1
|
Sasaki-Hamada S, Hojyo Y, Mizumoto R, Koyama H, Yanagisawa S, Oka JI. Cognitive and hippocampal synaptic profiles in monosodium glutamate-induced obese mice. Neurosci Res 2020; 170:201-207. [PMID: 32949668 DOI: 10.1016/j.neures.2020.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/06/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Obesity is a growing worldwide public health issue and is associated with a range of comorbidities, including cognitive deficits. The present study investigated synaptic changes in the hippocampus during the development of obesity. The treatment of newborn mice with monosodium-L-glutamate (MSG, 2 mg/g) induced obesity and recognition memory deficits in the novel object recognition (NOR) test at 16-17 weeks, but not at 8-9 weeks. Hippocampal synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), and excitatory synaptic transmission at Schaffer collateral-CA1 (SC-CA1) synapses were compared between MSG-treated mice and age-matched control mice. LTP and fiber volley amplitudes were enhanced in MSG-treated mice at 16-17 weeks, but not at 8-9 weeks. Furthermore, the strength of paired-pulse facilitation (PPF) changed in MSG-treated mice at 16-17 weeks, but not at 8-9 weeks. These results suggest that enhanced LTP in the SC-CA1 synapses of MSG-induced obese mice involves presynaptic rather than postsynaptic mechanisms.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan
| | - Yuki Hojyo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryo Mizumoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hajime Koyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shoko Yanagisawa
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
2
|
Hajihasani MM, Soheili V, Zirak MR, Sahebkar A, Shakeri A. Natural products as safeguards against monosodium glutamate-induced toxicity. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:416-430. [PMID: 32489556 PMCID: PMC7239414 DOI: 10.22038/ijbms.2020.43060.10123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
Monosodium glutamate is a sodium salt of a nonessential amino acid, L-glutamic acid, which is widely used in food industry. Glutamate plays an important role in principal brain functions including formation and stabilization of synapses, memory, cognition, learning, as well as cellular metabolism. However, ingestion of foodstuffs rich in monosodium glutamate can result in the outbreak of several health disorders such as neurotoxicity, hepatotoxicity, obesity and diabetes. The usage of medicinal plants and their natural products as a therapy against MSG used in food industry has been suggested to be protective. Calendula officinalis, Curcuma longa, Green Tea, Ginkgo biloba and vitamins are some of the main natural products with protective effect against mentioned monosodium glutamate toxicity through different mechanisms. This review provides a summary on the toxicity of monosodium glutamate and the protective effects of natural products against monosodium glutamate -induced toxicity.
Collapse
Affiliation(s)
- Mohammad Mahdi Hajihasani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Liu M, Zhu Q, Wu J, Yu X, Hu M, Xie X, Yang Z, Yang J, Feng YQ, Yue J. Glutamate affects the production of epoxyeicosanoids within the brain: The up-regulation of brain CYP2J through the MAPK-CREB signaling pathway. Toxicology 2017; 381:31-38. [DOI: 10.1016/j.tox.2017.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 12/27/2022]
|
4
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
5
|
Ortuño-Sahagún D, Rivera-Cervantes MC, Gudiño-Cabrera G, Junyent F, Verdaguer E, Auladell C, Pallàs M, Camins A, Beas-Zárate C. Microarray analysis of rat hippocampus exposed to excitotoxicity: reversal Na(+)/Ca(2+) exchanger NCX3 is overexpressed in glial cells. Hippocampus 2010; 22:128-40. [PMID: 20928830 DOI: 10.1002/hipo.20869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2010] [Indexed: 02/06/2023]
Abstract
Multiple factors are involved in the glutamate-induced excitotoxicity phenomenon, such as overload of ionotropic and metabotropic receptors, excess Ca(2+) influx, nitric oxide synthase activation, oxidative damage due to increase in free radicals, and release of endogenous polyamine, among others. In order to attempt a more integrated approach to address this issue, we established, by microarray analysis, the hippocampus gene expression profiles under glutamate-induced excitotoxicity conditions. Increased gene expression is mainly related to excitotoxicity (CaMKII, glypican 2, GFAP, NCX3, IL-2, and Gmeb2) or with cell damage response (dynactin and Ecel1). Several genes that augmented their expression are related to glutamatergic system modulation, in particular with NMDA receptor modulation and calcium homeostasis (IL-2, CaMKII, acrosin, Gmeb2, hAChE, Slc83a, and SP1 factor). Conversely, among genes that diminished their expression, we found the Syngap 1, which is downregulated by CaMKII, and the MHC II, which is downregulated by glutamate. Changes observed in gene expression induced by monosodium glutamate (MSG) neonatal treatment in the hippocampus are consistent with the activation of the mechanisms that modulate NMDA receptor function as well as with the implementation of plastic response to cell damage and intracellular calcium homeostasis. Regarding this aspect, we report here that NCX3/Slc8a3, a Na(+)/Ca(2+) membrane exchanger, is highly expressed in astrocytes, both in vitro and in vivo, in response to glutamate-induced excitotoxicity. Hence, the results of this analysis present a broad view of the expression profile elicited by MSG neonatal treatment, and lead us to suggest the possible molecular pathways of action and reaction involved under this experimental model of excitotoxicity.
Collapse
Affiliation(s)
- Daniel Ortuño-Sahagún
- Laboratorio de Desarrollo y Regeneración Neural, Instituto de Neurobiología, C.U.C.B.A, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
González‐Burgos I, Velázquez‐Zamora D, Beas‐Zárate C. Damage and plasticity in adult rat hippocampal trisynaptic circuit neurons after neonatal exposure to glutamate excitotoxicity. Int J Dev Neurosci 2009; 27:741-5. [DOI: 10.1016/j.ijdevneu.2009.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 11/26/2022] Open
Affiliation(s)
- I. González‐Burgos
- Laboratorio de PsicobiologíaDivisión de NeurocienciasCentro de Investigación Biomédica de Occidente, IMSS.GuadalajaraMexico
- Depto. de Biología Celular y MolecularCUCBA, Universidad de GuadalajaraGuadalajaraJal.Mexico
| | - D.A. Velázquez‐Zamora
- Laboratorio de PsicobiologíaDivisión de NeurocienciasCentro de Investigación Biomédica de Occidente, IMSS.GuadalajaraMexico
| | - C. Beas‐Zárate
- Laboratorio de Neurobiología Celular y MolecularDivisión de NeurocienciasCentro de Investigación Biomédica de Occidente, IMSS.GuadalajaraMexico
- Depto. de Biología Celular y MolecularCUCBA, Universidad de GuadalajaraGuadalajaraJal.Mexico
| |
Collapse
|
7
|
Changes in hippocampal NMDA‐R subunit composition induced by exposure of neonatal rats tol‐glutamate. Int J Dev Neurosci 2008; 27:197-204. [DOI: 10.1016/j.ijdevneu.2008.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 09/08/2008] [Accepted: 09/23/2008] [Indexed: 11/20/2022] Open
|
8
|
León D, Albasanz JL, Castillo CA, Martín M. Effect of glutamate intake during gestation on adenosine A(1) receptor/adenylyl cyclase pathway in both maternal and fetal rat brain. J Neurochem 2007; 104:435-45. [PMID: 17953672 DOI: 10.1111/j.1471-4159.2007.04998.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pregnant Wistar rats were orally treated with 1 g/L l-glutamate during the entire gestational period and the status of adenosine A(1) receptor (A(1)R)/adenylyl cyclase transduction pathway from maternal and fetal brain was analyzed. Glutamate consumption, estimated from the loss of water from the drinking bottles, was 110 +/- 4.6 mg/kg/day. In mother brains glutamate intake did not significantly alter the B(max) value, although the K(d) value was significantly decreased. However in fetus brain, a significant decrease in B(max) was observed, without an alteration of K(d) value. Similar results were observed by western blot assays using specific A(1)R antibody, suggesting a down-regulation of A(1)R in fetal brain. Concerning alpha subunits of inhibitory G proteins (Gi), alphaGi(3) protein was slightly but significantly decreased in maternal brain without alterations of either Gi(1) or Gi(2). In contrast, alphaGi(1) and alphaGi(2) isoforms were increased in fetal brain. On the other hand, basal, forskolin, and forskolin plus GTPgammaS-stimulated adenylyl cyclase activity was significantly decreased in both maternal and fetal brain, and this was more prominent in fetal than in maternal brain. Finally, A(1)R functionality was significantly decreased in mother brain whereas no significant differences were detected in fetus brain. These results suggest that glutamate administered to pregnant rats modulates A(1)R signaling pathways in both tissues, showing an A(1)R down-regulation in fetal brain, and desensitization in maternal brain.
Collapse
Affiliation(s)
- David León
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | | | | |
Collapse
|
9
|
Beas-Zárate C, Ureña-Guerrero ME, Flores-Soto M, Armendariz-Borunda J, Ortuño-Sahagún D. The expression and binding of kainate receptors is modified in different brain regions by glutamate neurotoxicity during postnatal rat development. Int J Dev Neurosci 2006; 25:53-61. [PMID: 17141463 DOI: 10.1016/j.ijdevneu.2006.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022] Open
Abstract
Kainic acid receptor (KA-R) subunits are differentially expressed during brain development, and they modulate both neural growth and survival. High concentrations of glutamate in the brain can induce neuronal injury through these receptors, altering normal development. However, it is unclear whether KAR subunit expression itself is also modified by neonatal exposure to high glutamate. To analyze this, monosodium glutamate (4mg/g of body weight) was subcutaneously administered on postnatal days 1, 3, 5 and 7, and the expression of GluR5, GluR6, KA1 and KA2, as well as [(3)H]-kainic acid (KA-R) binding, was evaluated on postnatal days 14, 21, 30 and 60 in different regions of rat brain. As a result, high levels of GluR5 expression associated with strong [(3)H]-kainic acid binding were observed on postnatal days 30 and 60 in the cerebral cortex of rats exposed to glutamate. Similarly, the changes induced by glutamate administration in the expression of the KA1 and KA2 subunits were paralleled by those of [(3)H]-kainic acid binding in the striatum at postnatal days 21 and 30. In contrast, while KAR subunits were over expressed in the hippocampus, no changes were observed in [(3)H]-kainic acid binding in adult rats that had been exposed to glutamate. Therefore, glutamate modifies both the expression of kainic acid receptor subunits and kainic acid binding in a determined spatial and temporal manner, which may be indicative of a regional susceptibility to glutamate neurotoxicity.
Collapse
Affiliation(s)
- C Beas-Zárate
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, CIBO, IMSS, Mexico.
| | | | | | | | | |
Collapse
|
10
|
De Souza Silva MA, Dolga A, Pieri I, Marchetti L, Eisel ULM, Huston JP, Dere E. Cholinergic cells in the nucleus basalis of mice express the N-methyl-d-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels. GENES BRAIN AND BEHAVIOR 2006; 5:552-60. [PMID: 17010101 DOI: 10.1111/j.1601-183x.2006.00206.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-d-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the nucleus basalis has not yet been investigated. Here, by means of choline acetyl transferase and NR2B or NR2C double staining, we demonstrate that mice express both the NR2C and NR2B subunits in nucleus basalis cholinergic cells. We generated NR2C-2B mutant mice in which an insertion of NR2B cDNA into the gene locus of the NR2C gene replaced NR2C by NR2B expression throughout the brain. This NR2C-2B mutant was used to examine whether a subunit exchange in cholinergic neurons would affect acetylcholine (ACh) content in several brain structures. We found increased ACh levels in the frontal cortex and amygdala in the brains of NR2C-2B mutant mice. Brain ACh has been implicated in neuroplasticity, novelty-induced arousal and encoding of novel stimuli. We therefore assessed behavioral habituation to novel environments and objects as well as object recognition in NR2C-2B subunit exchange mice. The behavioral analysis did not indicate any gross behavioral alteration in the mutant mice compared with the wildtype mice. Our results show that the NR2C by NR2B subunit exchange in mice affects ACh content in two target areas of the nucleus basalis.
Collapse
Affiliation(s)
- M A De Souza Silva
- Institute of Physiological Psychology, Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Haddad JJ. N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention? Prog Neurobiol 2006; 77:252-82. [PMID: 16343729 DOI: 10.1016/j.pneurobio.2005.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/10/2004] [Accepted: 10/27/2005] [Indexed: 12/30/2022]
Abstract
Excitatory synaptic transmission in the central nervous system (CNS) is mediated by the release of glutamate from presynaptic terminals onto postsynaptic channels gated by N-methyl-D-aspartate (NMDA) and non-NMDA (AMPA and KA) receptors. Extracellular signals control diverse neuronal functions and are responsible for mediating activity-dependent changes in synaptic strength and neuronal survival. Influx of extracellular calcium ([Ca(2+)](e)) through the NMDA receptor (NMDAR) is required for neuronal activity to change the strength of many synapses. At the molecular level, the NMDAR interacts with signaling modules, which, like the mitogen-activated protein kinase (MAPK) superfamily, transduce excitatory signals across neurons. Recent burgeoning evidence points to the fact that MAPKs play a crucial role in regulating the neurochemistry of NMDARs, their physiologic and biochemical/biophysical properties, and their potential role in pathophysiology. It is the purpose of this review to discuss: (i) the MAPKs and their role in a plethora of cellular functions; (ii) the role of MAPKs in regulating the biochemistry and physiology of NMDA receptors; (iii) the kinetics of MAPK-NMDA interactions and their biologic and neurochemical properties; (iv) how cellular signaling pathways, related cofactors and intracellular conditions affect NMDA-MAPK interactions and (v) the role of NMDA-MAPK pathways in pathophysiology and the evolution of disease conditions. Given the versatility of the NMDA-MAPK interactions, the NMDA-MAPK axis will likely form a neurochemical target for therapeutic interventions.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Lebanon.
| |
Collapse
|
12
|
Olvera-Cortés E, López-Vázquez MA, Beas-Zárate C, González-Burgos I. Neonatal exposure to monosodium glutamate disrupts place learning ability in adult rats. Pharmacol Biochem Behav 2005; 82:247-51. [PMID: 16226303 DOI: 10.1016/j.pbb.2005.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 08/09/2005] [Accepted: 08/15/2005] [Indexed: 11/29/2022]
Abstract
The activation of glutamatergic NMDA receptors of the hippocampus is closely associated with expression of place learning. Neonatal exposure to monosodium glutamate leads to abnormal expression of NMDA receptor subunits in the hippocampus, but its effect on place learning is unknown. Place learning acquisition and retrieval were assessed in mature adult rats after subcutaneous injection of monosodium glutamate (4 mg/g body weight) in eight neonatal rat pups at postnatal days one, three, five, and seven. Eight untreated rats were used as controls. At four months of age, the rats were challenged over a period of nine days with a place learning task. The task used an acquisition-retrieval paradigm in a Morris maze. Place learning acquisition was impaired in the experimental rats, which were unable to reduce their escape latencies during the nine training days. Controls improved between the fifth and ninth days of training. Test trials showed that retrieval of spatial information was also impaired in the experimental animals. These results show that both place learning acquisition and retrieval abilities in mature rats are impaired by neonatal treatment with monosodium glutamate. These findings may be related to the abnormal expression of NMDA receptor subunits in the hippocampus.
Collapse
Affiliation(s)
- E Olvera-Cortés
- Laboratorio de Neurofisiología Experimental, CIBIMI, IMSS. Morelia, 58000 Mich, Mexico
| | | | | | | |
Collapse
|
13
|
Ureña-Guerrero ME, López-Pérez SJ, Beas-Zárate C. Neonatal monosodium glutamate treatment modifies glutamic acid decarboxylase activity during rat brain postnatal development. Neurochem Int 2003; 42:269-76. [PMID: 12470699 DOI: 10.1016/s0197-0186(02)00131-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Monosodium glutamate (MSG) produces neurodegeneration in several brain regions when it is administered to neonatal rats. From an early embryonic age to adulthood, GABA neurons appear to have functional glutamatergic receptors, which could convert them in an important target for excitotoxic neurodegeneration. Changes in the activity of the GABA synthesizing enzyme, glutamic acid decarboxylase (GAD), have been shown after different neuronal insults. Therefore, this work evaluates the effect of neonatal MSG treatment on GAD activity and kinetics in the cerebral cortex, striatum, hippocampus and cerebellum of the rat brain during postnatal development. Neonatal MSG treatment decreased GAD activity in the cerebral cortex at 21 and 60 postnatal days (PD), mainly due to a reduction in the enzyme affinity (K(m)). In striatum, the GAD activity and the enzyme maximum velocity (V(max)) were increased at PD 60 after neonatal MSG treatment. Finally, in the hippocampus and cerebellum, the GAD activity and V(max) were increased, but the K(m) was found to be lower in the experimental group. The results could be related to compensatory mechanisms from the surviving GABAergic neurons, and suggest a putative adjustment in the GAD isoform expression throughout the development of the postnatal brain, since this enzyme is regulated by the synaptic activity under physiological and/or pathophysiological conditions.
Collapse
Affiliation(s)
- Mónica Elisa Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Jalisco, Mexico
| | | | | |
Collapse
|
14
|
Sanabria ERG, Pereira MFS, Dolnikoff MS, Andrade IS, Ferreira AT, Cavalheiro EA, Fernandes MJS. Deficit in hippocampal long-term potentiation in monosodium glutamate-treated rats. Brain Res Bull 2002; 59:47-51. [PMID: 12372548 DOI: 10.1016/s0361-9230(02)00837-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rats subjected to monosodium glutamate (MSG) administration during the neonatal period present chronic neuroendocrine dysfunction associated with marked cognitive deficits. Long-term potentiation (LTP) in the hippocampus provides a model suited for the study of mammalian brain plasticity and memory formation. In the present work, we used the LTP protocol to investigate the synaptic plasticity in the hippocampal CA1 area of adult rats subjected to MSG treatment during the first 10 days of life. Synaptic transmission in CA1 area was analyzed using extracellular field recordings in response to Schaffer's collateral fiber stimulation in hippocampal slices. Animals injected with MSG exhibited a dramatic decrement of LTP field excitatory postsynaptic potentials (fEPSPs) compared to control group. Analysis of percent enhancement of fEPSP slope at 2 min after high frequency stimulation (HFS) increased by 189.3 +/- 33.2% in slices from control rats and 129.45 +/- 18.5% (p < 0.01) in slices from MSG-treated rats. Additionally, MSG-treated animals failed to maintain or consolidate LTP as revealed by a significant reduction in fEPSP slope enhancement over time after HFS. The mean fEPSP slope, 60 min after HFS, was 154.28 +/- 21% of the average baseline slope in control slices versus only 124.4 +/- 15% in MSG-treated rats (p < 0.01). At 90 min after HFS, slices from controls reached a potentiation of 44.5 +/- 2.9%, whereas the MSG group displayed an overall response enhancement of 17.65 +/- 2.7% of basal levels (p < 0.01). These findings indicate that MSG-treated rats display a chronic impairment of CA1 synaptic plasticity.
Collapse
Affiliation(s)
- E R G Sanabria
- Departamento de Neurologia e Neurocirurgia, Disciplina de Neurologia Experimental, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|