC10531272 DOI: 10.3390/ijms241813741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) has been proven to be highly reliant on arginine availability. Limiting arginine-rich foods or treating patients with arginine-depleting enzymes arginine deiminase (ADI) or arginase can suppress colon cancer. However, arginase and ADI are not the best drug candidates for CRC. Ornithine, the product of arginase, can enhance the supply of polyamine, which favors CRC cell growth, while citrulline, the product of ADI, faces the problem of arginine recycling due to the overexpression of argininosuccinate synthetase (ASS). Biosynthetic arginine decarboxylase (ADC), an enzyme that catalyzes the conversion of arginine to agmatine and carbon dioxide, may be a better choice as it combines both arginine depletion and suppression of intracellular polyamine synthesis via its product agmatine. ADC has anti-tumor potential yet has received much less attention than the other two arginine-depleting enzymes. In order to gain a better understanding of ADC, the preparation and the anti-cancer properties of this enzyme were explored in this study. When tested in vitro, ADC inhibited the proliferation of three colorectal cancer cell lines regardless of their ASS cellular expression. In contrast, ADC had a lesser cytotoxic effect on the human foreskin fibroblasts and rat primary hepatocytes. Further in vitro studies revealed that ADC induced S and G2/M phase cell-cycle arrest and apoptosis in HCT116 and LoVo cells. ADC-induced apoptosis in HCT116 cells followed the mitochondrial apoptotic pathway and was caspase-3-dependent. With all results obtained, we suggest that arginine is a potential target for treating colorectal cancer with ADC, and the anti-cancer properties of ADC should be more deeply investigated in the future.
Collapse
Affiliation(s)
- Xinlei Wei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ho-Yin Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hiu-Chi Chong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Siu-Lun Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mei-Ki Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Man-Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
2
|
Hung YW, Ouyang C, Ping X, Qi Y, Wang YC, Kung HJ, Ann DK. Extracellular arginine availability modulates eIF2α O-GlcNAcylation and heme oxygenase 1 translation for cellular homeostasis. J Biomed Sci 2023; 30:32. [PMID: 37217939 PMCID: PMC10201738 DOI: 10.1186/s12929-023-00924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Nutrient limitations often lead to metabolic stress during cancer initiation and progression. To combat this stress, the enzyme heme oxygenase 1 (HMOX1, commonly known as HO-1) is thought to play a key role as an antioxidant. However, there is a discrepancy between the level of HO-1 mRNA and its protein, particularly in cells under stress. O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins (O-GlcNAcylation) is a recently discovered cellular signaling mechanism that rivals phosphorylation in many proteins, including eukaryote translation initiation factors (eIFs). The mechanism by which eIF2α O-GlcNAcylation regulates translation of HO-1 during extracellular arginine shortage (ArgS) remains unclear. METHODS We used mass spectrometry to study the relationship between O-GlcNAcylation and Arg availability in breast cancer BT-549 cells. We validated eIF2α O-GlcNAcylation through site-specific mutagenesis and azido sugar N-azidoacetylglucosamine-tetraacylated labeling. We then evaluated the effect of eIF2α O-GlcNAcylation on cell recovery, migration, accumulation of reactive oxygen species (ROS), and metabolic labeling during protein synthesis under different Arg conditions. RESULTS Our research identified eIF2α, eIF2β, and eIF2γ, as key O-GlcNAcylation targets in the absence of Arg. We found that O-GlcNAcylation of eIF2α plays a crucial role in regulating antioxidant defense by suppressing the translation of the enzyme HO-1 during Arg limitation. Our study showed that O-GlcNAcylation of eIF2α at specific sites suppresses HO-1 translation despite high levels of HMOX1 transcription. We also found that eliminating eIF2α O-GlcNAcylation through site-specific mutagenesis improves cell recovery, migration, and reduces ROS accumulation by restoring HO-1 translation. However, the level of the metabolic stress effector ATF4 is not affected by eIF2α O-GlcNAcylation under these conditions. CONCLUSIONS Overall, this study provides new insights into how ArgS fine-tunes the control of translation initiation and antioxidant defense through eIF2α O-GlcNAcylation, which has potential biological and clinical implications.
Collapse
Affiliation(s)
- Yu-Wen Hung
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Ching Ouyang
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Xiaoli Ping
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
| | - Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
| | - Hsing-Jien Kung
- Cancer Center, School of Medicine, University of California, Davis, CA, 95817, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
3
|
Streptococcal arginine deiminase regulates endothelial inflammation, mTOR pathway and autophagy. Immunobiology 2023; 228:152344. [PMID: 36746072 DOI: 10.1016/j.imbio.2023.152344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/30/2022] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Endothelial cells (EC) are active participants in the inflammation process. During the infection, the change in endothelium properties provides the leukocyte infiltrate formation and restrains pathogen dissemination due to coagulation control. Pathogenic microbes are able to change the endothelium properties and functions in order to invade the bloodstream and disseminate in the host organism. Arginine deiminase (ADI), a bacterial arginine-hydrolyzing enzyme, which causes the amino acid deficiency, important for endothelium biology. Previous research implicates altered metabolism of arginine in the development of endothelial dysfunction and inflammation. It was shown that arginine deficiency, as well as overabundance affects the balance of mechanical target of rapamycin (mTOR)/S6 kinase (S6K) pathway, arginase and endothelial nitric oxide synthase (eNOS) resulted in reactive oxygen species (ROS) production and EC activation. ADI creating a deficiency of arginine can interfere cellular arginine-dependent processes. Thus, this study was aimed at investigation of the influence of streptococcal ADI on the metabolism and inflammations of human umbilical vein endothelial cells (HUVEC). The action of ADI was studied by comparing the effect Streptococcus pyogenes M49-16 paternal strain expressing ADI and its isogenic mutant M49-16delArcA with the inactivated gene ArcA. Based on comparison of the parental and mutant strain effects, it can be concluded, that ADI suppressed mTOR signaling pathway and enhanced autophagy. The processes failed to return to the basic level with arginine supplement. Our study also demonstrates that ADI suppressed endothelial proliferation, disrupted actin cytoskeleton structure, increased phospho-NF-κB p65, CD62P, CD106, CD54, CD142 inflammatory molecules expression, IL-6 production and lymphocytes-endothelial adhesion. In spite of the ADI-mediated decrease in arginine concentration in the cell-conditioned medium, the enzyme enhanced the production of nitric oxide in endothelial cells. Arginine supplementation rescued proliferation, actin cytoskeleton structure, brought NO production to baseline and prevented EC activation. Additional evidence for the important role of arginine bioavailability in the EC biology was obtained. The results allow us to consider bacterial ADI as a pathogenicity factor that can potentially affect the functions of endothelium.
Collapse
|
4
|
Garbacz K. Anticancer activity of lactic acid bacteria. Semin Cancer Biol 2022; 86:356-366. [PMID: 34995799 DOI: 10.1016/j.semcancer.2021.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023]
Abstract
Lactic acid bacteria (LAB), a group of Gram-positive microorganisms naturally occurring in fermented food products and used as probiotics, have been gaining the interest of researchers for years. LAB are potent, albeit still not wholly understood, source of bioactive compounds with various functions and activity. Metabolites of LAB, among others, short-chain fatty acids, exopolysaccharides and bacteriocins have promising anticancer potential. Research on the interactions between the bioactive metabolites of LAB and immune mechanisms demonstrated that these substances could exert a strong immunomodulatory effect, which would explain their vast therapeutic potential. The anticancer activity of LAB was confirmed both in vitro and in animal models against cancer cells from various malignancies. LAB inhibit tumor growth through various mechanisms, including antiproliferative activity, induction of apoptosis, cell cycle arrest, as well as through antimutagenic, antiangiogenic and anti-inflammatory effects. The aim of this review was to summarize the most recent data about the anticancer activity of LAB, with particular emphasis on the most promising bioactive compounds with potential clinical application.
Collapse
Affiliation(s)
- Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 25 Dębowa Str., 80-204, Gdansk, Poland.
| |
Collapse
|
5
|
Safrhansova L, Hlozkova K, Starkova J. Targeting amino acid metabolism in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:37-79. [PMID: 36283767 DOI: 10.1016/bs.ircmb.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic rewiring is a characteristic hallmark of cancer cells. This phenomenon sustains uncontrolled proliferation and resistance to apoptosis by increasing nutrients and energy supply. However, reprogramming comes together with vulnerabilities that can be used against tumor and can be applied in targeted therapy. In the last years, the genetic background of tumors has been identified thoroughly and new therapies targeting those mutations tested. Nevertheless, we propose that targeting the phenotype of cancer cells could be another way of treatment aiming to avoid drug resistance and non-responsiveness of cancer patients. Amino acid metabolism is part of the altered processes in cancer cells. Amino acids are building blocks and also sensors of signaling pathways regulating main biological processes. In this comprehensive review, we described four amino acids (asparagine, arginine, methionine, and cysteine) which have been actively investigated as potential targets for anti-tumor therapy. Asparagine depletion is successfully used for decades in the treatment of acute lymphoblastic leukemia and there is a strong implication to apply it to other types of tumors. Arginine auxotrophic tumors are great candidates for arginine-starvation therapy. Higher requirement for essential amino acids such as methionine and cysteine point out promising targetable weaknesses of cancer cells.
Collapse
Affiliation(s)
- Lucie Safrhansova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Hlozkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julia Starkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
6
|
Noori A, Hoseinpour M, Kolivand S, Lotfibakhshaiesh N, Azami M, Ai J, Ebrahimi-Barough S. Synergy effects of copper and L-arginine on osteogenic, angiogenic, and antibacterial activities. Tissue Cell 2022; 77:101849. [PMID: 35728334 DOI: 10.1016/j.tice.2022.101849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 02/06/2023]
Abstract
Copper (Cu) ions have been found to exert antibacterial and angiogenic effects. However, some studies have indicated that it inhibits osteogenesis at high concentrations. On the other hand, L-arginine (Arg) is a semi-essential amino acid required for various biological processes, including osteogenic and angiogenic activities. As a result, we hypothesized that combining Arg with Cu ions would reduce its inhibitory effects on osteogenesis while increasing its angiogenic and antibacterial capabilities. To assess osteogenic and angiogenic activities, we employed rat bone marrow mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs), respectively. The gram-positive bacteria Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S. aureus), and the gram-negative bacterium Escherichia coli (E. coli) were used to investigate bacterial behaviors. According to ALP activity and calcium deposition outcomes, copper ions inhibited osteogenic development of MSCs at 100 µM; however, Arg supplementation somewhat mitigated the inhibitory effects. Furthermore, Copper and Arg synergistically stimulated migration and tube formation of HUVECs. According to our findings, copper ions and Arg in the range of 1-100 µM had no antibacterial effect on any examined bacteria. However, at a dose of 20 mM, copper demonstrated antibacterial activity, which was boosted by Arg. Overall, these findings suggest that a combination of copper and Arg may be more beneficial for bone regeneration than either copper or Arg alone.
Collapse
Affiliation(s)
- Alireza Noori
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdieh Hoseinpour
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedighe Kolivand
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Microbial arginine deiminase: A multifaceted green catalyst in biomedical sciences. Int J Biol Macromol 2022; 196:151-162. [PMID: 34920062 DOI: 10.1016/j.ijbiomac.2021.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/03/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
Arginine deiminase is a well-recognized guanidino-modifying hydrolase that catalyzes the conversion of L-arginine to citrulline and ammonia. Their biopotential to regress tumors via amino acid deprivation therapy (AADT) has been well established. PEGylated formulation of recombinant Mycoplasma ADI is in the last-phase clinical trials against various arginine-auxotrophic cancers like hepatocellular carcinoma, melanoma, and mesothelioma. Recently, ADIs have attained immense importance in several other biomedical applications, namely treatment of Alzheimer's, as an antiviral drug, bioproduction of nutraceutical L-citrulline and bio-analytics involving L-arginine detection. Considering the wide applications of this biodrug, the demand for ADI is expected to escalate several-fold in the coming years. However, the sustainable production aspects of the enzyme with improved pharmacokinetics is still limited, creating bottlenecks for effective biopharmaceutical development. To circumvent the lacunae in enzyme production with appropriate paradigms of 'quality-by-design' an explicit overview of its properties with 'biobetter' formulations strategies are required. Present review provides an insight into all the potential biomedical applications of ADI along with the improvements required for its reach to clinics. Recent research advances with special emphasis on the development of ADI as a 'biobetter' enzyme have also been comprehensively elaborated.
Collapse
|
8
|
Kumari N, Bansal S. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment. Cancer Chemother Pharmacol 2021; 88:565-594. [PMID: 34309734 DOI: 10.1007/s00280-021-04335-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death globally. Chemotherapy and radiation therapy and other medications are employed to treat various types of cancer. However, each treatment has its own set of side effects, owing to its low specificity. As a result, there is an urgent need for newer therapeutics that do not disrupt healthy cells' normal functioning. Depriving nutrient or non/semi-essential amino acids to which cancerous cells are auxotrophic remains one such promising anticancer strategy. L-Arginine (Arg) is a semi-essential vital amino acid involved in versatile metabolic processes, signaling pathways, and cancer cell proliferation. Hence, the administration of Arg depriving enzymes (ADE) such as arginase, arginine decarboxylase (ADC), and arginine deiminase (ADI) could be effective in cancer therapy. The Arg auxotrophic cancerous cells like hepatocellular carcinoma, human colon cancer, leukemia, and breast cancer cells are sensitive to ADE treatment due to low expression of crucial enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), and ornithine transcarbamylase (OCT). These therapeutic enzyme treatments induce cell death through inducing autophagy, apoptosis, generation of oxidative species, i.e., oxidative stress, and arresting the progression and expansion of cancerous cells at certain cell cycle checkpoints. The enzymes are undergoing clinical trials and could be successfully exploited as potential anticancer agents in the future.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India.
| |
Collapse
|
9
|
Wu C, You M, Nguyen D, Wangpaichitr M, Li YY, Feun LG, Kuo MT, Savaraj N. Enhancing the Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Signaling and Arginine Deprivation in Melanoma. Int J Mol Sci 2021; 22:ijms22147628. [PMID: 34299249 PMCID: PMC8306073 DOI: 10.3390/ijms22147628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
Melanoma as a very aggressive type of cancer is still in urgent need of improved treatment. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and arginine deiminase (ADI-PEG20) are two of many suggested drugs for treating melanoma. Both have shown anti-tumor activities without harming normal cells. However, resistance to both drugs has also been noted. Studies on the mechanism of action of and resistance to these drugs provide multiple targets that can be utilized to increase the efficacy and overcome the resistance. As a result, combination strategies have been proposed for these drug candidates with various other agents, and achieved enhanced or synergistic anti-tumor effect. The combination of TRAIL and ADI-PEG20 as one example can greatly enhance the cytotoxicity to melanoma cells including those resistant to the single component of this combination. It is found that combination treatment generally can alter the expression of the components of cell signaling in melanoma cells to favor cell death. In this paper, the signaling of TRAIL and ADI-PEG20-induced arginine deprivation including the main mechanism of resistance to these drugs and exemplary combination strategies is discussed. Finally, factors hampering the clinical application of both drugs, current and future development to overcome these hurdles are briefly discussed.
Collapse
Affiliation(s)
- Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
| | - Min You
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
| | - Dao Nguyen
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Surgery, Cardiothoracic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Surgery, Cardiothoracic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ying-Ying Li
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
| | - Lynn G. Feun
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Macus T. Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Niramol Savaraj
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-575-3143; Fax: +1-305-575-3375
| |
Collapse
|
10
|
Mammedova JT, Sokolov AV, Freidlin IS, Starikova EA. The Mechanisms of L-Arginine Metabolism Disorder in Endothelial Cells. BIOCHEMISTRY (MOSCOW) 2021; 86:146-155. [PMID: 33832413 DOI: 10.1134/s0006297921020036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
L-arginine is a key metabolite for nitric oxide production by endothelial cells, as well as signaling molecule of the mTOR signaling pathway. mTOR supports endothelial cells homeostasis and regulates activity of L-arginine-metabolizing enzymes, endothelial nitric oxide synthase, and arginase II. Disruption of the L-arginine metabolism in endothelial cells leads to the development of endothelial dysfunction. Conflicting results of the use of L-arginine supplement to improve endothelial function reveals a controversial role of the amino acid in the endothelial cell biology. The review is aimed at analysis of the current data on the role of L-arginine metabolism in the development of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Alexey V Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Irina S Freidlin
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | | |
Collapse
|
11
|
Targeting nutrient metabolism with FDA-approved drugs for cancer chemoprevention: Drugs and mechanisms. Cancer Lett 2021; 510:1-12. [PMID: 33857528 DOI: 10.1016/j.canlet.2021.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Proliferating cancer cells exhibit metabolic alterations and specific nutritional needs for adapting to their rapid growth. These changes include using aerobic glycolysis, lipid metabolic disorder, and irregular protein degradation. It may be useful to target metabolic abnormalities for cancer chemoprevention. Epidemiological and mechanism-related studies have indicated that many FDA-approved anti-metabolic drugs decrease tumor risk, inhibit tumor growth, or enhance the effect of chemotherapeutic drugs. Drugs targeting nutrient metabolism have fewer side effects with long-term use compared to chemotherapeutic drugs. The characteristics of these drugs make them promising candidates for cancer chemoprevention. Here, we summarize recent discoveries of the chemo-preventive effects of drugs targeting nutrient metabolic pathways and discuss future applications and challenges. Understanding the effects and mechanisms of anti-metabolic drugs in cancer has important implications for exploring strategies for cancer chemoprevention.
Collapse
|
12
|
Wang L, Qin W, Chen D, Wang N, Zhang C, Fang Z, Fang B, Du W, Yang N, Wu Q, Peng B, Li L. Design, synthesis and application of fluorogenic probe for detecting l-asparaginase in serum samples. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
13
|
Qi H, Wang Y, Yuan X, Li P, Yang L. Selective extracellular arginine deprivation by a single injection of cellular non-uptake arginine deiminase nanocapsules for sustained tumor inhibition. NANOSCALE 2020; 12:24030-24043. [PMID: 33291128 DOI: 10.1039/d0nr06823c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolic enzyme-based arginine deprivation represents a tremendous opportunity to treat argininosuccinate synthetase (ASS1)-deficient tumors. Arginine deiminase (ADI), a typical representative, has aroused great interest. To date, the functional modification of ADI, such as PEGylation, has been applied to improve its weakness significantly, reducing its immunogenicity and extending its blood circulation time. However, the advantages of ADI, such as the cellular non-uptake property, are often deprived by current modification methods. The cellular non-uptake property of ADI only renders extracellular arginine degradation that negligibly influences normal cells. However, current-functionalized ADIs can be readily phagocytized by cells, causing the imbalance of intracellular amino acids and the consequent damage to normal cells. Therefore, it is necessary to exploit a new method that can simultaneously improve the weakness of ADI and maintain its advantage of cellular non-uptake. Here, we utilized a kind of phosphorylcholine (PC)-rich nanocapsule to load ADI. These nanocapsules possessed extremely weak cellular interaction and could avoid uptake by endothelial cells (HUVEC), immune cells (RAW 264.7), and tumor cells (H22), selectively depriving extracellular arginine. Besides, these nanocapsules increased the blood half-life time of ADI from the initial 2 h to 90 h and efficiently avoided its immune or inflammatory responses. After a single injection of ADI nanocapsules into H22 tumor-bearing mice, tumors were stably suppressed for 25 d without any detectable side effects. This new strategy first realizes the selective extracellular arginine deprivation for the treatment of ASS1-deficient tumors, potentially promoting the clinical translation of metabolic enzyme-based amino acid deprivation therapy. Furthermore, the research reminds us that the functionalization of drugs can not only improve its weakness but also maintain its advantages.
Collapse
Affiliation(s)
- Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | | | | | | | | |
Collapse
|
14
|
Microbial enzymes for deprivation of amino acid metabolism in malignant cells: biological strategy for cancer treatment. Appl Microbiol Biotechnol 2020; 104:2857-2869. [PMID: 32037468 DOI: 10.1007/s00253-020-10432-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Amino acid deprivation therapy (AADT) is emerging as a promising strategy for the development of novel therapeutics against cancer. This biological therapy relies upon the differences in the metabolism of cancer and normal cells. The rapid growth of tumors results in decreased expression of certain enzymes leading to auxotrophy for some specific amino acids. These auxotrophic tumors are targeted by amino acid-depleting enzymes. The depletion of amino acid selectively inhibits tumor growth as the normal cells can synthesize amino acids by their usual machinery. The enzymes used in AADT are mostly obtained from microbes for their easy availability. Microbial L-asparaginase is already approved by FDA for the treatment of acute lymphoblastic leukemia. Arginine deiminase and methionase are under clinical trials and the therapeutic potential of lysine oxidase, glutaminase and phenylalanine ammonia lyase is also being explored. The present review provides an overview of microbial amino acid depriving enzymes. Various attributes of these enzymes like structure, mode of action, production, formulations, and targeted cancers are discussed. The challenges faced and the combat strategies to establish AADT in standard cancer armamentarium are also reviewed.Key Points • Amino acid deprivation therapy is a potential therapy for auxotrophic tumors. • Microbial enzymes are used due to their ease of manipulation and high productivity. • Enzyme properties are improved by PEGylation, encapsulation, and genetic engineering. • AADT can be employed as combinational therapy for better containment of cancer.
Collapse
|
15
|
Zarei M, Rahbar MR, Morowvat MH, Nezafat N, Negahdaripour M, Berenjian A, Ghasemi Y. Arginine Deiminase: Current Understanding and Applications. Recent Pat Biotechnol 2019; 13:124-136. [PMID: 30569861 DOI: 10.2174/1872208313666181220121400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/07/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Arginine deiminase (ADI), an arginine catabolizing enzyme, is considered as an anti-tumor agent for the treatment of arginine auxotrophic cancers. However, some obstacles limit its clinical applications. OBJECTIVE This review will summarize the clinical applications of ADI, from a brief history to its limitations, and will discuss the different ways to deal with the clinical limitations. METHOD The structure analysis, cloning, expression, protein engineering and applications of arginine deiminase enzyme have been explained in this review. CONCLUSION Recent patents on ADI are related to ADI engineering to increase its efficacy for clinical application. The intracellular delivery of ADI and combination therapy seem to be the future strategies in the treatment of arginine auxotrophic cancers. Applying ADIs with optimum features from different sources and or ADI engineering, are promising strategies to improve the clinical application of ADI.
Collapse
Affiliation(s)
- Mahboubeh Zarei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science & Engineering, The University of Waikato, Hamilton, New Zealand
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Maneerat K, Yongkiettrakul S, Jiemsup S, Tongtawe P, Gottschalk M, Srimanote P. Expression and Characterization of Serotype 2 Streptococcus suis Arginine Deiminase. J Mol Microbiol Biotechnol 2017; 27:133-146. [PMID: 28456803 DOI: 10.1159/000452952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Arginine deiminase (ArcA) has been speculated to facilitate the intracellular survival of Streptococcus suis under acidic conditions. However, the physical and biological properties and function of SS2-ArcA have not yet been elucidated. METHODS Recombinant SS2-ArcA (rSS2-ArcA) was expressed and purified using Ni-NTA affinity chromatography. Under various pH and temperature conditions, the enzymatic properties of purified rSS2-ArcA and crude native SS2-ArcA were determined. RESULTS The SS2-arcA-deduced amino acid sequence contained a conserved catalytic triad (Cys399-His273-Glu218). The optimum temperature and pH of 47-kDa rSS2-ArcA and crude native SS2-ArcA were 42°C and pH 7.2. The rSS2-ArcA and crude native SS2-ArcA were stable for 3 h at 4 and 25°C, respectively. The pH stability and dependency tests suggested that rSS2-ArcA and crude native SS2-ArcA were functionally active in acidic conditions. The L-arginine substrate binding affinity (Km) values of rSS2-ArcA (specific activity 16.00 U/mg) and crude native SS2-ArcA (specific activity 0.23 U/mg) were 0.058 and 0.157 mM, respectively. rSS2-ArcA exhibited a weak binding affinity with the common ArcA inhibitors L-canavanine and L-NIO. Furthermore, the partial inactivation of SS2-ArcA significantly impaired the viability and growth of SS2 at pH 4.0, 6.0, and 7.5. CONCLUSIONS This study profoundly demonstrated the involvement of ArcA enzymatic activity in S. suis survival under acidic conditions.
Collapse
Affiliation(s)
- Krissana Maneerat
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | | | | | | | | | | |
Collapse
|
17
|
Fernandes HS, Silva Teixeira CS, Fernandes PA, Ramos MJ, Cerqueira NMFSA. Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert Opin Ther Pat 2016; 27:283-297. [DOI: 10.1080/13543776.2017.1254194] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- H. S. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - C. S. Silva Teixeira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - P. A. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M. J. Ramos
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - N. M. F. S. A. Cerqueira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene 2016; 35:4957-72. [PMID: 27109103 DOI: 10.1038/onc.2016.37] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.
Collapse
Affiliation(s)
- M D Patil
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - J Bhaumik
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - S Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - U C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - D Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Han RZ, Xu GC, Dong JJ, Ni Y. Arginine deiminase: recent advances in discovery, crystal structure, and protein engineering for improved properties as an anti-tumor drug. Appl Microbiol Biotechnol 2016; 100:4747-60. [DOI: 10.1007/s00253-016-7490-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
|
20
|
Starikova EA, Sokolov AV, Vlasenko AY, Burova LA, Freidlin IS, Vasilyev VB. Biochemical and biological activity of arginine deiminase from Streptococcus pyogenes M22. Biochem Cell Biol 2016; 94:129-37. [DOI: 10.1139/bcb-2015-0069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) is an important gram-positive extracellular bacterial pathogen responsible for a number of suppurative infections. This micro-organism has developed complex virulence mechanisms to avoid the host’s defenses. We have previously reported that SDSC from GAS type M22 causes endothelial-cell dysfunction, and inhibits cell adhesion, migration, metabolism, and proliferation in a dose-dependent manner, without affecting cell viability. This work aimed to isolate and characterize a component from GAS type M22 supernatant that suppresses the proliferation of endothelial cells (EA.hy926). In the process of isolating a protein possessing antiproliferative activity we identified arginine deiminase (AD). Further study showed that this enzyme is most active at pH 6.8. Calculating Km and Vmax gave the values of 0.67 mmol·L–1 and 42 s−1, respectively. A distinctive feature of AD purified from GAS type M22 is that its optimum activity and the maximal rate of the catalytic process is close to neutral pH by comparison with enzymes from other micro-organisms. AD from GAS type M22 suppressed the proliferative activity of endothelial cells in a dose-dependent mode. At the same time, in the presence of AD, the proportion of cells in G0/G1 phase increased. When l-Arg was added at increasing concentrations to the culture medium containing AD (3 μg·mL–1), the enzyme’s capacity to inhibit cell proliferation became partially depressed. The proportion of cells in phases S/G2 increased concomitantly, although the cells did not fully recover their proliferation activity. This suggests that AD from GAS type M22 has potential for the suppression of excessive cell proliferation.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Institute of Experimental Medicine, 12 Pavlov Street, St. Petersburg, 197376, Russia
| | - Alexey V. Sokolov
- Institute of Experimental Medicine, 12 Pavlov Street, St. Petersburg, 197376, Russia
- Saint-Petersburg State University, 7–9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Anna Yu. Vlasenko
- Institute of Experimental Medicine, 12 Pavlov Street, St. Petersburg, 197376, Russia
| | - Larisa A. Burova
- Institute of Experimental Medicine, 12 Pavlov Street, St. Petersburg, 197376, Russia
| | - Irina S. Freidlin
- Institute of Experimental Medicine, 12 Pavlov Street, St. Petersburg, 197376, Russia
| | - Vadim B. Vasilyev
- Institute of Experimental Medicine, 12 Pavlov Street, St. Petersburg, 197376, Russia
- Saint-Petersburg State University, 7–9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
21
|
Yeh TH, Chen YR, Chen SY, Shen WC, Ann DK, Zaro JL, Shen LJ. Selective Intracellular Delivery of Recombinant Arginine Deiminase (ADI) Using pH-Sensitive Cell Penetrating Peptides To Overcome ADI Resistance in Hypoxic Breast Cancer Cells. Mol Pharm 2015; 13:262-71. [PMID: 26642391 DOI: 10.1021/acs.molpharmaceut.5b00706] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arginine depletion strategies, such as pegylated recombinant arginine deiminase (ADI-PEG20), offer a promising anticancer treatment. Many tumor cells have suppressed expression of a key enzyme, argininosuccinate synthetase 1 (ASS1), which converts citrulline to arginine. These tumor cells become arginine auxotrophic, as they can no longer synthesize endogenous arginine intracellularly from citrulline, and are therefore sensitive to arginine depletion therapy. However, since ADI-PEG20 only depletes extracellular arginine due to low internalization, ASS1-expressing cells are not susceptible to treatment since they can synthesize arginine intracellularly. Recent studies have found that several factors influence ASS1 expression. In this study, we evaluated the effect of hypoxia, frequently encountered in many solid tumors, on ASS1 expression and its relationship to ADI-resistance in human MDA-MB-231 breast cancer cells. It was found that MDA-MB-231 cells developed ADI resistance in hypoxic conditions with increased ASS1 expression. To restore ADI sensitivity as well as achieve tumor-selective delivery under hypoxia, we constructed a pH-sensitive cell penetrating peptide (CPP)-based delivery system to carry ADI inside cells to deplete both intra- and extracellular arginine. The delivery system was designed to activate the CPP-mediated internalization only at the mildly acidic pH (6.5-7) associated with the microenvironment of hypoxic tumors, thus achieving better selectivity toward tumor cells. The pH sensitivity of the CPP HBHAc was controlled by recombinant fusion to a histidine-glutamine (HE) oligopeptide, generating HBHAc-HE-ADI. The tumor distribution of HBHAc-HE-ADI was comparable to ADI-PEG20 in a mouse xenograft model of human breast cancer cells in vivo. In addition, HBHAc-HE-ADI showed increased in vitro cellular uptake in cells incubated in a mildly acidic pH (hypoxic conditions) compared to normal pH (normoxic conditions), which correlated with pH-sensitive in vitro cytotoxicity in hypoxic MDA-MB-231 and human prostate cancer PC3 cells. Together, we conclude that the HBHAc-HE-based peptide delivery offers a useful means to overcome hypoxia-induced resistance to ADI in breast cancer cells, and to target the mildly acidic tumor microenvironment.
Collapse
Affiliation(s)
- Tzyy-Harn Yeh
- School of Pharmacy, College of Medicine, National Taiwan University , Taipei, Taiwan.,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , Los Angeles, California 90033, United States
| | - Yun-Ru Chen
- Department of Metabolic Research, Beckman Research Institute, City of Hope , Duarte, California 91010, United States
| | - Szu-Ying Chen
- Department of Metabolic Research, Beckman Research Institute, City of Hope , Duarte, California 91010, United States.,Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University , Tainan, Taiwan
| | - Wei-Chiang Shen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , Los Angeles, California 90033, United States
| | - David K Ann
- Department of Metabolic Research, Beckman Research Institute, City of Hope , Duarte, California 91010, United States
| | - Jennica L Zaro
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , Los Angeles, California 90033, United States
| | - Li-Jiuan Shen
- School of Pharmacy, College of Medicine, National Taiwan University , Taipei, Taiwan.,Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University , Taipei, Taiwan.,Department of Pharmacy, National Taiwan University Hospital , Taipei, Taiwan
| |
Collapse
|
22
|
Qiu F, Huang J, Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett 2015; 364:1-7. [DOI: 10.1016/j.canlet.2015.04.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/28/2015] [Accepted: 04/19/2015] [Indexed: 01/01/2023]
|
23
|
Arginine deiminase augments the chemosensitivity of argininosuccinate synthetase-deficient pancreatic cancer cells to gemcitabine via inhibition of NF-κB signaling. BMC Cancer 2014; 14:686. [PMID: 25240403 PMCID: PMC4189535 DOI: 10.1186/1471-2407-14-686] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic cancer is a leading cause of cancer-related deaths in the world with a 5-year survival rate of less than 6%. Currently, there is no successful therapeutic strategy for advanced pancreatic cancer, and new effective strategies are urgently needed. Recently, an arginine deprivation agent, arginine deiminase, was found to inhibit the growth of some tumor cells (i.e., hepatocellular carcinoma, melanoma, and lung cancer) deficient in argininosuccinate synthetase (ASS), an enzyme used to synthesize arginine. The purpose of this study was to evaluate the therapeutic efficacy of arginine deiminase in combination with gemcitabine, the first line chemotherapeutic drug for patients with pancreatic cancer, and to identify the mechanisms associated with its anticancer effects. Methods In this study, we first analyzed the expression levels of ASS in pancreatic cancer cell lines and tumor tissues using immunohistochemistry and RT-PCR. We further tested the effects of the combination regimen of arginine deiminase with gemcitabine on pancreatic cancer cell lines in vitro and in vivo. Results Clinical investigation showed that pancreatic cancers with reduced ASS expression were associated with higher survivin expression and more lymph node metastasis and local invasion. Treatment of ASS-deficient PANC-1 cells with arginine deiminase decreased their proliferation in a dose- and time-dependent manner. Furthermore, arginine deiminase potentiated the antitumor effects of gemcitabine on PANC-1 cells via multiple mechanisms including induction of cell cycle arrest in the S phase, upregulation of the expression of caspase-3 and 9, and inhibition of activation of the NF-κB survival pathway by blocking NF-κB p65 signaling via suppressing the nuclear translocation and phosphorylation (serine 536) of NF-κB p65 in vitro. Moreover, arginine deiminase can enhance antitumor activity of gemcitabine-based chemotherapy in the mouse xenograft model. Conclusions Our results suggest that arginine deprivation by arginine deiminase, in combination with gemcitabine, may offer a novel effective treatment strategy for patients with pancreatic cancer and potentially improve the outcome of patients with pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-686) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Ahn KY, Lee B, Han KY, Song JA, Lee DS, Lee J. Synthesis of Mycoplasma arginine deiminase in E. coli using stress-responsive proteins. Enzyme Microb Technol 2014; 63:46-9. [DOI: 10.1016/j.enzmictec.2014.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 11/26/2022]
|
25
|
Depletion of arginine by recombinant arginine deiminase induces nNOS-activated neurotoxicity in neuroblastoma cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:589424. [PMID: 25126568 PMCID: PMC4122191 DOI: 10.1155/2014/589424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 11/17/2022]
Abstract
The abnormal regulation of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS) is associated with neurodegenerative disorders. Recombinant arginine deiminase (rADI) is a selective NO modulator of iNOS and eNOS in endothelial cells, and it also exhibits neuroprotective activity in an iNOS-induced neuron-microglia coculture system. However, the effect of rADI on nNOS remains unknown. Addressing this issue is important for evaluating the potential application of rADI in neurodegenerative diseases. SH-SY5Y cells were treated with N-methyl-D-aspartic acid (NMDA) to activate nNOS. NMDA increased NO production by 39.7 ± 3.9% via nNOS under arginine-containing conditions, but there was no significant increase in both arginine-free and rADI pretreated arginine-containing (citrulline) buffer. Subsequently, neither NMDA nor rADI alone caused cytotoxicity, whereas cotreatment with NMDA and rADI resulted in dissipation of the cell mitochondrial membrane potential and decreased cell viability. The mechanism of rADI cytotoxicity in the presence of NMDA is caused by the inhibition of NO production via nNOS mediated by the NMDA receptor, which was abolished when extracellular arginine was absent, even in the presence of citrulline. rADI not only reduced NO production but also caused cellular toxicity in nNOS-activated SH-SY5Y cells, suggesting a dual role for rADI in NOS-mediated neurotoxicity.
Collapse
|
26
|
Wu FLL, Yeh TH, Chen YL, Chiu YC, Cheng JC, Wei MF, Shen LJ. Intracellular delivery of recombinant arginine deiminase (rADI) by heparin-binding hemagglutinin adhesion peptide restores sensitivity in rADI-resistant cancer cells. Mol Pharm 2014; 11:2777-86. [PMID: 24950134 DOI: 10.1021/mp5001372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recombinant arginine deiminase (rADI) has been used in clinical trials for arginine-auxotrophic cancers. However, the emergence of rADI resistance, due to the overexpression of argininosuccinate synthetase (AS), has introduced an obstacle in its clinical application. Here, we have proposed a strategy for the intracellular delivery of rADI, which depletes both extracellular and intracellular arginine, to restore the sensitivity of rADI-resistant cancer cells. In this study, the C terminus of heparin-binding hemagglutinin adhesion protein from Mycobacterium tuberculosis (HBHAc), which contains 23 amino acids, was used to deliver rADI into rADI-resistant human breast adenocarcinoma cells (MCF-7). Chemical conjugates (l- and d-HBHAc-SPDP-rADI) and a recombinant fusion protein (rHBHAc-ADI) were produced. l- and d-HBHAc-SPDP-rADI showed a significantly higher cellular uptake of rADI by MCF-7 cells compared to that of rADI alone. Cell viability was significantly decreased in a dose-dependent manner in response to l- and d-HBHAc-SPDP-rADI treatments. In addition, the ratio of intracellular concentration of citrulline to arginine in cells treated with l- and d-HBHAc-SPDP-rADI was significantly increased by 1.4- and 1.7-fold, respectively, compared with that obtained in cells treated with rADI alone (p < 0.001). Similar results were obtained with the recombinant fusion protein rHBHAc-ADI. Our study demonstrates that the increased cellular uptake of rADI by HBHAc modification can restore the sensitivity of rADI treatment in MCF-7 cells. rHBHAc-ADI may represent a novel class of antitumor enzyme with an intracellular mechanism that is independent of AS expression.
Collapse
Affiliation(s)
- Fe-Lin Lin Wu
- School of Pharmacy and ‡Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University , Taipei 10050, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Synakiewicz A, Stachowicz-Stencel T, Adamkiewicz-Drozynska E. The role of arginine and the modified arginine deiminase enzyme ADI-PEG 20 in cancer therapy with special emphasis on Phase I/II clinical trials. Expert Opin Investig Drugs 2014; 23:1517-29. [DOI: 10.1517/13543784.2014.934808] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Qiu F, Chen YR, Liu X, Chu CY, Shen LJ, Xu J, Gaur S, Forman HJ, Zhang H, Zheng S, Yen Y, Huang J, Kung HJ, Ann DK. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal 2014; 7:ra31. [PMID: 24692592 DOI: 10.1126/scisignal.2004761] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autophagy is the principal catabolic response to nutrient starvation and is necessary to clear dysfunctional or damaged organelles, but excessive autophagy can be cytotoxic or cytostatic and contributes to cell death. Depending on the abundance of enzymes involved in molecule biosynthesis, cells can be dependent on uptake of exogenous nutrients to provide these molecules. Argininosuccinate synthetase 1 (ASS1) is a key enzyme in arginine biosynthesis, and its abundance is reduced in many solid tumors, making them sensitive to external arginine depletion. We demonstrated that prolonged arginine starvation by exposure to ADI-PEG20 (pegylated arginine deiminase) induced autophagy-dependent death of ASS1-deficient breast cancer cells, because these cells are arginine auxotrophs (dependent on uptake of extracellular arginine). Indeed, these breast cancer cells died in culture when exposed to ADI-PEG20 or cultured in the absence of arginine. Arginine starvation induced mitochondrial oxidative stress, which impaired mitochondrial bioenergetics and integrity. Furthermore, arginine starvation killed breast cancer cells in vivo and in vitro only if they were autophagy-competent. Thus, a key mechanism underlying the lethality induced by prolonged arginine starvation was the cytotoxic autophagy that occurred in response to mitochondrial damage. Last, ASS1 was either low in abundance or absent in more than 60% of 149 random breast cancer biosamples, suggesting that patients with such tumors could be candidates for arginine starvation therapy.
Collapse
Affiliation(s)
- Fuming Qiu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.,Department of Medical Oncology, Zhejiang University School of Medicine, Hangzhou 310012, China
| | - Yun-Ru Chen
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiyong Liu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Cheng-Ying Chu
- Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Li-Jiuan Shen
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jinghong Xu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310012, China
| | - Shikha Gaur
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Henry Jay Forman
- Life & Environmental Sciences Unit, University of California, Merced, Merced, CA 95343, USA.,Ethel Percy Andrus Gerontology Center, Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Hang Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China
| | - Yun Yen
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.,Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei 110, Taiwan.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jian Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310012, China
| | - Hsing-Jien Kung
- Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei 110, Taiwan.,Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA.,National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan
| | - David K Ann
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.,Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei 110, Taiwan.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
29
|
Zhu L, Cheng F, Piatkowski V, Schwaneberg U. Protein Engineering of the Antitumor Enzyme PpADI for Improved Thermal Resistance. Chembiochem 2013; 15:276-83. [DOI: 10.1002/cbic.201300433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Indexed: 11/10/2022]
|
30
|
An Engineered Arginase FC Protein Inhibits Tumor Growth In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:423129. [PMID: 23737831 PMCID: PMC3662114 DOI: 10.1155/2013/423129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 11/17/2022]
Abstract
Arginine is a semiessential amino acid required for the growth of melanoma and hepatocellular carcinoma, and the enzymatic removal of arginine by pegylated arginine deiminase (ADI) or arginase is being tested clinically. Here, we report a genetically engineered arginase FC fusion protein exhibiting a prolonged half-life and enhanced efficacy. The use of this enzyme to treat different tumor lines both inhibited cell proliferation and impaired cellular migration in vitro and in vivo. Our data reinforce the hypothesis that nutritional depletion is a key strategy for cancer treatment.
Collapse
|
31
|
Arginine deiminase modulates endothelial tip cells via excessive synthesis of reactive oxygen species. Biochem Soc Trans 2011; 39:1376-81, suppl 2 p following 1382. [DOI: 10.1042/bst0391376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ADI (arginine deiminase), an enzyme that hydrolyses arginine, has been reported as an anti-angiogenesis agent. However, its molecular mechanism is unclear. We have demonstrated for the first time that ADI modulates the angiogenic activity of endothelial tip cells. By arginine depletion, ADI disturbs actin filament in endothelial tip cells, causing disordered migratory direction and decreased migration ability. Furthermore, ADI induces excessive synthesis of ROS (reactive oxygen species), and activates caspase 8-, but not caspase 9-, dependent apoptosis in endothelial cells. These findings provide a novel mechanism by which ADI inhibits tumour angiogenesis through modulating endothelial tip cells.
Collapse
|
32
|
Zhu L, Verma R, Roccatano D, Ni Y, Sun ZH, Schwaneberg U. A Potential Antitumor Drug (Arginine Deiminase) Reengineered for Efficient Operation under Physiological Conditions. Chembiochem 2010; 11:2294-301. [DOI: 10.1002/cbic.201000458] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity. PLoS One 2010; 5:e12715. [PMID: 20856806 PMCID: PMC2939880 DOI: 10.1371/journal.pone.0012715] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 08/06/2010] [Indexed: 01/01/2023] Open
Abstract
Background Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A2 (PLA2), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. Methodology/Principal Findings We found that diclofenac treatment (30 mg/kg/bw for 11 days) of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. Conclusion/Significance In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion.
Collapse
|
34
|
Kobayashi E, Masuda M, Nakayama R, Ichikawa H, Satow R, Shitashige M, Honda K, Yamaguchi U, Shoji A, Tochigi N, Morioka H, Toyama Y, Hirohashi S, Kawai A, Yamada T. Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Mol Cancer Ther 2010; 9:535-44. [PMID: 20159990 DOI: 10.1158/1535-7163.mct-09-0774] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pulmonary metastasis is the most significant prognostic determinant for osteosarcoma, but methods for its prediction and treatment have not been established. Using oligonucleotide microarrays, we compared the global gene expression of biopsy samples between seven osteosarcoma patients who developed pulmonary metastasis within 4 years after neoadjuvant chemotherapy and curative resection, and 12 patients who did not relapse. We identified argininosuccinate synthetase (ASS) as a gene differentially expressed with the highest statistical significance (Welch's t test, P = 2.2 x 10(-5)). Immunohistochemical analysis of an independent cohort of 62 osteosarcoma cases confirmed that reduced expression of ASS protein was significantly correlated with the development of pulmonary metastasis after surgery (log-rank test, P < 0.05). Cox regression analysis revealed that ASS was the sole significant predictive factor (P = 0.039; hazard ratio, 0.319; 95% confidence interval, 0.108-0.945). ASS is one of the enzymes required for the production of a nonessential amino acid, arginine. We showed that osteosarcoma cells lacking ASS expression were auxotrophic for arginine and underwent G(0)-G(1) arrest in arginine-free medium, suggesting that an arginine deprivation therapy could be effective in patients with osteosarcoma. Recently, phase I and II clinical trials in patients with melanoma and hepatocellular carcinoma have shown the safety and efficacy of plasma arginine depletion by stabilized arginine deiminase. Our data indicate that in patients with osteosarcoma, reduced expression of ASS is not only a novel predictive biomarker for the development of metastasis, but also a potential target for pharmacologic intervention.
Collapse
Affiliation(s)
- Eisuke Kobayashi
- Chemotherapy Division, National Cancer Centre Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pasut G, Veronese FM. PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev 2009; 61:1177-88. [PMID: 19671438 DOI: 10.1016/j.addr.2009.02.010] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/14/2009] [Indexed: 12/23/2022]
Abstract
During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented.
Collapse
|
36
|
Arginine deiminase originating from Lactococcus lactis ssp. lactis American Type Culture Collection (ATCC) 7962 induces G1-phase cell-cycle arrest and apoptosis in SNU-1 stomach adenocarcinoma cells. Br J Nutr 2009; 102:1469-76. [PMID: 19624867 DOI: 10.1017/s0007114509990432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There are multiple lines of evidence that lactic acid bacteria (LAB) exert cancer-preventive effects. However, the underlying mechanisms are poorly understood. In the present study we found that the cytoplasmic fraction of Lactococcus lactis ssp. lactis American Type Culture Collection (ATCC) 7962 exerted the strongest antiproliferative effects (half-maximal inhibitory concentration (IC50) = 17 microg/ml) in SNU-1 human stomach cancer cells and arginine deiminase (ADI; EC 3.5.3.6) activity. We also cloned, expressed and purified ADI from L. lactis ssp. lactis ATCC 7962 (LADI). Both purified ADI from L. lactis (PADI; IC50 = 2 microg/ml) and recombinant ADI originating from LADI (IC50 = 0.6 microg/ml) inhibited the proliferation of SNU-1 cells. LADI induced G0/G1-phase arrest, sub-G1 accumulation, DNA condensation and DNA fragmentation in SNU-1 cells. 4',6-Diamidino-2-phenylindole (DAPI) staining and DNA fragmentation data provide evidence that LADI induces apoptosis in SNU-1 cells. LADI increased the expressions of p53 and p27Kip1, and decreased the expressions of cyclin D1, c-myc and Bcl-xL in SNU-1 cells. However, LADI had no effects on the expressions of p21Cip1 and Bcl-2. Collectively, these data indicate that ADI induces apoptosis and G0/G1-phase arrest of SNU-1 cells, which might contribute to the chemopreventive potential of LAB.
Collapse
|
37
|
Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU, Gandour-Edwards R, Chuang FYS, Bold RJ, Kung HJ. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res 2009; 69:700-8. [PMID: 19147587 DOI: 10.1158/0008-5472.can-08-3157] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Arginine deprivation as an anticancer therapy has historically been met with limited success. The development of pegylated arginine deiminase (ADI-PEG20) has renewed interest in arginine deprivation for the treatment of some cancers. The efficacy of ADI-PEG20 is directly correlated with argininosuccinate synthetase (ASS) deficiency. CWR22Rv1 prostate cancer cells do not express ASS, the rate-limiting enzyme in arginine synthesis, and are susceptible to ADI-PEG20 in vitro. Interestingly, apoptosis by 0.3 microg/mL ADI-PEG20 occurs 96 hours posttreatment and is caspase independent. The effect of ADI-PEG20 in vivo reveals reduced tumor activity by micropositron emission tomography as well as reduced tumor growth as a monotherapy and in combination with docetaxel against CWR22Rv1 mouse xenografts. In addition, we show autophagy is induced by single amino acid depletion by ADI-PEG20. Here, autophagy is an early event that is detected within 1 to 4 hours of 0.3 microg/mL ADI-PEG20 treatment and is an initial protective response to ADI-PEG20 in CWR22Rv1 cells. Significantly, the inhibition of autophagy by chloroquine and Beclin1 siRNA knockdown enhances and accelerates ADI-PEG20-induced cell death. PC3 cells, which express reduced ASS, also undergo autophagy and are responsive to autophagy inhibition and ADI-PEG20 treatment. In contrast, LNCaP cells highly express ASS and are therefore resistant to both ADI-PEG20 and autophagic inhibition. These data point to an interrelationship among ASS deficiency, autophagy, and cell death by ADI-PEG20. Finally, a tissue microarray of 88 prostate tumor samples lacked expression of ASS, indicating ADI-PEG20 is a potential novel therapy for the treatment of prostate cancer
Collapse
Affiliation(s)
- Randie H Kim
- Department of Biological Chemistry, Division of Surgical Oncology, Center for Biophotonics and Science Technology, University of California at Davis, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yu HH, Wu FLL, Lin SE, Shen LJ. Recombinant arginine deiminase reduces inducible nitric oxide synthase iNOS-mediated neurotoxicity in a coculture of neurons and microglia. J Neurosci Res 2008; 86:2963-72. [PMID: 18627024 DOI: 10.1002/jnr.21740] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Modulation of nitric oxide (NO) production is considered a promising approach to therapy of diseases involving excessive inducible nitric oxide synthase (iNOS) expression, such as certain neuronal diseases. Recombinant arginine deiminase (rADI, EC3.5.3.6) catalyzes the conversion of L-arginine (L-arg), the sole substrate of NOS for NO production, to L-citrulline (L-cit) and ammonia. To understand the effect of the depletion of L-arg by rADI on NO concentration and neuroprotection, a direct coculture of neuron SHSY5Y cells and microglia BV2 cells treated with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) was used as a model of iNOS induction. The results showed that rADI preserved cell viability (4-fold higher compared with the cells treated with LPS/IFN-gamma only) by the MTT assay, corresponding with the results of neuronal viability by neuron-specific immunostaining assay. NO production (mean +/- SD) decreased from 67.0 +/- 1.3 to 19.5 +/- 5.5 microM after a 2-day treatment of rADI by the Griess assay; meanwhile, induction of iNOS protein expression by rADI was observed. In addition, rADI substantially preserved the neuronal function of dopamine uptake in the coculture. The replenishment of L-arg in the coculture eliminated the neuroprotective and NO-suppressive effects of rADI in the coculture, indicating that L-arg played a crucial role in the effects of rADI. These results highlight the important role of L-arg in the neuron-microglia coculture in excessive induction of iNOS. Regulation of L-arg by ADI demonstrated that rADI has a potentially therapeutic role in iNOS-related neuronal diseases.
Collapse
Affiliation(s)
- Hao-Hsin Yu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
39
|
Arginine deiminase, a potential anti-tumor drug. Cancer Lett 2008; 261:1-11. [PMID: 18179862 DOI: 10.1016/j.canlet.2007.11.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/21/2007] [Accepted: 11/23/2007] [Indexed: 11/24/2022]
Abstract
Arginine deiminase (ADI; EC 3.5.3.6), an arginine-degrading enzyme, has been studied as a potential anti-tumor drug for the treatment of arginine-auxotrophic tumors, such as hepatocellular carcinomas (HCCs) and melanomas. Studies with human lymphatic leukemia cell lines further suggest that ADI is a potential anti-angiogenic agent and is effective in the treatment of leukemia. For instance ADI-PEG-20, patented by Pheonix Pharmacologic Inc., is currently in clinical trials for the treatment of HCC (Phase II/III) and melanoma (Phase I/II). This review summarizes results on recombinant expression, structural analysis, PEG (polyethylene glycerol) modification, in vivo anti-cancer activities, and clinical studies of ADI. Discussions on heterogeneous expression of ADI, directed evolution for improving enzymatic properties, and HSA-fusion for increased in vivo activity conclude this review.
Collapse
|
40
|
Seo JH, Sung HJ, Choi CW, Kim BS, Shin SW, Kim YH, Min BH, Kim JS. Extrinsic nitric oxide donor partially reverses arginine deiminase induced cell growth inhibition through NFκB and Bcl-XL. Invest New Drugs 2008; 26:277-82. [DOI: 10.1007/s10637-007-9105-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
|
41
|
Feun L, You M, Wu CJ, Kuo MT, Wangpaichitr M, Spector S, Savaraj N. Arginine deprivation as a targeted therapy for cancer. Curr Pharm Des 2008; 14:1049-57. [PMID: 18473854 PMCID: PMC3096551 DOI: 10.2174/138161208784246199] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Certain cancers may be auxotrophic for a particular amino acid, and amino acid deprivation is one method to treat these tumors. Arginine deprivation is a novel approach to target tumors which lack argininosuccinate synthetase (ASS) expression. ASS is a key enzyme which converts citrulline to arginine. Tumors which usually do not express ASS include melanoma, hepatocellular carcinoma, some mesotheliomas and some renal cell cancers. Arginine can be degraded by several enzymes including arginine deiminase (ADI). Although ADI is a microbial enzyme from mycoplasma, it has high affinity to arginine and catalyzes arginine to citrulline and ammonia. Citrulline can be recycled back to arginine in normal cells which express ASS, whereas ASS(-) tumor cells cannot. A pegylated form of ADI (ADI-PEG20) has been formulated and has shown in vitro and in vivo activity against melanoma and hepatocellular carcinoma. ADI-PEG20 induces apoptosis in melanoma cell lines. However, arginine deprivation can also induce ASS expression in certain melanoma cell lines which can lead to in vitro drug resistance. Phase I and II clinical trials with ADI-PEG20 have been conducted in patients with melanoma and hepatocellular carcinoma, and antitumor activity has been demonstrated in both cancers. This article reviews our laboratory and clinical experience as well as that from others with ADI-PEG20 as an antineoplastic agent. Future direction in utilizing this agent is also discussed.
Collapse
Affiliation(s)
- L Feun
- Hematology/Oncology, University of Miami School of Medicine, 1201 N.W. 16th Street, Miami, FL. 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Yoon CY, Shim YJ, Kim EH, Lee JH, Won NH, Kim JH, Park IS, Yoon DK, Min BH. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer 2007; 120:897-905. [PMID: 17096330 DOI: 10.1002/ijc.22322] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, pegylated arginine deiminase (ADI; EC 3.5.3.6) has been used to treat the patients with hepatocellular carcinoma or melanoma, in which the level of argininosuccinate synthetase (ASS) activity is low or undetectable. The efficacy of its antitumor activity largely depends on the level of intracellular ASS, which enables tumor cells to recycle citrulline to arginine. Thus, we examined the expression levels of ASS in various cancer cells and found that it is low in renal cell carcinoma (RCC) cells, rendering the cells highly sensitive to arginine deprivation by ADI treatment. Immunohistochemical analysis revealed that in biopsy specimens from RCC patients (n = 98), the expression of ASS is highly demonstrated in the epithelium of normal proximal tubule but not seen in tumor cells. Furthermore, RCC cells treated with ADI showed remarkable growth retardation in a dose dependent manner. ADI also exerted in vivo antiproliferative effect on the allografted renal cell carcinoma (RENCA) tumor cells and prolonged the survival of tumor-bearing mice. Histological examination of the tumors revealed that tumor angiogenesis and vascular endothelial growth factor (VEGF) expression were significantly diminished by ADI administration. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of RCC in ways of inhibitions of arginine availability and neovascularization.
Collapse
Affiliation(s)
- Cheol-Yong Yoon
- Department of Urology, College of Medicine, Korea University, Seoul 136-705, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim JE, Jeong DW, Lee HJ. Expression, purification, and characterization of arginine deiminase from Lactococcus lactis ssp. lactis ATCC 7962 in Escherichia coli BL21. Protein Expr Purif 2007; 53:9-15. [PMID: 17223359 DOI: 10.1016/j.pep.2006.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
The arcA gene that encodes arginine deiminase (ADI, EC 3.5.3.6)--a key enzyme of the ADI pathway--was cloned from Lactococcus lactis ssp. lactis ATCC 7962. The deduced amino acid sequence of the arcA gene showed high homology with the arcA gene from Lactobacillus plantarum (99%) and from Lactobacillus sakei (60%), respectively. The arcA gene from Lc. lactis spp. lactis ATCC 7962 was expressed in soluble fraction of recombinant Escherichia coli BL21. ADI produced from Lc. lactis spp. lactis ATCC 7962 (LADI) in E. coli BL21 (DE3) was purified using sequential Q-Sepharose anion exchange and Sephacryl S-200 gel filtration column chromatography. The final yield of LADI in the purification procedure was 63.5%, and the specific activity was 140.27 U/mg. The presence of purified LADI was confirmed by N-terminal sequencing and determination of the molecular mass. The LADI had a molecular mass of about 140 kDa, and comprised a homotrimer of 46 kDa in the native condition. LADI exhibited only 35% amino acid sequence homology with ADI from Mycoplasma arginini. However, LADI shared a similar three dimensional structure. The K(M) and V(max) values for arginine were 8.67+/-0.045 mM (mean+/-SD) and 344.83+/-1.79 micromol/min/mg, respectively, and the optimum temperature and pH for the production of LADI were 60 degrees C and 7.2.
Collapse
Affiliation(s)
- Jong-Eun Kim
- Department of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | |
Collapse
|
44
|
Wang M, Basu A, Palm T, Hua J, Youngster S, Hwang L, Liu HC, Li X, Peng P, Zhang Y, Zhao H, Zhang Z, Longley C, Mehlig M, Borowski V, Sai P, Viswanathan M, Jang E, Petti G, Liu S, Yang K, Filpula D. Engineering an Arginine Catabolizing Bioconjugate: Biochemical and Pharmacological Characterization of PEGylated Derivatives of Arginine Deiminase fromMycoplasma arthritidis. Bioconjug Chem 2006; 17:1447-59. [PMID: 17105223 DOI: 10.1021/bc060198y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arginine is an important metabolite in the normal function of several biological systems, and arginine deprivation has been investigated in animal models and human clinical trials for its effects on inhibition of tumor growth, angiogenesis, or nitric oxide synthesis. In order to design an optimal arginine-catabolizing enzyme bioconjugate, a novel recombinant arginine deiminase (ADI) from Mycoplasma arthritidis was prepared, and multi-PEGylated derivatives were examined for enzymatic and biochemical properties in vitro, as well as pharmacokinetic and pharmacodynamic behavior in rats and mice. ADI bioconjugates constructed with 12 kDa or 20 kDa monomethoxy-poly(ethylene glycol) polymers with linear succinimidyl carbonate linkers were investigated via intravenous, intramuscular, or subcutaneous administration in rodents. The selected PEG-ADI compounds have 22 +/- 2 PEG strands per protein dimer, providing an additional molecular mass of about 0.2-0.5 x 10(6) Da and prolonging the plasma mean residence time of the enzyme over 30-fold in mice. Prolonged plasma arginine deprivation was demonstrated with each injection route for these bioconjugates. Pharmacokinetic analysis employed parallel measurement of enzyme activity in bioassays and enzyme assays and demonstrated a correlation with the pharmacodynamic analysis of plasma arginine concentrations. Either ADI bioconjugate depressed plasma arginine to undetectable levels for 10 days when administered intravenously at 5 IU per mouse, while the subcutaneous and intramuscular routes exhibited only slightly reduced potency. Both bioconjugates exhibited potent growth inhibition of several cultured tumor lines that are deficient in the anabolic enzyme, argininosuccinate synthetase. Investigations of structure-activity optimization for PEGylated ADI compounds revealed a benefit to constraining the PEG size and number of attachments to both conserve catabolic activity and streamline manufacturing of the experimental therapeutics. Specifically, ADI with either 12 kDa or 20 kDa PEG attachments on 33% of the primary amines retained about 60% or 48% of enzyme activity, respectively; the Km and pH profiles were nearly unchanged; IC50 values were diminished by less than 30%; while stability studies demonstrated full retention of activity at 4 degrees C for 5 months. A comparison of the enzymatic properties of a second ADI from Pseudomonas putida illustrated the superior characteristics of the M. arthritidis ADI enzyme.
Collapse
Affiliation(s)
- Maoliang Wang
- Enzon Pharmaceuticals, 20 Kingsbridge Road, Piscataway, New Jersey 08854-3969, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shen LJ, Beloussow K, Shen WC. Modulation of arginine metabolic pathways as the potential anti-tumor mechanism of recombinant arginine deiminase. Cancer Lett 2006; 231:30-5. [PMID: 16356828 DOI: 10.1016/j.canlet.2005.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 12/02/2004] [Accepted: 01/07/2005] [Indexed: 02/07/2023]
Abstract
Arginine deiminase (ADI), currently in clinical trials, has various biological activities including anti-proliferation, anti-angiogenesis and inhibition of inducible nitric oxide synthase (iNOS). To recognize limitations and therapeutic applications, the mechanism of ADI modulation of arginine metabolic pathways was investigated. MCF-7 and A549 cells have notable different sensitivity to recombinant ADI (rADI) and express diverse argininosuccinate synthase (AS) activity, which regenerates arginine. Due to compartmentalization of arginine, utilization of arginine for protein synthesis occurs from either the intracellular arginine pool or the citrulline-arginine-regeneration pathway, whereas for polyamine synthesis, utilization is only from the intracellular arginine pool. Modulating AS activity or introducing rADI intracellularly to reduce intracellular arginine regeneration may expand therapeutic applications of rADI.
Collapse
Affiliation(s)
- Li-Jiuan Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, 404B, Los Angeles, CA 90089-9121, USA
| | | | | |
Collapse
|
46
|
Galkin A, Lu X, Dunaway-Mariano D, Herzberg O. Crystal structures representing the Michaelis complex and the thiouronium reaction intermediate of Pseudomonas aeruginosa arginine deiminase. J Biol Chem 2005; 280:34080-7. [PMID: 16091358 DOI: 10.1074/jbc.m505471200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-arginine deiminase (ADI) catalyzes the irreversible hydrolysis of L-arginine to citrulline and ammonia. In a previous report of the structure of apoADI from Pseudomonas aeruginosa, the four residues that form the catalytic motif were identified as Cys406, His278, Asp280, and Asp166. The function of Cys406 in nucleophilic catalysis has been demonstrated by transient kinetic studies. In this study, the structure of the C406A mutant in complex with L-arginine is reported to provide a snapshot of the enzyme.substrate complex. Through the comparison of the structures of apoenzyme and substrate-bound enzyme, a substrate-induced conformational transition, which might play an important role in activity regulation, was discovered. Furthermore, the position of the guanidinium group of the bound substrate relative to the side chains of His278, Asp280, and Asp166 indicated that these residues mediate multiple proton transfers. His278 and Asp280, which are positioned to activate the water nucleophile in the hydrolysis of the S-alkylthiouronium intermediate, were replaced with alanine to stabilize the intermediate for structure determination. The structures determined for the H278A and D280A mutants co-crystallized with L-arginine provide a snapshot of the S-alkylthiouronium adduct formed by attack of Cys406 on the guanidinium carbon of L-arginine followed by the elimination of ammonia. Asp280 and Asp166 engage in ionic interactions with the guanidinium group in the C406A ADI. L-arginine structure and might orient the reaction center and participate in proton transfer. Structure determination of D166A revealed the apoD166A ADI. The collection of structures is interpreted in the context of recent biochemical data to propose a model for ADI substrate recognition and catalysis.
Collapse
Affiliation(s)
- Andrey Galkin
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
47
|
Noh EJ, Kang SW, Shin YJ, Choi SH, Kim CG, Park IS, Wheatley DN, Min BH. Arginine deiminase enhances dexamethasone-induced cytotoxicity in human T-lymphoblastic leukemia CCRF-CEM cells. Int J Cancer 2004; 112:502-8. [PMID: 15382078 DOI: 10.1002/ijc.20435] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since arginine deiminase (ADI; EC 3.5.3.6) inhibits cell proliferation by arresting cells in the G1 phase, we tested its synergistic effect on cell death induced by dexamethasone (DEX), which also induces apoptosis by G1 cell cycle arrest. ADI inhibited cell proliferation and induced apoptosis in human leukemic CEM cells in a dose-dependent manner. Simultaneous treatment with ADI and DEX showed synergistic effects on DNA fragmentation and LDH release. In addition, ADI exerted its anti-proliferative activity against DEX-resistant CEM cells. ADI suppressed expression of c-myc, a potential key regulator of cell proliferation and apoptosis, and increased expression of p27Kip1 cyclin-dependent kinase inhibitor. These results suggest that ADI efficiently increases the anti-cancer effect of DEX on human leukemic CEM cells through G1 cell cycle arrest involving downregulation of c-myc and upregulation of p27Kip1.
Collapse
Affiliation(s)
- Eun-Joo Noh
- Department of Pharmacology and BK21 Program for Medical Sciences, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Galkin A, Kulakova L, Sarikaya E, Lim K, Howard A, Herzberg O. Structural Insight into Arginine Degradation by Arginine Deiminase, an Antibacterial and Parasite Drug Target. J Biol Chem 2004; 279:14001-8. [PMID: 14701825 DOI: 10.1074/jbc.m313410200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
l-Arginine deiminase (ADI) catalyzes the irreversible hydrolysis of arginine to citrulline and ammonia. ADI is involved in the first step of the most widespread anaerobic route of arginine degradation. ADI, missing in high eukaryotes, is a potential antimicrobial and antiparasitic drug target. We have determined the crystal structure of ADI from Pseudomonas aeruginosa by the multi-wavelength anomalous diffraction method at 2.45 A resolution. The structure exhibits similarity to other arginine-modifying or substituted arginine-modifying enzymes such as dimethylarginine dimethylaminohydrolase (DDAH), arginine:glycine amidinotransferase, and arginine:inosamine-phosphate amidinotransferase, despite the lack of significant amino acid sequence homology to these enzymes. The similarity spans a core domain comprising five betabetaalphabeta motifs arranged in a circle around a 5-fold pseudosymmetry axis. ADI contains an additional alpha-helical domain of novel topology inserted between the first and the second betabetaalphabeta modules. A catalytic triad, Cys-His-Glu/Asp (arranged in a different manner from that of the thiol proteases), seen in the other arginine-modifying enzymes is also conserved in ADI, as well as many other residues involved in substrate binding. Based on this conservation pattern and the assumption that the substrate binding mode is similar to that of DDAH, an ADI catalytic mechanism is proposed. The main players are Cys-406, which mounts the nucleophilic attack on the carbon atom of the guanidinium group of arginine, and His-278, which serves as a general base.
Collapse
Affiliation(s)
- Andrey Galkin
- Center for Advanced Research In Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | |
Collapse
|
49
|
Shen LJ, Lin WC, Beloussow K, Hosoya KI, Terasaki T, Ann DK, Shen WC. Recombinant arginine deiminase as a differential modulator of inducible (iNOS) and endothelial (eNOS) nitric oxide synthetase activity in cultured endothelial cells. Biochem Pharmacol 2003; 66:1945-52. [PMID: 14599552 DOI: 10.1016/s0006-2952(03)00555-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Modulation of the extracellular level of arginine, substrate for nitric oxide synthetases, is a promising modality to alleviate certain pathological conditions where excess nitric oxide (NO) is produced. However, complications arise, as only preferential inhibition of the inducible nitric oxide synthetase (iNOS), but not endothelial nitric oxide synthetase (eNOS), is desired for the treatment of NO over-production. We investigated the effect of arginine deprivation mediated by a recombinant arginine deiminase (rADI) on the activity of iNOS and eNOS in an endothelial cell line, TR-BBB. Our results demonstrated that cytokine-induced NO production depends on the extracellular arginine as substrate. However, if sufficient citrulline is present in the medium, A23187-activated NO production by eNOS does not rely on extracellular arginine. Treatment with rADI can markedly inhibit cytokine-induced NO production via iNOS, but not A23187-activated NO production via eNOS. Our results also showed that the decrease of NO production by iNOS could be achieved by depleting arginine from the medium even under the conditions that would up-regulate iNOS expression. Thus, rADI appears to be a novel selective modulator of iNOS activity that may be a used as a tool in the study of pathological disorders where NO over-production plays a key role.
Collapse
Affiliation(s)
- Li-Jiuan Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue 404B, Los Angeles, CA 90089-9121, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Park IS, Kang SW, Shin YJ, Chae KY, Park MO, Kim MY, Wheatley DN, Min BH. Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth. Br J Cancer 2003; 89:907-14. [PMID: 12942125 PMCID: PMC2394481 DOI: 10.1038/sj.bjc.6601181] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrolysis of plasma arginine to citrulline by arginine deiminase (ADI) was recently shown to suppress lipopolysaccharide-induced nitric oxide (NO) synthesis. Since arginine is the precursor of NO, and the latter modulates angiogenesis, we explored whether ADI treatment significantly affected tube-like (capillary) formation of human umbilical vein endothelial cells. Inhibition occurred in a dose-dependent manner, both in the chorioallantoic membrane and the murine Matrigel plug assay. Inhibition of angiogenesis by ADI was reversed when a surplus of exogenous arginine was provided, indicating that its antiangiogenic effect is primarily due to arginine depletion, although other pathways of interference are not entirely excluded. Arginine deiminase is also shown to be as a potent inhibitor of tumour growth in vitro as in vivo, being effective at nanogram quantities per millilitre in CHO and HeLa cells. Thus, it could be highly beneficial in cancer therapy because of its two-pronged attack as both an antiproliferative and an antiangiogenic agent.
Collapse
Affiliation(s)
- I-S Park
- Department of Anatomy, College of Medicine, Inha University, Inchon 400-103, Korea
| | - S-W Kang
- Department of Pharmacology and BK21 Program for Medical Sciences, College of Medicine, Korea University, Seoul 136-705, Korea
| | - Y-J Shin
- Department of Pharmacology and BK21 Program for Medical Sciences, College of Medicine, Korea University, Seoul 136-705, Korea
| | - K-Y Chae
- Department of Pharmacology and BK21 Program for Medical Sciences, College of Medicine, Korea University, Seoul 136-705, Korea
| | - M-O Park
- Department of Pharmacology and BK21 Program for Medical Sciences, College of Medicine, Korea University, Seoul 136-705, Korea
| | - M-Y Kim
- AngioLab, Inc., Taejon 302-735, Korea
| | - D N Wheatley
- Department of Cell Pathology, University of Aberdeen, MacRobert Building, 581 King Street, Aberdeen AB24 5UA, UK
| | - B-H Min
- Department of Pharmacology and BK21 Program for Medical Sciences, College of Medicine, Korea University, Seoul 136-705, Korea
- 5Ga 126-1, Anam-dong, Sungbuk-Gu, Seoul 136-705, Korea. E-mail:
| |
Collapse
|