1
|
Wei M, Jiang Y, Sun R, Fang L, Chu C, He H, Gou J, Yin T, Song Y, Tang X, Zhao F, Zhai Y, Zhang Y. Self-Assembly of a Linear-Dendritic Polymer Containing Cisplatin and Norcantharidin into Raspberry-like Multimicelle Clusters for the Efficient Chemotherapy of Liver Cancer. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36882938 DOI: 10.1021/acsami.2c21529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Combination chemotherapy has been proved to be an effective strategy in the clinic, and nanoformulations have drawn much attention in the field of drug delivery. However, conventional nanocarriers suffer from shortcomings such as inefficient coloading and undesired molar ratios of the combined drugs, preleakage of cargos during systemic circulation, and lack of cancer-selective drug release. To achieve tumor-specific codelivery of cisplatin (CDDP) and norcantharidin (NCTD) for synergistic treatment of liver cancer, a novel linear-dendritic polymer, termed as G1(PPDC)x, was designed and synthesized, where a prodrug consisting of cisplatin (CDDP) and norcantharidin (NCTD) was conjugated to PEG2000 via ester bonds to fabricate linear polymer-drug conjugates, and the conjugates were subsequently grafted to the terminal hydroxyls of a dendritic polycarbonate core. Benefiting from the hydrogen bond interactions, G1(PPDC)x could spontaneously self-assemble into a unique type of raspberry-like multimicelle clusters in solution (G1(PPDC)x-PMs). G1(PPDC)x-PMs possessed an optimal synergistic ratio of CDDP and NCTD, without obvious premature release or disassembly in biological environments. Intriguingly, upon extravasation into the interstitial tumor tissues, G1(PPDC)x-PMs (132 nm in diameter) could disassemble and reassemble into smaller micelles (40 nm in diameter) in response to the mildly acidic tumor microenvironment, which would enhance the deep tumor penetration and cellular accumulation of drugs. In vivo delivery of G1(PPDC)x-PMs led to a significantly prolonged blood circulation half-life, which is beneficial to achieve sufficient tumor accumulation through the enhanced permeability and retention (EPR) effect. G1(PPDC)x-PMs displayed the best antitumor activity in H22 tumor-bearing mice with a tumor inhibition rate of 78.87%. Meanwhile, G1(PPDC)x-PMs alleviated both myelosuppression toxicities of CDDP and vascular irritation of NCTD. Our results demonstrated that G1(PPDC)x-PMs could serve as an effective drug delivery system for codelivery of CDDP and NCTD to treat liver cancer efficiently.
Collapse
Affiliation(s)
- Mingli Wei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liangyi Fang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chenxiao Chu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongbo Song
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Du LJ, Feng YX, He ZX, Huang L, Wang Q, Wen CP, Zhang Y. Norcantharidin ameliorates the development of murine lupus via inhibiting the generation of IL-17 producing cells. Acta Pharmacol Sin 2022; 43:1521-1533. [PMID: 34552214 PMCID: PMC9159996 DOI: 10.1038/s41401-021-00773-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a devastating autoimmune disorder associated with severe organ damage. The abnormality of T cell apoptosis is considered as an important pathogenetic mechanism of SLE. Norcantharidin (NCTD), a derivative of Cantharidin, is an efficacious anti-cancer drug by inhibiting cell proliferation and inducing cell apoptosis. Besides, NCTD has also been proved to protect the function of kidneys, while damaged renal function is the most important predictor of morbidity and mortality in SLE. All these suggest the potential effects of NCTD in SLE treatment. In this study we investigated whether NCTD exerted therapeutic effects in a mouse SLE model. Lupus prone female MRL/lpr mice were treated with NCTD (1, 2 mg·kg-1·d-1, ip) for 8 weeks. We showed that NCTD administration significantly decreased mortality rate, diminished the expression of anti-dsDNA IgG antibody, a diagnostic marker for SLE, as well as restored renal structure and function in MRL/lpr mice. Moreover, NCTD administration dose-dependently inhibited lymphoproliferation and T cell accumulation in the spleens of MRL/lpr mice. We further revealed that NCTD specifically inhibited DN T cell proliferation and Th17 cell differentiation both via blocking activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway. On the other hand, NCTD did not affect T cell apoptosis in MRL/lpr mice. Taken together, our data suggest that NCTD may be as a promising therapeutic drug through targeting T cells for the treatment of SLE.
Collapse
Affiliation(s)
- Li-jun Du
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yu-xiang Feng
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Zhi-xing He
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Lin Huang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Qiao Wang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Cheng-ping Wen
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yun Zhang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| |
Collapse
|
3
|
Wang J, Huang X, Li H, Yan D, Huang W. Two Zn(II) coordination polymers with anticancer drug norcantharidin as ligands for cancer chemotherapy. Dalton Trans 2022; 51:5624-5634. [PMID: 35319055 DOI: 10.1039/d2dt00300g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here two Zn(II) coordination polymers [Zn20(DMCA)12]O12 (DMCA = demethylcantharic acid, DMCA-Zn1) and [Zn(DMCA)](H2O)2 (DMCA-Zn2) are synthesized from a broad-spectrum anticancer drug norcantharidin (NCTD) and Zn(NO3)2·6H2O under solvothermal conditions. By mechanical grinding with a biocompatible polymeric surfactant F127, ultrasonic treatment and filtration, DMCA-Zn1 and DMCA-Zn2 can be transformed into stable nanoparticles (DMCA-Zn1 NPs and DMCA-Zn2 NPs) suspended in water with average diameters of around 190 nm and 162 nm for drug delivery. The in vitro evaluation indicates that DMCA-Zn1 NPs and DMCA-Zn2 NPs can enter into HepG2 and Hep3B cancer cells via endocytosis and inhibit their proliferation. Meanwhile they exhibit relatively low toxicity to L927 normal cells. The in vivo evaluation confirms that DMCA-Zn1 NPs and DMCA-Zn2 NPs can more effectively inhibit the growth of Hep3B tumors with relatively few side effects compared with free NCTD. This approach can be extended to other anticancer drugs to construct nanodrug delivery systems for cancer treatment.
Collapse
Affiliation(s)
- Jia Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xiange Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Hegen Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
4
|
New Antimicrobial Bioactivity against Multidrug-Resistant Gram-Positive Bacteria of Kinase Inhibitor IMD0354. Antibiotics (Basel) 2020; 9:antibiotics9100665. [PMID: 33019726 PMCID: PMC7601562 DOI: 10.3390/antibiotics9100665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant pathogens pose a serious threat to human health. For decades, the antibiotic vancomycin has been a potent option when treating Gram-positive multidrug-resistant infections. Nonetheless, in recent decades, we have begun to see an increase in vancomycin-resistant bacteria. Here, we show that the nuclear factor-kappa B (NF-κB) inhibitor N-[3,5-Bis(trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide (IMD0354) was identified as a positive hit through a Caenorhabditis elegans–methicillin-resistant Staphylococcus aureus (MRSA) infection screen. IMD0354 was a potent bacteriostatic drug capable of working at a minimal inhibitory concentration (MIC) as low as 0.06 µg/mL against various vancomycin-resistant strains. Interestingly, IMD0354 showed no hemolytic activity at concentrations as high as 16 µg/mL and is minimally toxic to C. elegans in vivo with 90% survival up to 64 µg/mL. In addition, we demonstrated that IMD0354′s mechanism of action at high concentrations is membrane permeabilization. Lastly, we found that IMD0354 is able to inhibit vancomycin-resistant Staphylococcus aureus (VRSA) initial cell attachment and biofilm formation at sub-MIC levels and above. Our work highlights that the NF-κB inhibitor IMD0354 has promising potential as a lead compound and an antimicrobial therapeutic candidate capable of combating multidrug-resistant bacteria.
Collapse
|
5
|
Zhang S, Yang Y, Hua Y, Hu C, Zhong Y. NCTD elicits proapoptotic and antiglycolytic effects on colorectal cancer cells via modulation of Fam46c expression and inhibition of ERK1/2 signaling. Mol Med Rep 2020; 22:774-782. [PMID: 32468032 PMCID: PMC7339822 DOI: 10.3892/mmr.2020.11151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a digestive tract malignancy and the third leading cause of cancer‑related mortality worldwide. Norcantharidin (NCTD), the demethylated form of cantharidin, has been reported to possess anticancer properties. Family‑with‑sequence‑similarity‑46c (Fam46c), a non‑canonical poly(A) polymerase, has been reported to be critical in NCTD‑mediated effects in numerous types of cancer, including hepatoma. In the current study, it was found that Fam46c expression was reduced in colorectal cancer tissues and cells. Treatment with NCTD was observed to significantly enhance apoptosis and inhibit glycolysis in colorectal cancer cells. In addition, Fam46c and cleaved caspase 3 expression levels were found to be increased in response to NCTD treatment, in contrast to tumor‑specific pyruvate kinase M2 and phosphorylated ERK expression, which was reduced. Importantly, overexpression of Fam46c exerted similar effects as NCTD treatment on the apoptosis and glycolysis of colorectal cancer cells, whereas Fam46c knockdown strongly attenuated the effect of NCTD. Moreover, epidermal growth factor, which acts as an agonist of ERK1/2 signaling, weakened the effects of NCTD on colorectal cancer cells. Taken together, the results indicated that NCTD promotes apoptosis and suppresses glycolysis in colorectal cancer cells by possibly targeting Fam46c and inhibiting ERK1/2 signaling, hence suggesting that Fam46c may act as a tumor suppressor in colorectal cancer. Thus, the present study identified a novel therapeutic target of NCTD in the clinical treatment of colorectal cancer.
Collapse
Affiliation(s)
- Shiqiang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
- Department of Oncology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| | - Yun Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
- Department of Oncology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| | - Yunwei Hua
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| | - Chen Hu
- School of Life Sciences and Technology, Tongji University, Shanghai 200082, P.R. China
| | - Yi Zhong
- Department of Oncology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| |
Collapse
|
6
|
Pan MS, Cao J, Fan YZ. Insight into norcantharidin, a small-molecule synthetic compound with potential multi-target anticancer activities. Chin Med 2020; 15:55. [PMID: 32514288 PMCID: PMC7260769 DOI: 10.1186/s13020-020-00338-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Norcantharidin (NCTD) is a demethylated derivative of cantharidin, which is an anticancer active ingredient of traditional Chinese medicine, and is currently used clinically as a routine anti-cancer drug in China. Clarifying the anticancer effect and molecular mechanism of NCTD is critical for its clinical application. Here, we summarized the physiological, chemical, pharmacokinetic characteristics and clinical applications of NCTD. Besides, we mainly focus on its potential multi-target anticancer activities and underlying mechanisms, and discuss the problems existing in clinical application and scientific research of NCTD, so as to provide a potential anticancer therapeutic agent for human malignant tumors.
Collapse
Affiliation(s)
- Mu-Su Pan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Jin Cao
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| |
Collapse
|
7
|
Duan Z, Deng J, Dong Y, Zhu C, Li W, Fan D. Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: in vitro and in vivo. Food Funct 2018; 8:3723-3736. [PMID: 28949353 DOI: 10.1039/c7fo00385d] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ginsenoside Rk3 (Rk3) is present in the roots of processed Panax notoginseng herbs and it exerts anti-platelet aggregation, pro-immunogenic and cardioprotective effects. However, little is known regarding the anticancer activities of this compound, especially in lung cancer. This study was designed to investigate the anticancer effects of Rk3 on non-small cell lung cancer (NSCLC) cells and in an H460 xenograft tumor model. Our results showed that Rk3 reduced cell viability, inhibited both cell proliferation and colony formation, and induced G1 phase cell cycle arrest by downregulating the expression of cyclin D1 and CDK4 and upregulating the expression of P21. Rk3 also induced apoptosis in a concentration-dependent manner in H460 and A549 cells by Annexin V/PI staining, TUNEL assay and JC-1 staining, resulting in a change in the nuclear morphology. Moreover, Rk3 induced the activation of caspase-8, -9, and -3, promoted changes in mitochondrial membrane potential, decreased the expression of Bcl-2, increased the expression of Bax, and caused the release of cytochrome c, which indicated that the apoptosis-inducing effects of Rk3 were triggered via death receptor-mediated mitochondria-dependent pathways. Furthermore, Rk3 significantly inhibited the growth of H460 xenograft tumors without an obvious effect on the body weight of the treated mice. Histological analysis indicated that Rk3 inhibited tumor growth by altering the proliferation and morphology of tumor cells. In addition, we confirmed that Rk3 inhibited angiogenesis via CD34 staining and chick embryo chorioallantoic membrane (CAM) assay in vivo. Taken together, our findings revealed not only the anticancer effect of Rk3 on NSCLC cells but also a new promising therapeutic agent for human NSCLC.
Collapse
Affiliation(s)
- Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| | | | | | | | | | | |
Collapse
|
8
|
Zhang QY, Yue XQ, Jiang YP, Han T, Xin HL. FAM46C is critical for the anti-proliferation and pro-apoptotic effects of norcantharidin in hepatocellular carcinoma cells. Sci Rep 2017; 7:396. [PMID: 28341836 PMCID: PMC5428258 DOI: 10.1038/s41598-017-00313-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/20/2017] [Indexed: 02/08/2023] Open
Abstract
Norcantharidin (NCTD), a demethylated analog of cantharidin derived from Chinese traditional medicine blister beetle, has been currently used as an anticancer drug for various cancers including hepatocellular carcinoma (HCC). In this study, for a more comprehensive understanding of the targets of NCTD in HCC, next-generation RNA-Seq was utilized. We revealed that the expression of FAM46C, which has been reported as a tumor suppressor for multiple myeloma, was enhanced after NCTD treatment. Re-analysis of TCGA (The Cancer Genome Atlas) LIHC (liver hepatocellular carcinoma) dataset demonstrated that FAM46C expression was significantly lower in HCC tissues than in normal liver tissues. NCTD injection or FAM46C overexpression could mitigate diethylnitrosamine (DEN)-initiated HCC in mice. Ectopic expression of FAM46C in two HCC cell lines, SMCC-7721 and SK-Hep-1, significantly repressed cell proliferation, and increased cells population in G2/M phase and cell apoptotic rate. We also found that FAM46C overexpression caused a notable decrease in Ras expression, MEK1/2 phosphorylation and ERK1/2 phosphorylation. More importantly, FAM46C knockdown significantly weakened the biological effects of NCTD on HCC cells, which suggested NCTD exerted the anticancer functions partially through up-regulating FAM46C. In conclusion, FAM46C, a tumor suppressor for HCC, is important for the anti-proliferation and proapoptotic effects of NCTD.
Collapse
Affiliation(s)
- Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xiao-Qiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Hai-Liang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P. R. China.
| |
Collapse
|
9
|
Sirenko O, Mitlo T, Hesley J, Luke S, Owens W, Cromwell EF. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev Technol 2016; 13:402-14. [PMID: 26317884 PMCID: PMC4556086 DOI: 10.1089/adt.2015.655] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is an increasing interest in using three-dimensional (3D) spheroids for modeling cancer and tissue biology to accelerate translation research. Development of higher throughput assays to quantify phenotypic changes in spheroids is an active area of investigation. The goal of this study was to develop higher throughput high-content imaging and analysis methods to characterize phenotypic changes in human cancer spheroids in response to compound treatment. We optimized spheroid cell culture protocols using low adhesion U-bottom 96- and 384-well plates for three common cancer cell lines and improved the workflow with a one-step staining procedure that reduces assay time and minimizes variability. We streamlined imaging acquisition by using a maximum projection algorithm that combines cellular information from multiple slices through a 3D object into a single image, enabling efficient comparison of different spheroid phenotypes. A custom image analysis method was implemented to provide multiparametric characterization of single-cell and spheroid phenotypes. We report a number of readouts, including quantification of marker-specific cell numbers, measurement of cell viability and apoptosis, and characterization of spheroid size and shape. Assay performance was assessed using established anticancer cytostatic and cytotoxic drugs. We demonstrated concentration–response effects for different readouts and measured IC50 values, comparing 3D spheroid results to two-dimensional cell cultures. Finally, a library of 119 approved anticancer drugs was screened across a wide range of concentrations using HCT116 colon cancer spheroids. The proposed methods can increase performance and throughput of high-content assays for compound screening and evaluation of anticancer drugs with 3D cell models.
Collapse
Affiliation(s)
| | - Trisha Mitlo
- 1 Molecular Devices , LLC, Sunnyvale, California
| | - Jayne Hesley
- 1 Molecular Devices , LLC, Sunnyvale, California
| | - Steve Luke
- 1 Molecular Devices , LLC, Sunnyvale, California
| | | | | |
Collapse
|
10
|
Yang PY, Hu DN, Kao YH, Lin IC, Chou CY, Wu YC. Norcantharidin induces apoptosis in human prostate cancer cells through both intrinsic and extrinsic pathways. Pharmacol Rep 2016; 68:874-80. [PMID: 27351942 DOI: 10.1016/j.pharep.2016.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Norcantharidin, a modified pure compound from blister beetles, was previously demonstrated to induce apoptosis of cancer cells. This study investigated its anti-cancer activity in prostate cancer cells and the mechanisms involved. METHODS Two human prostate cancer cell lines, 22Rv1 and Du145, were treated with norcantharidin at concentrations ranging from 3 to 30μg/ml. Cytotoxic effect of norcantharidin was determined by use of the 3-(4,5-dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) assay. The effects of apoptosis were evaluated by cell death assay, Caspase-3, -8, -9 activity and cytochrome c release. The apoptotic related protein expressions (Bcl-2 family and inhibitor of apoptosis proteins) were determined using western blotting. RESULTS An MTT assay revealed that norcantharidin induced cytotoxicity against both prostate cancer cells in dose- and time-dependent manners. Treatment with norcantharidin at 3μg/ml or higher significantly increased oligonucleosomal formation with concomitant appearance of PARP cleavage, implicating the induction of apoptosis. Norcantharidin intrinsically elevated cytosolic cytochrome c levels and activated caspase-3, -8, and -9. Extrinsically, it upregulated the expression of not only the death receptors Fas and DR5 in 22Rv1 cells, but also of RIP and TRADD adaptor proteins in Du145 cells. Mechanistically, norcantharidin increased ratios of pro-/anti-apoptotic proteins and decreased expression of IAP family member proteins, including cIAP1 and survivin, regardless of the distinct status of androgen receptor expression in both cells. CONCLUSIONS Norcantharidin exhibited cytotoxicity against 22Rv1 and Du145 prostate cancer cells by inducing both intrinsic and extrinsic apoptotic pathways and could thus potentially be a remedy for prostate cancer.
Collapse
Affiliation(s)
- Pei-Yu Yang
- Department of Medical Research, Show Chwan Memorial Hospital, Changhua, Taiwan, ROC.
| | - Dan-Ning Hu
- Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA.
| | - Ying-Hsien Kao
- Department of Medical Research, E-DA Hospital, Kaohsiung, Taiwan, ROC.
| | - I-Ching Lin
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC; School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | - Chih-Yuan Chou
- Division of Urology, Department of Surgery, Show-Chwan Memorial Hospital, Changhua, Taiwan, ROC.
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
11
|
N-Farnesyloxy-norcantharimide inhibits progression of human leukemic Jurkat T cells through regulation of mitogen-activated protein kinase and interleukin-2 production. Anticancer Drugs 2015; 26:1034-42. [PMID: 26288134 PMCID: PMC4588604 DOI: 10.1097/cad.0000000000000284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study investigated the anticancer effects of N-farnesyloxy-norcantharimide (NOC15), a newly synthesized norcantharidin (NCTD) analogue, on human leukemic Jurkat T cells and the signaling pathway underlying its effects. We found that the half maximal inhibitory concentration (IC50) of NOC15 on Jurkat T cells is 1.4 μmol/l, which is 11.14-fold (=15.6÷1.4) smaller than the 15.6 μmol/l of NCTD on Jurkat T cells, whereas the IC50 of NOC15 on human normal lymphoblast (HNL) is 207.9 μmol/l, which is 8.17-fold (=1698.0÷207.8) smaller than the 1698.0 μmol/l of NCTD on HNL cells. These results indicated that NOC15 exerts a higher anticancer effect on Jurkat T cells and has higher toxicity toward HNL cells than NCTD. Thus, NOC15 is 1.36-fold (=11.14÷8.17) beneficial as an anticancer agent toward Jurkat T cells compared with NCTD. Moreover, NOC15 can increase the percentage of cells in the sub-G1 phase and reduce the cell viability of Jurkat T cells, stimulate p38 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) of mitogen-activated protein kinases (MAPKs) signaling pathway, and inhibit calcineurin expression and interleukin-2 (IL-2) production. However, NOC15 exerted no effects on the Jun-N-terminal kinase 1/2 (JNK1/2) signaling pathway, the production of IL-8, and tumor necrosis factor-α. We conclude that the anticancer activity of the newly synthesized NOC15 is 1.36-fold beneficial than NCTD as an anticancer agent and that NOC15 can increase the percentage of cells in the sub-G1 phase through the stimulation of p38 and ERK1/2 of the MAPK signaling pathway and the inhibition of calcineurin expression and IL-2 production. The NOC15 may have the potential of being developed into an anticancer agent in the future.
Collapse
|
12
|
A potential small-molecule synthetic antilymphangiogenic agent norcantharidin inhibits tumor growth and lymphangiogenesis of human colonic adenocarcinomas through blocking VEGF-A,-C,-D/VEGFR-2,-3 "multi-points priming" mechanisms in vitro and in vivo. BMC Cancer 2015; 15:527. [PMID: 26187792 PMCID: PMC4506614 DOI: 10.1186/s12885-015-1521-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022] Open
Abstract
Background Tumor lymphangiogenesis plays an important role in promoting growth and metastasis of tumors, but no antilymphangiogenic agent is used clinically. Based on the effect of norcantharidin (NCTD) on lymphangiogenesis of human lymphatic endothelial cells (LECs), we firstly investigated the antilymphangiogenic activity of NCTD as a tumor lymphangiogenic inhibitor for human colonic adenocarcinomas (HCACs). Methods In vivo and in vitro experiments to determine the effects of NCTD on tumor growth and lymphangiogenesis of the in-situ colonic xenografts in nude mice, and lymphatic tube formation of the three-dimensional (3-D) of the co-culture system of HCAC HT-29 cells and LECs were done. Proliferation, apoptosis, migration, invasion, Ki-67, Bcl-2 and cell cycle of LECs and the co-culture system in vitro were respectively determined. Streparidin-peroxidase staining, SABC, western blotting and RT-PCR were respectively used to examine the expression of LYVE-1, D2-40, CK20 (including their LMVD), and VEGF-A, VEGF-C, VEGF-D, VEGFR-2 and VEGFR-3 in vitro and in vivo. Results NCTD inhibited tumor growth and lymphangiogenesis of the in-situ colonic xenografts in vivo, and these observations were confirmed by facts that lymphatic tube formation, proliferation, apoptosis, migration, invasion, S-phase cell cycle, and Ki-67 and Bcl-2 expression in vitro, and LYVE-1, D2-40, CK20 expression and their LMVD in vitro and in vivo were inhibited and affected. Furthermore, the expression of VEGF-A, VEGF-C, VEGF-D, VEGFR-2 and VEGFR-3 at protein/mRNA levels in the process of lymphatic tube formation in vitro and tumor lymphangiogenesis in vivo was downregulated; NCTD in combination with mF4-31C1 or Sorafenib enhanced these effects. Conclusions NCTD inhibits tumor growth and lymphangiogenesis of HCACs through “multi-points priming” mechanisms i.e. affecting related malignant phenotypes, inhibiting Ki-67 and Bcl-2 expression, inducing S-phase cell cycle arrest, and directly or indirectly downregulating VEGF-A,-C,-D/VEGFR-2,-3 signaling pathways. The present finding strongly suggests that NCTD could serve as a potential antilymphangiogenic agent for tumor lymphangiogenesis and is of importance to explore NCTD is used for antitumor metastatic comprehensive therapy for HCACs.
Collapse
|
13
|
Integrative genomics identifies YY1AP1 as an oncogenic driver in EpCAM(+) AFP(+) hepatocellular carcinoma. Oncogene 2015; 34:5095-104. [PMID: 25597408 PMCID: PMC4506915 DOI: 10.1038/onc.2014.438] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/26/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
Abstract
Identification of key drivers and new therapeutic targets is important given the poor prognosis for hepatocellular carcinoma (HCC) patients, particularly those ineligible for surgical resection or liver transplant. However, the approach to identify such driver genes is facing significant challenges due to the genomically heterogenous nature of HCC. Here, we tested whether the integrative genomic profiling of a well-defined HCC subset that is classified by an extreme EpCAM+ AFP+ gene expression signature and associated with poor prognosis, all attributes of a stem cell-like phenotype, could uncover survival-related driver genes in HCC. Following transcriptomic analysis of the well-defined HCC cases, a Gene Set Enrichment Analysis (GSEA) coupled with genomic copy number alteration assessment revealed that YY1-associated protein 1 (YY1AP1) is a critical oncoprotein specifically activated in EpCAM+ AFP+ HCC. YY1AP1 silencing eliminates oncogene addiction by altering the chromatin landscape and triggering massive apoptosis in vitro and tumor suppression in vivo. YY1AP1 expression promotes HCC proliferation and is required for the maintenance of stem cell features. We revealed that YY1AP1 cooperates with YY1 to alter the chromatin landscape and activate transcription of stemness regulators. Thus, YY1AP1 may serve as a key molecular target for EpCAM+ AFP+ HCC subtype. Our results demonstrate the feasibility and power of a new strategy by utilizing well-defined patient samples and integrative genomics to uncover critical pathways linked to HCC subtypes with prognostic impact.
Collapse
|
14
|
N-Farnesyloxy-norcantharimide and N-farnesyl-norcantharimide inhibit the progression of leukemia and increase survival days in a syngeneic mouse leukemia model. Anticancer Drugs 2015; 26:508-17. [PMID: 25588161 DOI: 10.1097/cad.0000000000000210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study investigated the anticancer effects of two newly synthesized norcantharidin analogs, N-farnesyloxy-norcantharimide (NOC15) and N-farnesyl-norcantharimide (NC15), in L1210 cells and in a syngeneic mouse leukemia model (L1210 cell line plus DBA/2 mice). We found that the half-maximal inhibitory concentration (IC50) of NOC15 and NC15 on L1210 cells is 1.56 and 2.62 μmol/l, respectively, and that the IC50 of NOC15 and NC15 on human normal lymphoblast is 207.9 and 2569 μmol/l, respectively. In cell cycle analysis, NOC15 could increase the sub-G1 phase, whereas NC15 could induce G2/M arrest. Annexin-V apoptosis assay indicated that both NOC15 and NC15 could induce cell apoptosis. In the syngeneic mouse leukemia model, both NOC15 and NC15 could increase the survival days of mice and decrease the tumor weight. Moreover, both NOC15 and NC15 could retard the increase in peripheral blood leukocyte count due to L1210 cells. In the subcutaneous (s.c.) group, the treatment with NOC15 could retard the decrease in the weight of the liver and the spleen caused by L1210 cells, whereas the treatment with NC15 could retard the decrease in the weight of the spleen caused by L1210 cells. We conclude that the new compounds NOC15 and NC15 have strong anticancer activity and low toxicity both in vitro and in vivo. NOC15 and NC15 may have the potential to be developed into anticancer agents in the future.
Collapse
|
15
|
ZHU WEI, SUN WEI, ZHANG JINGTAO, LIU ZHONGYAN, LI XINPING, FAN YUEZU. Norcantharidin enhances TIMP-2 anti-vasculogenic mimicry activity for human gallbladder cancers through downregulating MMP-2 and MT1-MMP. Int J Oncol 2014; 46:627-40. [DOI: 10.3892/ijo.2014.2753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
|
16
|
Wang X, Gu Z, Li G, Zhang S, Cao Z, Yang Z, Liu G. Norcantharidin enhances ABT-263-mediated anticancer activity in neuroblastoma cells by upregulation of Noxa. Oncol Rep 2014; 32:716-22. [PMID: 24891300 DOI: 10.3892/or.2014.3228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/16/2014] [Indexed: 11/05/2022] Open
Abstract
Neuroblastoma is an aggressive childhood disease. Even with intensive conventional treatments, the long term survival rate for children with neuroblastoma remains less than 40%, highlighting the importance of finding new therapies. Bcl-2 family proteins play crucial roles in survival, proliferation and chemotherapeutic resistance of neuroblastoma cells. Therefore, targeting Bcl-2 with small molecule inhibitor ABT-263 could be a novel strategy for treatment of neuroblastoma. However, previous studies indicated that most neuroblastoma cell lines are resistant to ABT-263-mediated apoptosis. Thus, it is crucial to discover approaches that could overcome ABT-263 resistance. In this study, we examined the anticancer activity of ABT-263 in combination with norcantharidin (NCTD), a small-molecule anticancer drug derived from a traditional Chinese medicine, in human malignant neuroblastoma cells. We found that NCTD substantially enhanced ABT-263-mediated apoptosis induction, cell viability inhibition, and clonal formation inhibition in neuroblastoma SH-SY5Y and CHLA-119 cell lines. Moreover, the combination anticancer activity was accompanied by upregulation of Noxa, and was associated with characteristics of mitochondrial apoptosis signaling, such as cytosolic release of cytochrome c, activation of caspase-9,-3, and cleavage of PARP. Notably, we observed that knockdown of Noxa significantly attenuated cell death induction by cotreatment with ABT-263 and NCTD, indicating Noxa essentially contributes to the combination anticancer effect. Collectively, our study demonstrated that NCTD could overcome ABT-263-resistance in neuroblastoma cells, and suggested that combinational treatment of ABT-263 with NCTD might be a novel therapeutic option for children with neuroblastoma.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Zhimin Gu
- Department of Ophthalmology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Gongquan Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Shufeng Zhang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Zhenjie Cao
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Zhanfeng Yang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Guangzhi Liu
- Department of Obstetrics and Gynecology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
17
|
Wang H, Sun W, Zhang WZ, Ge CY, Zhang JT, Liu ZY, Fan YZ. Inhibition of tumor vasculogenic mimicry and prolongation of host survival in highly aggressive gallbladder cancers by norcantharidin via blocking the ephrin type a receptor 2/focal adhesion kinase/paxillin signaling pathway. PLoS One 2014; 9:e96982. [PMID: 24811250 PMCID: PMC4014585 DOI: 10.1371/journal.pone.0096982] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/14/2014] [Indexed: 01/15/2023] Open
Abstract
Vasculogenic mimicry (VM) is a newly-defined tumor microcirculation pattern in highly aggressive malignant tumors. We recently reported tumor growth and VM formation of gallbladder cancers through the contribution of the ephrin type a receptor 2 (EphA2)/focal adhesion kinase (FAK)/Paxillin signaling pathways. In this study, we further investigated the anti-VM activity of norcantharidin (NCTD) as a VM inhibitor for gallbladder cancers and the underlying mechanisms. In vivo and in vitro experiments to determine the effects of NCTD on tumor growth, host survival, VM formation of GBC-SD nude mouse xenografts, and vasculogenic-like networks, malignant phenotypes i.e., proliferation, apoptosis, invasion and migration of GBC-SD cells. Expression of VM signaling-related markers EphA2, FAK and Paxillin in vivo and in vitro were examined by immunofluorescence, western blotting and real-time polymerase chain reaction (RT-PCR), respectively. The results showed that after treatment with NCTD, GBC-SD cells were unable to form VM structures when injecting into nude mouse, growth of the xenograft was inhibited and these observations were confirmed by facts that VM formation by three-dimensional (3-D) matrix, proliferation, apoptosis, invasion, migration of GBC-SD cells were affected; and survival time of the xenograft mice was prolonged. Furthermore, expression of EphA2, FAK and Paxillin proteins/mRNAs of the xenografts was downregulated. Thus, we concluded that NCTD has potential anti-VM activity against human gallbladder cancers; one of the underlying mechanisms may be via blocking the EphA2/FAK/Paxillin signaling pathway.
Collapse
Affiliation(s)
- Hui Wang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, P.R. China
| | - Wei Sun
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai, P.R. China
| | - Wen-Zhong Zhang
- Department of Surgery, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Chun-Yan Ge
- Department of Oncology, Shanghai Yangpu Geriatric Hospital, Shanghai, P.R. China
| | - Jing-Tao Zhang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, P.R. China
| | - Zhong-Yan Liu
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, P.R. China
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, P.R. China
| |
Collapse
|
18
|
Zhang JT, Sun W, Zhang WZ, Ge CY, Liu ZY, Zhao ZM, Lu XS, Fan YZ. Norcantharidin inhibits tumor growth and vasculogenic mimicry of human gallbladder carcinomas by suppression of the PI3-K/MMPs/Ln-5γ2 signaling pathway. BMC Cancer 2014; 14:193. [PMID: 24628713 PMCID: PMC3985599 DOI: 10.1186/1471-2407-14-193] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/10/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vasculogenic mimicry (VM) is a novel tumor blood supply in some highly aggressive malignant tumors. Recently, we reported VM existed in gallbladder carcinomas (GBCs) and the formation of the special passage through the activation of the PI3K/MMPs/Ln-5γ2 signaling pathway. GBC is a highly aggressive malignant tumor with disappointing treatments and a poor prognosis. Norcantharidin (NCTD) has shown to have multiple antitumor activities against GBCs, etc; however the exact mechanism is not thoroughly elucidated. In this study, we firstly investigated the anti-VM activity of NCTD as a VM inhibitor for GBCs and its underlying mechanisms. METHODS In vitro and in vivo experiments to determine the effects of NCTD on proliferation, invasion, migration, VM formation, hemodynamic and tumor growth of GBC-SD cells and xenografts were respectively done by proliferation, invasion, migration assays, H&E staining and CD31-PAS double stainings, optic/electron microscopy, tumor assay, and dynamic micro-MRA. Further, immunohistochemistry, immunofluorescence, Western blotting and RT-PCR were respectively used to examine expression of VM signaling-related markers PI3-K, MMP-2, MT1-MMP and Ln-5γ2 in GBC-SD cells and xenografts in vitro and in vivo. RESULTS After treatment with NCTD, proliferation, invasion, migration of GBC-SD cells were inhibited; GBC-SD cells and xenografts were unable to form VM-like structures; tumor center-VM region of the xenografts exhibited a decreased signal in intensity; then cell or xenograft growth was inhibited. Whereas all of untreated GBC-SD cells and xenografts formed VM-like structures with the same conditions; the xenograft center-VM region exhibited a gradually increased signal; and facilitated cell or xenograft growth. Furthermore, expression of MMP-2 and MT1-MMP products from sections/supernates of 3-D matrices and the xenografts, and expression of PI3-K, MMP-2, MM1-MMP and Ln-5γ2 proteins/mRNAs of the xenografts were all decreased in NCTD or TIMP-2 group; (all P < 0.01, vs. control group); NCTD down-regulated expression of these VM signaling-related markers in vitro and in vivo. CONCLUSIONS NCTD inhibited tumor growth and VM of human GBCs in vitro and in vivo by suppression of the PI3-K/MMPs/Ln-5γ2 signaling pathway. It is firstly concluded that NCTD may be a potential anti-VM agent for human GBCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200065, P,R, China.
| |
Collapse
|
19
|
Fukuda J, Takahashi S, Osaki T, Mochizuki N, Suzuki H. Processing of nanolitre liquid plugs for microfluidic cell-based assays. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064201. [PMID: 27877528 PMCID: PMC5099761 DOI: 10.1088/1468-6996/13/6/064201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/09/2012] [Indexed: 06/06/2023]
Abstract
Plugs, i.e. droplets formed in a microchannel, may revolutionize microfluidic cell-based assays. This study describes a microdevice that handles nanolitre-scale liquid plugs for the preparation of various culture setups and subsequent cellular assays. An important feature of this mode of liquid operation is that the recirculation flow generated inside the plug promotes the rapid mixing of different solutions after plugs are merged, and it keeps cell suspensions homogeneous. Thus, serial dilutions of reagents and cell suspensions with different cell densities and cell types were rapidly performed using nanolitres of solution. Cells seeded through the plug processing grew well in the microdevice, and subsequent plug processing was used to detect the glucose consumption of cells and cellular responses to anticancer agents. The plug-based microdevice may provide a useful platform for cell-based assay systems in various fields, including fundamental cell biology and drug screening applications.
Collapse
Affiliation(s)
- Junji Fukuda
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305–8573, Japan
| | | | | | | | | |
Collapse
|
20
|
Lee YC, Lee LM, Yang CH, Lin AMY, Huang YC, Hsu CC, Chen MS, Chi CW, Yin PH, Kuo CD, Liao JF, Lee HC. Norcantharidin suppresses cell growth and migration with enhanced anticancer activity of gefitinib and cisplatin in human non-small cell lung cancer cells. Oncol Rep 2012; 29:237-43. [PMID: 23128522 DOI: 10.3892/or.2012.2118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/07/2012] [Indexed: 11/06/2022] Open
Abstract
Norcantharidin is the demethylated analog of cantharidin isolated from blister beetles (Mylabris phalerata Pall.). In this study, we evaluated whether norcantharidin exhibits anticancer effects against the human non-small cell lung cancer cell lines A549 (epidermal growth factor receptor (EGFR) mutation-negative) and PC9 (EGFR mutation-positive). Our results revealed that norcantharidin dose-dependently retards cell growth, arrests cell cycle at G2/M phase, reduces cell migration, and even induces apoptosis at the concentration of 100 µM. Moreover, we found that norcantharidin enhances the anticancer effects of gefitinib and cisplatin. Norcantharidin exhibited similar potency of anticancer effects against the two cell lines with different EGFR mutation status and did not affect EGF-induced EGFR phosphorylation, suggesting that the EGFR signaling may not be the target of norcantharidin. In conclusion, our results suggest that norcantharidin exhibits anticancer effects against non-small cell lung cancer cells in vitro and support its potential as a chemotherapeutic agent for treating non-small cell lung cancer.
Collapse
Affiliation(s)
- Ya-Chun Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yeh CH, Yang YY, Huang YF, Chow KC, Chen MF. Induction of apoptosis in human Hep3B hepatoma cells by norcantharidin through a p53 independent pathway via TRAIL/DR5 signal transduction. Chin J Integr Med 2012; 18:676-82. [DOI: 10.1007/s11655-012-1206-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Indexed: 11/30/2022]
|
22
|
Zhang S, Li G, Ma X, Wang Y, Liu G, Feng L, Zhao Y, Zhang G, Wu Y, Ye X, Qin B, Lu J. Norcantharidin enhances ABT-737-induced apoptosis in hepatocellular carcinoma cells by transcriptional repression of Mcl-1. Cell Signal 2012; 24:1803-9. [PMID: 22609455 DOI: 10.1016/j.cellsig.2012.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/16/2023]
Abstract
Small-molecule cell-permeable Bcl-2/Bcl-xL antagonist ABT-737 has recently emerged as a novel cancer therapeutic agent because it potently induces apoptosis in certain cancer cells. However, since ABT-737 binds to Mcl-1 with low affinity, ABT-737-mediated apoptosis signaling is inhibited in hepatocellular carcinoma (HCC) cells and other solid cancer cells due to the elevated expression of Mcl-1. Accordingly, strategies that target Mcl-1 are explored for overcoming ABT-737-resistance. In this study, we reported that Norcantharidin (NCTD), a small-molecule anticancer drug derived from Chinese traditional medicine blister beetle (Mylabris), induced transcriptional repression of Mcl-1 and considerably enhanced ABT-737-triggered cell viability inhibition and apoptosis in multiple HCC cell lines. Moreover, we observed that the enhancement of ABT-737-mediated apoptosis by NCTD was associated with activation of mitochondrial apoptosis signaling pathway, which involved cytosolic release of cytochrome c, cleavage of caspase-9 and caspase-3. Additionally, knockdown of Bax/Bak, the key effectors permeabilizing mitochondrial outer membrane significantly attenuated the enhancement, indicating mitochondrial apoptosis pathway played an essential role in the execution of the apoptosis. Finally, knockdown of Mcl-1 substantially potentiated ABT-737-mediated apoptotic cell death, confirming the potency of Mcl-1 repression by NCTD in enhancing ABT-737-induced apoptosis. These results therefore suggest that combination treatment with NCTD can overcome ABT-737 resistance and enhance ABT-737 therapeutic efficacy in treating human HCC.
Collapse
Affiliation(s)
- Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Park D, Bae DK, Jeon JH, Lee J, Oh N, Yang G, Yang YH, Kim TK, Song J, Lee SH, Song BS, Jeon TH, Kang SJ, Joo SS, Kim SU, Kim YB. Immunopotentiation and antitumor effects of a ginsenoside Rg₃-fortified red ginseng preparation in mice bearing H460 lung cancer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:397-405. [PMID: 21787710 DOI: 10.1016/j.etap.2011.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 01/27/2011] [Accepted: 01/29/2011] [Indexed: 05/31/2023]
Abstract
Antitumor effects of a ginsenoside Rg(3)-fortified red ginseng preparation (Rg(3)-RGP) were investigated in human non-small cell lung carcinoma (H460) cells using in vitro cytotoxicity assay and in vivo nude mouse xenograft model. Immunomodulatory effects of the preparation were also assessed by measuring the facilitating activities on the nitric oxide (NO) release from peritoneal macrophages, in vitro and in vivo lymphocyte proliferation, and the carbon clearance from circulating blood. In a cell level, Rg(3)-RGP exerted H460 cytotoxicity and facilitated splenocyte proliferation at very high concentrations, without affecting NO production. However, oral administration of Rg(3)-RGP (100-300 mg/kg) enhanced carbon particle-phagocytic index of blood macrophages up to 360-397% of control value. In addition, Rg(3)-RGP significantly increased the splenocyte proliferation (23% at 100mg/kg). In tumor-bearing mice, 28-day oral treatment with Rg(3)-RGP (100mg/kg) remarkably suppressed the tumor growth, leading to the decrease of the tumor volume and weight by 30-31%, which was comparable to the effect (27-29% reduction) of doxorubicin (2mg/kg at 3-day intervals). While Rg(3)-RGP did not cause adverse effects, intravenous injection of doxorubicin markedly decreased body and testes weights, and exhibited severe depletion of spermatogenic cells in the atrophic seminiferous tubules. These results indicate that Rg(3)-RGP exerts antitumor activities via indirect immunomodulatory actions, without causing adverse effects as seen in doxorubicin.
Collapse
Affiliation(s)
- Dongsun Park
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang PY, Chen MF, Kao YH, Hu DN, Chang FR, Wu YC. Norcantharidin induces apoptosis of breast cancer cells: Involvement of activities of mitogen activated protein kinases and signal transducers and activators of transcription. Toxicol In Vitro 2011; 25:699-707. [DOI: 10.1016/j.tiv.2011.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 12/09/2010] [Accepted: 01/18/2011] [Indexed: 01/05/2023]
|
26
|
Park SE, Kim J, Lee YW, Yoo HS, Cho CK. Antitumor activity of water extracts from Cordyceps militaris in NCI-H460 cell xenografted nude mice. J Acupunct Meridian Stud 2010; 2:294-300. [PMID: 20633505 DOI: 10.1016/s2005-2901(09)60071-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/08/2009] [Indexed: 11/26/2022] Open
Abstract
This experimental study investigated the antitumor effect of Cordyceps militaris in NCI-H406 cell transplanted nude mice. After feeding an aqueous solution of C. militaris extracts in NCI-H460 cell xenografted nude mice for 4 weeks, we measured the size of a tumor mass and calculated the inhibition rate. We also estimated survival time and calculated mean survival time and percent increase in lifespan. Results showed that the inhibition rate of water extract of the 150 mg/kg/day C. militaris-administered group was 94.73-75.08% and that of the 300 mg/kg/day C. militaris-administered group was 85.81-73.81%. The tumor weights and volumes decreased in a dose-dependent manner. Mean survival time of the 150 mg/kg/day C. militaris-administered group was extended to 19.43 +/- 2.44 days and 5.42% increased in lifespan (ILS) and that of the 300 mg/kg/day C. militaris-administered group was 21.86 +/- 3.53 days and 18.61% ILS. The relative liver weight was significantly increased in 300 mg/kg/day C. militaris-administered group, but there was no histopathological difference. In conclusion, C. militaris, shrunk tumors and increased mouse lifespan, suggesting that C. militaris was effective in treating tumors in nude mice.
Collapse
Affiliation(s)
- Sang Eun Park
- East-West Cancer Center, Dunsan Oriental Hospital of Daejeon University, Daejeon, Korea
| | | | | | | | | |
Collapse
|
27
|
Involvement of caspase and MAPK activities in norcantharidin-induced colorectal cancer cell apoptosis. Toxicol In Vitro 2010; 24:766-75. [DOI: 10.1016/j.tiv.2009.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 01/12/2023]
|
28
|
Kwon KR. Anticancer effect of mountain ginseng Pharmacopuncture to the nude mouse of lung carcinoma induced by NCI-H460 human non-small cell lung cancer cells. J Pharmacopuncture 2010. [DOI: 10.3831/kpi.2010.13.1.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
29
|
Chang C, Zhu Y, Tang X, Tao W. The anti-proliferative effects of norcantharidin on human HepG2 cells in cell culture. Mol Biol Rep 2010; 38:163-9. [PMID: 20333548 DOI: 10.1007/s11033-010-0090-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 03/15/2010] [Indexed: 12/17/2022]
Abstract
Many lines of evidence have shown that Chinese medicine contains many chemical compounds with anticancer effects. Therefore, we tested whether the active ingredients of blister beetles have a therapeutic effect on hepatoma. The aim of this study was to investigate the inhibitive effects of norcantharidin which is extracted from blister beetles on human hepatoma cells HepG2 in vitro and its anticancer mechanism.MTT assay, agarose gel electrophoresis and flow cytometry were used to evaluate HepG2 cells proliferation and apoptosis. The role of caspase activities were assayed using caspase apoptosis detection kit. Western blot analysis was used to evaluate the level of Bcl-2/Bax expression. Our results indicate that norcantharidin inhibited HepG2 cell growth in a time- and dose-dependent manner by MTT assay. HepG2 cells treated with norcantharidin showed typical characteristics of apoptosis including the DNA fragmentation. The activities of caspase-3, -9 were up-regulated after norcantharidin treatment. By western blot analysis, we found the level of Bcl-2 were down-regulated, whereas, the level of Bcl-2 Up-regulated.so we suggest that up-regulation of mitochondrial Bax expression and down-regulation of Bcl-2 expression participated in the apoptosis induced by NCTD. These results suggest that norcantharidin triggers apoptosis in hepato cancer cell lines via the activation of the caspses, mitochondrial pathways, and that this agent may be useful for developing new therapeutic regimens for the treatment of colorectal carcinoma.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, East-Lake Road 169, 430071, Wuhan, Hubei Province, China
| | | | | | | |
Collapse
|
30
|
Liu FY, Li Y, Peng YM, Ye K, Li J, Liu YH, Duan SB, Ling GH, Xu XQ, Zhou LT. Norcantharidin ameliorates proteinuria, associated tubulointerstitial inflammation and fibrosis in protein overload nephropathy. Am J Nephrol 2008; 28:465-77. [PMID: 18176075 DOI: 10.1159/000112850] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 10/26/2007] [Indexed: 11/19/2022]
Abstract
Norcantharidin (NCTD), the demethylated analog of cantharidin isolated from Mylabris, is an anticancer drug routinely used against various human cancers in China. The aims of this study are to learn if NCTD has a protective action against severe proteinuria and consequent interstitial inflammation and fibrosis, and if the inhibition of nuclear factor-kappaB (NF-kappaB) and connective tissue growth factor (CTGF) by NCTD might be involved. Male Sprague-Dawley rats with protein overload nephropathy induced by intraperitoneally injected bovine serum albumin were used as a model. The histopathological examination of kidney tissue in the 9th week by light microscopy and scanning electron microscopy revealed that inflammatory cells had extensively infiltrated into the tubulointerstitial areas with interstitial fibrosis. The administration of NCTD at 0.1 mg/kg/day to the bovine-serum-albumin-injected animal models effectively reduced the proteinuria, and prevented the proteinuria-induced interstitial inflammation and fibrosis. Expressions of the NF-kappaB p65 subunit and CTGF, detected by immunohistochemistry, Western blotting and reverse-transcription polymerase chain reaction, were upregulated in protein overload nephropathy and were attenuated by NCTD. Inhibition of the expressions of the NF-kappaB p65 subunit and CTGF was one beneficial effect of NCTD. These results suggest that in addition to the antiproteinuric action of NCTD, due to its anti-inflammatory and antifibrotic effects as shown in the present study, it may become a therapeutic agent for proteinuria and its associated chronic inflammatory and fibrotic nephropathy.
Collapse
Affiliation(s)
- Fu You Liu
- Division of Nephrology, Second Xiangya Hospital, Research Institute of Nephrology, Central-South University and Key Laboratory of Nephrology and Blood Purification in Hunan, Changsha, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Norcantharidin induces anoikis through Jun-N-terminal kinase activation in CT26 colorectal cancer cells. Anticancer Drugs 2008; 19:55-64. [DOI: 10.1097/cad.0b013e3282f18826] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Yang H, Guo W, Xu B, Li M, Cui J. Anticancer activity and mechanisms of norcantharidin-Nd3II on hepatoma. Anticancer Drugs 2007; 18:1133-7. [PMID: 17893513 DOI: 10.1097/cad.0b013e3282eeb1c5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Norcantharidin (NCTD), a demethylated form of cantharidin, is currently used as an anticancer drug in China, but five newly synthesized derivatives have not been tested for antitumor efficacy. In this study, we investigated the in-vitro and in-vivo activity of five derivatives on Bel-7402, HeLa and PC-3M1E8 cell lines on a sulfarhodamine B assay. All of the derivatives showed significant antiproliferative activity, hence we elected to study further one of them, NCTD-Nd3II, in an in-vivo mouse model, and to examine its effects on cell cycle and protein expression. NCTD-Nd3II inhibited H22 tumors in mice in a dose-dependent manner with low toxicity. Flow cytometry results showed that apoptosis and G2/M cell cycle arrest contributed to the cytotoxic and cytostatic effects of NCTD-Nd3II. Further studies showed that Bax and p21 protein expression was upregulated, whereas cyclin B1, Cdc-2 and Bcl-2 protein expression was downregulated. Our findings show that NCTD-Nd3II might be a promising chemotherapeutic agent for hepatomas.
Collapse
Affiliation(s)
- Huayu Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, PRC
| | | | | | | | | |
Collapse
|
33
|
Kok SHL, Chui CH, Lam WS, Chen J, Lau FY, Wong RSM, Cheng GYM, Lai PBS, Leung TWT, Yu MWY, Tang JCO, Chan ASC. Synthesis and structure evaluation of a novel cantharimide and its cytotoxicity on SK-Hep-1 hepatoma cells. Bioorg Med Chem Lett 2006; 17:1155-9. [PMID: 17240140 DOI: 10.1016/j.bmcl.2006.12.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 11/22/2006] [Accepted: 12/12/2006] [Indexed: 11/30/2022]
Abstract
A remarkable control of the potency of cantharimide is described based on the electronic properties of functional group and it exhibits a relatively less toxic effect to the non-malignant hematological disorder bone marrow cells.
Collapse
Affiliation(s)
- Stanton Hon Lung Kok
- Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li JL, Cai YC, Liu XH, Xian LJ. Norcantharidin inhibits DNA replication and induces apoptosis with the cleavage of initiation protein Cdc6 in HL-60 cells. Anticancer Drugs 2006; 17:307-14. [PMID: 16520659 DOI: 10.1097/00001813-200603000-00009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Norcantharidin (NCTD), a demethylated form of cantharidin, is currently used as an anti-cancer drug in China. However, the exact anti-cancer mechanism of NCTD on human cancer cells remains poorly understood. In the present study, NCTD inhibited proliferation and DNA replication effectively in HL-60 cells. DNA replication-initiation protein Cdc6 was cleaved after 12 h treatment with NCTD. This cleavage generated a truncated Cdc6 fragment with a relative molecular weight of 49 kDa and elongated treatment with NCTD resulted in a complete loss of Cdc6. In addition, we found that Cdc6 was present in both non-chromatin- and chromatin-bound fractions in the untreated HL-60 cells, and NCTD treatment led to the cleavage of Cdc6 in both fractions. NCTD-induced cleavage of Cdc6 was prevented by pre-treatment with caspase-3 inhibitor, suggesting the involvement of caspase-3 activity in the process. Furthermore, NCTD treatment resulted in apoptotic changes including granular nuclear morphology, DNA laddering and sub-G1 arrest in HL-60 cells. In conclusion, our study reveals that NCTD can inhibit DNA replication, and induce apoptosis and caspase-3-dependent cleavage of Cdc6. The anti-cancer effect of NCTD may be closely associated with the dysfunction of Cdc6 and our report is the first to put forward this point of view.
Collapse
Affiliation(s)
- Jin-Long Li
- State Key Laboratory of Oncology in Southern China
| | | | | | | |
Collapse
|
35
|
Haldi M, Ton C, Seng WL, McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 2006; 9:139-51. [PMID: 17051341 DOI: 10.1007/s10456-006-9040-2] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 07/07/2006] [Indexed: 12/01/2022]
Abstract
In this research, we optimized parameters for xenotransplanting WM-266-4, a metastatic melanoma cell line, including zebrafish site and stage for transplantation, number of cells, injection method, and zebrafish incubation temperature. Melanoma cells proliferated, migrated and formed masses in vivo. We transplanted two additional cancer cell lines, SW620, a colorectal cancer cell line, and FG CAS/Crk, a pancreatic cancer cell line and these human cancers also formed masses in zebrafish. We also transplanted CCD-1092Sk, a human fibroblast cell line established from normal foreskin and this cell line migrated, but did not proliferate or form masses. We quantified the number of proliferating melanoma and normal skin fibroblasts by dissociating xenotransplant zebrafish, dispensing an aliquot of CM-DiI labeled human cells from each zebrafish onto a hemocytometer slide and then visually counting the number of fluorescently labeled cancer cells. Since zebrafish are transparent until approximately 30 dpf, the interaction of labeled melanoma cells and zebrafish endothelial cells (EC) can be visualized by whole-mount immunochemical staining. After staining with Phy-V, a mouse anti-zebrafish monoclonal antibody (mAb) that specifically labels activated EC and angioblasts, using immunohistology and 2-photon microscopy, we observed activated zebrafish EC embedded in human melanoma cell masses. The zebrafish model offers a rapid efficient approach for assessing human cancer cells at various stages of tumorigenesis.
Collapse
Affiliation(s)
- Maryann Haldi
- Phylonix Pharmaceuticals, Inc., 100 Inman Street, suite 300, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
36
|
Fu SL, Huang YJ, Liang FP, Huang YF, Chuang CF, Wang SW, Yao JW. Malignant transformation of an epithelial cell by v-Src via tv-a-mediated retroviral infection: A new cell model for studying carcinogenesis. Biochem Biophys Res Commun 2005; 338:830-8. [PMID: 16256070 DOI: 10.1016/j.bbrc.2005.10.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 11/24/2022]
Abstract
Most human cancers are of epithelial origin, but many cell culture models for the study of cancer-causing genes use fibroblasts. In addition, efficient delivery and stable expression of foreign genes into non-transformed cell lines are often difficult. To address both questions, we here established a non-transformed rat kidney epithelial RK3E cell line that constitutively expresses tv-a (receptor for subgroup A avian leukosis virus, ALV) for delivery of foreign genes via avian retroviral infection. This cell line (RK3E/tv-a) allows efficient and stable expression of either single or multiple foreign genes. Furthermore, tv-a-mediated delivery of various oncogenes (v-src, H-ras, myc or akt) leads to malignant transformation. v-src-transformed cells exhibited classical cancerous phenotypes in vitro, and induced tumor formation and lung metastasis upon injecting into immunodeficient mice. Expression profiles of downstream molecular effectors (E-cadherin, beta-catenin, cyclin D1, Myc, VEGF, MMP-2, and MMP-9) in these cells correlate with characteristics of cancerous phenotypes. This new cell model serves as a useful tool to study cancer-causing genes in epithelial cell type.
Collapse
MESH Headings
- Animals
- Avian Proteins/genetics
- Avian Proteins/metabolism
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Oncogene Protein pp60(v-src)/genetics
- Oncogene Protein pp60(v-src)/metabolism
- Rats
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Retroviridae/genetics
- Retroviridae/metabolism
- Transfection/methods
Collapse
Affiliation(s)
- Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, 155, Sec.2, Li-Nong St., Taipei 11221, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Chen YJ, Liao HF, Tsai TH, Wang SY, Shiao MS. Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse. Int J Radiat Oncol Biol Phys 2005; 63:1252-61. [PMID: 16253780 DOI: 10.1016/j.ijrobp.2005.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 07/01/2005] [Accepted: 07/01/2005] [Indexed: 01/10/2023]
Abstract
PURPOSE Caffeic acid phenethyl ester (CAPE), a component of propolis, was reported capable of depleting glutathione (GSH). We subsequently examined the radiosensitizing effect of CAPE and its toxicity. METHODS AND MATERIALS The effects of CAPE on GSH level, GSH metabolism enzyme activities, NF-kappaB activity, and radiosensitivity in mouse CT26 colorectal adenocarcinoma cells were determined. BALB/c mouse with CT26 cells implantation was used as a syngeneic in vivo model for evaluation of treatment and toxicity end points. RESULTS CAPE entered CT26 cells rapidly and depleted intracellular GSH in CT26 cells, but not in bone marrow cells. Pretreatment with nontoxic doses of CAPE significantly enhanced cell killing by ionizing radiation (IR) with sensitizer enhancement ratios up to 2.2. Pretreatment of CT26 cells with N-acetyl-L-cysteine reversed the GSH depletion activity and partially blocked the radiosensitizing effect of CAPE. CAPE treatment in CT26 cells increased glutathione peroxidase, decreased glutathione reductase, and did not affect glutathione S-transferase or gamma-glutamyl transpeptidase activity. Radiation activated NF-kappaB was reversed by CAPE pretreatment. In vivo study revealed that pretreatment with CAPE before IR resulted in greater inhibition of tumor growth and prolongation of survival in comparison with IR alone. Pretreatment with CAPE neither affected body weights nor produced hepatic, renal, or hematopoietic toxicity. CONCLUSIONS CAPE sensitizes CT26 colorectal adenocarcinoma to IR, which may be via depleting GSH and inhibiting NF-kappaB activity, without toxicity to bone marrow, liver, and kidney.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Liu CY, Liao HF, Wang TE, Lin SC, Shih SC, Chang WH, Yang YC, Lin CC, Chen YJ. Etoposide sensitizes CT26 colorectal adenocarcinoma to radiation therapy in BALB/c mice. World J Gastroenterol 2005; 11:4895-8. [PMID: 16097067 PMCID: PMC4398745 DOI: 10.3748/wjg.v11.i31.4895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the combined effect of etoposide and radiation on CT26 colorectal adenocarcinoma implanted into BALB/c mice.
METHODS: We evaluated the radiosensitizing effect of etoposide on CT26 colorectal adenocarcinoma in a syngeneic animal model. BALB/c mice were subcutaneously implanted with CT26 cells and divided into four groups: control (intra-peritoneal saline2) group, etoposide (5 mg/kg intra-peritoneally2) group, radiation therapy (RT 5 Gy2 fractions) group, and combination therapy with etoposide (5 mg/kg intra-peritoneally 1 h before radiation) group.
RESULTS: Tumor growth was significantly inhibited by RT and combination therapy. The effect of combination therapy was better than that of RT. No significant changes were noted in body weight, plasma alanine aminotransferase, or creatinine in any group. The leukocyte count significantly but transiently decreased in the RT and combination therapy groups, but not in the etoposide and control groups. There was no skin change or hair loss in the RT and combination therapy groups.
CONCLUSION: Etoposide can sensitize CT26 colorectal adenocarcinoma in BALB/c mice to RT without significant toxicity.
Collapse
Affiliation(s)
- Chia-Yuan Liu
- Department of Radiation Oncology, Mackay Memorial Hospital, No. 92 Section 2 Chung San North Road, Taipei 104, Taiwan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen YJ, Shieh CJ, Tsai TH, Kuo CD, Ho LT, Liu TY, Liao HF. Inhibitory effect of norcantharidin, a derivative compound from blister beetles, on tumor invasion and metastasis in CT26 colorectal adenocarcinoma cells. Anticancer Drugs 2005; 16:293-9. [PMID: 15711181 DOI: 10.1097/00001813-200503000-00008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Norcantharidin (NCTD), a potential anti-cancer drug, is the demethylated analog of cantharidin isolated from blister beetles. The present study investigated the effect of NCTD on tumor invasion and metastasis. A cytotoxicity assay of NCTD in CT26 colorectal adenocarcinoma cells showed a dose- and time-dependent decrease in cell viability. NCTD (50 microM)-treated CT26 cells not only showed an inhibited cell invasion of 65.6%, but also decreased the activity of matrix metalloproteinase-2 and -9. NCTD decreased the adhesive ability of CT26 cells in a dose-dependent manner. At a concentration of 100 microM, NCTD showed a down-expression of several cadherin-catenin adhesion molecules, including Desmoglein, N-cadherin, and alpha- and beta-catenin, while there were no obvious changes in E-cadherin and gamma-catenin. Intraperitoneal injection of NCTD (2 mg/kg/day) in BALB/c mice reduced both the pulmonary metastatic capacity of CT26 cells and prolonged the survival day of the mice. These results demonstrated that it was effective in blocking both tumor invasion and metastasis.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Fan YZ, Fu JY, Zhao ZM, Chen CQ. Effect of norcantharidin on proliferation and invasion of human gallbladder carcinoma GBC-SD cells. World J Gastroenterol 2005; 11:2431-7. [PMID: 15832413 PMCID: PMC4305630 DOI: 10.3748/wjg.v11.i16.2431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of norcantharidin on proliferation and invasion of human gallbladder carcinoma GBC-SD cells in vitro and its anticancer mechanism.
METHODS: Human gallbladder carcinoma GBC-SD cells were cultured by cell culture technique. The growth and the invasiveness of GBC-SD cells in vitro were evaluated by the tetrazolium-based colorimetric assay and by the Matrigel experiment and the crossing-river test. Expression of PCNA, Ki-67, MMP2 and TIMP2 proteins of GBC-SD cells was determined by streptavidin–biotin complex method.
RESULTS: In vitro norcantharidin inhibited the growth and proliferation of GBC-SD cells in a dose- and time-dependent manner, with the IC50 value of 56.18 μg/mL at 48 h. Norcantharidin began to inhibit the invasion of GBC-SD cells at the concentration of 5 μg/mL, and the invasive action of GBC-SD cells was inhibited completely and their crossing-river time was prolonged significantly at 40 μg/mL. After treatment with norcantharidin, the expression of PCNA, Ki-67, and MMP2 was significantly decreased. With the increase in TIMP2 expression, the MMP2 to TIMP2 ratio was decreased significantly (P<0.05).
CONCLUSION: Norcantharidin inhibits the proliferation and growth of human gallbladder carcinoma cells in vitro at relatively low concentrations by inhibiting PCNA and Ki-67 expression. Its anti-invasive activity may be the result of decrease in MMP2 to TIMP2 ratio and reduced cell motility.
Collapse
Affiliation(s)
- Yue-Zu Fan
- Department of General Surgery, Tongji Hospital of Tongji University, 389 Xincun Road, Shanghai 200065, China.
| | | | | | | |
Collapse
|
41
|
Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 2005; 96:273-83. [PMID: 15081218 DOI: 10.1016/j.jconrel.2004.02.003] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 02/03/2004] [Indexed: 12/16/2022]
Abstract
Biodegradable polymeric micelles, self-assembled from a di-block copolymer of poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG), were prepared to achieve folate receptor targeted delivery of doxorubicin (DOX). In the di-block copolymer structure of PLGA-b-PEG, DOX was chemically conjugated to a terminal end of PLGA to produce DOX-PLGA-mPEG, and folate was separately conjugated to a terminal end of PEG to produce PLGA-PEG-FOL. The two di-block copolymers with different functional moieties at their chains ends were physically mixed with free base DOX in an aqueous solution to form mixed micelles. It was expected that folate moieties were exposed on the micellar surface, while DOX was physically and chemically entrapped in the core of micelles. Flow cytometry and confocal image analysis revealed that folate conjugated mixed micelles exhibited far greater extent of cellular uptake than folate unconjugated micelles against KB cells over-expressing folate receptors on the surface. They also showed higher cytotoxicity than DOX, suggesting that folate receptor medicated endocytosis of the micelles played an important role in transporting an increased amount of DOX within cells. In vivo animal experiments, using a nude mice xenograft model, demonstrated that when systemically administered, tumor volume was significantly regressed. Biodistribution studies also indicated that an increased amount of DOX was accumulated in the tumor tissue.
Collapse
Affiliation(s)
- Hyuk Sang Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | |
Collapse
|
42
|
Massicot F, Dutertre-Catella H, Pham-Huy C, Liu XH, Duc HT, Warnet JM. In vitro Assessment of Renal Toxicity and Inflammatory Events of Two Protein Phosphatase Inhibitors Cantharidin and Nor-Cantharidin*. Basic Clin Pharmacol Toxicol 2005; 96:26-32. [PMID: 15667592 DOI: 10.1111/j.1742-7843.2005.pto960104.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In China, cantharidin has been reported to be active against various human cancers, but with severe side effects such as nephrotoxicity. In order to reduce this toxicity, its demethylated analogue nor-cantharidin has been synthesized and used in cancer therapy, but with only few data regarding safety assessment. The aim of this study was to compare the in vitro effects of cantharidin and nor-cantharidin on renal toxicity and on inflammatory events associated with tumoural process where protein phosphatases could be involved (energy status, prostanoid production, glutathione and nitrite contents) on RAW 264.7 and LLC-PK1 cells. In macrophages, both cantharidin and nor-cantharidin decreased cell viability, in a concentration- and time-dependent manner. However, IC50 was lower with cantharidin than with nor-cantharidin. These two drugs significantly decreased the ATP level after 24 hr incubation. However, ATP decreased much more with cantharidin (up to 4 times) than with nor-cantharidin. When control macrophages were activated with lipopolysaccharide+interferon-gamma for 24 hr a significant increase in nitrite content and in prostanoids were observed. Addition of either drug decreased nitrite generation and prostanoids, however these decreases were greater with cantharidin than with nor-cantharidin. In LLC-PK1 cells, incubated with either cantharidin or nor-cantharidin, our results show significant differences between the two drugs, similar to those observed in peritoneal macrophages, except for GSH content with opposite variations in both cells. We provide a better understanding of the various mechanisms of cantharidin side effects, allowing an easier comparison with nor-cantharidin which could be an attractive therapeutic potential in cancer chemotherapy in western countries.
Collapse
Affiliation(s)
- France Massicot
- Laboratory of Toxicology, Faculty of Pharmaceutical and Biological Sciences, University René Descartes-Paris 5, 75270 Paris Cedex 06, France.
| | | | | | | | | | | |
Collapse
|
43
|
Chen YN, Cheng CC, Chen JC, Tsauer W, Hsu SL. Norcantharidin-induced apoptosis is via the extracellular signal-regulated kinase and c-Jun-NH2-terminal kinase signaling pathways in human hepatoma HepG2 cells. Br J Pharmacol 2003; 140:461-70. [PMID: 12970086 PMCID: PMC1574052 DOI: 10.1038/sj.bjp.0705461] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Norcantharidin (NCTD) is an anticancer drug routinely used against hepatoma in China. Previously, we reported that NCTD could induce mitotic arrest and apoptosis in human hepatoma HepG2 cells. However, the intracellular signaling pathways involved in NCTD-induced apoptotic cell death are still obscure. Caspase inhibitors were used to clarify the role of specific caspase in NCTD-triggered apoptotic process. Results showed that activation of caspase-9/caspase-3 cascade is required for NCTD-induced apoptotic death. To decipher the upstream signals for NCTD-induced apoptosis, we characterized the involvement of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38MAPK. The role of their downstream targets, transcription factors activating protein-1 (AP-1), and nuclear factor kappaB (NF-kappaB) in NCTD-induced apoptosis was also analyzed. Immunoblot analyses and in vitro kinase assay demonstrated that NCTD-induced apoptosis was accompanied by the elevations of the levels of phosphorylated form and kinase activity of ERK and JNK, but not p38MAPK. The inhibitor of ERK pathway (U0126 or PD98059) or JNK pathway (SP600125) markedly prevented kinase activation, and also greatly reduced NCTD-induced apoptotic cell death. Increased DNA-binding activity of AP-1 and NF-kappaB was also observed after NCTD treatment. Inhibition of NF-kappaB activation by PDTC or inhibition of AP-1 activation by curcumin drastically blocked NCTD-induced cell death. These results imply that activation of ERK and JNK, and modulation of downstream transcription factors NF-kappaB and AP-1, may be involved in NCTD-induced apoptosis.
Collapse
Affiliation(s)
- Yan-Nian Chen
- School of Chinese Medicine, China Medical College, Taichung, Taiwan
- China Medical College Peikang Hospital, Yunlin, Taiwan
- St. Martin De Porres Hospital, Chaiyi, Taiwan
| | - Chi-Chih Cheng
- Department of Education & Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jung-Chou Chen
- China Medical College Research Institute of Chinese Medicine, Taiwan
- Show Chwan Memorial Hospital, Department of Chinese Medicine, Taiwan
| | - Wei Tsauer
- School of Post Baccalaureate Chinese Medicine Clinical Medical College, Taiwan
| | - Shih-Lan Hsu
- School of Chinese Medicine, China Medical College, Taichung, Taiwan
- Department of Education & Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Author for correspondence:
| |
Collapse
|
44
|
Huh JE, Kang KS, Ahn KS, Kim DH, Saiki I, Kim SH. Mylabris phalerlata induces apoptosis by caspase activation following cytochrome c release and Bid cleavage. Life Sci 2003; 73:2249-62. [PMID: 12927594 DOI: 10.1016/s0024-3205(03)00568-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mylabris phalerata (MP) is an insect that has been used for the treatment of cancer in oriental medicine. In the present study, the butanol (BuOH) fraction of MP (BFMP) was examined to determine whether it can exert anti-cancer activity through an apoptotic pathway with little toxicity. BFMP was found to have a specific cytotoxic effect on human monocytic leukemic U937 cells (IC(50) = 140 microg/ml) rather than on peripheral blood mononuclear lymphocytes (PBML, IC(50) = over 500 microg/ml). BFMP also induced the morphological changes of apoptosis, such as chromatin condensation, cell shrinking and DNA fragmentation at a concentration of 31.25 microg/ml. In addition, BFMP significantly increased the portion of apoptotic annexin-V positive cells in a dose-dependent manner, and effectively activated caspases (cysteine aspartase) cascade involving caspases 8, 9 and 3. BFMP also effectively cleaved Bid, a death agonist member of the Bcl-2 family and (poly(ADP-ribose)polymerase) (PARP) and induced the subsequent release of cytochrome c from mitochondria into the cytosol. However, it did not affect Bcl-2 and Bax expression. Taken together, these data suggest that the BuOH extract of Mylabris phalerata can induce apoptosis in U937 cells by caspase cascade activation in conjunction with cytochrome c release, induced by a product of Bid. Therefore, we conclude that BFMP has anti-cancer activity, which is achieved through apoptosis and is associated with little toxicity.
Collapse
Affiliation(s)
- Jeong-Eun Huh
- Department of Oncology, Graduate School of East-West Medicine, KyungHee University, 1 Seochunri, Yongin 449-701, South Korea
| | | | | | | | | | | |
Collapse
|
45
|
Kaap S, Quentin I, Tamiru D, Shaheen M, Eger K, Steinfelder HJ. Structure activity analysis of the pro-apoptotic, antitumor effect of nitrostyrene adducts and related compounds. Biochem Pharmacol 2003; 65:603-10. [PMID: 12566088 DOI: 10.1016/s0006-2952(02)01618-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we outlined the part of the molecule mediating the prominent pro-apoptotic effect of the Michael adduct of ascorbic acid with p-chloro-nitrostyrene, a new synthetic phosphatase inhibitor. The nitrostyrene (NS) moiety was identified as the structure essential for apoptosis induction. NS and its ascorbic acid adducts displayed LC(50) values of 10-25 microM with no significant reduction of potency in okadaic acid resistant cells overexpressing the MDR1 P-glycoprotein. Induction of apoptosis by NS derivatives and the protein phosphatase 2A inhibitor cantharidic acid was proven by the analysis of caspase-3 activation and subsequent fragmentation of DNA. Further structure activity analysis revealed the necessity of the nitro group at the beta-position of the side chain. The pro-apoptotic potential of adducts of NS with pyrimidine- or pyridine-derivatives varied between NS and a progressive reduction in potency up to a nearly complete loss of cytotoxicity. Substitutions at the benzene core of NS suggested a prominent enhancement of toxicity only by substitutions at the 2- or 3-position. Heterocyclic aromatics can substitute for the benzene ring of NS albeit with a 2-3-fold reduced potency. In conclusion, nitrostyrene was identified as the core structure mediating the pro-apoptotic effect of a new synthetic phosphatase inhibitor. Further studies defined a nitrovinyl side chain attached to an aromatic ring as the pharmacophore structure of a new group of pro-apoptotic agents. These observations present the basis for the development of a new group of anticancer drugs.
Collapse
Affiliation(s)
- Sylvia Kaap
- Institute of Pharmacology & Toxicology, University of Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Hong Y, Müller UR, Lai F. Discriminating two classes of toxicants through expression analysis of HepG2 cells with DNA arrays. Toxicol In Vitro 2003; 17:85-92. [PMID: 12537966 DOI: 10.1016/s0887-2333(02)00122-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microarray technology provides a rapid and cost-effective method to associate specific cellular responses with unique gene expression patterns. If characteristic expression patterns of a small number of genes could be associated with drug toxicity, this association may be used for toxicity prediction, and thereby to reduce the need for traditional toxicity testing. To test this hypothesis, we have designed an array composed of 92 known human genes of toxicological interest (including seven housekeeping genes) and eight bacterial controls. HepG2 cells were treated with either ethanol or one of two quinone containing anticancer drugs, mitomycin C or doxorubicin. RNA was isolated from treated and untreated cells, differentially labeled with fluorescent dyes, and then hybridized to the array. Our results show that the expression patterns induced by ethanol and the anticancer drugs are different. Both of the anticancer drugs, but not ethanol had a differential effect on the regulation of several genes, including CYP4F2/3, CYP3A3, TNFRSF6 and CHES1, demonstrating that the two drugs might function through a similar mechanism, which differs from that of ethanol. These results suggest that microarray-based expression analysis may offer a rapid and efficient means for assessing drug toxicity.
Collapse
Affiliation(s)
- Y Hong
- Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA
| | | | | |
Collapse
|
47
|
Wu LT, Chung JG, Chen JC, Tsauer W. Effect of norcantharidin on N-acetyltransferase activity in HepG2 cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2001; 29:161-72. [PMID: 11321474 DOI: 10.1142/s0192415x01000186] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The inhibition ofarylamine N-acetyltransferase (NAT) activity by norcantharidin (NCTD), the demethylated form of cantharidin, in human hepatocellular carcinoma HepG2 cells was investigated. By using high performance liquid chromatography, NAT activity on acetylation of 2-aminofluorene (AF) and p-aminobenzoic acid (PABA) were examined. Two assay systems were performed, one with cellular cytosols, the other with intact HepG2 cell suspensions. The NAT activity in HepG2 cell line was inhibited by norcantharidin in a dose-dependent manner in both types of examined systems: i.e. the greater the concentration of norcantharidin in the reaction, the greater the inhibition of NAT activities. This report is the first to show that norcantharidin has an inhibitory effect on NAT activity in HepG2 cell.
Collapse
Affiliation(s)
- L T Wu
- Department of Microbiology, China Medical College, Taichung, Taiwan
| | | | | | | |
Collapse
|
48
|
Yoo HS, Oh JE, Lee KH, Park TG. Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharm Res 1999; 16:1114-8. [PMID: 10450940 DOI: 10.1023/a:1018908421434] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Doxorubicin was chemically conjugated to a terminal end group of poly(D,L-lactic-co-glycolic acid) [PLGA] and the doxorubicin-PLGA conjugate was formulated into nanoparticles to sustain the release of doxorubicin. METHODS A hydroxyl terminal group of PLGA was activated by p-nitrophenyl chloroformate and reacted with a primary amine group of doxorubicin for conjugation. The conjugates were fabricated into ca. 300 nm size nanoparticles by a spontaneous emulsion-solvent diffusion method. The amount of released doxorubicin and its PLGA oligomer conjugates was quantitated as a function of time. The cytotoxicity of the released species was determined using a HepG2 cell line. RESULTS Loading efficiency and loading percentage of doxorubicin-PLGA conjugate within the nanoparticles were 96.6% and 3.45 (w/w) %, respectively while those for unconjugated doxorubicin were 6.7% and 0.26 (w/w) %, respectively. Both formulation parameters increased dramatically due to the hydrophobically modified doxorubicin by the conjugation of PLGA. The nanoparticles consisting of the conjugate exhibited sustained release over 25 days, whereas those containing unconjugated free doxorubicin showed rapid doxorubicin release in 5 days. A mixture of doxorubicin and its PLGA oligomer conjugates released from the nanoparticles had comparable IC50 value in a HepG2 cell line compared to that of free doxorubicin. Sustained drug release was attributed to the chemical degradation of conjugated PLGA backbone, which permitted water solubilization and subsequent release of doxorubicin conjugated PLGA oligomers into the medium. CONCLUSIONS The conjugation approach of doxorubicin to PLGA was potentially useful for nanoparticle formulations that require high drug loading and sustained release. The doxorubicin-PLGA oligomer conjugate released in the medium demonstrated a slightly lower cytotoxic activity than free doxorubicin in a HepG2 cell line.
Collapse
Affiliation(s)
- H S Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon, South Korea
| | | | | | | |
Collapse
|