1
|
Monroe SC, Radke AK. Opioid withdrawal: role in addiction and neural mechanisms. Psychopharmacology (Berl) 2023; 240:1417-1433. [PMID: 37162529 PMCID: PMC11166123 DOI: 10.1007/s00213-023-06370-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Withdrawal from opioids involves a negative affective state that promotes maintenance of drug-seeking behavior and relapse. As such, understanding the neurobiological mechanisms underlying withdrawal from opioid drugs is critical as scientists and clinicians seek to develop new treatments and therapies. In this review, we focus on the neural systems known to mediate the affective and somatic signs and symptoms of opioid withdrawal, including the mesolimbic dopaminergic system, basolateral amygdala, extended amygdala, and brain and hormonal stress systems. Evidence from preclinical studies suggests that these systems are altered following opioid exposure and that these changes mediate behavioral signs of negative affect such as aversion and anxiety during withdrawal. Adaptations in these systems also parallel the behavioral and psychological features of opioid use disorder (OUD), highlighting the important role of withdrawal in the development of addictive behavior. Implications for relapse and treatment are discussed as well as promising avenues for future research, with the hope of promoting continued progress toward characterizing neural contributors to opioid withdrawal and compulsive opioid use.
Collapse
Affiliation(s)
- Sean C Monroe
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA.
| |
Collapse
|
2
|
Zhu J, Zhu F, Zhao N, Mu X, Li P, Wang W, Liu J, Ma X. Methylation of glucocorticoid receptor gene promoter modulates morphine dependence and accompanied hypothalamus-pituitary-adrenal axis dysfunction. J Neurosci Res 2016; 95:1459-1473. [PMID: 27618384 DOI: 10.1002/jnr.23913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 11/09/2022]
Abstract
Previous studies demonstrated that dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis played an important role in morphine dependence. Nonetheless, the molecular mechanism underlying morphine-induced HPA axis dysfunction and morphine dependence remains unclear. In the current study, 5'-aza-2'-deoxycytidine (5-aza), an inhibitor of DNA methyltransferases (DNMTs), was used to examine the effects of glucocorticoid receptor (GR) promoter 17 methylation on chronic morphine-induced HPA axis dysfunction and behavioral changes in rats and the underlying mechanism. Our results showed that chronic but not acute morphine downregulated the expression of nuclear GR protein and GR exon 17 variant mRNA, and upregulated the methylation of GR 17 exon promoter in the hippocampus of rats. Meanwhile, 5-aza per se had no effect on observed molecular and behavior change. In contrast, pretreatment of 5-aza into rat hippocampus reversed chronic morphine-induced hypermethylation of GR 17 promoter and decrease in GR expression. Moreover, pretreatment of 5-aza attenuated chronic morphine-enhanced HPA axis reactivity and the naloxone-precipitated somatic signs in morphine-dependent rats. Our results suggest that chronic morphine induced hypermethylation of GR 17 promoter, which then downregulated the expression of hippocampal GR, and was thus involved in chronic morphine-induced dysfunction of the HPA axis and the modulation of morphine dependence. Moreover, chronic morphine-induced hypermethylation of GR 17 promoter may be at least partially due to the increase in hippocampal DNMT 1 expression and its binding at GR 17 promoter in the rat hippocampus. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jie Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Feng Zhu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Na Zhao
- Northwest University of Politics and Law School of Police, Xi'an, Shaanxi, People's Republic of China
| | - Xin Mu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Reproductive Medicine Center, Maternal and Child Health Hospital of Shaanxi Province & Northwest Women's and Children's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Pingping Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Wei Wang
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jian Liu
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Xiancang Ma
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Das S, Kelschenbach J, Charboneau R, Barke RA, Roy S. Morphine withdrawal stress modulates lipopolysaccharide-induced interleukin 12 p40 (IL-12p40) expression by activating extracellular signal-regulated kinase 1/2, which is further potentiated by glucocorticoids. J Biol Chem 2011; 286:29806-17. [PMID: 21730055 DOI: 10.1074/jbc.m111.271460] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Withdrawal stress is a common occurrence in opioid users, yet very few studies have examined the effects of morphine withdrawal (MW) on immune functioning or the role of glucocorticoids in MW-induced immunomodulation. This study investigated for the first time the role of glucocorticoids in MW modulation of LPS-induced IL-12p40, a key cytokine playing a pivotal role in immunoprotection. Using WT and μ-opioid receptor knock-out mice, we show that MW in vivo significantly attenuated LPS-induced IL-12p40 mRNA and protein expression. The role of glucocorticoids in MW modulation of IL-12p40 was investigated using a murine macrophage cell line, CRL2019, in an in vitro MW model. Interestingly, MW alone in the absence of glucocorticoids resulted in a significant reduction in IL-12p40 promoter activity and mRNA and protein expression. EMSA revealed a concurrent decrease in consensus binding to transcription factors NFκB, Activator Protein-1, and CCAAT/enhancer-binding protein and Western blot analysis demonstrated a significant activation of LPS-induced ERK1/2 phosphorylation. Interestingly, although glucocorticoid treatment alone also modulated these transcription factors and ERK1/2 activation, the addition of glucocorticoids to MW samples resulted in a greater than additive reduction in the transcription factors and significant hyperactivation of LPS-induced ERK1/2 phosphorylation. ERK inhibitors reversed MW and MW plus corticosterone inhibition of LPS-induced IL-12p40. The potentiating effects of glucocorticoids were non-genomic because nuclear translocation of glucocorticoid receptor was not significantly different between MW and corticosterone treatment. This study demonstrates for the first time that MW and glucocorticoids independently modulate IL-12p40 production through a mechanism involving ERK1/2 hyperactivation and that glucocorticoids can significantly augment MW-induced inhibition of IL-12p40.
Collapse
Affiliation(s)
- Subhas Das
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
4
|
Zhang GF, Ren YP, Sheng LX, Chi Y, Du WJ, Guo S, Jiang ZN, Xiao L, Luo XN, Tang YL, Smith AK, Liu ZQ, Zhang HX. Dysfunction of the Hypothalamic–Pituitary–Adrenal Axis in Opioid Dependent Subjects: Effects of Acute and Protracted Abstinence. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2009; 34:760-8. [PMID: 19016181 DOI: 10.1080/00952990802385781] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Guo-Fu Zhang
- Beijing Anding Hospital, Capital University of Medical Sciences, Beijing, China
| | - Yan-Ping Ren
- Beijing Anding Hospital, Capital University of Medical Sciences, Beijing, China
| | - Li-Xia Sheng
- Beijing Anding Hospital, Capital University of Medical Sciences, Beijing, China
| | - Yong Chi
- Beijing Anding Hospital, Capital University of Medical Sciences, Beijing, China
| | - Wan-Jun Du
- Beijing Anding Hospital, Capital University of Medical Sciences, Beijing, China
| | - Song Guo
- Beijing Anding Hospital, Capital University of Medical Sciences, Beijing, China
| | - Zuo-Ning Jiang
- Beijing Anding Hospital, Capital University of Medical Sciences, Beijing, China
| | - Le Xiao
- Beijing Anding Hospital, Capital University of Medical Sciences, Beijing, China
| | - Xiao-Nian Luo
- Beijing Anding Hospital, Capital University of Medical Sciences, Beijing, China
| | - Yi-Lang Tang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Alicia K. Smith
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Zhen-Qi Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia, USA
| | | |
Collapse
|
5
|
Kalange AS, Kokare DM, Singru PS, Upadhya MA, Chopde CT, Subhedar NK. Central administration of selective melanocortin 4 receptor antagonist HS014 prevents morphine tolerance and withdrawal hyperalgesia. Brain Res 2007; 1181:10-20. [PMID: 17915196 DOI: 10.1016/j.brainres.2007.08.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 08/20/2007] [Accepted: 08/24/2007] [Indexed: 11/17/2022]
Abstract
Major problem involved in treatment of chronic pain with morphine is the development of tolerance and dependence. Previous studies have demonstrated the participation of melanocortin (MC) system in the development of tolerance to antinociceptive effect of morphine. However, the impact of supraspinal MC4 receptors (MC4 R) modulation on this phenomenon and morphine withdrawal hyperalgesia remained unexplored. We investigated the role of central MC4 R in acute, chronic effects and withdrawal reactions of morphine using tail flick test. Acute intracerebroventricular (icv) administration of morphine (2-20 microg/rat) exhibited antinociceptive activity, which was antagonized by subeffective dose of nonselective MC R agonist NDP-MSH (0.04 ng/rat, icv), and potentiated by subeffective dose of MC4 R antagonist HS014 (0.008 ng/rat, icv). Isobolographic analysis revealed antagonistic interaction between NDP-MSH and morphine, and additive interaction between HS014 and morphine combinations. While chronic icv infusion of morphine (20 ng/microl/h) via osmotic pump for 7 days developed tolerance to its antinociceptive effect, its discontinuation produced hyperalgesia. Co-administration of HS014 (0.008 ng/rat, icv) with chronic morphine not only delayed the development of tolerance but also prevented withdrawal hyperalgesia. Furthermore, acute treatment with HS014 (0.008 and 0.04 ng/rat, icv) dose dependently attenuated the withdrawal hyperalgesia. This suggests the involvement of central MC4 R in the mechanism of development of tolerance and dependence following chronic morphine administration. We speculate that targeting this receptor may be a novel strategy to improve the effectiveness of morphine in the treatment of chronic pain.
Collapse
Affiliation(s)
- Annasaheb S Kalange
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Nagpur-440 033, India
| | | | | | | | | | | |
Collapse
|
6
|
Nunez C, Földes A, Laorden ML, Milanes MV, Kovács KJ. Activation of stress‐related hypothalamic neuropeptide gene expression during morphine withdrawal. J Neurochem 2007; 101:1060-71. [PMID: 17286593 DOI: 10.1111/j.1471-4159.2006.04421.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Morphine withdrawal results in serious affective and somatic symptoms including activation of the hypothalamo-pituitary-adrenocortical (HPA) axis. To reveal secretory, activational and transcriptional changes in the hypothalamus of morphine-dependent rats during naloxone precipitated opioid withdrawal, we measured corticosterone secretion, c-Fos induction and heteronuclear (hn)RNA levels of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) in naïve and morphine dependent animals injected with saline or 5 mg/kg naloxone. Naloxone precipitated morphine withdrawal resulted in a significant increase in corticosterone secretion and induction of neuronal activation in the hypothalamic paraventricular nucleus (PVH) 2 h after challenge. Using probes complementary to intronic sequences of genes encoding neuropeptides in parvocellular neurosecretory neurons of the PVH, we found robust increases in CRH and AVP hnRNAs in morphine dependent rats during naloxone precipitated withdrawal. Naïve rats and animals that were implanted with morphine pellets for 8 days did not display significant up-regulation of ongoing neuropeptide expression in the parvocellular compartment of the PVH. In addition to hypophyseotropic neurons, naloxone precipitated withdrawal resulted in a marked activation in autonomic-related projection neurons in PVH and in the magnocellular neurons in the PVH and supraoptic nuclei. These activations however were not associated with induction of CRH or AVP hnRNAs.
Collapse
Affiliation(s)
- Cristina Nunez
- Department of Pharmacology, University of Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|
7
|
Mizutani A, Arvidsson J, Chahl LA. Sensitization to morphine withdrawal in guinea-pigs. Eur J Pharmacol 2005; 509:135-43. [PMID: 15733548 DOI: 10.1016/j.ejphar.2004.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 12/24/2004] [Indexed: 11/21/2022]
Abstract
The aim of this study was to determine whether sensitization occurred to morphine withdrawal. Guinea-pigs were treated twice daily with increasing doses of morphine (10-100 mg/kg s.c.) for 3 days followed by injection of morphine 100 mg/kg on the fourth day. Sixty min after the last morphine injection, animals were withdrawn from morphine with naltrexone, 15 mg/kg s.c., and locomotor activity and all other behaviours scored over 90 min. Animals were then rested for 3 days. This procedure was repeated twice over the next 2 weeks. Control animals were treated with saline for the first two treatment cycles. Guinea-pigs subjected to three cycles of morphine withdrawal showed a significant increase in the total number of withdrawal behaviour counts over the 90-min observation period following the third cycle of withdrawal compared with the first and second withdrawal cycles. However, locomotor activity, a major sign of morphine withdrawal in guinea-pigs, was not significantly increased. Fos-LI was markedly increased in the repeatedly withdrawn animals in several brain regions, including amygdala, dorsal striatum, thalamus, ventral tegmental area, and ventrolateral periaqueductal gray area. It is concluded that sensitization to morphine withdrawal occurs in guinea-pigs.
Collapse
Affiliation(s)
- Akiko Mizutani
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | | | | |
Collapse
|
8
|
Benavides M, Laorden ML, Milanés MV. Involvement of 3',5'-cyclic adenosine monophosphate-dependent protein kinase in regulation of Fos expression and tyrosine hydroxylase levels during morphine withdrawal in the hypothalamic paraventricular nucleus and medulla oblongata catecholaminergic cell groups. J Neurochem 2005; 92:246-54. [PMID: 15663473 DOI: 10.1111/j.1471-4159.2004.02865.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morphine withdrawal stimulates the hypothalamic-pituitary-adrenocortical axis activity by activation of nucleus tractus solitarius (NTS)/ventrolateral medulla (VLM) noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN). We investigated whether cAMP-dependent protein kinase (PKA) plays a role in this process by estimating changes in PKA immunoreactivity and the influence of inhibition of PKA on Fos protein expression and tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and NTS/VLM during morphine withdrawal. Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (5 mg/kg s.c.). When opioid withdrawal was precipitated, an increase in PKA immunoreactivity levels was observed 90 min after naloxone administration in the PVN and NTS/VLM areas. Morphine withdrawal induced expression of Fos in the PVN and NTS/VLM, indicating an activation of neurones in those nuclei. TH immunoreactivity in NTS/VLM was increased 90 min after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN at the same time point. When the selective PKA inhibitor HA-1004 was infused it greatly diminished the Fos expression observed in morphine-withdrawn rats. Furthermore, the changes in TH immunoreactivity were significantly modified by infusion of HA-1004. The present findings suggest that an up-regulated PKA-dependent transduction pathway might contribute to the activation of the hypothalamic-pituitary-adrenocortical axis in response to morphine withdrawal.
Collapse
Affiliation(s)
- Marta Benavides
- Equip of Cellular and Molecular Pharmacology, University School of Medicine, Murcia, Spain
| | | | | |
Collapse
|
9
|
Taiwo OB, Kovács KJ, Sperry LC, Larson AA. Naloxone-induced morphine withdrawal increases the number and degranulation of mast cells in the thalamus of the mouse. Neuropharmacology 2004; 46:824-35. [PMID: 15033342 DOI: 10.1016/j.neuropharm.2003.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 09/22/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
Abstract
Naloxone-induced jumping in morphine-dependent mice is inhibited by cromolyn, a mast cell stabilizer, suggesting that this characteristic withdrawal behavior results from degranulation of mast cells. Because withdrawal is considered as a central phenomenon, degranulation of mast cells located within the CNS may influence aspects of opioid withdrawal. The present study evaluates histologically whether naloxone, injected into opioid dependent mice, induces degranulation of mast cells. Seventy-two hours after the s.c. implantation of a 75 mg morphine pellet, the number and degranulation of thalamic mast cells did not differ from those in placebo-implanted controls. However, two injections of 50 mg/kg of naloxone, 30 and 60 min before tissue collection, increased the number of degranulated mast cells compared to those in mice injected with saline. Analysis throughout the entire thalamus (90 40-micro sections) revealed increases in the total number of mast cells as well as the number that were degranulated, especially in sections 52-60, corresponding to Bregma -2.18 to 2.54. Here, mast cells were clustered in the IGL and VPL/VPM nuclei, and redistributed from the ventromedial to the dorsolateral aspects of the Po and PF nuclei during withdrawal. Degranulation was also greater throughout the LD, LP nuclei during withdrawal. These data reveal a novel neuroimmune reaction to opioid withdrawal in the CNS.
Collapse
Affiliation(s)
- Oludare B Taiwo
- Department of Veterinary Pathobiology, University of Minnesota, Room 295, Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
10
|
Hamlin AS, Buller KM, Day TA, Osborne PB. Effect of naloxone-precipitated morphine withdrawal on c-fos expression in rat corticotropin-releasing hormone neurons in the paraventricular hypothalamus and extended amygdala. Neurosci Lett 2004; 362:39-43. [PMID: 15147776 DOI: 10.1016/j.neulet.2004.02.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 02/06/2004] [Accepted: 02/08/2004] [Indexed: 10/26/2022]
Abstract
Morphine withdrawal is characterized by physical symptoms and a negative affective state. The 41 amino acid polypeptide corticotropin-releasing hormone (CRH) is hypothesized to mediate, in part, both the negative affective state and the physical withdrawal syndrome. Here, by means of dual-immunohistochemical methodology, we examined the co-expression of the c-Fos protein and CRH following naloxone-precipitated morphine withdrawal. Rats were treated with slow-release morphine 50 mg/kg (subcutaneous, s.c.) or vehicle every 48 h for 5 days, then withdrawn with naloxone 5 mg/kg (s.c.) or saline 48 h after the final morphine injection. Two hours after withdrawal rats were perfused transcardially and their brains were removed and processed for immunohistochemistry. We found that naloxone-precipitated withdrawal of morphine-dependent rats increased c-Fos immunoreactivity (IR) in CRH positive neurons in the paraventricular hypothalamus. Withdrawal of morphine-dependent rats also increased c-Fos-IR in the central amygdala and bed nucleus of the stria terminalis, however these were in CRH negative neurons.
Collapse
Affiliation(s)
- A S Hamlin
- Pain Management Research Institute, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | | | | | | |
Collapse
|
11
|
Abstract
This review covers beta-phenylethylamines and isoquinoline alkaloids derived from them, including further products of oxidation. condensation with formaldehyde and rearrangement, some of which do not contain an isoquinoline system, together with naphthylisoquinoline alkaloids, which have a different biogenetic origin. The occurrence of the alkaloids, with the structures of new bases, together with their reactions, syntheses and biological activities are reported. The literature from July 2002 to June 2003 is reviewed, with 568 references cited.
Collapse
|
12
|
Abstract
This paper is the twenty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2002 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|